Modeling V1 Disparity Tuning to Time-Varying Stimuli
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Chen, Yuzhi, Yunjiu Wang, and Ning Qian. Modeling V1 disparity  tuning often use time-varying stimuli such as motion-in-depth
tuning to time-varying stimuliJ Neurophysiold6: 143-155, 2001. patterns, drifting gratings, moving bars, moving random-dot
Most models of disparity selectivity consider only the spatial Propegtereograms, or dynamic random-dot stereograms in addition
ties of binocular cells. However, the temporal response is an integfgl st atic images. To fully understand these data, the temporal
component of real neurons’ activities, and time-varying stimuli ar, sponse properties of cortical cells must be coﬁsidered

often used in the experiments of disparity tuning. To understand t & ‘s al functi | t0 include fi into st
temporal dimension of V1 disparity representation, we incorporate a €re IS aiso a unctional reason to Inciude time Into stereo

specific temporal response function into the disparity energy modBPdeling: consistent with the physiological finding that many

and demonstrate that the binocular interaction of complex cells iisual cortical cells are tuned to both disparity and motion

separable into a Gabor disparity function and a positive time functidfBradley et al. 1995; Maunsell and Van Essen 1983; Ohzawa et
We then investigate how the model simple and complex cells respamld 1996), there is increasing psychophysical evidence indicat-
to widely used time-varying stimuli, including motion-in-depth pating that motion and stereo interact with each other in generat-
terns, drifting gratings, moving bars, moving random-dot stereogranig our perception (Anstis and Hassis 1974; Nawrot and Blake
and dynamic random-dot stereograms. It is found that both modgygg: Qian et al. 1994a; Regan and Beverley 1973). We have

simple and complex cells show more reliable disparity tuning tgeady proposed a model for motion-stereo integration based
time-varying stimuli than to static stimuli, but similarities in the n the aeneral properties of binocular. spatiotemporal RFs of
disparity tuning between simple and complex cells depend on tHe 9 prop » SP P

stimulus. Specifically, the disparity tuning curves of the two cell typeV:.Jsual cortical cells (Qian 1994.; Qian and .Af‘derse” 1997, Qlan
are similar to each other for either drifting sinusoidal gratings &t @l- 1994b). However, we did not explicitly model the dis-
moving bars. In contrast, when the stimuli are dynamic random-de@rity tuning curves of cortical cells to specific time-varying
stereograms, the disparity tuning of simple cells is highly variabl&timuli. In this paper, we first present a simple function that
whereas the tuning of complex cells remains reliable. Moreover, cetienveniently describes the temporal response profiles of real
with similar motion preferences in the two eyes cannot be truly tun&gl cells and incorporate this function into the disparity energy
to motion in depth regardless of the stimulus types. These simulatigfbdel (Ohzawa et al. 1990; Qian 1994). We then apply the
results are consistent w_it_h a large body c_)f extant physiological datggdel to investigate V1 disparity responses to a variety of
and provide some specific, testable predictions. time-varying stimuli used in physiological experiments. Some
of the results were reported previously in abstract form (Chen
et al. 2000).

INTRODUCTION

Numerous physiological studies have documented dispariy=THOD S
tuned cells in V1 (Barlow et al. 1967; Freeman and Ohzawayt is well established that the spatial RFs of V1 simple cells can be
1990; Poggio and Poggio 1984). To understand the mechaniggburately fit by Gabor functions (Daugman 1985; Jones and Palmer
of tuning, many researchers have also investigated how t887; Marcéa 1980; Ohzawa et al. 1990). Since we are concerned
disparity responses of a cell may be explained by the undaiith disparity tuning instead of orientation tuning in this paper, we
lying binocular receptive field (RF) structure. Since disparity @nly consi_der vertically orie_nted binocular cells whose left and right
a spatially defined property, nearly all stereo models are sol&{§s are given by (DeAngelis et al. 1991; Ohzawa et al. 1990, 1996)
based on spatial considerations while leaving out the temporal 1 Ry
expl — =5 — =5 cos(wx + ¢) Q)
2700y p< 207 205)

dimension as irrelevant. Specifically, most models (Fleet et al. axy =
1996; Nomura et al. 1990; Ohzawa et al. 1990; Qian 1994;

Sanger 1988; Zhu and Qian 1996) only consider how the 1 p<_7_7) .
spatialRFs of binocular cells may respondgtaticstimuli and oY) = 2700, RN T 202 207 cos(wix + )

generate the physiologically observed disparity tuning curves,

. . re wg is the preferred horizontal spatial frequeney, and o,
such as the tuned, near, and far types found in V1 (Poggio arﬂeqirmir:e the RF dimensions along the horizontal and verticaly axes,

Fischer 1977; Poggio et al. 1988). However, the spatial apdyectively, ands, and ¢, are the phase parameters for the left and
temporal response properties always come together for raght RFs, respectively. For oriented stimuli (e.g., bars and gratings),
neurons. More importantly, physiological studies of disparitye assume that the stimulus orientations are aligned with the cells’
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preferred orientation. For moving stimuli, we assume that the dire®eAngelis et al. 1993b; Jones and Palmer 1987; Ohzawa et al. 1990),
tion of motion is perpendicular to the orientation of the RFs. followed by half-squaring (Anzai et al. 1999a,b; Heeger 1992)

Unlike the spatial RFs, the temporal response of cortical cells is not
Gabor-like (DeAngelis et al. 1993a, 1999; Ohzawa et al. 1996). We
examined the temporal profiles of real V1 cells and found that the D — ®
can be conveniently described by an envelope of the gamma pro[i)é)-_

fff iy, t— Ly, ) + (%, y, t — t)I(x, y, t')}dxdydt’
bility density function, multiplied by a sinusoidal modulation .

1 t
et exp(— 7> cos(wt + ¢ t=0 Q]
h(® = g(“)fa T t . (3  where the half squaring operation is defined as
t<
. . . X X=0
Herer is the time constant for the envelopedetermines the degree O[X] = 0 X<0 (8)

of skewness, anli(«) is the standard gamma function for normaliza-
tion; for simplicity, we leta = 2 in this paper, and'(2) = 1. The For some simulations, we also included a threshold to be subtracted
sinusoidal term with frequencyy generates alternating on and offfrom the integral inEq. 7 before half-squaring. These will be men-
responses. Since for many real cells the first half cycle of the tempotiahed specifically inrResuLts The threshold tends to make tuning
response is shorter by various amounts than the second half cycle ateves sharper by removing small responses.
parametekp, is introduced to reduce the length of the first half cycle. Under the assumption that the RF size is much larger than the
(Due to the rapid decay of the exponential, the durations of the 3rd am@rizontal disparityD of the stimulus, it can be shown that the simple
later half-cycles are not important.) Tkie parameter also determinescell response is approximately (Se&eNDIX)
whether the initial response is on or off. Although previously pro- . .
posed functions can fit the real temporal responses just as well rs(t)x@)[zg(t) COS(g(t)+ - 7“’XD> Cos(‘i’* J”"XDﬂ )
(Adelson and Bergen 1985; DeAngelis et al. 1999; Watson and 2 2
Ahumada 1985), we prefétg. 3because all parameters have Simpl%here
intuitive meaningsEquation 3is plotted for two different sets of
parameters in Fig.A. The two curves are representative of the real b.=d+ b, d=b — o (10)
temporal responses from V1 (DeAngelis et al. 1993a; Ohzawa et al.
1996).

