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Most models of disparity selectivity consider only the spatial proper-
ties of binocular cells. However, the temporal response is an integral
component of real neurons’ activities, and time-varying stimuli are
often used in the experiments of disparity tuning. To understand the
temporal dimension of V1 disparity representation, we incorporate a
specific temporal response function into the disparity energy model
and demonstrate that the binocular interaction of complex cells is
separable into a Gabor disparity function and a positive time function.
We then investigate how the model simple and complex cells respond
to widely used time-varying stimuli, including motion-in-depth pat-
terns, drifting gratings, moving bars, moving random-dot stereograms,
and dynamic random-dot stereograms. It is found that both model
simple and complex cells show more reliable disparity tuning to
time-varying stimuli than to static stimuli, but similarities in the
disparity tuning between simple and complex cells depend on the
stimulus. Specifically, the disparity tuning curves of the two cell types
are similar to each other for either drifting sinusoidal gratings or
moving bars. In contrast, when the stimuli are dynamic random-dot
stereograms, the disparity tuning of simple cells is highly variable,
whereas the tuning of complex cells remains reliable. Moreover, cells
with similar motion preferences in the two eyes cannot be truly tuned
to motion in depth regardless of the stimulus types. These simulation
results are consistent with a large body of extant physiological data,
and provide some specific, testable predictions.

I N T R O D U C T I O N

Numerous physiological studies have documented disparity-
tuned cells in V1 (Barlow et al. 1967; Freeman and Ohzawa
1990; Poggio and Poggio 1984). To understand the mechanism
of tuning, many researchers have also investigated how the
disparity responses of a cell may be explained by the under-
lying binocular receptive field (RF) structure. Since disparity is
a spatially defined property, nearly all stereo models are solely
based on spatial considerations while leaving out the temporal
dimension as irrelevant. Specifically, most models (Fleet et al.
1996; Nomura et al. 1990; Ohzawa et al. 1990; Qian 1994;
Sanger 1988; Zhu and Qian 1996) only consider how the
spatialRFs of binocular cells may respond tostaticstimuli and
generate the physiologically observed disparity tuning curves,
such as the tuned, near, and far types found in V1 (Poggio and
Fischer 1977; Poggio et al. 1988). However, the spatial and
temporal response properties always come together for real
neurons. More importantly, physiological studies of disparity

tuning often use time-varying stimuli such as motion-in-depth
patterns, drifting gratings, moving bars, moving random-dot
stereograms, or dynamic random-dot stereograms in addition
to static images. To fully understand these data, the temporal
response properties of cortical cells must be considered.

There is also a functional reason to include time into stereo
modeling: consistent with the physiological finding that many
visual cortical cells are tuned to both disparity and motion
(Bradley et al. 1995; Maunsell and Van Essen 1983; Ohzawa et
al. 1996), there is increasing psychophysical evidence indicat-
ing that motion and stereo interact with each other in generat-
ing our perception (Anstis and Hassis 1974; Nawrot and Blake
1989; Qian et al. 1994a; Regan and Beverley 1973). We have
already proposed a model for motion-stereo integration based
on the general properties of binocular, spatiotemporal RFs of
visual cortical cells (Qian 1994; Qian and Andersen 1997; Qian
et al. 1994b). However, we did not explicitly model the dis-
parity tuning curves of cortical cells to specific time-varying
stimuli. In this paper, we first present a simple function that
conveniently describes the temporal response profiles of real
V1 cells and incorporate this function into the disparity energy
model (Ohzawa et al. 1990; Qian 1994). We then apply the
model to investigate V1 disparity responses to a variety of
time-varying stimuli used in physiological experiments. Some
of the results were reported previously in abstract form (Chen
et al. 2000).

M E T H O D S

It is well established that the spatial RFs of V1 simple cells can be
accurately fit by Gabor functions (Daugman 1985; Jones and Palmer
1987; Marceˇlja 1980; Ohzawa et al. 1990). Since we are concerned
with disparity tuning instead of orientation tuning in this paper, we
only consider vertically oriented binocular cells whose left and right
RFs are given by (DeAngelis et al. 1991; Ohzawa et al. 1990, 1996)
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where vx
o is the preferred horizontal spatial frequency,sx and sy

determine the RF dimensions along the horizontal and vertical axes,
respectively, andfl andfr are the phase parameters for the left and
right RFs, respectively. For oriented stimuli (e.g., bars and gratings),
we assume that the stimulus orientations are aligned with the cells’
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preferred orientation. For moving stimuli, we assume that the direc-
tion of motion is perpendicular to the orientation of the RFs.

Unlike the spatial RFs, the temporal response of cortical cells is not
Gabor-like (DeAngelis et al. 1993a, 1999; Ohzawa et al. 1996). We
examined the temporal profiles of real V1 cells and found that they
can be conveniently described by an envelope of the gamma proba-
bility density function, multiplied by a sinusoidal modulation
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Heret is the time constant for the envelope,a determines the degree
of skewness, andG(a) is the standard gamma function for normaliza-
tion; for simplicity, we leta 5 2 in this paper, andG(2) 5 1. The
sinusoidal term with frequencyvt

o generates alternating on and off
responses. Since for many real cells the first half cycle of the temporal
response is shorter by various amounts than the second half cycle, the
parameterft is introduced to reduce the length of the first half cycle.
(Due to the rapid decay of the exponential, the durations of the 3rd and
later half-cycles are not important.) Theft parameter also determines
whether the initial response is on or off. Although previously pro-
posed functions can fit the real temporal responses just as well
(Adelson and Bergen 1985; DeAngelis et al. 1999; Watson and
Ahumada 1985), we preferEq. 3because all parameters have simple,
intuitive meanings.Equation 3 is plotted for two different sets of
parameters in Fig. 1A. The two curves are representative of the real
temporal responses from V1 (DeAngelis et al. 1993a; Ohzawa et al.
1996).

The frequency tuning ofEq. 3 is determined by its Fourier trans-
form, which can be calculated analytically as
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for a 5 2. Note that because offt, vt
o may not be close to the

preferred temporal frequency of the function. The amplitude spectra
for the temporal responses in Fig. 1A are plotted inB, showing
band-pass and low-pass characteristics, respectively. These two types
of frequency tuning behavior correspond to transient and sustained
responses, respectively (Hawken et al. 1996)

The temporal functionh(t) can then be combined with the spatial
function g(x, y) to model three-dimensional spatiotemporal RFs of
simple cells (Adelson and Bergen 1985; Watson and Ahumada 1985).
For binocular simple cells, this can be done for the left and right RFs
separately

f l~x, y, t! 5 gl~x, y!h~t! 1 hg# l~x, y!h#~t! (5)
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whereg# andh# functions are obtained from the correspondingg andh
functions by replacing all the cosine terms by the sine terms. The
constant weighting factorh, between 0 and 1, is introduced to model
various degrees of directional sensitivity (Adelson and Bergen 1985;
Watson and Ahumada 1985).

The response of simple cells to a stereo image pairI l(x, y, t) and
Ir(x, y, t) can be approximated by linear spatiotemporal filtering

(DeAngelis et al. 1993b; Jones and Palmer 1987; Ohzawa et al. 1990),
followed by half-squaring (Anzai et al. 1999a,b; Heeger 1992)
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where the half squaring operation is defined as
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For some simulations, we also included a threshold to be subtracted
from the integral inEq. 7 before half-squaring. These will be men-
tioned specifically inRESULTS. The threshold tends to make tuning
curves sharper by removing small responses.

