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Observer biases in the 3D interpretation of line drawings
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Abstract

Line drawings produced by contours traced on a surface can produce a vivid impression of the surface shape. The stability of
this perception is notable considering that the information provided by the surface contours is quite ambiguous. We have studied
the stability of line drawing perception from psychophysical and computational standpoints. For a given family of simple line
drawings, human observers could perceive the drawings as depicting either an elliptic (egg-shaped) or hyperbolic (saddle-shaped)
smooth surface patch. Rotation of the image along the line of sight and change in aspect ratio of the line drawing could bias the
observer toward either interpretation. The results were modeled by a simple Bayesian observer that computes the probability to
choose either interpretation given the information in the image and prior preferences. The model’s decision rule is noncommitting:
for a given input image its responses are still probabilistic, reflecting variability in the modeled observers’ judgements. A good fit
to the data was obtained when three observer assumptions were introduced: a preference for convex surfaces, a preference for
surface contours aligned with the principal lines of curvature, and a preference for a surface orientation consistent with an object
viewed from above. We discuss how these assumptions might reflect regularities of the visual world. © 1998 Elsevier Science Ltd.
All rights reserved.

Keywords: Line drawings; Surface contours; Geodesic curves

1. Introduction

Several cues in the image enable us to estimate the
3D structure of our environment [1]. For instance, the
depth, orientation, and shape of surfaces can be com-
puted from the disparities between the two eyes, the
relative motion of object features or the patterns of
shading. Each cue focuses on only one aspect of the
image and processes this information to compute one
attribute of the environment. Due to the limited
amount of information available from an image, these
computations are often under-constrained, i.e. there is
not always a unique solution to the computational
problem. For instance, to use the binocular disparities,
one has to overcome the problem of multiple corre-
spondences between the features in the left and right
images [2]. Similarly, the inference of shape from shad-
ing is unwarranted unless one also knows the illumina-
tion conditions [3].

There are two fundamental ways in which the visual
system can overcome the under-constrained problem.
One way is to take advantage of several cues to fill in
the missing parameters of individual cues. For instance,
binocular horizontal disparities cannot be converted to
absolute depth values without an estimate of the view-
ing distance, but this distance can be obtained, for
example, from motion parallax. The process by which a
cue interacts with others to provide absolute depth is
known as cue promotion [4].

The other way one can constrain the computations of
a depth cue is to impose a priori assumptions on the
missing parameters. For instance, assuming that the
surface is smooth helps one solve the correspondence
problem for stereopsis [2]. One example where prior
knowledge plays a critical role is for the interpretation
of simple pictures. When an observer views a picture or
photograph, the pictorial cues to depth indicate a 3D
scene totally at variance with other cues such as
stereopsis or motion parallax (the latter cues signal the
true situation: the scene is flat). Human observers have
a dual perception in such a situation and can make
judgements of the depicted 3D scene as well as of the
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Fig. 1. The three figures used in the experiment varied in aspect ratio.
At most orientations in the image plane, (A) was more frequently
perceived as egg-shaped and (C) as saddle-shaped. (B) was the most
ambiguous.

this assumption is consistent with the human interpre-
tation of images where a surface is depicted by parallel
contours [15,16]. Geodesic curves on a surface are
generalizations of straight lines on a plane: their curva-
ture is solely due to the surface curvature. Recent
psychophysical studies have also shown the relevance of
the assumption of geodesicity for human perception
[17]. Finally, the general viewpoint assumption is criti-
cal to limit possible interpretations of a scene so that,
for instance, a straight image contour is never inter-
preted as an accidental projection of a curved 3D
contour. The general viewpoint assumption has recently
received a renewal of interest [18,19].

1.2. O6er6iew

In the present study, we shall take both a psycho-
physical and computational approach to uncover the
set of assumptions that observers use to interpret line
drawings. For this purpose, we created simple images
composed of two sets of parallel contours which are
typically perceived as 4-way ambiguous surface patches
(Fig. 1). Each set of contours can appear either convex
or concave, resulting in convex and concave egg-shaped
interpretations and two saddle-shaped interpretations.
Each of these interpretations occurs more or less fre-
quently depending on the geometry of the figure. We
propose that these biases of the visual system result
from specific assumptions made by observers concern-
ing the objects in the scene as well as the viewpoint.
These assumptions are assessed with the help of a
stochastic model that knows about the geometry of
image formation and incorporates explicit prior con-
straints. By construction, this model is a particularly
simple instance of the class of Bayesian models [20–22].

2. Human observers’ biases

We investigated the perception of solid shape from
line drawings. Local solid shape can be considered as a
continuum from which two fundamental categories
emerge: the elliptic shape (i.e. locally egg-shaped) and
the hyperbolic shape (saddle-shaped) [23]. Observers
viewed line drawings such as those shown in Fig. 1 and
were required to categorize their first impression as
elliptic or hyperbolic. Their biases for either interpreta-
tion were recorded for different image orientations and
different aspect ratios of the figure.

2.1. Methods

2.1.1. Subjects
Seven human adults participated in this experiment.

All had normal or corrected-to-normal visual acuity.

actual flat surface [5–7]. Consider for instance the line
drawings in Fig. 1. Even though these images are very
impoverished depth stimuli, consistent with an infinite
number of 3D scenes, we shall see that human observ-
ers are considerably robust in their interpretation. That
only a small number of distinct percepts result from
each drawing indicates that the observer applies some
assumptions (or prior constraints) while the contours
are processed. The present investigation looks at these
assumptions via the biases that observers exhibit in the
interpretation of line drawings.

1.1. Shape-from-contour

Lines in an image can have their origin in a number
of contours in the scene. One important family of
contours, called surface contours, corresponds to
changes in surface reflectance (surface markings) or
from changes in illumination such as cast shadows
[8–10]. As such, surface contours are less constrained
than occluding contours which are formed at the
boundary between the object and the background
[11,12]. Surface contours also differ in principle from
texture markings where each texture element is assumed
to be small relative to the surface curvature (i.e. to lie
approximately in a local tangent plane). Thus, the
estimation of the shape of the surface from the surface
contours (shape-from-contour) is essentially different
from the estimation of shape from the texture markings
(shape-from-texture) [13].