The frequency tuning oEq. 3is determined by its Fourier trans-
form, which can be calculated analytically as

andB(t) and 6(t) (defined inapPENDIX) are independent ap,, ¢, and
D. Equation 9is a generalization to our previous results obtained with
spatial RFs only (Qian 1994; Qian and Zhu 1997). It indicates that in

1 i i addition to stimulus disparity, simple cells are also sensitivé(tp
#(wy) :*{ eXplih) eXP~ 1) } i= V-1 @ hich d d h i | detail Fourier ph f th
V= 02 [+ i — o0 | [ + (e + o) v \;ir;]cumsepen s on the spatiotemporal details (or Fourier phase) of the

for « = 2. Note that because af,, »? may not be close to the We model complex cell responses using the well-known quadrature
preferred temporal frequency of the function. The amplitude spectair method for disparity energy computation (Adelson and Bergen
for the temporal responses in FigAlare plotted inB, showing 1985; Emerson et al. 1992; Ohzawa et al. 1990; Pollen 1981; Qian
band-pass and low-pass characteristics, respectively. These two tylf¥; Watson and Ahumada 1985). The complex cells derive both
of frequency tuning behavior correspond to transient and sustairibeir spatial and temporal properties from the constituent simple cells.
responses, respectively (Hawken et al. 1996) Because of the half-wave rectification contained in the half-squaring
The temporal functior(t) can then be combined with the spatialoperation for each complex cell, we need to sum the responses of four
function g(x, y) to model three-dimensional spatiotemporal RFs dafimple cells (Ohzawa et al. 1990), all with identi¢al but with their
simple cells (Adelson and Bergen 1985; Watson and Ahumada 1985)./2 differing in steps ofr/2. (This is exactly equivalent to summing
For binocular simple cells, this can be done for the left and right RFse squared responses of two simple cells without the half squaring.)

separately The resulting complex cell response is approximately
fi(x, . 1) = g(x y)h(®) + nG(x, Y)h(t (5) ) ~ [23(0 cos<¢’ + w2D>]2 @
q
_ 2
fi(x ¥, ) = gi(x, Y)h(t) + ngi(x, y)h(t) (6)

which has more reliable disparity tuning because it is no longer a

whereg andh functions are obtained from the correspondingndh ﬂjenction of 6(t). The preferred disparity of the cell is thus

functions by replacing all the cosine terms by the sine terms. T
constant weighting facton, between 0 and 1, is introduced to model b
various degrees of directional sensitivity (Adelson and Bergen 1985; Dot~ =" & 12
Watson and Ahumada 1985). *

The response of simple cells to a stereo image p@iry, ) and which is same as for the static case (Qian 1994).
I(x, y, § can be approximated by linear spatiotemporal filtering Previously, we pointed out that for both physiological and compu-

A Temporal Responses B Amplitude Spectra Fic. 1. A: temporal responses dtq. 3
2 4 ) ] +f " ] Band—vpass Low—lpass plotted for two sets of parameters. The posi-
2 1t 1 4 ] tive and negative va!ues represent on and off
> 05 {1 osl responses, respectively. For both curves,
o ) w2 = 7.2 Hz andr = 0.016 s, butp, =
% 0 0 0.1, and —0.44r, respectivelyB: the corre-
€ sponding Fourier amplitude spectra on a log-
2 _o05t \/ _o5t | log scale showing the band-pass and low-pass
: - : - 0.1 . 0.1 - behavior, respectively. These temporal re-
0 0.05 0.1 0 0.05 0.1 1 10 100 1 10 100

sponse profiles and amplitude spectra closely

Time (s) Temporal Frequency (Hz) resemble those of real V1 cells.
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tational reasons, a spatial pooling step should be added after éand therefore have the matched degrees of spatiotemporal
quadrature-pair construction to better simulate complex cell responggfentation in the two eyes (Ohzawa et al. 1996). Also note that
(Qian .and Zhu 1997; Zhu and Qian 1996). We add this s.tep.f D) is a Gabor function of disparitp (Zhu and Qian 1996)
modeling complex cell responses to the random-dot type of stimuli, 33 that unlike the temporal resportg#) for the constituent
such pooling significantly improves the reliability of disparity tunin imple cells, the temporal resporidé) of the complex cell's

(Fleet et al. 1996; Qian and Zhu 1997; Zhu and Qian 1996). The lar int tion RE is al it indicating that th
pooling step is omitted for bar and grating stimuli because it does rg ocular interaction IS always positive, indicaling that the

make any difference for those stimuli. The weighting function for th&@Por disparity tuning of complex cells do not vary over time.
spatial pooling is a normalized, circularly symmetric two-dimensiondinese features are consistent with experimental data (Ohzawa

Gaussian with ar equal too, in Egs. land?2. et al. 1997).
Equation 13is plotted in Fig. 2 for four model complex
RESULTS cells. The time-integrated tuning curves are also shown at the
) ) ) bottom of each panel, indicating that these cells are tuned-
Binocular interaction RFs of complex cells excitatory (TE), tuned-inhibitory (TI), near (NE), and far (FA)

Equations 5and 6 can be used to model simple Ce"s;:types,_res.pect|vely, aqqordmg to .Pogg|o's cla§syf|cat_|on. The
binocular, spatiotemporal RFs (results not shown), which ggisparity-time separability icq. 13is clearly exhibited in the
first-order kernels of the white noise analysis (Adelson argure for both the nondirectional celh(= 0, Fig. 24) and the
Bergen 1985; Anzai et al. 1999a; DeAngelis et al. 199§trongly directional cell = 1, Fig. B). _

Ohzawa et al. 1996). One cannot obtain similar first-order RFsAnother feature in Fig. 2 is that th® — T profiles of

for complex cells because complex cells do not have separafépdirectional or weakly directional complex cells (Fig.A2,

on and off subregions. However, as Ohzawa, DeAngelis, afdd C) have two peaks along the time axis, while strongly
Freeman (1997) have shown, real complex cells have welirectional complex cells (Fig. 28 andD) are unimodal over
defined binocular interaction RFs, which are the impulse rBme. This originates fronq. 15.When the directional factor
sponse functions obtained by flashing a line at the preferrd= 0. the complex cell temporal response function becomes
orientation at timet to locationsx and x, in the two eyes, t t 2

respectively. It is a first-order temporal and second-order spa- H(t) = [; eXp<* ;) cos(awit + dx)] (16)

tial kernel. Previously, Ohzawa et al. (1997) have modeled the

second-order spatial kernel. Here we add the time variable amgich can show multiple peaks in time because of the cosine
compare our simulations with the experimental data. term. On the other hand, when the direction faajor 1, we

It can be shown that the binocular interaction RF defined have
Ohzawa et al. (1997) for a complex cell can be written as (see

APPENDIX) HO = [é exp(— %)] @an

F(D. 9 = SDHO 3 which can only have one peak. This relationship between

where directionality and the peak number along the time dimension in
D — T plots is a testable prediction.

