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Abstract Associative learning enables animals to anticipate the occurrence of
important outcomes. Learning occurs when the actual outcome differs from the pre-
dicted outcome, resulting in a prediction error. Neurons in several brain structures
appear to code prediction errors in relation to rewards, punishments, external stimuli,
and behavioral reactions. In one form, dopamine neurons, norepinephrine neurons,
and nucleus basalis neurons broadcast prediction errors as global reinforcement or
teaching signals to large postsynaptic structures. In other cases, error signals are coded
by selected neurons in the cerebellum, superior colliculus, frontal eye fields, parietal
cortex, striatum, and visual system, where they influence specific subgroups of neu-
rons. Prediction errors can be used in postsynaptic structures for the immediate selec-
tion of behavior or for synaptic changes underlying behavioral learning. The coding
of prediction errors may represent a basic mode of brain function that may also con-
tribute to the processing of sensory information and the short-term control of behavior.

INTRODUCTION

Consider the situation of a visitor to a foreign country looking for an ice tea at a
vending machine. Not surprisingly, all symbols are incomprehensible to him. A
tentative press of one of the buttons produces a can of orange juice. Trying again,
he presses another button and, much to his surprise, receives the desired ice tea.
Thus, the iced tea has arrived as unpredicted outcome. During the next few days
he may press more wrong buttons at this vending machine, but ultimately he
succeeds in reliably receiving iced tea, indicating that the symbols on this partic-
ular button have now become reliable predictors of iced tea. The learning curve
for button-pressing for iced tea has reached an asymptote. As this example shows,
learning results in the acquisition of reliable predictions about future outcomes.

Now, assume that the visitor failed to notice that the symbols indicating iced
tea are different from those indicating cold coffee and that these buttons are close
together. While predicting that his press will deliver iced tea, he presses the wrong
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button and receives cold coffee. This difference between the actual outcome (cold
coffee) and the predicted outcome (iced tea) is referred to as a prediction error,
an error that will make him choose more carefully in the future. In order to
generalize the mechanisms underlying erroneous behavior, differences between
outcome and prediction are referred to as errors in the prediction of outcome. As
this example shows, prediction errors lead to the acquisition or modification of
behavioral responses until the outcome can be reliably anticipated. When every-
thing happens just as predicted and the prediction error is nil, no further behavioral
changes will occur.

In this chapter, we discuss whether various brain structures process prediction
errors that could control the modification of behavior in an attempt to understand
the neuronal mechanisms underlying behavioral learning. Our discussion is lim-
ited to error-driven learning and does not include other forms, such as perceptual
learning or certain forms of declarative learning in which the role of prediction
errors is less obvious.

ROLE OF PREDICTION ERRORS IN LEARNING

The form of learning based on prediction errors enables behavior to adapt to the
predictive and causal structure of the environment. The ability to learn about
signals for motivationally significant events, usually termed reinforcers, can have
a major influence on biological fitness by facilitating the impact of attractive and
appetitive events and by mitigating the effects of aversive or noxious events. In
many cases, the reactions elicited by a signal are controlled solely by the predic-
tive relationship between the signal and the reinforcer. This form of predictive
learning is manifest in Pavlovian or classical conditioning. In instrumental con-
ditioning, by contrast, signals come to control new or altered reactions through
experience with the causal relationship between the reaction and the reinforcer.
Thus, our hypothetical visitor exhibited instrumental conditioning when he
learned to operate the foreign vending machine, with the button symbol acting as
the predictive signal, the press as the instrumental response, and the iced tea as
the reinforcer. Whereas Pavlovian conditioning allows anticipation of biologically
important events, instrumental conditioning enables a person to control the occur-
rence of these events. Thus, the predictive and causal learning manifested in these
two forms of conditioning is a central process of adaptive and intelligent behavior.

Unpredictability of Reinforcement

Associative learning theory assumes that both types of learning consist of the
formation of associations between representations of the signal or behavioral reac-
tion and the reinforcer (Dickinson 1980). Moreover, the theory assumes that the
associations are established when the signal or reaction is closely and regularly
followed by the reinforcer (Mackintosh 1975), with each pairing of the signal or
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reaction with the reinforcer bringing about an increment in the strength of the
association. However, this simple contiguity-based learning rule does not suffi-
ciently explain the formation of associations, which are prone to occur even when
the signal is redundant as a predictor of the reinforcer and, therefore, relatively
uninformative. This point can be illustrated by a blocking procedure involving
four stimuli: A, B, X, Y.

Stage 1 Stage 2 Test

Experimental: A r reinforcer AX r reinforcer X
Control: B r nothing BY r reinforcer Y

In stage 1, stimulus A is paired with the reinforcer and stimulus B is presented
alone, so that stimulus A, but not B, becomes established as a predictor of the
reinforcer. In stage 2, the pretrained stimuli A and B are presented in compound
with two further stimuli, A with X and B with Y. Each of these compounds is
then paired with the reinforcer for a number of trials.

According to simple associative rules, stimuli X and Y should be established
as equivalent predictors of the reinforcer, as both received the same number of
reinforcer pairings during Stage 2. This is not the case, however, because the
reinforcer is differently predicted in AX than in BY trials. In BY trials, the rein-
forcer is not predicted by stimulus B, and stimulus Y becomes the key predictor
of the reinforcer. By contrast, in AX trials, the reinforcer is already fully predicted
by stimulus A, and stimulus X supplies no additional information and is redun-
dant. Thus, stimulus Y is clearly more informative about the reinforcer than is
stimulus X. Accordingly, the final test reveals that stimulus Y has acquired a
much better prediction for the reinforcer than X. It appears as if learning about
the predictive relationship between stimulus A and the reinforcer in the first stage
blocks learning about stimulus X in the second stage.

Numerous studies demonstrate that learning in both humans (e.g. Martin &
Levey 1991) and animals (e.g. Kamin 1969) is sensitive to the prediction of the
reinforcer. On the basis of this blocking effect, Kamin (1969) suggested that the
simple pairing of a stimulus and reinforcer is not sufficient for learning, that
the occurrence of the reinforcer has to be surprising or unpredicted for the stim-
ulus to be established as a predictor of the reinforcer. In this way, associative
learning discriminates against redundant stimuli, which are relatively uniforma-
tive predictors of reinforcement.

Prediction Error and Behavioral Learning

The degree to which a reinforcer is unpredicted can be formalized in terms of a
prediction error (k1RV), with k the strength of associations with the reinforcer
that is required to predict fully the occurrence of the reinforcer, and RV the
combined associative strength of all signals present on a learning episode. Thus,
the predictor error (k1RV) represents the extent to which the reinforcer occurs
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surprisingly or unpredictably. If none of the signals have been trained, as is the
case on the initial BY episode, RV is zero and the resulting prediction error is k,
representing the fact that the reinforcer is completely unpredicted. By contrast,
when RV 4 k, representing the fact that the reinforcer is fully predicted, the
prediction error is zero. This is the case in the initial AX episodes when stimulus
A has been pretrained to predict the reinforcer.