As an infinite number of 3D contours can give rise to
a given image contour, the problem of shape-from-con-
tour is severely underconstrained. In spite of this ambi-
guity, image contours lead to a 3D impression
comparable to that obtained from other depth cues
such as binocular disparities [14]. In an attempt to
bridge the gap between the underconstrained nature of
image contours and human ability to interpret them,
Stevens proposed that an observer made three basic
assumptions [15]. These assumptions were that: (1)
surface contours were lines of curvature; (2) surface
contours were geodesics; and (3) object and observer
were in general position. Lines of curvature are the
directions on a surface along which the local orienta-
tion changes the most and the least (on a cylinder, these
curves are the parallels and the meridians). The use of
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2.1.2. Stimuli
The stimuli were made out of six identical circular

arcs (45° arcs) arranged in two sets of parallel contours
(Fig. 1). The two ends of each arc were 3.8° apart, as
viewed from a distance of 50 cm. Three figures were
used in the experiment, their difference lying in their
aspect ratio. Shape A was compressed along its axis of
symmetry, while shape C was stretched along the axis
of symmetry; shape B was an intermediate figure be-
tween A and C. These elongations were such that the
central intersection of A, B and C formed an angle of
75, 90 and 105°, respectively. The stimuli were pre-
sented on a 17’’ Sony Trinitron monitor controlled by a
Macintosh 7100/80 computer running the PsyScope
software [24]. Image resolution was 1024×768 pixels at
a refresh rate of 75 Hz. Stimuli were displayed as black
lines on a 77 cd/m2 white background in a darkened
room.

2.1.3. Procedure
The design followed a two alternative, one interval,

forced-choice paradigm. On each trial, observers viewed
a single figure and reported with the help of two keys
on a keyboard whether their first impression was that
of a saddle-shaped or egg-shaped surface. Before being
displayed on the monitor, the figure was randomly
oriented in the image plane in steps of 15°. A block of
72 trials consisted of each of the three figures at each of
the 24 orientations in random order. Subjects com-
pleted 12 such blocks. Viewing was monocular, and
viewing time was unrestricted. After each response,
there was a blank interval and the next trial was started
with a keypress.

2.2. Results and discussion

The results, pooled over the seven subjects, are
shown in Fig. 2. In these polar plots, the angle repre-
sents the orientation of the figure in the image plane,
and the radius the proportion of times the figure was
perceived as being egg-shaped (the ‘elliptic score’). The
error bars represent the standard deviation of the
means obtained across observers. Due to these standard
errors usually being small, we shall only consider the
pooled data rather than individual subject results.

The first thing to note is that the aspect ratio of the
figure had a dramatic effect on the perceived shape.
Shape A, which was compressed along its axis of
symmetry, was perceived more often as egg-shaped
(high elliptic score) in all orientations, whereas shape C
was perceived more often as saddle-shaped (low elliptic
score). The intermediate shape B was perceived differ-
ently depending on its orientation in the frontal plane:
when its axis of symmetry was vertical, the figure was
perceived more often as egg-shaped, whereas when this
axis was close to the horizontal, the figure was per-

ceived as saddle-shaped. In other words, the interpreta-
tion of shape B could change from egg-shaped to
saddle-shaped by a rotation of 90° in the frontal plane
(Fig. 3).

The effect of image orientation on the 3D interpreta-
tion of line drawings was also briefly noted by Stevens
[16]. However, there was nothing in Stevens’ model [15]
that could account for this image orientation effect,
because only the curvature of the contours was relevant
(contours were assumed to be principal lines of curva-
tures). One potential explanation for the orientation-de-
pendence is that observers interpret those contours
which are convex-upward in the image as originating
from convex markings on the surface of the object (Fig.
4). When two contours intersect in the image, the line
drawing is interpreted as being elliptic if both contours
are convex or concave, and hyperbolic if one contour is
convex and the other is concave. The effect of image
orientation is subsequently predicted on the basis that
convex contours become concave (and vice versa) when
the image is rotated by 180°. The correspondence be-
tween convexity in the image and convexity of the
surface is in fact an assumption that the surface is
oriented in such a way that its normal points upward,
as if the observer looked down at a ground plane on
which the object lay (Fig. 5). This intuition will be
made more precise with the help of the model devel-
oped in the next section.

Finally, it is important to note that the change of
interpretation from egg-shaped to saddle-shaped for
Shape B is gradual: there is no sharp categorization of
the line drawings into egg-shaped and saddle-shaped
surface patches. A model intended to account fully for
the observers’ performance should reflect this property
of the data. Our approach to this problem is the
definition of a ‘simple Bayesian observer’.

3. Simple Bayesian observer

Given a particular line drawing stimulus, we wish to
predict the probability that observers will perceive the
surface as elliptic. Since the data are clearly driven by
observer biases, a natural approach is to adopt the
Bayesian framework. After giving an outline of the
method, we detail every step that leads to the construc-
tion of a Bayesian model for our problem.

3.1. Model construction

3.1.1. Rationale
The fact that human observers were biased toward an

elliptic or hyperbolic interpretation for a given line
drawing suggests that they used some assumptions to
interpret the image. Bayesian analysis is a natural ap-
proach for including these assumptions into the observ-
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Fig. 2. Each panel shows the results of the experiment in a polar plot, averaged over the seven subjects, for the corresponding contour shape
pictured in Fig. 1. Distance from the origin gives the percentage of occasions in which this shape in this orientation was perceived to be elliptical
(egg-shaped). Shape A was nearly always perceived as egg-shaped; shape C was more often perceived as saddle-shaped, but the choice probability
depended upon the orientation. Perception of shape B fell in between. The error bars represent plus-or-minus one standard error of the
inter-subject variability.

er’s inference process [25]. A model within this Bayesian
framework is composed of two basic stages [26]. First,
the assumptions are coded as prior probability distribu-
tions which are then combined with the information in
the image using Bayes’ rule. For our problem, this
computation will lead to computation of the probabil-
ity that the surface patch is elliptic for a given line
drawing image (the posterior probability). The purpose

of the second stage of the model is to convert the
posterior probability into an actual response of the
observer (‘it is elliptic’ or ‘it is hyperbolic’) by following
a specific decision rule.

There are a variety of ways to encode image measure-
ments in the model. To keep the model tractable, we do
not consider the entire line drawing, but merely the
central intersection where the contours overlap to form
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Fig. 3. The interpretation of shape B was dependent on its orientation
in the frontal plane. In (A), it was perceived more often as egg-
shaped, whereas in (B), it was perceived more often as saddle-shaped.