4 p?
= - wD - 14
S(D) Jmo, eXP< 405) cos(wD + ¢-) (14)

Motion in depth

— h2 2i2,
HO = + 7ir® 19 When an object is moving toward or away from an observer,

Remarkably Eq. 13is separable in disparity and time regardthe binocular disparity of the object changes over time, and the
less of whether the underlying simple cells for the complex cetiotion speeds or directions in the two eyes are different. The
are spatiotemporally separable or not (5 0 or not). This fact that the disparity tuning of complex cells does not vary
is true so long as the simple cells are describedy. 5and with time (Fig. 2) implies that these cells are not tuned to

A TE B T C NE D FA

300

Time [ms]
@

Disparity [deg] Disparity [deg] Disparity [deg] Disparity [deg]

FIG. 2. Binocular interaction RFs (& — T profiles) of 4 model complex cells plotted accordindeimp 13.The solid and dashed
contours represent the positive and negative values, respectB&llyw each panel is the disparity tuning curve generated by
integrating theD — T profile along the time axis. These complex cells are constructed from simple cell RFs a#d}dth = 0.4
cycles/degwy/2m = 2 Hz, 0, = 0.8°, 0, = 1.2°, 7 = 60 ms, andp, = 0.17. The ¢_ andn parameters aré: 0, 0;B: —m, 1;

C:. —m/2, 0.3; D: @/2, 0.6, respectively. ThereforA is a tuned-excitatory (TE) and nondirectional complex c8llis a
tuned-inhibitory (TI) and strongly directional complex cé&ll;andD are near (NE) and far (FA) complex cells, respectively, with
intermediate degrees of directional selectivity.
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motion in depth (Ohzawa et al. 1997; Qian 1994; Qian and-1.8, 0.6), 1.8, —0.6), (—1.8, —1.8), (—0.6, —1.8), (0.6,
Andersen 1997). Consistent with this, most V1 cells have thel.8), (1.8,—1.8), (—1.8, —0.6), and (1.8, 0.6), in deg/s.
same motion preference for the two eyes, and give the str VING BARS. Figure 3 shows the results for a directional
gest response to the frontoparallel motion at the preferr :

) ) i ) ple cell &) and the corresponding complex ceB)(in
disparity (Ohzawa et al. 1996, 1997; Poggio and Talbot 198{)qronse to a moving bar stimulus. The two rows are for the

In addition, Maunsell and Van Essen (1983) reported that Rgses with and without a threshold termig. 7, respectively.
MT (V5) cells were found to be truly tuned for motion in deptfsince both the left and right RFs of the model cells prefer
when the motion trajectories of the stimuli were properlisfward motion, it is not surprising that the tuning curves are
positioned (see following text). _ peaked in the left, frontoparallel direction, indicating that these
We have simulated motion-in-depth tuning curves undercgyis are not tuned to motion in depth. We have also performed
variety of conditions (Figs. 3-5). The format of each plot igimylations with nondirectional model cells (results not
each figure is identical to that used by Maunsell and Van Essgibwn). In this case, the tuning curves usually had two peaks
(1983). Twelve motion trajectories, represented “around th@inting at 0 and 180° directions, and for simple cells, there
clock,” were considered for each tuning curve. The 0 and 18fere additional, smaller peaks at 90 and 270° directions, again
paths represent the rightward and leftward motions, respggqicating the absence of motion-in-depth tuning. These results
tively, in a frontoparallel plane; the 90 and 270° represegte consistent with the physiological data for the majority of
motions straight away from and toward the observer, resp&fsyal cortical cells (Maunsell and Van Essen 1983; Poggio
tively. The remaining eight trajectories represent intermedialg,g Talbot 1981). The inclusion of a threshold te@nd row)
oblique paths in depth. Maunsell and Van Essen (1983) pointefkes the tuning curves sharper because it suppresses small
out that to properly assess the motion-in-depth tuning, theésponses from the nonpreferred paths. This could explain
mid-points of all trajectories should meet at a point with thgsme sharp tuning curves found experimentally (Maunsell and
preferred disparity of the cell. In this case, the 0 and 18/an Essen 1983; Poggio and Talbot 1981).
trajectories are on the cell's preferred disparity plane if it Aithough most cortical cells are like those shown in Fig. 3,
exists. ) , ) o B preferring frontoparallel motion with fixed disparity, there is
The 12 trajectories for the moving stimuli are specified by idence that some cells in areas V1 and V2 are tuned to
the horizontal speeds for the two eyes (Maunsell and V@Rotion toward or away from the observer (Cynader and Regan
Essen 1983). Starting from the 0° path and going counterclocly7s; poggio and Talbot 1981). However, cells preferring
wise, the 12 speed pairs for the left and right eyes used in Gintoparallel motion may appear to be tuned to motion in
simulations are (1.8, 1.8), (0.6, 1.8);Q.6, 1.8), (-1.8, 1.8), gepth if the mid-points of the stimulus trajectories meet at a
point outside the preferred disparity plane (Maunsell and Van
Essen 1983). Under this condition, the 0 and 180° trajectories
are not in the cell's preferred disparity plane and thus may not
evoke the strongest responses. By contrast, the cell may be
most excited by the oblique depth-path that happens to have the
best overlap with the preferred disparity plane. The tuning
curves under this “off-preferred-plane” situation for the same
simple and complex cells in Fig. 3 are shown in tbp row of
Fig. 4. Here, the mid-points of all paths meet at a point with a
disparity of—0.04° while the cells’ preferred disparity is 0.04°.
As predicted by Maunsell and Van Essen (1983), now the cells
appear to prefer motion along oblique paths in depths. Thus
some cells may appear tuned to motion in depth simply be-
cause of the improper choice of the test paths in an experiment.
However, this possibility does not rule out the existence of
cortical cells that are truly tuned to motion in depth. These cells
should have different preferred directions or speeds in the two
eyes (Cynader and Regan 1978; Poggio and Talbot 1981) and
can thus show motion-in-depth tuning even when the stimulus
paths are properly chosen. Our simulation-results for a simple
Fic. 3. Motion-in-depth tuning curves of a model simple cél) @nd a and a complex cell preferring opposite directions of motion in
model complex cell§) to a bar, moving along 12 paths whose mid-point¢he two eyes are shown in thettom rowof Fig. 4. The cells
coincide at a point on the cells' preferred disparity plane. e rowsin A gre tuned to motion straight away from the observer. Unlike the
andB are for the cases with and without threshold, respectively. The threshald . . .
is equal to 20% of the maximum response of the linear filteringdn7.The cells in thetop row, these true motion-in-depth cells have a