Under the assumption that the RF size is much larger than the
horizontal disparityD of the stimulus, it can be shown that the simple
cell response is approximately (seeAPPENDIX)
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andB(t) andu(t) (defined inAPPENDIX) are independent offl, fr and
D. Equation 9is a generalization to our previous results obtained with
spatial RFs only (Qian 1994; Qian and Zhu 1997). It indicates that in
addition to stimulus disparity, simple cells are also sensitive tou(t),
which depends on the spatiotemporal details (or Fourier phase) of the
stimulus.

We model complex cell responses using the well-known quadrature
pair method for disparity energy computation (Adelson and Bergen
1985; Emerson et al. 1992; Ohzawa et al. 1990; Pollen 1981; Qian
1994; Watson and Ahumada 1985). The complex cells derive both
their spatial and temporal properties from the constituent simple cells.
Because of the half-wave rectification contained in the half-squaring
operation for each complex cell, we need to sum the responses of four
simple cells (Ohzawa et al. 1990), all with identicalf2 but with their
f1/2 differing in steps ofp/2. (This is exactly equivalent to summing
the squared responses of two simple cells without the half squaring.)
The resulting complex cell response is approximately
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which has more reliable disparity tuning because it is no longer a
function of u(t). The preferred disparity of the cell is thus

Dpref < 2
f2

vx
o (12)

which is same as for the static case (Qian 1994).
Previously, we pointed out that for both physiological and compu-

FIG. 1. A: temporal responses ofEq. 3
plotted for two sets of parameters. The posi-
tive and negative values represent on and off
responses, respectively. For both curves,
vt

o/2p 5 7.2 Hz andt 5 0.016 s, butft 5
0.1p, and20.4p, respectively.B: the corre-
sponding Fourier amplitude spectra on a log-
log scale showing the band-pass and low-pass
behavior, respectively. These temporal re-
sponse profiles and amplitude spectra closely
resemble those of real V1 cells.
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tational reasons, a spatial pooling step should be added after the
quadrature-pair construction to better simulate complex cell responses
(Qian and Zhu 1997; Zhu and Qian 1996). We add this step for
modeling complex cell responses to the random-dot type of stimuli, as
such pooling significantly improves the reliability of disparity tuning
(Fleet et al. 1996; Qian and Zhu 1997; Zhu and Qian 1996). The
pooling step is omitted for bar and grating stimuli because it does not
make any difference for those stimuli. The weighting function for the
spatial pooling is a normalized, circularly symmetric two-dimensional
Gaussian with as equal tosx in Eqs. 1and2.

R E S U L T S

Binocular interaction RFs of complex cells

Equations 5and 6 can be used to model simple cells’
binocular, spatiotemporal RFs (results not shown), which are
first-order kernels of the white noise analysis (Adelson and
Bergen 1985; Anzai et al. 1999a; DeAngelis et al. 1999;
Ohzawa et al. 1996). One cannot obtain similar first-order RFs
for complex cells because complex cells do not have separated
on and off subregions. However, as Ohzawa, DeAngelis, and
Freeman (1997) have shown, real complex cells have well-
defined binocular interaction RFs, which are the impulse re-
sponse functions obtained by flashing a line at the preferred
orientation at timet to locationsxl and xr in the two eyes,
respectively. It is a first-order temporal and second-order spa-
tial kernel. Previously, Ohzawa et al. (1997) have modeled the
second-order spatial kernel. Here we add the time variable and
compare our simulations with the experimental data.

It can be shown that the binocular interaction RF defined by
Ohzawa et al. (1997) for a complex cell can be written as (see
APPENDIX)
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Remarkably,Eq. 13 is separable in disparity and time regard-
less of whether the underlying simple cells for the complex cell
are spatiotemporally separable or not (i.e.,h 5 0 or not). This
is true so long as the simple cells are described byEqs. 5and

6 and therefore have the matched degrees of spatiotemporal
orientation in the two eyes (Ohzawa et al. 1996). Also note that
S(D) is a Gabor function of disparityD (Zhu and Qian 1996)
and that unlike the temporal responseh(t) for the constituent
simple cells, the temporal responseH(t) of the complex cell’s
binocular interaction RF is always positive, indicating that the
Gabor disparity tuning of complex cells do not vary over time.
These features are consistent with experimental data (Ohzawa
et al. 1997).

Equation 13is plotted in Fig. 2 for four model complex
cells. The time-integrated tuning curves are also shown at the
bottom of each panel, indicating that these cells are tuned-
excitatory (TE), tuned-inhibitory (TI), near (NE), and far (FA)
types, respectively, according to Poggio’s classification. The
disparity-time separability inEq. 13is clearly exhibited in the
figure for both the nondirectional cell (h 5 0, Fig. 2A) and the
strongly directional cell (h 5 1, Fig. 2B).

Another feature in Fig. 2 is that theD 2 T profiles of
nondirectional or weakly directional complex cells (Fig. 2,A
and C) have two peaks along the time axis, while strongly
directional complex cells (Fig. 2,B andD) are unimodal over
time. This originates fromEq. 15.When the directional factor
h 5 0, the complex cell temporal response function becomes

H~t! 5 F t

t2 expS2
t

t
D cos~vt

ot 1 ft!G2

(16)

which can show multiple peaks in time because of the cosine
term. On the other hand, when the direction factorh 5 1, we
have
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t2 expS2
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which can only have one peak. This relationship between
directionality and the peak number along the time dimension in
D 2 T plots is a testable prediction.

Motion in depth

When an object is moving toward or away from an observer,
the binocular disparity of the object changes over time, and the
motion speeds or directions in the two eyes are different. The
fact that the disparity tuning of complex cells does not vary
with time (Fig. 2) implies that these cells are not tuned to

FIG. 2. Binocular interaction RFs (orD 2 T profiles) of 4 model complex cells plotted according toEq. 13.The solid and dashed
contours represent the positive and negative values, respectively.Below each panel is the disparity tuning curve generated by
integrating theD 2 T profile along the time axis. These complex cells are constructed from simple cell RFs all withvx

o/2p 5 0.4
cycles/deg,vt

o/2p 5 2 Hz, sx 5 0.8°, sy 5 1.2°, t 5 60 ms, andft 5 0.1p. The f2 andh parameters areA: 0, 0; B: 2p, 1;
C: 2p/2, 0.3; D: p/2, 0.6, respectively. ThereforeA is a tuned-excitatory (TE) and nondirectional complex cell;B is a
tuned-inhibitory (TI) and strongly directional complex cell;C andD are near (NE) and far (FA) complex cells, respectively, with
intermediate degrees of directional selectivity.
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motion in depth (Ohzawa et al. 1997; Qian 1994; Qian and
Andersen 1997). Consistent with this, most V1 cells have the
same motion preference for the two eyes, and give the stron-
gest response to the frontoparallel motion at the preferred
disparity (Ohzawa et al. 1996, 1997; Poggio and Talbot 1981).
In addition, Maunsell and Van Essen (1983) reported that no
MT (V5) cells were found to be truly tuned for motion in depth
when the motion trajectories of the stimuli were properly
positioned (see following text).