The notion of a prediction error relates intuitively to the very essence of learn-
ing. In general terms, learning can be viewed as the acquisition of predictions of
outcomes (reward, punishment, behavioral reactions, external stimuli, internal
states). Outcomes whose magnitude or frequency is different than predicted mod-
ify behavior in a direction that reduces the discrepancy between the outcome and
its prediction. Changes in predictions and behavior continue until the outcome
occurs as predicted and the prediction error is nil. No learning, and hence no
change in predictions, occurs when the outcome is perfectly predicted. As is
paradigmatically shown by the blocking phenomenon, this idea restricts learning
to stimuli that signal surprising or altered outcomes and precludes learning about
redundant stimuli preceding outcomes already predicted by other stimuli.

Although the concept of prediction error has been particularly well character-
ized with Pavlovian conditioning, it also applies to instrumental learning, in which
the behavioral reaction is performed in the expectation of a predicted outcome,
and the error occurs when the actual outcome differs from what had been pre-
dicted. Whatever the particular form of learning, these learning systems generate
predictions of an event, process this event, and then compute the error between
the event and its prediction, which is then used to modify both subsequent pre-
dictions and performance. Depending on the nature of the predicted outcome,
prediction errors can concern a large range of events. These include positive
reinforcers (rewards), negative reinforcers (punishments), external signals includ-
ing attention-inducing stimuli, and behavioral goals and targets.

Associative learning theory deploys the concept of prediction error in two
distinct ways. In the first, learning about a stimulus or response is determined
directly by the prediction error, whereas according to the second, the prediction
error has an indirect effect on learning by controlling the attention allocated to
the predictive stimuli.

Direct Learning with Prediction Errors The rule of Rescorla & Wagner (1972)
is an example of the first class of learning process. This rule assumes that the
increment in the associative strength of a signal, DV, on a learning episode is
directly determined by the prediction error

DV 4 a b (k1RV). 1.

In this equation, a and b are learning constants that determine the rate of learning
and reflect properties of the stimulus and reinforcer, respectively, such as their
salience. During learning, reinforcement is incompletely predicted, the error term
is positive when reinforcement occurs, and associative strength increases. After
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learning, reinforcement is fully predicted, the error term is nil on correct behavior,
and associative strength remains unchanged. When reinforcement is omitted
because of changed contingencies, the error is negative and associative strength
is reduced. During each learning episode, the increment in associative strength
on trial n is added to the current associative strength of the signal to yield a
cumulative change in the predictive status of that signal:

V 4 V ` DV . 2.n`1 n n

Under this rule, the selective learning seen in the blocking effect follows directly
from the properties of the prediction error. As the error (k1RV) is zero, or at
least of a small magnitude on AX episodes, little associative strength accrues to
signal X. By contrast, the error on the initial AY episode has a larger value,
thereby producing increments on the associative strength of signal Y.

In summary, the (k1RV) term represents an error in the prediction of rein-
forcement and determines the rate of learning. Learning occurs when the error
term is positive and the stimulus does not fully predict the reinforcer. Nothing is
learned when the prediction error is nil and the stimulus fully predicts the rein-
forcer. Forgetting or extinction occurs when the error term is negative and the
reinforcer is less than predicted.

Learning Via Attention Induced by Prediction Errors Associability or atten-
tional theories argue that prediction errors do not have a direct impact on asso-
ciative strength but rather affect the attention that is allocated to stimuli and
thereby indirectly modulate later changes in associative strength (Mackintosh
1975, Pearce & Hall 1980). The underlying assumption is that the more attention
is allocated to a stimulus, the more readily it is associated with a reinforcer.

According to Pearce & Hall (1980), for example, a stimulus commands greater
attention when it has been present during a previous learning episode whose
outcome was unpredicted and less attention when the outcome of the episode was
fully predicted. In other words, a subject assigns greater attention to a signal that
has occurred in uncertain environments in the recent past, thereby facilitating
learning about the predictive structure of such environments, and assigns less
attention to a signal that perfectly predicts the outcome of an episode. These
attentional changes are modeled by equating the changes in the associability
parameter, a, of the signal with the absolute value of the prediction error on an
episode:

Da 4 | k1RV |, 3.

where | indicates absolute value. These changes in associability are cumulated
successively across learning episodes so that the associability on episode n is a
function of the associability on the preceding n11 episode plus the change in
associability on this episode (Kaye & Pearce 1984),
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a 4 gDa ` (1 1 g) a , 4.n n11 n11

where g is a parameter (bounded by 0 and 1) that determines the relative weight
given to the associability of the signal on the preceding episode (an11) and to
the change in associability on that episode (Dan11). The associability of the stim-
ulus, a, is then deployed to control the change in excitatory associative strength
on episodes in which the stimulus is paired with the reinforcer, and in inhibitory
associative strengths when the stimulus is paired with the omission of a predicted
reinforcer. Thus, the prediction error plays no direct role in changes of associative
strength, which are simply a function of the signal’s associability, a, and the
magnitude of the reinforcer, k.

Attentional theory protects against redundant learning by ensuring that the
associability of a signal is low when the reinforcer is fully predicted. Thus, in the
blocking procedure, less attention is allocated to stimulus X than to Y. The rein-
forcer is predicted by stimulus A in initial AX trials, thus making the prediction
error small. The resulting decreased attention to signal X reduces the associability
of signal X and, consequently, the amount of learning about this stimulus. By
contrast, the prediction error is large on initial BY trials because the reinforcer is
not predicted by stimulus B, thereby ensuring that attention is elicited by signal
Y, which in turn facilitates the subsequent growth of its associative strength.
Although the role of the prediction error in the Rescorla-Wagner (1972) rule
differs from that ascribed by attentional theories, behavioral analysis reveals that
selective learning, such as that exhibited in the blocking effect, appears to involve
both types of learning processes (Dickinson et al 1976).

Learning Mechanisms Based on Prediction Errors Associationism has the vir-
tue of explaining behavioral learning in terms of processes that are in principle
compatible with neuronal functioning. Konorski (1948) and Hebb (1949)
attempted to explain predictive learning in terms of strengthening of synapses by
conjoint pre- and postsynaptic activity. Subsequent neuronal network models
have developed this neurobiological theory of learning by arguing that the syn-
aptic connection weights between model neurons are controlled by the prediction
error in the form of the Delta learning rule (Widrow & Hoff 1960), which is based
on the LMS (least mean square) error procedure of process control (Kalman 1960,
Widrow & Sterns 1985). Extensions of the Delta rule have been deployed as
learning algorithms for complex connnectionist networks (Rumelhart et al 1986).