RF parameters of the simple cel)(are w2 = 4 cycles/degw? = 6 Hz, Single prominent peak in their tuning curves.

o,=0.1°,0,=0.2°,7= 20 ms,¢, = 0°, ¢, = 60°, ¢, = 0.1, andn = 0.6. We h | . lated .
The complex cell B) receives inputs from the simple cell and 3 other simpIg.RANDOM‘DOT STEREOGRAMS. e have also simulated motion-

cells according to the quadrature method. The bar size and duration axe 0.1n-depth tuning curves of the same simple and complex cells in
1° and 0.33 s, respectively. The integrated responses over the 0.33 s perioddige 3 (with threshold) to coherently moving random-dot ste-
plotted. The cells have a preferred disparity of 0.04° and a preferred spee(}@bgrams (MRDSs), and dynamic random-dot stereograms
1.8°/s. (Note thatw/wy is not close to the preferred speed becau$és not " . -

close to the preferredxtemporal frequency of the cell.) The RFs are compu RDSs), and examined the effect of spatial pooling (see
in a three-dimensional region of 0.5¢ 1° X 0.1 s. The spatial and temporal METHODS) for the complex cell responses. The dots of a MRDS

sampling steps used in the simulations are 0.01° and 5 ms, respectively. are all on the same disparity plane at a given time and the

Simple Cell Complex Cell

60

Without Threshold

With Threshold

300
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A Simple Cells B Complex Cells definition, can only have disparity changes over time, but no
directions of motion, the tuning curves are symmetrical with
respect to the 90—-270° axis. This is independent of the direc-
tion selectivity of the cell. Second, the two curves from the two
independent simulations are very different from each other for
the simple cell but are quite similar to each other for the
complex cell with spatial pooling. This indicates that complex
cells have more reliable tuning to DRDSs than do simple cells.
Finally, the tuning curves for DRDSs are not as narrow as
those for moving bars or MRDSs. For the simple cell, the main
peak location is often located outside the preferred disparity
plane. These specific features of motion-in-depth tuning to
MRDSs and DRDSs can be tested experimentally, and have
implications for some relevant psychophysical observations
(seebiscussioN.
Similar to Fig. 4 for the bar stimuli, MRDSs and DRDSs can
also give false motion-in-depth tuning if the motion paths are
S S not properly chosen, and real motion-in-depth tuning can only
24072300 ’ be obtained with cells preferring opposite directions in the two

270
FIG. 4. Two ways of having tuning peaks away from frontoparallel planese.yes

Top the simple A) and complexB) cells are identical to those in Fig. 3 (with
threshold). A!thom_Jgh they actually prefer frontt_)para_llel motion, t_hey appeﬁiisparity tuning curves
tuned to motion in depth here because the mid-points of the stimulus paths
meet at a point with disparity-0.04° instead of the cells’ preferred disparityDRIFTING SINUSOIDAL GRATINGS AND BARS. Unlike the motion-
0.04°.Bottom on the_ other hand, these cells are tru_Iy tuned to motion in_dep[h_depth stimuli discussed in the preceding text, all stimuli in
because the directional preferences of left and right RFs are opposite. fies and subsequent subsections have a constant disparity over
parameters are identical to those for Fig. 3 except i@ for the right RF . . o
has been changed from 6t Hz to generate opposite directional preferencet.'_me- thawa _and Freeman (19863@) us_ed binocular (?'“ft'”g
sinusoidal gratings to test the disparity tuning of V1 cells in the
whole plane moves along each of the 12 motion paths meamat. Figure 6 shows the response time courses and disparity
tioned in the preceding text. Each MRDS is large enough suning curves of a model simple and complex cell stimulated
that it covers the cells’ RFs at all times without the edge effedty drifting sinusoidal gratings of various interocular phase
A DRDS is identical to the corresponding MRDS in terms afiifferences. The parameters are chosen to simulate the data
disparity change over time, but the dot positions are randondiiown in Fig. 3 of Ohzawa and Freeman (1986b) for the simple
replotted for each frame. To investigate the reliability of theell, and Fig. 1 of Ohzawa and Freeman (1986a) for the
tuning curves, we simulated two tuning curves for each casmmplex cell. Since that particular simple cell had shorter
with two sets of independently generated MRDSs or DRDSactive half-cycles than the silent half-cycles, we include a
The results are shown in Fig. 5. It can be seen that the tunitigeshold equal to 20% of the maximum value of the linear-
for MRDSs is very similar to that for moving bars (Fig. 3)filtering-result inEq. 7.The spatial and temporal frequencies of
except that the curves are narrower because there are ngredings match the preferred frequencies of the cells, as in the
weak responses for MRDSs than for moving bars that asetual experiments. Ohzawa and Freeman (1986b) used the
suppressed by the threshold. The curves for DRDSs, on firet harmonic amplitude of the simple cell response for plot-
other hand, are quite different. First, because DRDSs, bgg the tuning curve. We simply use the time-integrated total

Off Preferred Plane

Opposite Preferred Direction

Simple Cell Complex Cell C Complex Cell (Pooling)

A B

FIG. 5. Motion-in-depth tuning curves of a model
simple cell @) and a model complex cell withouB) and
with (C) spatial pooling to moving and dynamic random-
dot stereograms (MRDSs and DRDSs, respectively), with
paths centered on a point at the cells’ preferred disparity
plane. The cell parameters are identical to those in Fig. 4
except that a spatial pooling step was addeirThe
pooling function is a normalized, symmetric 2-dimen-
sional Gaussian with a of 0.1°. Two curves shown in
each paneld and *) are obtained with 2 independently
generated sets of stimuli. The dot size is 0:0R.02° and
dot density is 10%. The overall size, refresh rate, and
duration of each stimuli are 0.8 1°, 50 Hz, and 0.5 s,
respectively.