We have simulated motion-in-depth tuning curves under a
variety of conditions (Figs. 3–5). The format of each plot in
each figure is identical to that used by Maunsell and Van Essen
(1983). Twelve motion trajectories, represented “around the
clock,” were considered for each tuning curve. The 0 and 180°
paths represent the rightward and leftward motions, respec-
tively, in a frontoparallel plane; the 90 and 270° represent
motions straight away from and toward the observer, respec-
tively. The remaining eight trajectories represent intermediate,
oblique paths in depth. Maunsell and Van Essen (1983) pointed
out that to properly assess the motion-in-depth tuning, the
mid-points of all trajectories should meet at a point with the
preferred disparity of the cell. In this case, the 0 and 180°
trajectories are on the cell’s preferred disparity plane if it
exists.

The 12 trajectories for the moving stimuli are specified by
the horizontal speeds for the two eyes (Maunsell and Van
Essen 1983). Starting from the 0° path and going counterclock-
wise, the 12 speed pairs for the left and right eyes used in our
simulations are (1.8, 1.8), (0.6, 1.8), (20.6, 1.8), (21.8, 1.8),

(21.8, 0.6), (21.8, 20.6), (21.8, 21.8), (20.6, 21.8), (0.6,
21.8), (1.8,21.8), (21.8, 20.6), and (1.8, 0.6), in deg/s.

MOVING BARS. Figure 3 shows the results for a directional
simple cell (A) and the corresponding complex cell (B) in
response to a moving bar stimulus. The two rows are for the
cases with and without a threshold term inEq. 7,respectively.
Since both the left and right RFs of the model cells prefer
leftward motion, it is not surprising that the tuning curves are
peaked in the left, frontoparallel direction, indicating that these
cells are not tuned to motion in depth. We have also performed
simulations with nondirectional model cells (results not
shown). In this case, the tuning curves usually had two peaks
pointing at 0 and 180° directions, and for simple cells, there
were additional, smaller peaks at 90 and 270° directions, again
indicating the absence of motion-in-depth tuning. These results
are consistent with the physiological data for the majority of
visual cortical cells (Maunsell and Van Essen 1983; Poggio
and Talbot 1981). The inclusion of a threshold term (2nd row)
makes the tuning curves sharper because it suppresses small
responses from the nonpreferred paths. This could explain
some sharp tuning curves found experimentally (Maunsell and
Van Essen 1983; Poggio and Talbot 1981).

Although most cortical cells are like those shown in Fig. 3,
preferring frontoparallel motion with fixed disparity, there is
evidence that some cells in areas V1 and V2 are tuned to
motion toward or away from the observer (Cynader and Regan
1978; Poggio and Talbot 1981). However, cells preferring
frontoparallel motion may appear to be tuned to motion in
depth if the mid-points of the stimulus trajectories meet at a
point outside the preferred disparity plane (Maunsell and Van
Essen 1983). Under this condition, the 0 and 180° trajectories
are not in the cell’s preferred disparity plane and thus may not
evoke the strongest responses. By contrast, the cell may be
most excited by the oblique depth-path that happens to have the
best overlap with the preferred disparity plane. The tuning
curves under this “off-preferred-plane” situation for the same
simple and complex cells in Fig. 3 are shown in thetop rowof
Fig. 4. Here, the mid-points of all paths meet at a point with a
disparity of20.04° while the cells’ preferred disparity is 0.04°.
As predicted by Maunsell and Van Essen (1983), now the cells
appear to prefer motion along oblique paths in depths. Thus
some cells may appear tuned to motion in depth simply be-
cause of the improper choice of the test paths in an experiment.
However, this possibility does not rule out the existence of
cortical cells that are truly tuned to motion in depth. These cells
should have different preferred directions or speeds in the two
eyes (Cynader and Regan 1978; Poggio and Talbot 1981) and
can thus show motion-in-depth tuning even when the stimulus
paths are properly chosen. Our simulation-results for a simple
and a complex cell preferring opposite directions of motion in
the two eyes are shown in thebottom rowof Fig. 4. The cells
are tuned to motion straight away from the observer. Unlike the
cells in thetop row, these true motion-in-depth cells have a
single prominent peak in their tuning curves.

RANDOM-DOT STEREOGRAMS. We have also simulated motion-
in-depth tuning curves of the same simple and complex cells in
Fig. 3 (with threshold) to coherently moving random-dot ste-
reograms (MRDSs), and dynamic random-dot stereograms
(DRDSs), and examined the effect of spatial pooling (see
METHODS) for the complex cell responses. The dots of a MRDS
are all on the same disparity plane at a given time and the

FIG. 3. Motion-in-depth tuning curves of a model simple cell (A) and a
model complex cell (B) to a bar, moving along 12 paths whose mid-points
coincide at a point on the cells’ preferred disparity plane. Thetwo rowsin A
andB are for the cases with and without threshold, respectively. The threshold
is equal to 20% of the maximum response of the linear filtering inEq. 7.The
RF parameters of the simple cell (A) arevx

o/2p 5 4 cycles/deg,vt
o 5 6 Hz,

sx 5 0.1°,sy 5 0.2°,t 5 20 ms,fl 5 0°, fr 5 60°,ft 5 0.1p, andh 5 0.6.
The complex cell (B) receives inputs from the simple cell and 3 other simple
cells according to the quadrature method. The bar size and duration are 0.13
1° and 0.33 s, respectively. The integrated responses over the 0.33 s period are
plotted. The cells have a preferred disparity of 0.04° and a preferred speed of
1.8°/s. (Note thatvt

o/vx
o is not close to the preferred speed becausevt

o is not
close to the preferred temporal frequency of the cell.) The RFs are computed
in a three-dimensional region of 0.5°3 1° 3 0.1 s. The spatial and temporal
sampling steps used in the simulations are 0.01° and 5 ms, respectively.
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whole plane moves along each of the 12 motion paths men-
tioned in the preceding text. Each MRDS is large enough so
that it covers the cells’ RFs at all times without the edge effect.
A DRDS is identical to the corresponding MRDS in terms of
disparity change over time, but the dot positions are randomly
replotted for each frame. To investigate the reliability of the
tuning curves, we simulated two tuning curves for each case,
with two sets of independently generated MRDSs or DRDSs.
The results are shown in Fig. 5. It can be seen that the tuning
for MRDSs is very similar to that for moving bars (Fig. 3),
except that the curves are narrower because there are more
weak responses for MRDSs than for moving bars that are
suppressed by the threshold. The curves for DRDSs, on the
other hand, are quite different. First, because DRDSs, by

definition, can only have disparity changes over time, but no
directions of motion, the tuning curves are symmetrical with
respect to the 90–270° axis. This is independent of the direc-
tion selectivity of the cell. Second, the two curves from the two
independent simulations are very different from each other for
the simple cell but are quite similar to each other for the
complex cell with spatial pooling. This indicates that complex
cells have more reliable tuning to DRDSs than do simple cells.
Finally, the tuning curves for DRDSs are not as narrow as
those for moving bars or MRDSs. For the simple cell, the main
peak location is often located outside the preferred disparity
plane. These specific features of motion-in-depth tuning to
MRDSs and DRDSs can be tested experimentally, and have
implications for some relevant psychophysical observations
(seeDISCUSSION).