The Delta rule can be implemented by an assembly of neural units that com-
putes the prediction error. Starting from the analysis of conditioning in aplysia
by Hawkins & Kandel (1984), McLaren (1989) proposed that the prediction error
could be computed by the negative feedback assembly shown in Figure 1.
Changes in the weight of the connection between the signal and response units,
Dx, are controlled by the activity in the signal unit, As, and the activity in a
facilitatory unit, F. The facilitatory unit receives two inputs: direct excitation from
the reinforcer or outcome unit, Ar, and negative feedback from the response unit



NEURONAL PREDICTION ERRORS 479

Figure 1 Schematic representation of an assembly for computing and delivering pre-
diction error. The prediction error (Ar 1 xAs) is computed in the facilitatory unit F as
the difference between the primary reinforcement r and the output of the predictive
response unit R. The prediction error serves to change the efficacy of the synaptic
connection between the input signal unit S and the response unit R. As, activity of the
signal unit; Ar, activity of the reinforcer unit; and x, weight of connection between the
signal and response units (after McLaren 1989).

via an inhibitory unit. As the activity in the response unit is a product of the
activity in the signal unit and the weight of the connection, this feedback will be
1xAs when inverted by the inhibitory unit. Consequently, at the time of rein-
forcement, the facilitatory unit carries the prediction error (Ar1xAs), which is
formally equivalent to the prediction error (k1RV) described by associative
learning rules (Sutton & Barto 1981). The change in connection weight between
signal and response units, Dx, is analogous to changing the associative strength
(V). It is a function of the conjoint activity in the signal and facilitatory units,

Dx 4 g (A 1 xA ) A , 5.r s s

with g the learning rate parameter. During initial learning when the signal is
paired with the reinforcer, the synaptic weight is low, so the output of the response
unit, xAs, is less than the input to the reinforcement unit, Ar. As a consequence,
the facilitatory unit is active in response to the reinforcer, which in conjunction
with the signal unit activity increases the connection weight across successive
learning episodes until xAs equals Ar and the facilitatory unit is no longer active
in response to the reinforcer. Under these circumstances, the presentation of the
signal produces activity in the response unit that perfectly predicts the input to
the assembly caused by the reinforcer. Correspondingly, if reinforcement is omit-
ted, the error term is negative and synaptic weights are reduced appropriately.

The assembly by McLaren (1989), shown in Figure 1, deploys the prediction
error in the direct manner implicated by the Rescorla & Wagner (1972) rule at
the behavioral level, with the error term directly controlling the connection weight
between the signal and response units. By contrast, the implementaion of the
attentional theory of Pearce & Hall (1980) in a neural assembly would deploy
the prediction error to control the attentional processing of the signal rather than
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the connection weight between the signal and response units. Although imple-
mentation of this rule would be more complex than that shown in Figure 1
(Schmajuk 1997), the general principle of modulating connection weights by
negative feedback through a facilitatory unit can also be employed.

CHARACTERISTICS OF NEURONAL PREDICTION
ERROR SIGNALS

Whatever the relative merits of the predictive and attentional accounts of the
deployment of an error term on learning, both theories have common neurobio-
logical implications: Are there neuronal systems whose electrophysiological pro-
file encodes prediction errors by reflecting the unpredictability of outcomes? In
other words, are there systems that respond differentially to predicted and unpre-
dicted outcomes and to the unexpected omission of a predicted outcome? As
neurophysiological experiments investigate brain functions over time, we con-
sider predominantly phasic predictions evoked by temporally explicit events
rather than the more tonic outome predictions based on associations with the
experimental context. The following sections evaluate various candidate neuronal
systems by the formal criteria of learning theories and assess the kinds of events
processed in the form of prediction errors, namely rewards, punishments, external
signals including attention-inducing stimuli, and behavioral goals and targets.

Dopamine Neurons

Dopamine neurons show homogeneous, short latency responses to two classes of
events, certain attention-inducing stimuli and reward-related stimuli. Attention-
inducing stimuli, such as novel or particularly intense stimuli, elicit an activation-
depression sequence. These stimuli are also motivating by eliciting behavioral
orienting reactions and approach behavior, and they can be rewarding (Fujita
1987). Reward-related stimuli, such as primary liquid and food rewards, and
visual and auditory stimuli predicting such rewards elicit pure activations (Romo
& Schultz 1990, Schultz & Romo 1990, Ljungberg et al 1992). Events that phys-
ically resemble reward-predicting stimuli induce smaller, generalizing activations
followed by depressions (Mirenowicz & Schultz 1996). Innocuous aversive stim-
uli are relatively ineffective in eliciting short latency activations (Mirenowicz &
Schultz 1996), which suggests that dopamine responses reflect rewarding com-
ponents of motivating stimuli rather than attentional components.

The dopamine neurons code an error in the prediction of reward (Figure 2).
This can be observed when reward predictions change in learning situations
(Ljungberg et al 1992, Schultz et al 1993, Mirenowicz & Schultz 1994, Hollerman
& Schultz 1998). Primary rewards are unpredictable during initial behavioral
reactions and reliably elicit neuronal activations. With continuing experience,
reward becomes predicted by conditioned stimuli, and the activations elicited by
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Figure 2 Coding of reward-prediction error during
learning by a single dopamine neuron. No task: The
temporally unpredicted occurrence of reward outside
of any task induces reliable neuronal activation.
Learning: The presentation of a novel picture pair in
a two-picture discrimination task leads to uncertain
behavioral performance with unpredictable occur-
rence of reward and dopamine response. (Top to bot-
tom) Response decreases with increasing picture
acquisition (only correct trials shown). Familiar: Pre-
sentation of known pictures in same task leads to pre-
dictable occurrence of reward and no dopamine
response. Error during learning: Error performance
with novel pictures leads to omission of reward. Note
that the reward probability is .0.5 in two-choice dis-
crimination. (Dots) Neuronal impulses, each line
showing one trial, with the chronological sequence in
each panel being from top to bottom. Rewards were
small quantities of apple juice delivered to the mouth
of a monkey. (From Hollerman & Schultz 1998.)

reward decrease, whereas the conditioned, reward-predicting stimuli now induce
activations. If, however, a predicted reward fails to occur because the animal
makes an incorrect response, dopamine neurons are depressed at the time the
reward would have occurred.

The depression in the activity of the dopamine neuron at the expected time of
the omitted reward shows that this activity encodes not only the simple expected
occurrence of the reward but also the specific predicted time of the reward. This
temporal sensitivity is also illustrated by the neural response to a shift in the time
of reward. Introducing a temporal delay in reward delivery leads to a depression
at the original time of reward, and an activation occurs at the new, unpredicted
time of reward (Hollerman & Schultz 1998). A reward occurring earlier than
predicted induces an activation, but no depression occurs at the original time of
reward, as if the precocious reward has cancelled the reward prediction. However,
the more general reward prediction within a given experimental context does not



482 SCHULTZ n DICKINSON

seem to determine dopamine responses, as responses to free liquid outside of any
task persist during the course of several months in the same laboratory environ-
ment, as long as the time of the liquid is unpredictable (Mirenowicz & Schultz
1994).