MRDSs

DRDSs

270



148 Y. CHEN, Y. WANG, AND N. QIAN

A Simple Cell Simple Cell metric disparity generates a small positional change that leads
RE ———————— : to a temporal delay in the simple cell’'s response.
3'5% - o 1F g The model cells used in the preceding simulations are ocu-
P 800 £ larly balanced. However, similar results can be obtained when
= o - - ) g one eye is more dominant than the other. There are two ways
g ?238 -~ = to introduce ocular dominance into the model. The first method
£ 150 8 osp 1 istointroduce a weighting factor in front of one of the two RF
o 158 £ profiles inEq. 7.Mathematically, this is equivalent to present-
8 g e . 2 ing a stereogram with different contrast scales (but of the same
30 -~ «120° contrast sign) to the two eyes. As we have shown previously
RPN S——— % w0 9% (Qian 1994; Qian and Mikaelian 2000), the tuning curves will
0 500 1000 ms Phase Difference [deg] maintain the same shape under this condition although the
B Complex Cell Complex Cell pedestal will be higher and the amplitude will be smaller. The

second method for introducing ocular dominance is to assume

TE —— that one eye has a higher response threshold than the other. We
B ooy —— ] r 1  find through simulations that again similar tuning curves can be
(] —————————— 2 obtained unless one of the thresholds is so high that the
8 5‘1‘8 — g corresponding eye does not respond (results not shown).
£ g0 N 8 o5k | We have also simulated response time courses anq disparity
B 1Y — 5 tuning curves of simple and complex cells to moving bars
D Gy ———— 5 (results not shown). Like the grating case, the tuning curves for
£ 60 < . both simple and complex cells peak at locations predicted by
N _T———— . @ Eq. 12,and the vertical alignment of the response time courses
mms 0 180 360 depends on whether the disparities are introduced symmetri-

Phase Difference [deg] cally in the two eyes or not. For directional cells, the disparity

Fic. 6. Response time courses and disparity tuning curves of a modeining curves for the preferred and anti-preferred directions
simple cell @) and a model complex celB stimulated by drifting sinusoidal have the same peak locations although the responses ampli-
gratings.Left the response time courses as the interocular phase dlfferencetl[%es differ markedly These features are consistent with the
the grating varied from 0 to 330° in 30° steps. The initial 0.3 s of transien . tal data i F 40f P . d Fisch 1977). F
responses has been excluded to show the steady-state behavior. The lef€ReNmental data in rFig. 4 o 099|0_ an Ischer ( ) or
right monocular responses (LE and RE) of the cells are also siRight the €ach bar sweep, thQ complex cells give longer responses than
disparity tuning curves created by integrating the responses over a 1-s pertbe corresponding simple cells because the former do not have
The vertical lines indicate the predicted preferred disparities accordiigto the discrete on and off RF subregions.

th

12. The simple cell A) has spatiotemporally inseparable binocular RFs, wi
wyl2m = 0.3 cycldegw/2m = 2 Hz,0, = 1°, 0, = 1.6°,7 = 60 ms,¢y = 0°,  RANDOM-DOT STEREOGRAMS. Poggio et al. (1985, 1988) also
Sonal region of 55 B 0.3 5. The threshold value is equal o 2056 of thPPied DRDSS to measure disparity tuning curves. In their
.3 S. (] : H : H :
maximurr? linear filtering response of the simple cell. The RqF parameters of { ()_}(perlment_s, each Stereogram mamtam.ed a constant dlsparlty
complex cell B) arewy/2m =0.4 cycles/degui/2m = —2 Hz, 0, = 0.8%,0, = uring a trial, but the actual dot locations were randomly
1.2°,7=60ms,p_ = 210°,¢, = —0.1m, andn = 0.6. The RFs are computed re-plotted from frame to frame. They found that simple cells do

over a region of 4% 6° X 0.3 s. The spatial and temporal frequencies of theiot show reliable disparity tuning to DRDSs but that complex
gratings match the preferred spatial and temporal frequencies of the cells. Is do.

initial phase of the right image is fixed at 60° for both cells and that of the le - . . .
image is varied from 60° to 390° in steps of 30°. The spatial and temporal To investigate how reliably our model simple and complex

sampling intervals for the simulations are 0.1° and 10 ms, respectively. Cells were disparity-tuned to DRDSs, we computed, for each
cell type, 1,000 disparity tuning curves from 1,000 independent
response because it is proportional to the first harmonic in thets of DRDSs, all generated from the same parameters. All
context of our model. Figure 6 shows that the responses of b@RDSs had a refresh rate of 100 Hz as in Poggio et al.’s
the simple and complex cells depend on the interocular phaseeriments. Figure 7 shows the results. We also considered
difference (proportional to disparity) of the gratings. The sinthe effect of adding a spatial pooling stage to the complex cell
ple cell's responses are modulated sinusoidally in time falesponses (Fig. @, seemetHops). For clarity, only 30 ran-
lowed by rectification, while the complex cell responses agomly picked curves for each cell are shown in tbe panels.
sustained. These features agree with the experimental dBite distribution histograms of the preferred disparitkesttom
(Ohzawa and Freeman 1986a,b). paneld are compiled from all 1,000 curves. It is clear from the
Another feature in Fig. & is that the temporal responses ofigure that the peak location of the tuning curves is much more
the simple cell are tilted to the right as the interocular phasariable for the simple cells than for the complex cells and that
difference increases. This is also consistent with the physipatial pooling helps to further improve the reliability of the
logical results in Fig. 3 of Ohzawa and Freeman (1986b). It canmplex cell responses. Specifically, 40, 77, and 99% of the
be shown that this tilt stems from the specific way of introtuning curves peak within 0.02° of the predicted preferred
ducing binocular disparity. In both the experiments (Ohzawdisparity for the simple cell, the complex cell without pooling,
and Freeman 1986a,b) and our simulations, the disparityaisd the complex cell with pooling, respectively. Additional
generated by keeping the grating phase of one eye’s imagmulations show that for complex cells, the standard deviation
fixed while varying the phase in the other eye. If the disparif the peak locations is inversely proportional to thef the
is symmetrically divided between the two eyes, then the tilivo-dimensional Gaussian used for the spatial pooling. Since
disappears (results not shown). The reason is that the asyhe number of cellsN) pooled is proportional toos?, the
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Disparity tuning curves of a model simple cél)(and a model complex cell withouB) and with C) spatial pooling,

in response to DRDS3.op: 30 disparity tuning curves obtained from 30 independent DRDSs. Each point on a curve was obtained
by integrating the response over a period of 500 ms. The curves in a panel are normalized by the strongestBesipomsbe
distribution histograms of the peak locations, each compiled from 1,000 disparity tuning curves. The bin size of the histograms is
0.02°. The vertical lines indicate the predicted preferred disparities accordibg tt2. The RF parameters of the simple cell) (

are wy/2m = 4 cycles/degwy/2m = 6 Hz, 0, = 0.1°,0,, = 0.2°,7, = 0.2°,7 = 20 ms,¢; = ¢, = 60°, ¢, = 0.1m, andn = 0.6.

The RFs are computed in a 3-dimensional region of &5E° X 0.1 s. The complex celB) receives inputs from the simple cell

and 3 other simple cells according to the quadrature methdtie spatial pooling procedure (seeTHops) is added to the complex

cell in B. The pooling function is a normalized, symmetric 2-dimensional Gaussian witbfd.1°. The dot size is 0.0 0.02°

and dot density was 10%. The overall size, refresh rate, and duration of the stimuli’ar&.2°, 100 Hz, and 0.5 s, respectively.