Fig. 5. The bias on the tilt of the surface is consistent with a bias on
the relative positions of the observer and the object, as if the observer
were above the object (e.g., the object lay on the ground plane).

an X. However, due to the symmetry of the line draw-
ing, we expect that the contribution of another intersec-
tion will be counterbalanced by the intersection
symmetrically opposite, and thus we do not think that
this simplification is critical.

Due to the curvature of the contours being held
constant in our psychophysical experiment, we shall not
consider the degree of curvature in the present model.
Only the sign of curvature is taken into account to
discriminate convex from concave contours. For each
line drawing stimulus, we therefore measure the orien-
tation of each of the two curves where they intersect,
and code this orientation relative to the normal to the
curves. Thus, these two orientations 81 and 82 lie
between 0 and p if the curve is locally convex-upward,

and between p and 2p, if it is convex-downward (Fig.
6). Using this notation, the posterior probability to be
computed by the first stage of the model can be written

P (elliptic�81, 82), (1)

in other words, the posterior probability is the proba-
bility that the surface is elliptic given that the orienta-
tion of the two curves intersecting at the center of the
line drawing is measured to be 81 and 82.

To compute this probability, we shall have to esti-
mate the likelihood that a certain scene (a painted 3D
patch at a certain position) gives rise to the image data
(described by 81 and 82), and model the prior probabil-
ity for each scene (before having looked at the image).
Geometrically speaking, the scene is characterized by
three basic factors: (1) the orientation of the patch
relative to the observer; (2) the local shape at the center
of the patch; and (3) the orientation of the surface
markings on the patch. We shall provide a parameter-
ized stochastic model (in the form of a prior distribu-
tion) for each of these three factors. More specifically,
we shall characterize a preference for perceiving a sur-
face (1) oriented such that its normal points upward, (2)
locally convex, and (3) such that the surface contours
are aligned with the principal lines of curvature. We

Fig. 4. (A) Convex contours in the image can be assumed to be
produced by convex contours on a surface (and similarly for concave
contours). (B) In this case, elliptic surface patches will be perceived
when the contours are both convex or both concave in the image, and
hyperbolic patches will be seen when one contour is convex and the
other is concave.

Fig. 6. Definition of 8 for the two contours intersecting at the center
of the figure. The image contour orientation 8 is the angle in the
image plane that the normal to the contour makes with the horizontal
axis. As such, it takes into account both the orientation of the
contour tangent as well as the sign of the image plane contour
curvature.



P. Mamassian, M.S. Landy / Vision Research 38 (1998) 2817–28322822

Fig. 7. Orientation of a surface patch in three-dimensional space. The slant accounts for the inclination of the object relative to the line of sight
(first row). The tilt indicates the direction of steepest descent (second row). We choose a coordinate frame aligned with the principal curvatures.
The roll refers to the rotation about the surface normal that relates the direction of steepest descent to the direction of the first principal curvature.
Within each row, only one angle varies; the two others are set to the following default values: slant=45°, tilt=90°, roll=0°.

shall see that these three biases suffice to explain our
psychophysical results, so that for all the other dimen-
sions of the model, uniform prior distributions will be
taken by default. Then, we shall assume that surface
orientation, shape and surface marking orientation con-
stitute independent events so that the posterior proba-
bility can be simply derived using Bayes’ rule. Finally,
we shall have to choose a decision rule to map the
posterior probability onto an elliptic score for the
model (i.e. the proportion of times the model would
choose ‘elliptic’ rather than ‘hyperbolic’ for a given line
drawing). We shall argue that the particular conditions
of our psychophysical experiment are compatible with
the simplest of all decision rules so that we shall call
our model a ‘simple Bayesian observer’.

In the following sections, we shall derive, one by one,
the three prior distributions for the three geometrical
factors outlined above, and compute the likelihood
function for our problem. We shall then combine the
prior distributions with the likelihood function using
Bayes’ rule, apply our decision rule and adjust the
parameters in the model so as to fit the empirical data.

3.1.2. Surface orientation prior distribution
The orientation of a surface patch can be conve-

niently represented by three angles, the tilt t, the slant

s and the roll r (Fig. 7). The tilt indicates the image
plane orientation of the surface normal (or equivalently
of the surface gradient), and thus ranges from 0 to 2p.
The slant measures the degree to which the surface is
rotated away from fronto-parallel, and hence ranges
from 0 to p/2. The roll is a self rotation of the surface
patch in its tangent plane, and thus also ranges from 0
to 2p. We now propose prior distributions for t, s and
r.

If the observer does not have any bias on perceived
tilt, the image should always be interpreted the same
way independent of its orientation in the frontal plane.
In other studies [27], we have shown that this is not the
case: the interpretation of a line drawing is affected by

Fig. 8. An embossed surface defined by shape-from-contour. The thin
stripes seen in relief here are perceived as indentations if the image is
rotated by 180° in the image plane, illustrating the visual system’s
assumption that the viewpoint is located above the object.
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a rotation of the image in the frontal plane. For
instance, rotating Fig. 8 by 180° changes the interpreta-
tion from a surface with narrow ridges to a surface with
narrow troughs. We conclude from this phenomenon
that observers had a bias on surface orientation,
namely a preference for surfaces whose surface normals
point upward rather than downward. When the surface
is roughly horizontal (such as when an object lies on a
ground plane), this bias takes a very intuitive form:
surfaces are more often seen from above rather than
from below (Fig. 5).

This bias on surface tilt is also consistent with the
results of the experiment described here. Thus, we shall
allow for a bias of the surface tilt in the p/2 or upward
direction. For simplicity, we assume a Gaussian distri-
bution (due to orientation being periodic, we should
use, in theory, the formalism of circular statistics [28];
in practice, however, a Gaussian distribution will be
acceptable as long as its variance is small):

P(t)=
1


2pst

exp
�

−
(t−p/2)2

2st
2

�
. (2)

The standard deviation of the Gaussian, st, controls
the degree of bias. A value of st=� corresponds to no
bias for the viewing direction.