In summary, the reward responses depend on the difference between the occur-
rence and the prediction of reward (dopamine response 4 reward occurred 1
reward predicted). This represents an error in the prediction of reward analogous
to the effective error term in associative learning (k 1 RV) (Equation 1). The
responses show the characteristics required by the facilitatory unit in the learning
assembly from McLaren (1989) (Figure 1) by encoding the error term (Ar 1 xAs)
(Equation 5). The dopamine response and the acquisition of responses to reward-
predicting stimuli also closely resemble the characteristics of the reinforcement
signal of temporal-difference models of learning (Montague et al 1996, Schultz
et al 1997, Schultz 1998), the development of which was independent of the
biological results from dopamine neurons and which constitute efficient learning
algorithms (Sutton & Barto 1981, Barto 1995). The transfer of the highly adaptive
teaching signal from the primary reinforcer backward in time to the predictive
stimulus results in a more specific influence on the involved synapses, as predic-
tions occur closer in time to the stimuli and behavioral reactions to be conditioned,
as compared with reinforcement at trial end.

The observation that omitted rewards induce opposite changes in dopamine
neurons compared with unpredicted rewards suggests a form of error coding that
is compatible with the idea that the error term directly controls learning about the
prediction or, in other words, the connection between the signal and response
units in the learning assembly (Figure 1). By contrast, this opponent response is
more difficult to reconcile with an attentional account of learning that relates
associability changes to the absolute (rectified) value of prediction errors (Equa-
tion 3). According to attentional theory, omitted rewards should induce neuronal
changes in the same direction as do unpredicted rewards, which is not observed
with dopamine neurons. The directional response, and the low efficacy of atten-
tion-inducing aversive stimuli, makes it unlikely that the dopamine reward
response serves as a general attentional teaching signal. On the other hand, the
dopamine responses to novel or intense stimuli might be compatible with an
attentional account of learning. A further evaluation of these attentional responses
for learning would require more formal assessments in terms of prediction errors.

Norepinephrine Neurons

Most norepinephrine neurons in locus coeruleus in rats, cats, and monkeys show
homogeneous, biphasic activating-depressant responses to visual, auditory, and
somatosensory stimuli eliciting orienting reactions (Foote et al 1980, Aston-Jones
& Bloom 1981, Rasmussen et al 1986). Responses are often transient and appear
to reflect changes in stimulus occurrence or meaning. Activations may occur only
for a few trials with repeated presentations of food objects (Vankov et al 1995)
or with conditioned auditory stimuli associated with liquid reward, aversive air
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puff, or electric foot shock (Rasmussen et al 1986, Sara & Segal 1991, Aston-
Jones et al 1994). Responses reappear transiently whenever reinforcement con-
tingencies change during acquisition, reversal, or extinction (Sara & Segal 1991).
Norepinephrine neurons rapidly acquire responses to new target stimuli during
reversal and lose responses to previous targets before behavioral reversal is com-
pleted (Aston-Jones et al 1997). Particularly effective are infrequent events to
which animals pay attention, such as visual stimuli in an oddball discrimination
task (Aston-Jones et al 1994). Norepinephrine neurons respond in a rather homo-
geneous manner to free liquid delivered outside of any task (Foote et al 1980).
Within a task, responses occur to the reward-predicting stimulus but are lost to
the primary reward (Aston-Jones et al 1994). These neurons discriminate well
between arousing or motivating and neutral events. These data suggest that nor-
epinephrine responses are driven by the arousing and attention-grabbing com-
ponents of a large variety of stimuli.

In relation to prediction errors, it appears that norepinephrine neurons respond
to unpredicted but not predicted rewards (Foote et al 1980, Aston-Jones et al
1994), probably as part of their responses to attention-inducing stimuli. Whether
a similar relationship to event unpredictability might apply to aversive and other
attention-inducing events remains to be tested. In conclusion, norepinephrine neu-
rons may code an error in the prediction of attention-inducing events, although
assessment of the full extent of error coding would require further tests, including
event omission.

Nucleus Basalis Meynert

Primate basal forebrain neurons are phasically activated by a variety of behavioral
events, including conditioned, reward-predicting stimuli and primary rewards.
Many activations depend on memory and associations with reinforcement in dis-
crimination and delayed-response tasks. Activations (a) reflect the familiarity of
stimuli (Wilson & Rolls 1990a), (b) become more important with stimuli and
movements occurring closer to the time of reward (Richardson & DeLong 1990),
(c) differentiate well between visual stimuli on the basis of appetitive and aversive
associations (Wilson & Rolls 1990b), and (d) change within a few trials during
reversal (Wilson & Rolls 1990c). Neurons respond frequently to fully predicted
rewards in well-established behavioral tasks and to predicted visual and auditory
stimuli (Richardson & DeLong 1986, 1990; Mitchell et al 1987), although
responses to unpredicted rewards were more abundant in some studies (Richard-
son & DeLong 1990) than in others (Wilson & Rolls 1990a–c).

In relation to prediction errors, it appears that some nucleus basalis neurons
respond particularly well to unpredicted rewards (Richardson & DeLong 1990),
although more elaborate assessment would require further experimentation.

Cerebellar Climbing Fibers

Probably the first error-driven teaching signal in the brain was postulated to
involve the divergent projection of climbing fibers from the inferior olive to
Purkinje neurons in the cerebellar cortex (Marr 1969), and many models of cere-
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bellar function are based on this concept (Ito 1989, Kawato & Gomi 1992, Llinas
& Welsh 1993, Houk et al 1996).

Movement Climbing fiber inputs to Purkinje neurons are particularly activated
when loads for wrist movements or gains between arm movements and visual
feedback are changed, and monkeys adapt their behavior to the new situation
(Gilbert & Thach 1977, Ojakangas & Ebner 1992). Climbing fiber input activity
also shows changes in probability in relation to magnitudes of errors in reaching
visual targets (Kitazawa et al 1998). Most of these changes consist of increased
climbing fiber activity, irrespective of the direction of error, rather than activations
or depressions related to errors in opposing directions. In a model of predictive
tracking of moving targets by the eyes, climbing fibers carry prediction errors
between eye and target positions (Kettner et al 1997). These data suggest that
climbing fiber activity is compatible in several instances with a role for a predic-
tion error in motor performance.

Aversive Conditioning A second argument for a role of climbing fibers in learn-
ing is derived from the study of aversive classical conditioning. A fraction of
climbing fibers is activated by aversive air puffs to the cornea. These responses
are lost when the air puff becomes predicted after Pavlovian eyelid conditioning
using an auditory stimulus (Sears & Steinmetz 1991). After conditioning, neurons
in the cerebellar interpositus nucleus respond to the conditioned stimulus (McCor-
mick & Thompson 1984, Berthier & Moore 1990). Lesions of this nucleus or
injections of the GABA antagonist picrotoxin into the inferior olive prevents the
loss of inferior olive air puff responses after conditioning (Thompson & Gluck
1991, Kim et al 1998). The remaining response to the unconditioned stimulus is
associated with the failure of these animals to undergo behavioral blocking (Kim
et al 1998). These data indicate that monosynaptic or polysynaptic inhibition from
interpositus to inferior olive suppresses neuronal responses to the unconditioned
aversive stimulus after conditioning. This mechanism would allow inferior olive
neurons to be depressed when a predicted aversive event is omitted. Taken
together, climbing fibers are activated by unpredicted aversive events; they do
not respond to fully predicted aversive events, and they might be depressed by
omitted aversive events. This suggests that the responses of climbing fibers are
sensitive to event unpredictability, which would allow them to report a full error
in the prediction of aversive events.