The spatial and temporal sampling steps for these simulations are 0.01° and 5 ms, respectively.

variability of the peak locations follows the inverséN law, as  stimuli (Qian and Andersen 1995; Skottun et al. 1988; Snow-
expected. However, the improvement from the simple cell tien et al. 1992).
the complex cell (without pooling) is about twice that expected The preceding two problems can be resolved by introducing
from the inverseV/N law because the four simple cells in théhe following contrast response function to replace the half-
quadrature method are specifically picked to reduce variabiligguaring operation iq. 8

Our simulation result, that disparity tuning curves to DRDSs
are more reliable in complex cells than in simple cells, is in
qualitative agreement with the experimental data of Poggio and
coworkers (Poggio et al. 1985, 1988). Quantitatively, howeveghereR is the simple cell responsk,is the result of linearly
there may be some discrepancies. Although they did not pulitering a stereo stimulus through the binocular spatiotemporal
lish any simple cell tuning curves to DRDSs, Poggio et aRFs of the simple cell, an&.,, X5, andn denote, respec
(1985, 1988) reported that nearly all neurons responding tteely, the maximum response, th¢ at which the response
DRDSs are complex cells and that simple cells are not tunedrémches half its maximum value, and the exponent that deter-
these stimuli. In contrast, the simulated tuning curves in Fignines the steepness of the function (Albrecht and Hamilton
7A are not completely random but show a tendency to pe&R82; Sclar et al. 1990). It has been shown that this type of
around the preferred disparity of the corresponding complerntrast response can be implemented by a normalization pro-
cell (marked by the vertical line in the figure). A close exameedure following the half-squaring operation (Heeger 1992).
ination reveals that the disparity tuning trend of the modeéike the discharge of real simple celSg. 18saturates at high
simple cell results from the fact that a small number of framesimulus contrast. When = 2, the equation reduces to half-
in each DRDS generate relatively reliable tuning because theyuaring at low stimulus contrast. Since this function com-
happen to contain dot distributions that excite the cell stronglpresses the response range, it should effectively increase the

A closely related problem in Fig.A’is that the response contributions to tuning curves from those frames in a DRDS
amplitudes of the simple cell to different sets of DRDSthat evoke relatively weak responses, and consequently reduce
fluctuated over a very large range (because some DRDSs tuning reliability of the model simple cells because weak
happen to contain more frames that strongly excite the cell thesponses usually generate poor tuning curves. The simulation
other DRDSs). However, experimental data show that althougsults confirm this expectation (Fig. 8). The simple cell's
some V1 cells occasionally give a strong response to odmsparity tuning to DRDSs became much more variable while
random-dot pattern and a weak response to another patténe, tuning of the complex cell remained reliable, especially
most cells have comparable responses to different random dith spatial pooling. These results are more consistent with

RIX] =

X=0

RnaX(X" + X50)
{ 0 * X<o0 (18)
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Poggio’s experimental reports (Poggio et al. 1985, 1988) thaalls to MRDSs (Poggio et al. 1985, 1988). Unfortunately, they
are those in Fig. 7, although we cannot make a quantitatigdi not systematically compare the cells’ responses to DRDSs
comparison due to the lack of published experimental dataand MRDSs but instead appeared to group the two types of
We next simulated the responses of the cells used for Figs&reograms together as the “cyclopean stimuli.”

to coherently MRDSs. The results are shown in Fig. 9. Obvi- Finally, for the purpose of comparison, we also simulated
ously, the simple cell's disparity tuning to MRDSs is muclthe disparity tuning of the cells in Fig. 8 to static random-dot
more reliable than to DRDSs. The reason is W@ in Eq. 9 stereograms (SRDSs). The results are shown in Fig. 10. Con-
varies randomly over time for DRDSs, while it changesistent with our previous simulations with spatial RFs only
smoothly for MRDSs. Since the temporal averaging of a cof@ian 1994; Qian and Zhu 1997; Zhu and Qian 1996), the
tinuous6(t) is much closer to a constant than is the averagirgimple cell showed completely random disparity tuning curves
of some random values, coherently moving stereograms showlden different sets of SRDSs were used, while the complex
always generate more reliable disparity tuning curves than tbell maintained reasonable tuning reliability when the spatial
random frames unless a very large number of frammeZ0Q) is  pooling is applied. Moreover, for all cell types, disparity tuning
used (in which case both types of tuning curves become raf- SRDSs is not as reliable as that to DRDSs, which in turn is
able). This is a specific prediction that can be tested physiwst as reliable as the tuning to MRDSs. This is easy to under-
logically. Poggio et al. measured disparity tuning of some V&tand because for static patterns there is only a single value for
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FiG. 10. Disparity tuning curves to SRDSs
with contrast saturation. The simulations are
identical to those in Fig. 8 except that SRDSs
are used.

0(t) in Eqg. 9,and therefore temporal integration does not heimoving stimuli considered in this paper, this Fourier-phase

to reduce the influence of the first cosine term in the equatiatependence is manifested as the temporal modulation of the
response:; as a stimulus such as a bar or a grating sweeps
through the RFs of a cell and its Fourier phase changes con-
inuously, and therefore the response changes accordingly in
fine. If the tuning curve of a simple cell is calculated by

mporally integrating the responses over time, the phase de-

poral response profiles of real cortical cells including theendence will be averaged out, and simple cells will then have

transient (or band-pass) and the sustained (low-pass) types. @/i@ble disparity tuning curves to moving stimuli. Indeed, we
then incorporated this temporal function into the disparifpund that for moving bars and gratings, simple and complex
energy model (Ohzawa et al. 1990: Qian 1994) and found ti&ls show equally reliable disparity tuning curves. However,
the binocular interaction RFs of V1 complex cells, with théhe situation is quite different for DRDSs. Here the simple
typical disparity-time separability in thB — T plot (Ohzawa cells’ Qisparity tuning is ;till highly unreliable even with tem-
et al. 1997), can be explained. The disparity part is a Gatgral integration of 50 different frames, and this lack of reli-
function and the time part is always positive. Finally, wébility is consistent with the experimental reports (Poggio et al.
investigated how the model simple and complex cells respoh@85, 1988). Intuitively, a DRDS only contains random sam-
to various time-varying stimuli, including motion-in-depth patples of the possible Fourier phase values, while for coherently
terns, drifting gratings, moving bars, MRDSs and DRDSs. Waoving stimuli, the Fourier phase changes smoothly so that the
found that the simulated tuning curves agree with the extdhi! range of phase values can be quickly covered for every
experimental data quite well (Cynader and Regan 1978imulus used inan experiment. Therefore temporal integration
Ohzawa and Freeman 1986a,b; Poggio and Fischer 1977; Pefgsimple cell responses is much more effective in improving
gio and Talbot 1981; Poggio et al. 1985). Our results indicagéSparity tuning for coherently moving stimuli than for
that both spatial pooling and temporal averaging can signifRDSs. In contrast to simple cells, complex cells have reliable
cantly improve the reliability of disparity tuning and that irdisparity tuning to all of the stimulus types mentioned above,
general, complex cells are much better disparity detectors tHagluding DRDSs, and this is particularly true when the spatial
simple cells (Ohzawa et al. 1990; Qian 1994), although ti@oling step is included for modeling complex cell responses.

difference between the two cell types depends on the stimiiie simulated reliability of complex cell tuning is consistent
(see following text). with experimental data (Ohzawa et al. 1990; Poggio et al.