We have no evidence for any observer biases con-
cerning surface slant, therefore, we shall assume an
unbiased prior distribution. More precisely, we assume
a distribution of slant s that would lead to a uniform
distribution of surface orientation if tilt were also unbi-
ased (i.e. equal areas on the Gaussian sphere are
equally likely). A simple calculation results in the prior
distribution

P(s)=sin(s). (3)

Likewise, we have no evidence for any observer biases
concerning surface roll, therefore, we shall assume an
unbiased prior distribution. We define surface roll rela-
tive to the direction of the steepest descent of the
surface. Intuitively, changing surface roll corresponds
to rotating the surface relative to its normal. To mea-
sure the amount of such a rotation, we need a distin-
guished direction on the surface to serve as a reference.
This direction is naturally provided by one of the
principal directions—the directions along which the
normal sections to the surface have largest and smallest
curvatures [29,30]. We define surface roll r as the angle
between the direction of steepest descent and the first
principal direction (the second principal direction will
be oriented at r+p/2 by definition since the principal
directions are always orthogonal). Due to the local
surface shape being p-periodic, and due to the principal
directions playing interchangeable roles, we can restrict
the distribution of r to be uniform between 0 and p/2.

Assuming that the three components of surface ori-
entation are mutually independent, we can deduce the

joint probability P(t, s, r) as the product of the
individual probabilities.

3.1.3. Local shape prior distribution
Solid shape can be locally summarized by two

parameters such as the two principal curvatures of the
surface, k1 and k2. Mamassian et al. [23] favored a
different parameterization of shape, based on two
parameters they termed the shape characteristic and
curvature magnitude. Shape characteristic x indicates
whether the surface is locally elliptic (0Bx51) or
hyperbolic (−15xB0), while the curvature magni-
tude h indicates whether the surface is locally convex
(h\0) or concave (hB0). These two entities are re-
lated to the principal curvatures as follows:!x=k1/k2

h= −k2

with �k1�5 �k2�. (4)

Subjects were asked to judge whether the perceived
shape was elliptic or hyperbolic. Whether the surface is
convex or concave is not relevant in this task. However,
there are some indications that convex and concave
surfaces are not equivalently treated by the observers.
This can be appreciated by looking again at Fig. 2(A):
the line drawing placed at the top of the plot is usually
perceived as being convex, whereas the same line draw-
ing rotated by 180° (at the bottom of the plot) is more
often perceived as being concave. We propose that the
difference in interpretation between concave and con-
vex is related to the difference in proportion of elliptic
responses for these two figures.

How can we account for such a difference between
convex and concave surfaces in our model? The convex-
ity of the surface is represented by the curvature magni-
tude, where the latter is simply proportional to one of
the principal curvatures. Therefore, a natural way to
allow for a bias on the surface convexity is to posit a
bias on the individual principal curvatures. For no
particular reason, we choose this bias to follow a
Gaussian distribution:

P(ki)=
1


2p
exp

�
−

(ki−mk)
2

�2

, i=1, 2. (5)

In our characterization of the line drawing, we have
paid attention only to the sign of the image curvature at
the X-junction, not to the amount of curvature itself.
This is an important simplification that was made pos-
sible by not varying the image plane curvature of the
line segments. As we consider only the difference be-
tween convex and concave segments, one might think
that we could have simply used a binomial distribution
for the principal curvature rather than the above con-
tinuous distribution. However, we are going to see (Eq.
(12)) that a continuous distribution is necessary for the
computation of the likelihood function. The only rele-
vant feature of the above bias is the probability that
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each principal curvature is positive (or negative), not
the details of the distribution. Thus, we have arbitrarily
set the standard deviation of the distribution to 1, and
the single parameter mk suffices. A negative value of mk

corresponds to a bias in favor of contours on a convex
surface.

Using Eq. (4), one can deduce the prior probability
on surface shape P(x, h) from the biases for kl and k2.

3.1.4. Surface marking orientation prior distribution
A remarkable feature of the data in the current study

is how a minor change in the aspect ratio of the figure
produces such a large bias in the perceived shape
(compare again shapes A and C). In developing the
model, we found this was a very difficult feature of the
data to reproduce. There is however one aspect of the
scene that we have not yet exploited, namely the way
the surface markings are arranged on the 3D patch. We
first tried to favor configurations where the two con-
tours were geodesic and orthogonal to each other (that
is two orthogonal contours whose curvature is entirely
the result of the surface curvature). However, as we will
see in the forthcoming section dealing with simulations
of the model, this bias was not sufficient to account for
the big shift in perceived shape. A stronger constraint is
that proposed by Stevens [15] where he assumed that
surface markings are oriented approximately along the
principal directions (which form a particular pair of
orthogonal geodesic curves). Again for simplicity, we
choose this bias to follow a Gaussian distribution cen-
tered on each of the principal directions. Denoting by c

the orientation of a surface marking in the tangent
plane relative to the first principal direction, we have

Í
Ã

Ã

Á

Ä

P(c1)=
1


2psc

exp
�

−
(c1−r)

2sc
2

�2

P(c2)=
1


2psc

exp
�

−
(c2−r−p/2)

2sc
2

�2

.
(6)

The standard deviation sc controls the strength of this
bias. We assume that the deviation of the first surface
marking from the first principal direction is indepen-
dent of the deviation of the second surface marking
from the second principal direction. However, since the
two principal directions are always orthogonal to each
other, the orientations of the two surface markings are
not strictly independent. It is nevertheless possible to
compute the joint probability P(c1, c2).

3.1.5. Bayesian combination
We have characterized the scene in terms of surface

orientation (t, s and r), local surface shape (h and x)
and surface markings (c1 and c2) and provided
parameterized probability distributions for each of
these variables. Our model computes the posterior

probabilities in terms of these variables, given the image
orientations 81 and 82. Using the principle of total
probability, the posterior probability can be expanded
as

P(elliptic�81, 82)

=
&

V
P(t, s, r, x, h, c1, c2�81, 82)

×dt ds dr dx dh dc1dc2. (7)

The integration takes place over the domain V which is
the product of the domains for surface orientation,
surface shape, and surface marking orientations. The
domain for surface orientation spans t over (−p, p), s

over (0, p/2) and r over (−p/2, p/2). The shape is
elliptic when x is positive, therefore, the domain for
surface shape spans x over (0, 1) and h over (−�, �).
Finally, the variables c1 and c2 account for the surface
marking orientations which vary over (−p/2, p/2).

Using Bayes’ rule, we can rewrite the integrand of
Eq. (7) as

P(81, 82�t, s, r, x, h, c1, c2)P(t, s, r, x, h, c1, c2)
P(81, 82)

.