Similar to Fig. 4 for the bar stimuli, MRDSs and DRDSs can
also give false motion-in-depth tuning if the motion paths are
not properly chosen, and real motion-in-depth tuning can only
be obtained with cells preferring opposite directions in the two
eyes.

Disparity tuning curves

DRIFTING SINUSOIDAL GRATINGS AND BARS. Unlike the motion-
in-depth stimuli discussed in the preceding text, all stimuli in
this and subsequent subsections have a constant disparity over
time. Ohzawa and Freeman (1986a,b) used binocular drifting
sinusoidal gratings to test the disparity tuning of V1 cells in the
cat. Figure 6 shows the response time courses and disparity
tuning curves of a model simple and complex cell stimulated
by drifting sinusoidal gratings of various interocular phase
differences. The parameters are chosen to simulate the data
shown in Fig. 3 of Ohzawa and Freeman (1986b) for the simple
cell, and Fig. 1 of Ohzawa and Freeman (1986a) for the
complex cell. Since that particular simple cell had shorter
active half-cycles than the silent half-cycles, we include a
threshold equal to 20% of the maximum value of the linear-
filtering-result inEq. 7.The spatial and temporal frequencies of
gratings match the preferred frequencies of the cells, as in the
actual experiments. Ohzawa and Freeman (1986b) used the
first harmonic amplitude of the simple cell response for plot-
ting the tuning curve. We simply use the time-integrated total

FIG. 4. Two ways of having tuning peaks away from frontoparallel planes.
Top: the simple (A) and complex (B) cells are identical to those in Fig. 3 (with
threshold). Although they actually prefer frontoparallel motion, they appear
tuned to motion in depth here because the mid-points of the stimulus paths
meet at a point with disparity20.04° instead of the cells’ preferred disparity
0.04°.Bottom: on the other hand, these cells are truly tuned to motion in depth
because the directional preferences of left and right RFs are opposite. The
parameters are identical to those for Fig. 3 except thatvt

o/2p for the right RF
has been changed from 6 to26 Hz to generate opposite directional preference.

FIG. 5. Motion-in-depth tuning curves of a model
simple cell (A) and a model complex cell without (B) and
with (C) spatial pooling to moving and dynamic random-
dot stereograms (MRDSs and DRDSs, respectively), with
paths centered on a point at the cells’ preferred disparity
plane. The cell parameters are identical to those in Fig. 4
except that a spatial pooling step was added inC. The
pooling function is a normalized, symmetric 2-dimen-
sional Gaussian with as of 0.1°. Two curves shown in
each panel (E and *) are obtained with 2 independently
generated sets of stimuli. The dot size is 0.023 0.02° and
dot density is 10%. The overall size, refresh rate, and
duration of each stimuli are 0.53 1°, 50 Hz, and 0.5 s,
respectively.
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response because it is proportional to the first harmonic in the
context of our model. Figure 6 shows that the responses of both
the simple and complex cells depend on the interocular phase
difference (proportional to disparity) of the gratings. The sim-
ple cell’s responses are modulated sinusoidally in time fol-
lowed by rectification, while the complex cell responses are
sustained. These features agree with the experimental data
(Ohzawa and Freeman 1986a,b).

Another feature in Fig. 6A is that the temporal responses of
the simple cell are tilted to the right as the interocular phase
difference increases. This is also consistent with the physio-
logical results in Fig. 3 of Ohzawa and Freeman (1986b). It can
be shown that this tilt stems from the specific way of intro-
ducing binocular disparity. In both the experiments (Ohzawa
and Freeman 1986a,b) and our simulations, the disparity is
generated by keeping the grating phase of one eye’s image
fixed while varying the phase in the other eye. If the disparity
is symmetrically divided between the two eyes, then the tilt
disappears (results not shown). The reason is that the asym-

metric disparity generates a small positional change that leads
to a temporal delay in the simple cell’s response.

The model cells used in the preceding simulations are ocu-
larly balanced. However, similar results can be obtained when
one eye is more dominant than the other. There are two ways
to introduce ocular dominance into the model. The first method
is to introduce a weighting factor in front of one of the two RF
profiles inEq. 7.Mathematically, this is equivalent to present-
ing a stereogram with different contrast scales (but of the same
contrast sign) to the two eyes. As we have shown previously
(Qian 1994; Qian and Mikaelian 2000), the tuning curves will
maintain the same shape under this condition although the
pedestal will be higher and the amplitude will be smaller. The
second method for introducing ocular dominance is to assume
that one eye has a higher response threshold than the other. We
find through simulations that again similar tuning curves can be
obtained unless one of the thresholds is so high that the
corresponding eye does not respond (results not shown).

We have also simulated response time courses and disparity
tuning curves of simple and complex cells to moving bars
(results not shown). Like the grating case, the tuning curves for
both simple and complex cells peak at locations predicted by
Eq. 12,and the vertical alignment of the response time courses
depends on whether the disparities are introduced symmetri-
cally in the two eyes or not. For directional cells, the disparity
tuning curves for the preferred and anti-preferred directions
have the same peak locations although the responses ampli-
tudes differ markedly. These features are consistent with the
experimental data in Fig. 4 of Poggio and Fischer (1977). For
each bar sweep, the complex cells give longer responses than
the corresponding simple cells because the former do not have
the discrete on and off RF subregions.

RANDOM-DOT STEREOGRAMS. Poggio et al. (1985, 1988) also
applied DRDSs to measure disparity tuning curves. In their
experiments, each stereogram maintained a constant disparity
during a trial, but the actual dot locations were randomly
re-plotted from frame to frame. They found that simple cells do
not show reliable disparity tuning to DRDSs but that complex
cells do.

To investigate how reliably our model simple and complex
cells were disparity-tuned to DRDSs, we computed, for each
cell type, 1,000 disparity tuning curves from 1,000 independent
sets of DRDSs, all generated from the same parameters. All
DRDSs had a refresh rate of 100 Hz as in Poggio et al.’s
experiments. Figure 7 shows the results. We also considered
the effect of adding a spatial pooling stage to the complex cell
responses (Fig. 7C, seeMETHODS). For clarity, only 30 ran-
domly picked curves for each cell are shown in thetop panels.
The distribution histograms of the preferred disparities (bottom
panels) are compiled from all 1,000 curves. It is clear from the
figure that the peak location of the tuning curves is much more
variable for the simple cells than for the complex cells and that
spatial pooling helps to further improve the reliability of the
complex cell responses. Specifically, 40, 77, and 99% of the
tuning curves peak within 0.02° of the predicted preferred
disparity for the simple cell, the complex cell without pooling,
and the complex cell with pooling, respectively. Additional
simulations show that for complex cells, the standard deviation
of the peak locations is inversely proportional to thes of the
two-dimensional Gaussian used for the spatial pooling. Since
the number of cells (N) pooled is proportional tos2, the