1985, 1988). The pooling reduces variability according the
expected invers&/N law, while the quadrature-pair construc-
tion for complex cells is about twice as effective as expected
We pointed out previously that for static stereograms, simpfi®m the inverseV'N law.

cells do not have reliable disparity tuning since their responseOne might conclude, based on the preceding discussion, that
are highly dependent on the Fourier phases of the stimuli (Qisimple cells can reliably extract disparity for coherently mov-
1994, 1997; Qian and Zhu 1997; Zhu and Qian 1996). Forg stimuli but not for static patterns and DRDSs, whereas
example, simple cells’ tuning curves vary with the spatialomplex cells can do so for all stimulus types. This conclusion
phase of sinusoidal gratings and with the lateral position anglquires some qualification because for simple cells, the reli-
contrast polarity of bars (Ohzawa et al. 1990). For coherentiple tuning to coherently moving stimuli is only obtained after

DISCUSSION

The main goal of this paper is to understand how V1 ceI[
respond to binocular disparity in time-varying stimuli. W
introduced a specific function that conveniently describes te

Tuning reliability
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integrating the responses over a certain period of time. Thiee sinusoidal gratings, the main difference is a small hori-
brain, however, may not have the luxury of waiting for theontal shift of disparity tuning curves. But even this difference
temporal integration to complete before responding to stim@lisappears when the grating frequency matches the cell’s pre-
in the real world. In fact, disparity-triggered vergence eyrred spatial frequency, which is the case for the simulations
movement has a latency of less than 60 ms in monkeys (M&ported here. We have also shown previously that the quadra-
son et al. 1997), only about 10 or 20 ms longer than the \igre pair construction is exactly equivalent to a phase averaging
response latency. Therefore the brain might have to extr&@cedure that integrates the responses of all simple cells with
disparity based on the responses over a time slice of only 1018¢ir ¢+ uniformly distributed in the entire#range (Qian and
20 ms. If this is the case, then simple cells may not be ablemikae“an 2000). We can further demonstrate that squaring in
extract disparity reliably even for moving stimuli. Consider, fo € quadrature pair method 1S also not important becau;e sim-
example, the simple cell response time courses to gratings ( r.lreSl(letS can be_z_obtalneg if tlkg)e e>r<]pone(:jnt of %Eq. 8is ]
6A). It is clear that tuning curves calculated from different bri [eblaced by a positive numbar(Albrecht and Hamilton 1982;

time slices will have different peak locations. This proble clar etal. 1990), and if the phase averaging procedure is used.

. X ) : this caseEq. 11for complex cell response simply becomes
does not exist for the complex cell in FigB@because its Fq P P Py

: e something very similar
responses are more sustained in time. We conclude that in g very

general, complex cells are better suited than simple cells for
disparity extraction.

n

ro(t) =~ C(n) ‘ 2B(t) cos(‘b* +2w§D>

19

o where C(n) is an unimportant function of. Our computer
Motion in depth simulations confirmed that indeed similar disparity tuning

urves can be obtained (results not shown), the only difference

We have also shown that a cell with identical mOtiO”_pre_%eing that largemn tends to generate sharper tuning curves.
erence for its left and right RFs is not truly tuned to motion ifypile the energy model is computationally more compact, the

depth. As Maunsell and Van Essen (1983) predicted, such/giations mentioned here may be more physiologically plau-
cell may give a false impression of motion-in-depth tuning Ejp|e.

the stimulus paths are not properly aligned with the preferred
disparity plane. True motion-in-depth tuning, however, can =
only be obtained for cells with different left and right motior redictions

preferences. Our simulations may help explain some reIevan%everal specific, testable predictions can also be made based
psychophysical findings. Westheimer (1990) reported that wig, ", anarl)yses and simu|loations. First, strongly directional

line stimuli, the threshold for detecting disparity motion i om ; :
. . ; ) . plex cells should only have a single peak along the time
depth is much higher than that for detecting the d|spar§<is in theD — T plot. Nondirectional cells should have more

difference Qf frontoparallel motions. This agrees with the fa an one peak unless their temporal frequency bandwidths are
that most visual cortical cells have the same motion prefere%
i

. ) large (i.e., smalr and wy in Eq. 16 such that later peaks
ng]e,e th909$¥e|350(gl\giaz)urz]isne(j"'?glcki)(\)/ta?gissegn%jg?hge,r(e)fgig\/\z;?eetq ‘come too small to be observed. Second, cells with higher
tuned to motion in depth. Cumming and Parker (1994) fou qhg thresholds should have narrower disparity tuning curves.

that st tion is primanly detected b f the t e high threshold can be judged by the low spontaneous rate
at stereomotion IS primarily detected by means of the ez yha"shorter active half-cycles than the silent half-cycles in
poral change of binocular disparity, instead of the interocul

e ; e X . ; fsponse to drifting sinusoidal gratings. Moreover, for cells
velocity d|fferenpe..Aga|'n, this Is consistent W'.th physmlog)ovitr? high responsge threshold gthe gmcgtion-in-depth tuning
because cells with identical motion preference in the two ey Srves for MRDSs should be ﬁ1uch narrower than those for

cannot be sensitive to the interocular velocity difference. Fi- . . P : . .
. . ving bars. Third, the observed tilt with increasing disparity
nally, Harris and Watamaniuk (1995) concluded that the rate i the time course of simple cells’ responses to drifting stimuli

pure disparity change is not a good cue for speed discrimi”ﬁfould disappear if the stimulus disparity is introduced sym-

tion of DRDSs moving in depth. This could be due to the po ; ; s ; ;
reliability and broad widths of the motion-in-depth tunin(ﬁ['emca1|Iy into the two eyes. Fourth, cells' disparity tuning

. " A %urves to MRDSs should be more reliable than those to
curves under this condition, as shown in Fig. 5.