(8)

We have described parameterized observer priors for
the surface orientation P(t, s, r), for the local surface
shape P(x, h), and for the surface marking orientations
P(c1, c2). Assuming that these three factors are inde-
pendent, the integrand in Eq. (7) becomes

P(81, 82�t, s, r, x, h, c1, c2)P(t, s, r) P(x, h)P(c1, c2)
P(81, 82)

.

(9)

3.1.6. Likelihood
In the expression just obtained (Eq. (9)), the first

term in the numerator is called the likelihood. This
term represents the image formation process: is the
image (again restricted to the X-junction) compatible
with the projection of a particular 3D scene (i.e. a
particular orientation of a surface patch with two
painted lines)? If the image formation is noise-free (that
is, if the projection of an object to the image plane is
uniquely determined) then this likelihood term is a delta
function

P(81, 82�t, s, r, x, h, c1, c2)=!1,
0

if 81=F(t, s, r, x, h, c1) and 82=F(t, s, r, x, h, c2)
otherwise

(10)

where F(t, s, r, x, h, c) is the function which projects
a curve at orientation c on the surface onto a curve at
orientation 8 in the image (Fig. 9). Leaving the geomet-
rical derivation of this function to Appendix A, we find
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Fig. 9. Projection of the curve orientation in the tangent plane to a
contour in the image. On the left, we are viewing the surface patch
along its surface normal. Due to the curvature of the contour deriving
entirely from the surface curvature, from this viewpoint the contour
projects to a straight line (at least locally). The model begins by
specifying the orientation c of the contour relative to the principal
directions on the surface. The process of projecting this curve onto
the image plane involves rotations corresponding to the roll, slant
and tilt of the surface patch (Fig. 7). In the image plane, we describe
the orientation 8 of the normal to the contour relative to the
horizontal axis.

ing wrong decisions [32]. However, it is unjustifiable to
apply this approach in the case of our experiment
because the observer’s decision has no consequences
and no feedback is given. Even though the inference of
the local solid shape from the intersection of image
contours can certainly play a role in the recognition of
the line drawing of complex objects, this inference has
no consequences in our laboratory conditions. In a
sense, our observers might be facing a pure problem of
statistical inference, that is to provide a summary of the
statistical evidence for the estimated local shape with
no further application. As such, it is not inappropriate
for the observers’ judgements to reflect the computed
posterior probability (‘probability matching’). In other
words, the probability that the observer responds ellip-
tic is the posterior probability for an elliptic shape (i.e.
the probability we have just computed):

P(Observer responds ‘elliptic’�image)=

P(Surface shape is‘elliptic’�image). (14)

We shall call a model for which the observer’s choice
probability is the posterior probability a simple
Bayesian model. There is an important difference be-
tween such a model and one linked with a more classi-
cal decision rule. Classical models often rely on a
source of noise to account for the subject’s response
variability (photon noise or internal noise in the case of
visual psychophysics). In contrast, our model predicts
the distribution of the observer’s responses solely from
the posterior distribution. This posterior distribution
reflects the ambiguity that multiple scenes can project
to the same image, even when no source of noise is
added.

3.2. Results

We were unable to find a closed-form solution for the
posterior probability. Numerical simulations were run
instead, where the Monte Carlo method was used to
sample the prior distributions and build the posterior
probability (Appendix B). The model has three parame-
ters controlling the strength of the biases on surface
orientation (parameter st), surface shape (mk), and
surface marking orientation (sc), which we group into
a vector U3. These parameters were adjusted so as to
provide the maximum likelihood fit to the observers’
performance measured for three shapes and 24 orienta-
tions, i.e. 72 stimulus configurations (Fig. 2). The natu-
ral logarithm of this likelihood is (dropping terms that
do not depend on the response data):

L(U3)=n %
72

i=1

{Pdata(i) Log(Pmodel(i))

+ (1−Pdata(i)) Log(1−Pmodel(i))}, (15)

F(t, s, r, x, h, c)

=arctan
�tan(c+r)

cos(s)
�

+sign(k tan(c+r))
p

2
+t (11)

where k is the curvature of the surface marking at the
X-junction. If we assume that all of the curvature of the
line is due to the curvature of the surface, i.e. the line is
locally geodesic [17], then k can be written as a function
of the two principal curvatures (the Euler formula; [31])

k=k1 cos2(c)+k2 sin2(c). (12)

From Eq. (5), we know the probability density func-
tion of each principal curvature and can therefore
compute the probability density of the curvature of
each surface marking at the X-junction.

We are now able to compute our posterior probabil-
ity in Eq. (9) up to a constant (namely, P(81, 82)),
which came from the Bayesian expansion. We actually
do not need to compute this constant explicitly, since
we can use the fact that

P(elliptic�81, 82)+P(hyperbolic�81, 82)=1. (13)

3.1.7. Decision rule
The computation of the posterior probability corre-

sponds to the first stage of our Bayesian model. We
now need to describe how observers use this probability
to make an actual response when they view a given
image. Several decision rules are commonly used in
statistical decision theory [32,26]. One popular choice is
the maximum a posteriori (MAP) decision rule whereby
the observer chooses the interpretation with the highest
posterior probability, as this decision rule minimizes the
expected number of errors.

The choice of the appropriate decision rule for a
problem involves a determination of the ‘cost’ of mak-
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Fig. 10. The best fit obtained with the model is shown together with
the data averaged over 7 subjects. The performance of the model is
shown as solid lines. Although the fit is not perfect, it captures several
important aspects of the data including the strong effects of shape
and orientation, the asymmetry across 180° rotations, and the largely
different interpretation of shapes A and C. Here, we switch from a
polar to a Cartesian representation to avoid the bunching up of the
data points visible in Fig. 2.

sc are shown in Fig. 11. These are rather strong biases
on the surface orientation and the position of the
surface markings relative to the principal curvatures.

While deriving our model in the previous section, we
wondered whether it would suffice to impose a con-
straint on the surface marking orientation to be simply
geodesic and approximately orthogonal rather than ap-
proximately aligned with the principal directions. The
modified model derived by imposing the orthogonal
directions constraint can be simply obtained from the
original model where we imposed the principal direc-
tions constraint. In Eq. (6), we just need to have c

denote the orientation of a surface marking relative to
an arbitrary direction rather than relative to the first
principal direction. Simulations of the modified model
produced a best fit that was notably worse than the
original model (the logarithm of the likelihood was
−2748 rather than −2604). The best fit of the
modified model is shown along with the empirical data
in Fig. 12.