FIG. 6. Response time courses and disparity tuning curves of a model
simple cell (A) and a model complex cell (B) stimulated by drifting sinusoidal
gratings.Left: the response time courses as the interocular phase difference of
the grating varied from 0 to 330° in 30° steps. The initial 0.3 s of transient
responses has been excluded to show the steady-state behavior. The left and
right monocular responses (LE and RE) of the cells are also shown.Right: the
disparity tuning curves created by integrating the responses over a 1-s period.
The vertical lines indicate the predicted preferred disparities according toEq.
12. The simple cell (A) has spatiotemporally inseparable binocular RFs, with
vx

o/2p 5 0.3 cyc/deg,vt
o/2p 5 2 Hz,sx 5 1°, sy 5 1.6°,t 5 60 ms,fl 5 0°,

fr 5 2120°, ft 5 0.1p, andh 5 0.6. The RFs are computed in a 3-dimen-
sional region of 5°3 8° 3 0.3 s. The threshold value is equal to 20% of the
maximum linear filtering response of the simple cell. The RF parameters of the
complex cell (B) arevx

o/2p 50.4 cycles/deg,vt
o/2p 5 22 Hz,sx 5 0.8°,sy 5

1.2°,t 5 60 ms,f2 5 210°,ft 5 20.1p, andh 5 0.6. The RFs are computed
over a region of 4°3 6° 3 0.3 s. The spatial and temporal frequencies of the
gratings match the preferred spatial and temporal frequencies of the cells. The
initial phase of the right image is fixed at 60° for both cells and that of the left
image is varied from 60° to 390° in steps of 30°. The spatial and temporal
sampling intervals for the simulations are 0.1° and 10 ms, respectively.
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variability of the peak locations follows the inverse=N law, as
expected. However, the improvement from the simple cell to
the complex cell (without pooling) is about twice that expected
from the inverse=N law because the four simple cells in the
quadrature method are specifically picked to reduce variability.

Our simulation result, that disparity tuning curves to DRDSs
are more reliable in complex cells than in simple cells, is in
qualitative agreement with the experimental data of Poggio and
coworkers (Poggio et al. 1985, 1988). Quantitatively, however,
there may be some discrepancies. Although they did not pub-
lish any simple cell tuning curves to DRDSs, Poggio et al.
(1985, 1988) reported that nearly all neurons responding to
DRDSs are complex cells and that simple cells are not tuned to
these stimuli. In contrast, the simulated tuning curves in Fig.
7A are not completely random but show a tendency to peak
around the preferred disparity of the corresponding complex
cell (marked by the vertical line in the figure). A close exam-
ination reveals that the disparity tuning trend of the model
simple cell results from the fact that a small number of frames
in each DRDS generate relatively reliable tuning because they
happen to contain dot distributions that excite the cell strongly.

A closely related problem in Fig. 7A is that the response
amplitudes of the simple cell to different sets of DRDSs
fluctuated over a very large range (because some DRDSs
happen to contain more frames that strongly excite the cell than
other DRDSs). However, experimental data show that although
some V1 cells occasionally give a strong response to one
random-dot pattern and a weak response to another pattern,
most cells have comparable responses to different random dot

stimuli (Qian and Andersen 1995; Skottun et al. 1988; Snow-
den et al. 1992).

The preceding two problems can be resolved by introducing
the following contrast response function to replace the half-
squaring operation inEq. 8

R@X# 5 H RmaxX
n/~Xn 1 X50

n ! X $ 0
0 X , 0

(18)

whereR is the simple cell response,X is the result of linearly
filtering a stereo stimulus through the binocular spatiotemporal
RFs of the simple cell, andRmax, X50, andn denote, respec-
tively, the maximum response, theX at which the response
reaches half its maximum value, and the exponent that deter-
mines the steepness of the function (Albrecht and Hamilton
1982; Sclar et al. 1990). It has been shown that this type of
contrast response can be implemented by a normalization pro-
cedure following the half-squaring operation (Heeger 1992).
Like the discharge of real simple cells,Eq. 18saturates at high
stimulus contrast. Whenn 5 2, the equation reduces to half-
squaring at low stimulus contrast. Since this function com-
presses the response range, it should effectively increase the
contributions to tuning curves from those frames in a DRDS
that evoke relatively weak responses, and consequently reduce
the tuning reliability of the model simple cells because weak
responses usually generate poor tuning curves. The simulation
results confirm this expectation (Fig. 8). The simple cell’s
disparity tuning to DRDSs became much more variable while
the tuning of the complex cell remained reliable, especially
with spatial pooling. These results are more consistent with

FIG. 7. Disparity tuning curves of a model simple cell (A), and a model complex cell without (B) and with (C) spatial pooling,
in response to DRDSs.Top: 30 disparity tuning curves obtained from 30 independent DRDSs. Each point on a curve was obtained
by integrating the response over a period of 500 ms. The curves in a panel are normalized by the strongest response.Bottom: the
distribution histograms of the peak locations, each compiled from 1,000 disparity tuning curves. The bin size of the histograms is
0.02°. The vertical lines indicate the predicted preferred disparities according toEq. 12.The RF parameters of the simple cell (A)
arevx

o/2p 5 4 cycles/deg,vt
o/2p 5 6 Hz, sx 5 0.1°,sy 5 0.2°,ty 5 0.2°,t 5 20 ms,fl 5 fr 5 60°, ft 5 0.1p, andh 5 0.6.

The RFs are computed in a 3-dimensional region of 0.5°3 1° 3 0.1 s. The complex cell (B) receives inputs from the simple cell
and 3 other simple cells according to the quadrature method.C: the spatial pooling procedure (seeMETHODS) is added to the complex
cell in B. The pooling function is a normalized, symmetric 2-dimensional Gaussian with as of 0.1°. The dot size is 0.023 0.02°
and dot density was 10%. The overall size, refresh rate, and duration of the stimuli are 1°3 1.2°, 100 Hz, and 0.5 s, respectively.
The spatial and temporal sampling steps for these simulations are 0.01° and 5 ms, respectively.
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Poggio’s experimental reports (Poggio et al. 1985, 1988) than
are those in Fig. 7, although we cannot make a quantitative
comparison due to the lack of published experimental data.

We next simulated the responses of the cells used for Fig. 8
to coherently MRDSs. The results are shown in Fig. 9. Obvi-
ously, the simple cell’s disparity tuning to MRDSs is much
more reliable than to DRDSs. The reason is thatu(t) in Eq. 9
varies randomly over time for DRDSs, while it changes
smoothly for MRDSs. Since the temporal averaging of a con-
tinuousu(t) is much closer to a constant than is the averaging
of some random values, coherently moving stereograms should
always generate more reliable disparity tuning curves than the
random frames unless a very large number of frames (.200) is
used (in which case both types of tuning curves become reli-
able). This is a specific prediction that can be tested physio-
logically. Poggio et al. measured disparity tuning of some V1

cells to MRDSs (Poggio et al. 1985, 1988). Unfortunately, they
did not systematically compare the cells’ responses to DRDSs
and MRDSs but instead appeared to group the two types of
stereograms together as the “cyclopean stimuli.”