Relation to Prediction Error The increased climbing fiber activity with motor
performance errors may be related to error magnitude but possibly not error direc-
tion. Climbing fibers responding to aversive events may code a punishment pre-
diction error, as they (a) are activated by unpredicted aversive events, (b) do not
respond to fully predicted aversive events, and (c) are possibly depressed by
omitted aversive events. Thus, climbing fibers may report errors in motor per-
formance in analogy to the Delta rule (Equation 5) (Kawato & Gomi 1992) and



NEURONAL PREDICTION ERRORS 485

Figure 3 Coding of mismatches between eye and target position in superior colliculus.
(Solid line) Impulse activity of a single neuron during ocular fixation as a function of
mismatch between eye position and fixation target. Motor errors were induced by target
steps. Error bars indicate a standard deviation of `1 (average of 12 trials). (Horizontal
dashed line) Average firing rate without target steps; (dotted line) percentage of trials in
which target steps elicited corrective saccades. Note that the steepest change of neuronal
activity occurs with mismatches that were too small to be corrected by the monkey, indi-
cating a lack of simple relationship to eye movement. [Reproduced with permission of the
American Association for the Advancement of Science (from Krauzlis et al 1997).]

signal errors in the prediction of aversive events analogous to the Rescorla-
Wagner rule (Equation 1) (Thompson & Gluck 1991). They may serve the func-
tion of the facilitatory unit (F) in the learning assembly shown in Figure 1,
modifying the efficacy of the parallel fiber–Purkinje cell synapses.

Superior Colliculus

Neurons in the intermediate layer of superior colliculus are activated in associa-
tion with a predicted visual stimulus brought into their receptive fields by a future
saccadic eye movement. However, the same stimulus would not elicit a response
in a fixation task, nor is saccadic eye movement alone associated with neuronal
discharges (Mays & Sparks 1980, Walker et al 1995). These neurons appear to
code the difference between the current and future eye position and not specific
retinal target positions. Similarly, activity in neurons of the deep layer of superior
colliculus change their activity during ocular fixation when eye position does not
match target position (Figure 3) (Krauzlis et al 1997). Neuronal activity increases
with mismatches in one direction and decreases with deviations in the opposite
direction. Activity changes are particularly strong with small mismatches and
occur even when the fixation error is so small that animals do not perform cor-
rective saccades (,0.2–0.58), which suggests that the activity changes do not
reflect corrective eye movements. Activity changes occur also with fixation errors
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to extinguished targets, thus reflecting an oculomotor error rather than a visual
mismatch.

In relation of prediction errors, it appears that intermediate and deep-layer
neurons code errors in current eye positions relative to future eye positions and
targets. This oculomotor prediction error would be best described by the Delta
error between target and actual state (Equation 5).

Frontal Cortex

Anterior Cingulate Cortex Probably the earliest descriptions of neuronal error
signals concern the anterior cingulate cortex. While monkeys erroneously perform
movements around a lever outside of the permitted time window indicated by a
trigger signal, particular transcortical mass potentials occur in anterior cingulate
cortex (area 24) but not in medial or lateral premotor cortex of area 6 (Gemba et
al 1986). These potentials may reflect the uncertainty about the appropriateness
of the behavioral reaction. In humans, error-related negative brain potentials
occur, with behavioral errors, in the area of anterior cingulate (Falkenstein et al
1991). With sudden changes of highly predicted target positions in well-learned
movement sequences, blood flow is increased in anterior cingulate (Berns et al
1997). Some of these changes may reflect ongoing comparisons between actual
and predicted states of behavior (Carter et al 1998). These data suggest that the
anterior cingulate cortex is involved in the processing of error signals, although
it is unclear how directional information about errors is coded. Most error coding
appears to concern various aspects of behavioral performance rather than moti-
vational outcomes.

Dorsolateral Prefrontal Cortex Some dorsolateral prefrontal neurons in behav-
ing monkeys are only activated when predicted rewards are omitted by the exper-
imenter or following erroneous task performance (Niki & Watanabe 1979), thus
specifically coding negative reward-prediction errors. Conversely, during task
performance, other neurons in this area respond to predicted reward but not to
unpredicted reward, thus coding the absence of reward-prediction errors and being
potentially related to the reinforcement of fully established task performance
(Watanabe 1989). Some dorsolateral prefrontal neurons show activations with
behavioral errors but not with delayed reward (Watanabe 1989). Their error cod-
ing may relate not to reward prediction but to task performance. Thus, error
coding in dorsolateral prefrontal cortex may concern both reward-prediction
errors and behavioral performance errors, albeit in different neuronal populations.

Orbitofrontal Cortex The erroneous spatial or temporal prediction of targets
increases the blood flow in human orbitofrontal cortex, which may reflect a sen-
sory prediction error, modification of a planned behavioral reaction, or emotions
associated with these procedures (Nobre et al 1999). Some neurons in this area
are activated only by rewards occurring at unpredicted times either within or
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outside of any task (L Tremblay & W Schultz, manuscript in preparation). A
second relationship to reward prediction is found during learning when reward
predictions change with novel instruction stimuli and neurons modify their reward
expectation-related activity in parallel with behavioral indicators of adapted
reward expectation (L Tremblay & W Schultz, manuscript in preparation). Thus,
activity in some orbitofrontal neurons reflects reward unpredictability, although
the assessment of full reward-prediction error coding would require a test of the
response to reward omission.

Frontal Eye Fields Neurons in frontal eye fields show predictive visual
responses that code the difference between current and future eye position in a
manner similar to that of neurons in the intermediate layer of superior colliculus
(Umeno & Goldberg 1997).

Relation to Prediction Error Activity in anterior cingulate, dorsolateral pre-
frontal, and orbitofrontal cortex is increased when target stimuli appear at loca-
tions different from that predicted, when subjects make behavioral errors, or when
rewards are omitted. Some neurons in the frontal eye field appear to code the
difference between current and future eye position in a manner similar to that of
neurons in superior colliculus. Although the forms of available data make com-
parisons with formal learning rules difficult, the selective activations with pre-
diction errors concerning external signals, motor behavior, or rewards would be
in general compatible with the Delta rule (Equation 5) or the Rescorla-Wagner
rule (Equation 1).