In order to appreciate the role of each degree of
freedom, we can look at a model deprived of a specific
bias. For this purpose, one of the three parameters st,
sc or mk was set to a value so as to eliminate the
associated bias (+�, +� and 0, respectively). The
remaining parameters of such deprived models were
estimated again by maximum likelihood. These parame-
ters for each model are summarized in Table 1, and the
performance of the models is presented in Fig. 13. A
bias on surface orientation (st) is required for image
orientation to produce any effect on perceived shape
because the other two biases are isotropic (they are
intrinsic to the surface and surface markings, not to the
particular image orientation). The bias on surface
marking orientation (sc) is responsible for the massive
difference in perception between the three shapes. In-
deed, when surface markings are approximately aligned

where Pdata(i ) and Pmodel(i ) are the elliptic scores for
stimulus i measured experimentally and predicted by
the model, respectively. In this equation, n is the num-
ber of replications per stimulus configuration, that is 84
(12 replications for each of the 7 subjects). The best fit
was obtained with parameter settings of st=0.55 rad;
mk= −0.35; and sc=0.13 rad, and resulted in a loga-
rithm of the likelihood L(U3)= −2604. The best fit is
shown along with the empirical data in Fig. 10.

A value of −0.35 for mk corresponds to a ratio of
convex to concave contours equal to 1.75 (i.e. a bias for
convex segments) and a ratio of elliptic to hyperbolic
surfaces equal to 1.16 (i.e. a slight bias for elliptic
patches). The prior distributions associated with st and

Fig. 11. The prior distributions corresponding to the best fitting model: (a) tilt distribution; (b) distribution of c1 (the distribution of c2 has the
same shape, however, it is shifted by 90°). Both priors are sharply tuned. Observers are rarely willing to interpret surface contours as if the surface
normal pointed downward, and are strongly biased to interpret the surface contours as closely aligned with the principal lines of curvature.



P. Mamassian, M.S. Landy / Vision Research 38 (1998) 2817–2832 2827

Fig. 12. The best fit obtained with the modified model where the
constraint on surface markings was merely that they be geodesics and
approximately orthogonal to each other in space. Comparing this fit
with the one obtained with the original model (Fig. 10), we note that
Shape A was less often judged ‘elliptic’.

These tests are summarized in Table 1. All models
deprived of one parameter are handily rejected.

4. Discussion

We have investigated the human perception of simple
line drawings. These images were interpreted as curved
surface patches with contours painted on them. Even
though there was an infinite number of curves in 3D
that could project to these line drawings, observers
tended to perceive only one of two basic surface shapes.
The interpretations of the drawings may be categorized
as elliptic (egg-shaped) and hyperbolic (saddle-shaped)
surface patches. These two categories actually belong to
a continuum which ranges from umbilical (perfectly
spherical) to minimal surfaces (the most symmetrical of
all hyperbolic patches) [23]. In between the elliptic and
hyperbolic patches lie the parabolic surfaces (i.e. locally
cylindrical). The parabolic case constitutes a set of
measure zero in the space of all possible local shapes
and hence should not be adopted by observers unless
evidence is particularly compelling [34]. In the case of
line drawings, the latter remark would imply that a
parabolic interpretation is taken by the observer only
when at least one contour is straight in the image [15].

The categorical perceptions of the line drawings
justified the task of our psychophysical experiment. In
this experiment, observers were asked to report their
first impression for the shape of the surface patch
depicted by a given line drawing. The preference to
perceive one or the other shape was dependent not only
on the geometry of the line drawing (the aspect ratio of
the figure), but also on the orientation of the figure in
the image plane. The results were not in accord with a
world in which the patches were equally likely to occur
at any orientation, with any shape and with any surface
markings. Instead, subjects displayed consistent biases
which compelled them to perceive one surface shape
more frequently than another. Thus, the analysis of the
frequency of responses provided a window into the
biases that observers have concerning the scenes that
gave rise to these images.

The biases manifested by the observers were subse-
quently formalized using a simple Bayesian model. The

with the principal directions, the sign of curvature of
the two surface markings will determine the qualitative
shape of the surface. In particular, this constraint pre-
vents the possibility of a hyperbolic surface having two
convex surface markings (that meet at an angle less
than p/2 on the surface). Finally, the bias on surface
shape (mk) is responsible for the asymmetries between
the data at p/2 rad and 3p/2 rad. Intuitively, this prior
biases concave contours to be labeled as convex, result-
ing in more hyperbolic interpretations at p/2.

The contribution of each degree of freedom can be
further assessed by testing the degree to which a de-
prived model fit the data less well than the original
model. The significance of this loss in the fit can be
evaluated using the nested hypothesis test [33] in which
the null hypothesis is that the original model and a
deprived one fit the experimental data equally well.
Denoting by L(U3) and L(U2) the natural logarithm of
the likelihood for the original (3 parameter) and de-
prived (2 parameter) models respectively (Eq. (15)), the
test involves the statistic

2(L(U3)−L(U2)) (16)

which is distributed as x2 with one degree of freedom
(the difference in the number of model parameters).

Table 1
The best fit parameters for the Bayesian models developed to account for the subjects’ data

Log (likelihood) x2 (1)Model parameters st mk sc p-value

−2604(st, mk, sc) 0.130.55 −0.35
−2994 390(mk, sc) +� −0.10 B0.0010.16

B0.00185−2689(st, sc) 0.140.58 0
+� −3286 682 B0.001(st, mk) 0.56 −0.30

The models with two parameters are tested against the original model (with three parameters) for any significant loss in goodness of fit. All three
two-parameter models are rejected.
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Fig. 13. Simulations of the model with its best fit parameters except
one which is set to a value such that the parameter does not have any
effect: (a) model with st set to +�; (b) model with sc, set to +�;
(c) model with mk set to 0.0.

drawn on the surface. We modeled potential biases for
each of these factors by prior probability functions. The
parameters for these functions were then obtained by
fitting the model to the observers’ data. To complete
our model, we had to choose a decision rule that would
transform the posterior distribution into a response. We
proposed that this rule was noncommitting, i.e. the
frequency of observers’ responses for ellipticity was
identical with the posterior probability that the object
was elliptic given the image data. The goodness of fit of
the model indicated that all three classes of assumptions
participated in the interpretation of the line drawings.
These biases were for convex surfaces, markings nearly
aligned with the principal curvatures, and for surface
normals pointing upwards. Omitting any one of these
biases resulted in a substantially poorer fit to the data.