Finally, for the purpose of comparison, we also simulated
the disparity tuning of the cells in Fig. 8 to static random-dot
stereograms (SRDSs). The results are shown in Fig. 10. Con-
sistent with our previous simulations with spatial RFs only
(Qian 1994; Qian and Zhu 1997; Zhu and Qian 1996), the
simple cell showed completely random disparity tuning curves
when different sets of SRDSs were used, while the complex
cell maintained reasonable tuning reliability when the spatial
pooling is applied. Moreover, for all cell types, disparity tuning
to SRDSs is not as reliable as that to DRDSs, which in turn is
not as reliable as the tuning to MRDSs. This is easy to under-
stand because for static patterns there is only a single value for

FIG. 8. Disparity tuning curves to DRDSs
with contrast saturation. The simulations are
identical to those in Fig. 7 except thatEq. 8is
replaced byEq. 18. The parameters of the
contrast response function areRmax 5 1,
X50 5 10, andn 5 2.

FIG. 9. Disparity tuning curves to MRDSs
with contrast saturation. The simulations are
identical to those in Fig. 8 except that MRDSs
are used. All MRDSs move leftward at a
speed of 2°/s.
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u(t) in Eq. 9,and therefore temporal integration does not help
to reduce the influence of the first cosine term in the equation.

D I S C U S S I O N

The main goal of this paper is to understand how V1 cells
respond to binocular disparity in time-varying stimuli. We
introduced a specific function that conveniently describes tem-
poral response profiles of real cortical cells including the
transient (or band-pass) and the sustained (low-pass) types. We
then incorporated this temporal function into the disparity
energy model (Ohzawa et al. 1990; Qian 1994) and found that
the binocular interaction RFs of V1 complex cells, with the
typical disparity-time separability in theD 2 T plot (Ohzawa
et al. 1997), can be explained. The disparity part is a Gabor
function and the time part is always positive. Finally, we
investigated how the model simple and complex cells respond
to various time-varying stimuli, including motion-in-depth pat-
terns, drifting gratings, moving bars, MRDSs and DRDSs. We
found that the simulated tuning curves agree with the extant
experimental data quite well (Cynader and Regan 1978;
Ohzawa and Freeman 1986a,b; Poggio and Fischer 1977; Pog-
gio and Talbot 1981; Poggio et al. 1985). Our results indicate
that both spatial pooling and temporal averaging can signifi-
cantly improve the reliability of disparity tuning and that in
general, complex cells are much better disparity detectors than
simple cells (Ohzawa et al. 1990; Qian 1994), although the
difference between the two cell types depends on the stimuli
(see following text).

Tuning reliability

We pointed out previously that for static stereograms, simple
cells do not have reliable disparity tuning since their responses
are highly dependent on the Fourier phases of the stimuli (Qian
1994, 1997; Qian and Zhu 1997; Zhu and Qian 1996). For
example, simple cells’ tuning curves vary with the spatial
phase of sinusoidal gratings and with the lateral position and
contrast polarity of bars (Ohzawa et al. 1990). For coherently

moving stimuli considered in this paper, this Fourier-phase
dependence is manifested as the temporal modulation of the
response: as a stimulus such as a bar or a grating sweeps
through the RFs of a cell and its Fourier phase changes con-
tinuously, and therefore the response changes accordingly in
time. If the tuning curve of a simple cell is calculated by
temporally integrating the responses over time, the phase de-
pendence will be averaged out, and simple cells will then have
reliable disparity tuning curves to moving stimuli. Indeed, we
found that for moving bars and gratings, simple and complex
cells show equally reliable disparity tuning curves. However,
the situation is quite different for DRDSs. Here the simple
cells’ disparity tuning is still highly unreliable even with tem-
poral integration of 50 different frames, and this lack of reli-
ability is consistent with the experimental reports (Poggio et al.
1985, 1988). Intuitively, a DRDS only contains random sam-
ples of the possible Fourier phase values, while for coherently
moving stimuli, the Fourier phase changes smoothly so that the
full range of phase values can be quickly covered for every
stimulus used in an experiment. Therefore temporal integration
of simple cell responses is much more effective in improving
disparity tuning for coherently moving stimuli than for
DRDSs. In contrast to simple cells, complex cells have reliable
disparity tuning to all of the stimulus types mentioned above,
including DRDSs, and this is particularly true when the spatial
pooling step is included for modeling complex cell responses.
The simulated reliability of complex cell tuning is consistent
with experimental data (Ohzawa et al. 1990; Poggio et al.
1985, 1988). The pooling reduces variability according the
expected inverse=N law, while the quadrature-pair construc-
tion for complex cells is about twice as effective as expected
from the inverse=N law.

One might conclude, based on the preceding discussion, that
simple cells can reliably extract disparity for coherently mov-
ing stimuli but not for static patterns and DRDSs, whereas
complex cells can do so for all stimulus types. This conclusion
requires some qualification because for simple cells, the reli-
able tuning to coherently moving stimuli is only obtained after

FIG. 10. Disparity tuning curves to SRDSs
with contrast saturation. The simulations are
identical to those in Fig. 8 except that SRDSs
are used.
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integrating the responses over a certain period of time. The
brain, however, may not have the luxury of waiting for the
temporal integration to complete before responding to stimuli
in the real world. In fact, disparity-triggered vergence eye
movement has a latency of less than 60 ms in monkeys (Mas-
son et al. 1997), only about 10 or 20 ms longer than the V1
response latency. Therefore the brain might have to extract
disparity based on the responses over a time slice of only 10 or
20 ms. If this is the case, then simple cells may not be able to
extract disparity reliably even for moving stimuli. Consider, for
example, the simple cell response time courses to gratings (Fig.
6A). It is clear that tuning curves calculated from different brief
time slices will have different peak locations. This problem
does not exist for the complex cell in Fig. 6B because its
responses are more sustained in time. We conclude that in
general, complex cells are better suited than simple cells for
disparity extraction.

Motion in depth

We have also shown that a cell with identical motion pref-
erence for its left and right RFs is not truly tuned to motion in
depth. As Maunsell and Van Essen (1983) predicted, such a
cell may give a false impression of motion-in-depth tuning if
the stimulus paths are not properly aligned with the preferred
disparity plane. True motion-in-depth tuning, however, can
only be obtained for cells with different left and right motion
preferences. Our simulations may help explain some relevant
psychophysical findings. Westheimer (1990) reported that with
line stimuli, the threshold for detecting disparity motion in
depth is much higher than that for detecting the disparity
difference of frontoparallel motions. This agrees with the fact
that most visual cortical cells have the same motion preference
in the two eyes (Maunsell and Van Essen 1983; Ohzawa et al.
1996, 1997; Poggio and Talbot 1981) and therefore are not
tuned to motion in depth. Cumming and Parker (1994) found
that stereomotion is primarily detected by means of the tem-
poral change of binocular disparity, instead of the interocular
velocity difference. Again, this is consistent with physiology
because cells with identical motion preference in the two eyes
cannot be sensitive to the interocular velocity difference. Fi-
nally, Harris and Watamaniuk (1995) concluded that the rate of
pure disparity change is not a good cue for speed discrimina-
tion of DRDSs moving in depth. This could be due to the poor
reliability and broad widths of the motion-in-depth tuning
curves under this condition, as shown in Fig. 5.