Visual Cortex

Using a modeling approach, Rao & Ballard (1999) explored the idea that coding
of prediction errors may contribute importantly to the functions of primary and
higher-order visual cortex. On the anatomical basis of the long-known, heavy
reciprocal connections between visual cortical areas, they suggest that each stage
of visual cortex may compute the discrepancy between the information about the
actual visual scene coming from lower-level visual areas and predictions arriving
from higher-level visual areas that have evolved from previously experienced
visual objects. The prediction error would be coded by the classical end-stopping
hypercomplex neurons of visual cortex, which are sensitive to the length of a
previously experienced bar stimulus. Only this prediction error would be propa-
gated to the next higher level of visual cortex. Reiteration of this process across
successive levels of cortex would lead to highly complex visual analysis. The
model refers to error coding in the retina, where the surround creates a prediction
of the center image, thus enhancing the discrimination of intensities within
expected narrower ranges (Srinivasan et al 1982). These theories should provoke
a number of interesting experiments for validating and assessing the role of pre-
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Figure 4 Basic design of possible influence of
dopamine prediction error signal on neurotransmis-
sion in the striatum. Synaptic inputs from a single
dopamine axon X and two cortical axons A and B
contact a typical medium spiny striatal neuron I.
Corticostriatal transmission can be modified by
dopamine input X contacting indiscriminately the
stems of dendritic spines that are also contacted by
specific cortical inputs A and B. In this example,
cortical input A, but not B, is active at the same time
as dopamine neuron X (shaded area), e.g. following
a reward-related event. This could lead to a modi-
fication of the A r I transmission, but leave the
B r I transmission unaltered, according to the learn-
ing rule Dx 4 erio (x, synaptic weight; e, learning
constant; r, reinforcer prediction error; i, input acti-
vation; o, output activation). A similar synaptic
organization exists with dopamine projections to
cerebral cortex (Goldman-Rakic et al 1989). [Ana-
tomical drawing based on anatomical data (Freund
et al 1984) and modified from Smith & Bolam
(1990).]

dictive coding relative to other mechanisms, such as lateral inhibition and feed-
forward processing.

Striatum

Many tonically active striatal neurons respond with depressions to primary
rewards (Apicella et al 1991) and reward-predicting stimuli (Aosaki et al 1994).
When rewards occur unpredictably, responses are more frequent outside of behav-
ioral tasks than during Pavlovian or operant tasks, where rewards are predicted
by external stimuli (Apicella et al 1997). However, with omitted rewards, these
neurons do not appear to show any response, not even opposite ones (P Apicella,
personal communication), which suggests a relationship to reward unpredictabil-
ity without coding of a full reward-prediction error. During learning, some slowly
firing medium spiny striatal neurons show a change similar to that of orbitofrontal
neurons. They rapidly modify reward expectation-related activity with novel,
reward-predicting stimuli in parallel with behavioral indicators of adapted reward
expectation (Figure 4) (Tremblay et al 1998).

In relation to prediction errors, tonically active neurons in the striatum appear
to be sensitive to reward unpredictability but not to reward omission. The assess-
ment of possible reward-prediction error coding in the larger group of slowly
firing striatal neurons would require further tests, including the omission of
reward.
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Functions of Neuronal Prediction Error Signals

Whatever the various forms and contents of prediction errors coded in different
structures, the use of these messages for neuronal functioning depends on a num-
ber of additional neurobiological criteria. First, the nature of the anatomical pro-
jections from neurons encoding the prediction error determines whether the error
signal is broadcast as a kind of global message to large populations of neurons
or whether it only influences highly selected groups of neurons. In both cases,
the error message would exert a selective influence on those neurons that were
active in relation to the stimuli and behavioral reactions leading to the prediction
error. In addition, the ways in which the neurons carrying error signals act on
postsynaptic neurons determine how these signals are used. They could control
the immediate behavioral response to the eliciting stimulus or, alternatively,
induce long-lasting storage of changed predictions and behavioral reactions. In
order to demonstrate such a learning function, it is necessary to show long-lasting
modifications of neuronal functions, such as changes in postsynaptic responses
to environmental events or modifications in the efficacy of teaching signals.

Global Alert or Reinforcement

Some of the neuronal systems we have described consist of relatively small num-
bers of neurons that show a largely homogeneous response to stimuli and behav-
ioral reactions and project in a divergent and widespread mannner to much larger
numbers of postsynaptic neurons. This is true of the dopamine neurons, which
code positive and negative errors in the prediction of rewards, and of the norepi-
nephrine neurons in the brainstem and the cholinergic neurons in nucleus basalis,
which respond to unpredicted, attention-inducing stimuli and rewards.

Nature of Divergent Anatomical Projections Each dopamine cell body in sub-
stantia nigra or ventral tegmental area sends an axon to several hundred neurons
in the striatum or frontal cortex (Percheron et al 1989) and has about 500,000
dopamine-releasing varicosities in the striatum. The dopamine innervation
reaches nearly every neuron in the striatum as well as a considerable proportion
of specific neurons in superficial and deep layers of frontal cortex (Berger et al
1988, Williams & Goldman-Rakic 1993). The anatomical projections of norepi-
nephrine neurons from locus coeruleus and neighboring cell groups are probably
even more divergent and widespread, with axons from single neurons projecting
to cerebellar cortex and mainly deep layers of many areas of cerebral cortex
(Morrison & Foote 1986, Lewis & Morrison 1989). A widespread projection
exists also for the acetylcholine neurons in nucleus basalis to cerebral cortex and
hippocampus (Lewis 1991). These projections often terminate at the same den-
drites or even at the same dendritic spines that are also contacted by other inputs
carrying specific and diverse behavior-related activity. This dendritic convergence
is known for striatal and cortical dopamine terminals (Freund et al 1984, Gold-
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man-Rakic et al 1989) and may also exist with cortical norepinephrine terminals
(Aoki et al 1998) (Figure 4).

Taken together, the anatomical organization of these projections allows the
prediction error to be broadcast as a global message to postsynaptic structures.
The homogeneous reward and attention error messages of dopamine and norepi-
nephrine neurons may influence in a selective manner the efficacy of concurrently
active inputs to postsynaptic neurons while leaving inactive synaptic connections
unchanged (Figure 4) (for further details, see Schultz 1998).

Immediate Influence on Neuronal Processing and Behavior The prediction
error message may provide a gating or enabling signal for neurotransmission at
the time of the erroneously predicted event but not lead to storage of new pre-
dictions or behavioral reactions. With competing synaptic inputs, neuronal activ-
ities occurring simultaneously with the error signal would be preferentially
processed. This mechanism would result in biasing, prioritizing, or selection of
certain inputs over others, depending on the temporal coincidence with the error
signal (Schultz 1998). Behaviorally, the subject would show an orienting response
toward the error-generating event. The attention induced by the error would
increase the associability of the stimulus.