For mathematical convenience, we also assumed that
surface contours were geodesics. The geodesic assump-
tion states that the curvature of a surface contour is
solely due to the surface curvature. Relaxing the
geodesic assumption would be tantamount to allowing
a portion of the image curvature to be independent of
the surface geometry (a kind of ‘curvature noise’),
which would reduce the sharpness of the conclusions
observers could draw about the underlying qualitative
shape. It is possible that the model would still fit as well
(e.g. by sharpening the fit values of the local shape
prior, i.e. by increasing mk). Due to the mathematical
complexity involved, it was not possible to simulate a
model in which the geodesic constraint was relaxed. It
is therefore unclear at this point whether this constraint
is really critical for the present model. Nevertheless, it is
interesting to note that other empirical evidence sug-
gests that human observers incorporate a geodesic con-
straint for surface markings [17].

In the current study, the amount of curvature in the
image was ignored, and only the sign of curvature
figured into the model. This was carried out due to the
experimental task using a set of images in which image
contour curvature was constant. It would be simple and
interesting to elaborate the model to include the image
curvature magnitude. The likelihood term would then
involve the image contour curvature magnitudes as well
as their orientations 81 and 82, and the function F
would have to match the curvature magnitudes also.
This would involve a more elaborate Monte Carlo
simulation, but no additional model parameters. As a
result, one could sensibly fit new data involving figures
with variable image contour curvature.

The three explicit assumptions of our model relate to
constraints already discussed in the past. For instance,
we interpreted the bias for surface normals to point
upwards as a preference to perceive the object as if one
were looking at it from above (this interpretation sup-
poses that the general orientation of the object is hori-
zontal, Fig. 5). This constraint could also be related to

model computed the posterior probability that the line
drawing corresponded to a surface patch that was
elliptic. Due to the simplicity of our images, this en-
deavor was tractable. This analysis was naturally de-
composed into three independent factors: the
relationship between the observer and the surface, the
local shape of the surface, and the way lines were
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the cue of elevation in the picture plane according to
which depth usually increases towards the top of an
image [35]. The constraint that surface markings ap-
proximate lines of curvature was first stated by Stevens
[15]. Although surface markings are theoretically unre-
stricted, Stevens noted a few instances where this con-
straint was valid, such as wrinkles on the skin or stripes
on plants. Finally, the preference for convex surfaces
can be related to the salience of 2D objects defined by
convex (rather than concave) contours [36–38].

It is natural to wonder how strong these biases are,
and how much confidence the visual system puts in
these assumptions. While any of them can be easily
violated, these assumptions allow us to get a quick first
interpretation of the image which can then be revised as
more information becomes available. One can also
investigate the competition between different assump-
tions. For instance, we have pitted the surface orienta-
tion bias against the well-known bias for illuminant
location in shaded images [39]. Numerous studies have
reported a preference to perceive a scene as if the light
source was located above our head [40–43]. We found
that both biases cooperated in the interpretation of
ambiguous images containing both contours and shad-
ing. For the particular stimuli we used, the viewpoint
bias had a stronger effect on the 3D interpretation of
the stimuli than the illumination bias. This result sug-
gests that viewpoint-from-above is indeed a robust
assumption.

Presumably, shape-from-contour is not the only
depth cue that relies on a priori assumptions. Most
depth cues provide only restricted information to recon-
struct a 3D scene. In image locations where depth cues
are sparse, multiple cues cannot interact to fill in miss-
ing information, and observers are forced to rely on
default assumptions. An attractive hypothesis is that
these internal assumptions reflect the statistics of the
external world, although it would be difficult to prove.
What we have provided in this study is an example of
how the human observers’ assumptions can be
measured.
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Appendix A. Projection of a curved contour in the
image

Our model relies on the likelihood that a stripe
painted on a surface projects to a particular contour in
the image. This is a problem of projective geometry
which can be solved by taking the sequence of rotations
that align the tangent plane to the surface with the
image. These rotations correspond to the three degrees
of freedom that characterize the local orientation of a
surface patch, namely the tilt, slant and roll angles (Fig.
7).

We start with a surface contour at orientation c

relative to the first principal direction (Fig. 9). Assum-
ing that this contour is locally geodesic, its curvature
at the origin is simply the normal curvature k of
the surface at the orientation c. Therefore, as seen
from the surface normal, the surface contour appears
as a straight line, and its orientation c can be restricted
to the interval (−p/2, p/2]. Our goal is to compute
the orientation 8 of the projection of this surface
contour in the image plane (Fig. 9). We define the
orientation 8 as the angle between the image hori-
zontal and the outward normal to the projected con-
tour. This angle therefore depends on the sign of curva-
ture of the contour, and is defined in the interval (−p,
p ].

We define the principal coordinate system (p1, p2, N)
associated with the tangent plane to the surface patch,
where p1 and p2 are the principal directions and N is the
surface normal. In this coordinate system, a point (x1,
y1, z1) on the surface contour near the origin can be
written as a function of a parameter t as:

Í
Ã

Ã

Ã

Ã

Ã

Ã

Á

Ä

x1(t)=cos(c)t
y1(t)=sin(c)t

z1(t)=
1
2

kt2.
(17)

The first rotation for the alignment of the tangent plane
with the image is the rotation of angle p (the surface
roll) about the surface normal. This rotation aligns the
first principal direction p1 with the direction of steepest
descent on the surface s1 (Fig. 14). This latter direction
is simply the projection on the surface of the direction
of steepest descent in the image i1 (the projection is
taken along the viewing direction). Under this first
rotation, the previous coordinate system is transformed
into (s1, s2, N), and our point on the surface contour
becomes (x2, y2, z2):
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Fig. 14. The function F that relates a given surface marking orientation c to an image plane contour orientation 8 is a concatenation of four
rotations, corresponding to the tilt, slant, roll, and c itself (not shown here).

Í
Ã

Ã

Á

Ä

x2(t)=cos(c+r)t
y2(t)=sin(c+r)t

z2(t)=
1
2

kt2.
(18)

The second step for the alignment procedure is a rota-
tion of angle s (the surface slant) about the direction s2

(Fig. 14). In the new coordinate system (i1, i2, E) where
E is the viewing direction, our point on the surface
contour becomes (x3, y3, z3):

Í
Ã

Ã

Ã

Ã

Á

Ä

x3(t)=cos(s)cos(c+r)t+
1
2

sin(s)kt2

y3(t)=sin(c+r)t

z3(t)= −sin(s)cos(c+r)t+
1
2

cos(s)kt2.