Alternative methods

Although we used the phase-difference RF model and the
quadrature pair construction proposed by Ohzawa et al. (1990)
in all analyses and simulations presented here, similar results
can be obtained for the position-shift RF model and for some
other methods of constructing complex cell responses. As we
demonstrated previously (Zhu and Qian 1996), there is little
difference in disparity tuning between the phase-difference and
the position-shift RF models for the broadband stimuli such as
bars and random-dot patterns when the disparity range is
smaller than the preferred spatial period (the inverse of pre-
ferred spatial frequency) of the RFs. For narrowband stimuli

like sinusoidal gratings, the main difference is a small hori-
zontal shift of disparity tuning curves. But even this difference
disappears when the grating frequency matches the cell’s pre-
ferred spatial frequency, which is the case for the simulations
reported here. We have also shown previously that the quadra-
ture pair construction is exactly equivalent to a phase averaging
procedure that integrates the responses of all simple cells with
theirf1 uniformly distributed in the entire 4p range (Qian and
Mikaelian 2000). We can further demonstrate that squaring in
the quadrature pair method is also not important because sim-
ilar results can be obtained if the exponent of 2 inEq. 8 is
replaced by a positive numbern (Albrecht and Hamilton 1982;
Sclar et al. 1990), and if the phase averaging procedure is used.
In this case,Eq. 11for complex cell response simply becomes
something very similar

r q~t! < C~n!U2B~t! cosSf2 1 vx
oD

2
DUn

(19)

where C(n) is an unimportant function ofn. Our computer
simulations confirmed that indeed similar disparity tuning
curves can be obtained (results not shown), the only difference
being that largern tends to generate sharper tuning curves.
While the energy model is computationally more compact, the
variations mentioned here may be more physiologically plau-
sible.

Predictions

Several specific, testable predictions can also be made based
on our analyses and simulations. First, strongly directional
complex cells should only have a single peak along the time
axis in theD 2 T plot. Nondirectional cells should have more
than one peak unless their temporal frequency bandwidths are
so large (i.e., smallt andvt

o in Eq. 16) such that later peaks
become too small to be observed. Second, cells with higher
firing thresholds should have narrower disparity tuning curves.
(The high threshold can be judged by the low spontaneous rate
and the shorter active half-cycles than the silent half-cycles in
response to drifting sinusoidal gratings.) Moreover, for cells
with high response threshold, the motion-in-depth tuning
curves for MRDSs should be much narrower than those for
moving bars. Third, the observed tilt with increasing disparity
in the time course of simple cells’ responses to drifting stimuli
should disappear if the stimulus disparity is introduced sym-
metrically into the two eyes. Fourth, cells’ disparity tuning
curves to MRDSs should be more reliable than those to
DRDSs, which in turn should be more reliable than those to
SRDSs. Here, the reliability is defined as how reproducible the
tuning curves are when independent sets of random-dot pat-
terns (all generated from the same sets of underlying parame-
ters) are applied to the same cell. This predicted trend should
be particularly strong for simple cells, but less pronounced for
complex cells which have reasonably reliable disparity tuning
to all stimulus types. Finally, for drifting bars and gratings,
both simple and complex cells should have reliable disparity
tuning when the time-averaged responses are used, while for
static patterns and for dynamic random-dot stimuli, simple
cells’ disparity tuning should be much less reliable than that of
complex cells. Experimental tests of these predictions will help
determine the adequacy of the current understanding of V1
disparity selectivity.
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Problems with the disparity energy model

The disparity energy model has been highly successful in
explaining a wide range of physiological and perceptual ob-
servations as demonstrated by this and numerous previous
publications (Anzai et al. 1999b; Fleet et al. 1996; Mikaelian
and Qian 2000; Ohzawa et al. 1990, 1997; Qian 1994; Qian and
Andersen 1997; Qian and Zhu 1997; Qian et al. 1994b; Zhu
and Qian 1996). This is quite remarkable given that the model
is a relatively high-level abstraction that does not include
detailed morphology, connectivity, and membrane biophysics
of the visual cells. However, there are also some experimental
findings that are inconsistent with the model. Ohzawa et al.
(1997) noted that the spatial elongation of the binocular inter-
action RF of real complex cells is significantly larger than that
predicted by a single quadrature-pair mechanism. This problem
may be alleviated by adding a spatial pooling procedure for
computing complex cell responses (Fleet et al. 1996; Qian and
Zhu 1997; Zhu and Qian 1996), which also accounts for the
larger RFs of complex cells compared with simple cells at the
same eccentricity (Hubel and Wiesel 1962; Schiller et al.
1976). Another problem noted by Ohzawa et al. (1997) is that
for real complex cells, the disparity frequency (obtained from
the disparity tuning curves to broadband stimuli) is usually
lower than the preferred spatial frequency (especially for high-
frequency cells), while the energy model predicts equality of
the two frequencies (Ohzawa et al. 1990; Qian 1994; Zhu and
Qian 1996). However, the discrepancy may be, at least par-
tially, due to something unrelated to the model: the disparity
frequency was measured with the white-noise method while
the preferred spatial frequency was measured with drifting
sinusoidal gratings (Ohzawa et al. 1997). Since the spatial
frequency measured with noise stimuli is lower than that mea-
sured with drifting gratings (Gaska et al. 1994), perhaps the
white-noise method also underestimates the disparity fre-
quency (Ohzawa et al. 1997). Indeed due to the time-consum-
ing nature of the white-noise method, one might tend to chose
a lower spatial sampling density for the noise stimuli than for
the grating stimuli. We found through simulations that an
insufficient spatial sampling density (which would be more
likely to happen for cells with high spatial frequencies) can
indeed lead to an underestimation of the measured disparity
frequency (results not shown).

The energy model also predicts that when stimuli presented
to the two eyes have opposite signs of contrast, the disparity
tuning curve of a complex cell should be inverted in shape,
with the same amplitude as the same-contrast-sign case
(Ohzawa et al. 1990; Qian 1994; Qian and Mikaelian 2000). In
reality, while many complex cells do show the predicted tuning
curve inversion, the amplitude of tuning is typically reduced
(Cumming and Parker 1997; Ohzawa et al. 1997). It has been
suggested that an introduction of monocular thresholds at the
simple cell stage may explain the reduced amplitude (Read et
al. 2000). Finally, there are cells that appear monocular when
the two eyes are tested separately but show a large binocular
interaction (either disparity- or nondisparity-selective) when
the two eyes are stimulated together (Ohzawa and Freeman
1986a,b; Poggio and Fischer 1977). This is presumably due to
some subthreshold events and may be partially explained by
adding a binocular threshold inEq. 7 after the summation of
the monocular contributions. A full account, however, may

require a highly nonlinear summation mechanism for combin-
ing the two monocular inputs. How to modify the energy
model to resolve these and other problems without completely
sacrificing its simplicity will be a challenge to future research.

A P P E N D I X

Derivation of Eq. 9

We derive the simple cell responsesEq. 9 under the general
assumption that the size of the RFs is much larger than the image
disparity. First, rewritegl andg# l in Eq. 5as

gl~x, y! 5 cos~fl!gcos~x, y! 2 sin ~fl!gsin~x, y! (A1)

g# l~x, y! 5 cos~fl!gsin~x, y! 1 sin ~fl!gcos~x, y! (A2)

where

gcos~x, y! 5
1

2psxsy

expS2
x2

2sx
2 2

y2

2sy
2D cos~vx

ox! (A3)

gsin~x, y! 5
1

2psxsy

expS2
x2

2sx
2 2

y2

2sy
2D sin ~vx

ox! (A4)

ThenEq. 5becomes

f l~x, y, t! 5 cos~fl!@gcos~x, y!h~t! 1 hgsin~x, y!h#~t!# 2 sin ~fl!