The immediate effects of prediction errors would be primarily determined by
the influences of impulse-dependent synaptic transmission on postsynaptic mem-
branes. Phasic dopamine signals to the striatum mainly affect D1 receptors
(Schultz 1998), enhancing or reducing simultaneous cortically evoked excitations
(Cepeda et al 1993, Hernandez-Lopez et al 1997). In the cortex, D1 activation
increases the efficacy of local inputs (Yang & Seaman 1996). At the systems
level, this process may lead to a focusing effect whereby all cortical inputs are
reduced and only the strongest activities pass through the striatum to external and
internal pallidum (Yim & Mogenson 1982, Toan & Schultz 1985). As a conse-
quence, the dopamine error signal could produce a rapid switch of attentional and
behavioral processing to surprising external events (Redgrave et al 1999). Signals
from norepinephrine neurons reduce excitations by local neurons (Law-Tho et al
1993), increase the signal-to-noise ratio of responses in cerebellar Purkinje cells
(Freedman et al 1977), and potentiate excitatory and inhibitory influences in cere-
bral cortex (Waterhouse & Woodward 1980, Sessler et al 1995).

Taken together, these data suggest that the global error messages can be used
for dynamically and instantaneously selecting which external stimuli and behav-
ioral reactions are processed within the limited channel capacity of neuronal trans-
mission. This function is analogous to the role of the prediction error in
controlling attentional processes within associative learning theories (Mackintosh
1975, Pearce & Hall 1980).

Influence on Neuronal Plasticity and Learning Neuronal error signals may
induce or facilitate long-lasting changes of synaptic transmission at immediate
postsynaptic sites or at neurons further downstream. Dopamine neurotransmission
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is involved in long-term depression in the striatum via D1 and D2 receptors
(Calabresi et al 1992) and the frontal cortex (Otani et al 1998), induction of long-
term potentiation in the striatum (Wickens et al 1996), and enhancement of long-
term potentiation in hippocampus via D1 receptors (Otmakhova & Lisman 1996).
In a generally comparable manner, norepinephrine induces or facilitates the induc-
tion of various forms of long-term depression and potentiation in the hippocampus
via alpha and beta receptors (Dahl & Sarvey 1989, Katsuki et al 1997). These
data accord with an earlier theory that suggests that the widespread norepine-
phrine projection to cerebellar Purkinje cells may modify the synaptic efficacy of
parallel fiber inputs and thus contribute to motor learning (Gilbert 1975).

Taken together, these data suggest that the error messages carried by dopamine
and norepinephrine neurons may influence the efficacy of synaptic transmission
in a global manner. The potential effects of error signals on synaptic plasticity
would comply with a three-factor learning rule (Figure 4). The presence of a
neuronal error input would modify neuronal transmission at synapses with
Hebbian-type plasticity based on coincident pre- and postsynaptic activity. Only
those synapses would be modified that are activated by stimuli or behavioral
reactions associated with the prediction error, whereas synapses not involved
would remain unchanged. Synaptic transmission would be changed every time
an error signal arrives. By contrast, synapses would be stabilized and not undergo
further changes when the neuronal error signal is zero, because the occurrence of
the behavioral outome is fully predicted. Moreover, a directional error signal,
such as is exhibited by dopamine neurons, supports not only increments in syn-
aptic transmission under the influence of a positive error signal but may also
mediate decrements under the influence of a negative error signal in the form of
a depression of the baseline rate of activity. By contrast, unidirectional error
signals, possibly emitted by attention-coding mechanisms, may require additional
mechanisms in order to result reasonably rapidly in appropriate synaptic changes.
In sum, the mechanisms governing the use of neuronal error signals for synaptic
modifications match closely the use of prediction errors for behavioral modifi-
cations derived from animal learning theory.

A variation of this learning mechanism may involve changes in the efficacy
of teaching signals. The responses of dopamine and norepinephrine neurons shift
during learning episodes from the primary reward to the stimulus predicting the
reward (Ljungberg et al 1992, Sara & Segal 1991, Aston-Jones et al 1994). This
transfer may mediate the behavioral phenomenon of conditioned reinforcement,
as predictors of primary reinforcers acquire reinforcing properties themselves.
Thus, predictive learning could involve two consecutive steps (Schultz 1998). In
the first step, the reinforcement signal is transferred from the primary reinforcer
to the predictive stimulus. In the second step, the error signal elicited by the
predictive stimulus then serves as an effective teaching signal at target plastic
synapses. The efficacy of these synapses would be selectively modified on the
basis of coincident stimulus- and behavior-related activity, as with an error in the
prediction of primary reinforcement. In this way, chains or sequences of predic-
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tive stimuli can be acquired that allow progressively earlier anticipation of the
primary reward. Modeling studies have demonstrated that conditioned reinforce-
ment signals are more efficient for acquiring sequences than are primary rein-
forcers occurring only after the behavioral reaction (Sutton & Barto 1981, Friston
et al 1994, Suri & Schultz 1998). The transfer of the prediction error to condi-
tioned reinforcers may constitute a mechanism for behavioral learning even in
the absence of synaptic plasticity in target areas. In this case, only the shift to
predictive coding would occur during learning, and the advance information pro-
vided by this earlier signal would make behavioral reactions more frequent, rapid,
and precise on the basis of the immediate influences on the neuronal processing
described above (Lovibond 1983).

Anatomically Selective Error Correction
and Prediction Learning

Some error coding systems consist of selected, distributed groups of neurons that
show heterogeneous, selective relationships to specific physical aspects of stimuli
or parameters of behavioral reactions and project in an anatomically highly spe-
cific and selective manner to postsynaptic neurons. Examples of these systems
are found in the superior colliculus, in the frontal cortex, and with cerebellar
climbing fibers, where positive and negative errors in the prediction of rewards,
punishments, external signals, behavioral states, and targets are coded, and in the
orbitofrontal cortex and striatum, where neurons respond to the unpredicted
appearance of rewards and movement targets. These error signals may induce
long-term potentiation or long-term depression at modifiable synapses, which are
found in several structures, such as hippocampus, visual cortex, prefrontal cortex,
motor cortex, cerebellum, and striatum (Artola & Singer 1987, Iriki et al 1989,
Ito 1989, Hirsch & Crepel 1990, Calabresi et al 1992). The effects of error signals
may in some cases comply with a three-factor learning rule, as seen with the
cerebellar climbing fibers influencing the efficacy of parallel fiber synapses on
Purkinje cells (Eccles et al 1967, Ito 1989).

Prediction errors have been classically used for modifying the behavior of
agents in models of negative feedback control (Widrow & Sterns 1985). These
control processes are primarily concerned with immediate corrections of errors
and do not necessarily lead to the emergence and storage of modified predictions.
However, it is difficult to judge from the available data whether neuronal systems
would serve error-correcting functions without storing altered predictions or
behavioral reactions. Modified predictions may be stored for only a few seconds
while specific behavioral tasks are efficiently performed, or they may result in
more long-lasting changes compatible with the common notion of learning.