(19)

The final step for the alignment is the rotation of
angle t (the surface tilt) about the viewing direction
(Fig. 14). Due to this being a rotation in the image
plane, it will simply manifest as an angle t in the final
equation for the orientation of the contour in the
image. For simplicity, we shall postpone this last rota-
tion for now, and compute the orientation 8 % of the
contour relative to i1.

The orientation of the tangent to the contour is given
by the angle u relative to the direction of steepest
descent i1 (Fig. 15):

u=arctan
�y3’(0)

x3’(0)
�

=arctan
�tan(c+r)

cos(s)
�

. (20)

Since the orientation 8 % is the direction of the outward
normal to the contour, 8 % differs from u by p/2. In
order to know whether one should add or subtract p/2,
one has to know on which side of the tangent the
contour lies. One simple way to obtain this information
is to express the contour relative to its tangent, i.e. to

Fig. 15. The orientation 8 % of the contour relative to the direction of
steepest descent in the image i1 depends on the curvature of the
contour. This figure shows the condition when k tan(r+c)]0, so
that 8 % is p/2 greater than u, the direction of the contour tangent.
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rotate the coordinate system (i1, i2, E) by an angle u.
In this new coordinate system ( j1, j2, E), the point
(x4, y4, z4) on the contour becomes:

Í
Á

Ä

x4(t)=cos(u)x3(t)+sin(u)y3(t)
y4(t)= −sin(u)x3(t)+cos(u)y3(t)
z4(t)=z3(t).

(21)

We are only interested in the second coordinate (y4).
Due to the surface slant s is restricted to [0, p/2], we
have:!cos(u)= cos(s)/ 
cos2(s)+ tan2(c+r)

sin(u)= tan(c+r)/
cos2(s)+ tan2(c+r),
(22)

so that we obtain after simplifications:

y4(t)= −
1
2

k tan(c+r)sin(s)

× t2/
cos2(s)+ tan2(c+r). (23)

The contour will be above its tangent if y4(t)]0, i.e.
if k tan(c+r)50. Therefore, we have:

8 %=arctan
�tan(c+r)

cos(s)
�

+sign(k tan(c+r))
p

2
. (24)

By applying the last rotation to align the tangent
plane with the image, we finally obtain the orienta-
tion 8 of the projected contour relative the image
horizontal:

8=arctan
�tan(c+r)

cos(s)
�

+sign(k tan(c+r))
p

2
+t.

(25)

Appendix B. Monte Carlo simulations

We have formally derived a model to account for
the psychophysical experiment. Unfortunately, we did
not manage to find a closed form solution for this
model. We outline in this appendix the sequence of
steps underlying simulations obtained with a Monte
Carlo method.

We want to compute the posterior probability that
a surface patch is elliptic given image contours ori-
ented as 81 and 82. From Bayes’ rule, this probabil-
ity can be written as the following ratio:

P(elliptic�81, 82)=
P(81, 82�elliptic)P(elliptic)

P(81, 82)
. (26)

The numerator is the product of a likelihood term
and the prior probability that a random surface patch
is elliptic. The likelihood term is the probability that
an elliptic patch would produce an image with con-
tours oriented as 81 and 82. The denominator is just
a normalizing constant so that Eq. (13) is satisfied.

We start with the computation of the likelihood.
The idea is to sample the space of elliptic surface
patches and to collect the associated orientations of
the projected surface contours in the image. Once a
large number of surface samples have been drawn,
the likelihood will be approximated by the proportion
of projected orientations 81 and 82.

We begin by picking an elliptic surface patch. We
remember that the shape of a patch is fully described
by its two principal curvatures k1 and k2. We choose
these principal curvatures from a Gaussian distribu-
tion with mean mk and unit variance (Eq. (5)) with
the constraint that the associated shape characteristic
x (Eq. (4)) is positive.

We then paint two contours on this surface patch.
Due to the assumption that these contours are locally
geodesic (see text), these contours appear as straight
lines from the surface normal viewpoint. Therefore,
the contours can be simply characterized by their ori-
entation relative to the first principal direction. We
choose these orientations c1 and c2 to be Gaussian
deviates away from each principal direction, with a
standard deviation of sc (Eq. (6)). From Eq. (12), we
can compute the normal curvatures associated with
the two contour directions.

The next step is to project the surface patch on the
image seen by the observer. This projection involves
three rotation angles, starting with the surface roll r

taken from a uniform distribution over (0, p/2). The
second angle is the surface slant taken from the dis-
tribution given by Eq. (3) (one can easily obtain a
sample from this distribution by taking the arc-cosine
of a uniform sample in (0, 1)). The last angle is the
surface tilt taken from the Gaussian distribution with
mean p/2 and standard deviation st (Eq. (2)). Taking
into account these three angles for the surface orien-
tation, one can compute the projected angles 81 and
82 using Eq. (11).

We repeat the previous steps (pick one surface
patch, paint two contours, project the surface patch)
over and over again, obtaining many samples of the
projected angles 81 and 82. These samples are accu-
mulated in a bivariate histogram with bins of width
7.5°, resulting in an estimate of the likelihood of ob-
taining the angles 81 and 82 given that the shape is
elliptic. In our simulations, we repeated these steps 10
million times.

The prior term in Eq. (26) is the a priori probabil-
ity that the shape is elliptic. The local solid shape is
elliptic if and only if its principal curvatures are both
convex or both concave. From Eq. (5), we can de-
duce the probability P(convex) that one principal cur-
vature is convex (remembering that a contour is
convex if its curvature is negative):
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P(convex)=
& 0

−�

p(k)dk

=
& 0

−�

1


2p
exp

�
−

(k−mk)2

2
�

dk

=
& −mk

−�

1


2p
exp

�
−

t2

2
�

dt=C(−mk)

=1−C(mk), (27)

where C(x) is the cumulative standard normal function.
Similarly, we compute that the probability P(concave)
that one principal curvature is concave to be C(mk).
The prior probability that the surface is elliptic is then:

P(elliptic)=P(convex)2+P(concave)2

=1−2C(mk)+2C(mk)2. (28)
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