3 @gsin~x, y!h~t! 2 hgcos~x, y!h#~t!# (A5)

A binocular stimulus with a horizontal disparityD can be written as

I l~x, y, t! 5 I~x, y, t!, Ir~x, y, t! 5 I~x 1 D, y, t! (A6)

The linear filtering of the left image by the left RF inEq. 7becomes

rs
l ~t! 5 cos~fl!EEE

2`

1`

@gcos~x, y!h~t 2 t9! 1 hgsin~x, y!h#~t 2 t9!#I~x, y, t9!dxdydt9

2 sin (fl)EEE
2`

1`

[gsin~x, y!h~t 2 t9! 2 hgcos~x, y!h#~t 2 t9!]I~x, y, t9!dxdydt9

5 B~t! cos~u~t! 1 fl! (A7)

where

B~t! 5 ÎB1
2~t! 1 B2

2~t!, u~t! 5 arctanSB2~t!

B1~t!
D (A8)

B1~t! 5EEE
2`

1`

@gcos~x, y!h~t 2 t9! 1 hgsin~x, y!h#~t 2 t9!#I~x, y, t9!dxdydt9 (A9)

B2~t! 5EEE
2`

1`

@gsin~x, y!h~t 2 t9! 2 hgcos~x, y!h#~t 2 t9!#I~x, y, t9!dxdydt9 (A10)

The linear filtering of the right image by the right RF inEq. 7 is

r s
r~t! 5EEE

2`

1`

fr~x 2 D, y, t 2 t9!I~x, y, t9!dxdydt9 (A11)

According toEq. 6,we have
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fr~x 2 D, y, t! 5 gr~x 2 D, y!h~t! 1 hg# r~x 2 D, y!h#~t! (A12)

where

gr~x 2 D, y! 5
1

2psxsy

expS2
~x 2 D!2

2sx
2 2

y2

2sy
2D cos~vx

ox 1 fr 2 vx
oD!

(A13)

g# r~x 2 D, y! 5
1

2psxsy

expS2
~x 2 D!2

2sx
2 2

y2

2sy
2D sin ~vx

ox 1 fr 2 vx
oD!

(A14)

When thesx is much larger than the image disparityD, we can
approximate

expS2
~x 2 D!2

2sx
2 D < expS2

x2

2sx
2D (A15)

and a derivation similar to that forEq. A7gives

r s
r~t! < B~t! cos~u~t! 1 fr 2 vx

oD! (A16)

Finally, insertingEq. A7andEq. A16into Eq. 7,we obtain the simple
cell response as

r s~t! 5 Q@rs
l ~t! 1 rs

r~t!#

< QF2B~t! cosSu~t! 1
f1 2 vx

oD

2
D cosSf2 1 vx

oD

2
DG ~A17)

which is Eq. 9 in the text.

Derivation of Eq. 13

The binocular interaction RF for complex cells is the impulse
response function obtained by flashing a line with preferred orienta-
tion (vertical in our case) at timet to locationsxl andxr in the two eyes
respectively. Because for vertical line stimuli, theY dimension ofEq.
7 simply integrates to a constant, we can ignore theY dimension.

First, the response of the linear filtering of the dichoptically flashed
line through the binocular simple cell RFs is given by

f l~xl, t! 6 fr~xr, t! 5
1

Î2psx

$@cos~vx
oxl 1 fl!ah~t! 1 h sin ~vx

oxl 1 fl!ah#~t!#

6 @cos ~vx
oxr 1 fr!bh~t! 1 h sin ~vx

oxr 1 fr!bh#~t!#}

5
1

Î2psx

HFcosSvx
oxl 1

f1 1 f2

2
Dah~t!

1 h sin Svx
oxl 1

f1 1 f2

2
Dah#~t!G

6 FcosSvx
oxr 1

f1 2 f2

2
Dbh~t!

1 h sin Svx
oxr 1

f1 2 f2

2
Dbh#~t!GJ

5 C1 cosSf1

2
D2 C2 sinSf1

2
D5 C cosSg 1

f1

2
D

(A18)

where6 indicates whether the left and right eyes’ lines have the same
or opposite contrast signs

a 5 exp~2xl
2/2sx

2!, b 5 exp~2xr
2/2sx

2! (A19)

C1 5
1

Î2psx

FScosSvx
oxl 1

f2

2
Dah~t! 1 h sinSvx

oxl 1
f2

2
Dah#~t!D

6 ScosSvx
oxr 2

f2

2
Dbh~t! 1 h sinSvx

oxr 2
f2

2
Dbh#~t!DG (A20)

C2 5
1

Î2psx

FS2sinSvx
oxl 1

f2

2
Dah~t! 1 h cosSvx

oxl 1
f2

2
Dah#~t!D

6 S2sinSvx
oxr 2

f2

2
Dbh~t! 1 h cosSvx

oxr 2
f2

2
Dbh#~t!DG (A21)

C 5 ÎC1
2 1 C2

2 (A22)

5
1

Î2psx

Î(a2 1 b2 6 2abcos~vx
o~xl 2 xr! 1 f2!)~h2~t! 1 h2h#2~t!! (A23)

5 ÎS6~xl, xr!H~t! (A24)

g 5 arctan~C2/C1! (A25)

with

S6~xl, xr! 5
1

2psx
2 ~a2 1 b2 6 2abcos~vx

o~xl 2 xr! 1 f2!! (A26)

andH(t) defined inEq. 15.According to the energy model, a complex
cell sums up the half-squared outputs of four simple cells, all with
identical RF parameters except theirf1/2 differing in steps ofp/2.
Thus impulse response function of the complex cell to the dichopti-
cally flashed line is

Fc
6~xl, xr, t! 5 QFC cosSg 1

f1

2
DG1 QFC cosSg 1

f1 1 p

2
DG

1 QFC cosSg 1
f1 1 2p

2
DG1 QFC cosSg 1

f1 1 3p

2
DG

5 C 2 5 S6~xl, xr!H~t! (A27)

An important feature ofEq. A27is that it is spatiotemporally separable
into S6(xl, xr) and H(t), regardless of whether the complex cell is
directional or not. For comparison with the experiments, we transform
the preceding expressions with the same procedures used by Ohzawa
et al. (1997) for processing their experimental data to obtain the purely
binocular interaction RF profiles: we first remove purely monocular
responses (a2 and b2 in Eq. A26) by subtractingF2 from F1, then
change the variablesxl andxr to

x1 5 xl 1 xr, D 5 xl 2 xr (A28)

to make disparityD explicit, and finally integrate (F1 2 F2) with
respect tox1. The final binocular interaction RF, also calledD 2 T
profile (Ohzawa et al. 1997), for model complex cells is given by

Fc~D, t! 5E
2`

`

@S1~D, x1!H~t! 2 S2~D, x1!H~t!#dx1

5 S~D!H~t! ~A29)

whereS(D) is defined inEq. 14.This isEq. 13.No approximation is
used in this derivation.
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