Examples for short-term storage and use of predictions are found with a pre-
dictive model of visual cortex, which proposes that prediction errors are used for
establishing visual receptive field properties in different stages of cortical pro-
cessing (Rao & Ballard 1999). The prediction error is computed between visual
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input signals and predictions arriving from the next higher stage of visual cortex.
This error signal is continuously fed back to the higher stage for updating the
predictions. The computation of errors between current and future eye positions
and between eye and target positions in neurons of the superior colliculus, frontal
eye fields, and parietal cortex (Duhamel et al 1992, Walker et al 1995, Krauzlis
et al 1997, Umeno & Goldberg 1997) might evolve by propagation among these
closely interconnected structures and serve for the continuous, predictive coding
of eye positions. The resulting command signals could then be employed by
oculomotor neurons for moving the eyes to targets without continuously com-
puting complete target positions in retinal or supraretinal coordinates (Umeno &
Goldberg 1997).

The error signal of cerebellar climbing fibers may be used for inducing long-
lasting changes in the efficacy of simultaneously active parallel fiber inputs to
Purkinje cells, in particular long-term depression (Ito 1989). Each climbing fiber
contacts 10–15 Purkinje cells with hundreds of synapses (Eccles et al 1967).
Evidence that climbing fiber activity acts as a teaching signal for behavioral learn-
ing comes from the observation that alteration of this activity influences the
amount of associative aversive conditioning that occurs in the blocking procedure
(Kim et al 1998). The activation of cerebellar climbing fibers by behavioral errors
would reduce the efficacy of parallel fiber inputs and decrease simple spike activ-
ity in Purkinje cells. This mechanism could explain the adaptation of the vesti-
bulo-ocular reflex (Ito 1989), although an alternative learning mechanism may
involve nonsimultaneous climbing fiber activity (Raymond & Lisberger 1998).
Decreased simple spike activity was observed during adaptation of wrist move-
ments to load changes (Gilbert & Thach 1977), but not with gain changes between
visual cursor and hand movement (Ojakangas & Ebner 1992). On a shorter time
base, a model of cerebellar function in predictive eye movements uses climbing
fiber prediction errors for continuously updating predictions of target motion and
thus optimizing smooth pursuit eye tracking (Kettner et al 1997). Thus, climbing
fiber error messages could modify the efficacy of movement- or punishment-
related parallel fiber inputs to Purkinje cells.

Neurons in the dorsolateral prefrontal, orbitofrontal, and anterior cingulate
cortex are activated in relation to errors in the prediction of reward (Niki &
Watanabe 1979, Watanabe 1989; L Tremblay & W Schultz, manuscript in prep-
aration) and behavioral performance (Gemba et al 1986, Falkenstein et al 1991,
Watanabe 1989, Carter et al 1998, Nobre et al 1999). These error signals might
be elaborated in conjunction with neurons in the striatum that code rewards rela-
tive to their unpredictability (Apicella et al 1997) and neurons in the amygdala
signaling reward-predicting stimuli (Nishijo et al 1988). The error signals are
conceivably propagated to specific neurons concerned with immediate changes
in behavior and the updating of predictions. Neurons in the cingulate motor area
of monkeys are activated during movement changes following reductions of pre-
dicted reward (Shima & Tanji 1998). This activity does not occur when behavior
fails to change following reward reduction, which suggests a relationship to the
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consequences of the reward-prediction error. Rapid updating of neuronal reward
predictions over the course of a few minutes occurs during learning in the striatum
(Tremblay et al 1998) and orbitofrontal cortex (L Tremblay & W Schultz, manu-
script in preparation). These mechanisms in fronto-striatal systems may serve for
behavioral adaptations by which subjects remain able to predict and obtain desired
reward objects in changing environmental situations. They are compatible with
the general function of these structures in the control of goal-directed behavior.

Coding of Prediction Errors as Basic Mode
of Brain Function

Predictions provide two main advantages for behavior. First, they reflect stored
information and thus bridge the time gap between the occurrence of an event and
the later use of the information about this event. Based on past experience, they
provide advance information and allow subjects to prepare behavioral reactions
and judge the respective values of behavioral alternatives. Humans and animals
switch as frequently as possible to predictive modes for optimizing behavioral
reactions, for example when tracking regularly moving targets with the eyes
(Kowler & Steinman 1979). Second, predictions serve as references for evaluating
current outcomes. Are outcomes better, similar, or worse than predicted? Such
comparisons result in prediction errors that can be used for changing predictions
or behavioral reactions until the prediction error disappears. This forms the basis
for associative learning theories that postulate that learning depends crucially on
prediction errors and reaches its asymptote once everything occurs as predicted
(Rescorla & Wagner 1972, Mackintosh 1975, Pearce & Hall 1980).

The use of prediction errors for changing predictions or behavioral reactions
occurs over a large time range. Some of the described neuronal systems may
contribute to learning by signaling errors in reference to predictions that were set
up several hours or days earlier, such as dopamine neurons. By contrast, other
systems process predictions that are established only during the course of a few
seconds or minutes. Such prediction errors might be more appropriate for the
immediate control of behavior than for long-term learning. They are seen with
neurons in the frontal eye fields, parietal cortex, and superior colliculus, which
signal differences between current and future eye positions (Duhamel et al 1992,
Walker et al 1995, Umeno & Goldberg 1997), with neurons in superior colliculus
reacting to mismatches between eye and target positions (Krauzlis et al 1997),
and with cerebellar climbing fibers activated with hand-target mismatches (Kita-
zawa et al 1998). Rapid changes of predictions are seen with neurons in the
striatum during learning (Tremblay et al 1998).

Prediction errors may not only serve for adaptive changes of behavior but
could constitute a mode of on-going neuronal processing. Rather than processing
the full and often redundant amount of incoming or outgoing information, neurons
may simply compute the differences between the predicted and current input or
output, thereby making neuronal processing more efficient (MacKay 1956). Pre-
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diction errors might be put to use in primary sensory systems, where neurons in
the retina compute the difference between actual visual stimulus components and
those predicted from the visual surround (Srinivasan et al 1982). A related idea
forms the basis for a model of visual cortex explaining the properties of end-
stopping neurons (Rao & Ballard 1999). Neurons in the cerebellar cortex of fish
may compute the difference between actual and predicted sensory input and signal
preferentially inputs that are unpredicted (Bell et al 1997).

It thus appears that prediction errors contribute importantly to several aspects
of brain function. Basic brain mechanisms establish predictions, compare current
input with predictions from previous experience, and emit a prediction error signal
once a mismatch is detected. The prediction error signal then acts as a strong
impulse for changes of synaptic transmission that lead to subsequent changes in
predictions and behavioral reactions. The process is then reiterated until behav-
ioral outcomes match the predictions and the prediction error becomes nil. In the
absence of a prediction error, there would be no signal for modifying synapses,
and synaptic transmission would remain unchanged and stable. Thus, the com-
putation and use of prediction errors may contribute to the self-organization of
goal-directed behavior.

The computation of prediction errors appears to be a basic capacity of neuronal
processing on different time scales and for a variety of purposes. Behavioral
learning is an important function supported by the general capacity for computing
and deploying prediction errors in the control of synaptic efficacy. Understanding
the ways in which prediction errors are computed, specifying their use in neuronal
learning rules (Raymond & Lisberger 1998), and determining their other potential
neuronal functions are immediate and important goals for neuroscience.
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