DRDSs, which in turn should be more reliable than those to
SRDSs. Here, the reliability is defined as how reproducible the
Alternative methods tuning curves are when independent sets of random-dot pat-
terns (all generated from the same sets of underlying parame-

Although we used the phase-difference RF model and tters) are applied to the same cell. This predicted trend should
guadrature pair construction proposed by Ohzawa et al. (199@) particularly strong for simple cells, but less pronounced for
in all analyses and simulations presented here, similar resutsnplex cells which have reasonably reliable disparity tuning
can be obtained for the position-shift RF model and for sonte all stimulus types. Finally, for drifting bars and gratings,
other methods of constructing complex cell responses. As Wweth simple and complex cells should have reliable disparity
demonstrated previously (Zhu and Qian 1996), there is litttening when the time-averaged responses are used, while for
difference in disparity tuning between the phase-difference asthtic patterns and for dynamic random-dot stimuli, simple
the position-shift RF models for the broadband stimuli such aslls’ disparity tuning should be much less reliable than that of
bars and random-dot patterns when the disparity rangec@mplex cells. Experimental tests of these predictions will help
smaller than the preferred spatial period (the inverse of prgetermine the adequacy of the current understanding of V1
ferred spatial frequency) of the RFs. For narrowband stimulisparity selectivity.
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Problems with the disparity energy model require a highly nonlinear summation mechanism for combin-
ing the two monocular inputs. How to modify the energy

The disparity energy model has been highly successful fiflodel to resolve these and other problems without completely

explaining a wide range of physiological and perceptual oBacrificing its simplicity will be a challenge to future research.

servations as demonstrated by this and numerous previous

publications (Anzai et al. 1999b; Fleet et al. 1996; MikaelianpPENDIX

and Qian 2000; Ohzawa et al. 1990, 1997; Qian 1994; Qian a#grivation of Eq. 9

Andersen 1997; Qian and Zhu 1997; Qian et al. 1994b; Zhu 9.

and Qian 1996). This is quite remarkable given that the modeMWe derive the simple cell respons&s). 9 under the general

is a relatively high-level abstraction that does not inclug@ssumption that the size of the RFs is much larger than the image

detailed morphology, connectivity, and membrane biophysigi§Parity. First, rewritey, andg, in Eq. 5as

of the visual cells. However, there are also some experimental 9% ) = coS(P)GeadX, ¥) — SiN (d)gar(X, Y) (A1)
findings that are inconsistent with the model. Ohzawa et al. - i

(1997) noted that the spatial elongation of the binocular inter- 9106 Y) = cOS()sr(X, Y) + SIN (é1)Geodx, V) (A2)
action RF of real complex cells is significantly larger than thathere

predicted by a single quadrature-pair mechanism. This problem ey

may be alleviated by adding a spatial pooling procedure for GeodX, Y) = 2more, exp<— 5 o{ﬂ) cos(wix) (A3)

computing complex cell responses (Fleet et al. 1996; Qian and
Zhu 1997; Zhu and Qian 1996), which also accounts for the xy) = exp<7 77) sin (i) (A2)
larger RFs of complex cells compared with simple cells at the Genl, ¥ 2700y 202 202 “
same eccentricity (Hubel and Wiesel 1962; Schiller et a‘f’henEq. 5becomes
1976). Another problem noted by Ohzawa et al. (1997) is that )
for real complex cells, the disparity frequency (obtained froifitx y. t) = cos(é)[geedX, YIN() + nGsin(X, Y)()] — sin ()
the disparity tuning curves to broadband stimuli) is usually X [Gen(X YY) — GeodX YA®]  (A5)
lower than the preferred spatial frequency (especially for high-
frequency cells), while the energy model predicts equality @f
the two frequencies (Ohzawa et al. 1990; Qian 1994; Zhu and LY, =106y, 0, Ly, t)=1x+D,y,t (A6)
Qian 1996). However, the discrepancy may be, at least pay-_ . I _
tially, due to something unrelated to the model: the dispari?;&e linear filtering of the left image by the left RF . 7becomes
frequency was measured with the white-noise method while -
the preferred spatial frequency was measured with driftin _
sinusoidal gratings (Ohzawa et al. 1997). Since the spaﬁg‘l)=cos(¢') f f f [GoodX, YI(E = 1) + MGair(X, YIN(E = )] (x, y, t')dxcyclt
frequency measured with noise stimuli is lower than that mea-
sured with drifting gratings (Gaska et al. 1994), perhaps the
white-noise method also underestimates the disparity fre- e
guency (Ohzawa et al. 1997). Indeed due to the time-consum- , S , )
ing nature of the white-noise method, one might tend to chose  *" JJJ [an(x, YL =) = o, YL = 1Nk, . )yl
a lower spatial sampling density for the noise stimuli than for .
the grating stimuli. We found through simulations that an
insufficient spatial sampling density (which would be more
likely to happen for cells with high spatial frequencies) cawhere
indeed lead to an underestimation of the measured disparity
frequency (results not shown). B(D) = BXD + BX1), 6(1) = arctan<
The energy model also predicts that when stimuli presented

to the two eyes have opposite signs of contrast, the disparity -
tuning curve of a complex cell should be inverted in shape, B
with the same amplitude as the same-contrast-sign cds@ = f f f [Geod X, YIN(E — 1) + MGsin(X, YIO(t = )]I(x, y, t')dxdydt’  (A9)
(Ohzawa et al. 1990; Qian 1994; Qian and Mikaelian 2000). In
reality, while many complex cells do show the predicted tuning -
curve inversion, the amplitude of tuning is typically reduced oo
(Cumming and Parker 1997; Ohzawa et al. 1997). It has been ) o , ,
suggested that an introduction of monocular thresholds at tFd = f f (G, YIN(E = ) = Moo, WAL= )Ny, )by’ (AL0)
simple cell stage may explain the reduced amplitude (Read et
al. 2000). Finally, there are cells that appear monocular when o o ) )
the two eyes are tested separately but show a large binocdl8§ linear filtering of the right image by the right RF k. 7is
interaction (either disparity- or nondisparity-selective) when .
the two eyes are stimulated together (Ohzawa and Freeman

ryt) = IIJ f.(x =D, y, t = t)I(xy, t")dxdydt’

binocular stimulus with a horizontal disparify can be written as

—

= B(t) cos(6(t) + &) (A7)

Bz(t))

By(0) (A8)

—o

19864a,b; Poggio and Fischer 1977). This is presumably due to (A11)
some subthreshold events and may be partially explained by
adding a binocular threshold i&q. 7 after the summation of

the monocular contributions. A full account, however, magccording toEq. 6,we have

—o
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f(x—D,y,t) = g(x — D, y)ht) + ng(x — D, y)h(t) (A12)
where
1 _x- D)? ¥ B
g(x—D,y) = 2moy0, exp( 207 202) cos(wX + ¢ — w;D)
(A13)
_ _ _(x=Dy* ¥ e
0(x—D,y) = 2mose, exp( 202 202) sin (wx + ¢, — wyD)

(A14)

When theo, is much larger than the image disparid; we can
approximate

{250 )=l =22)
ex 20 =~ ex| 202 (A15)
and a derivation similar to that fdgq. A7gives

r{t) = B(t) cos(0(t) + ¢, — wyD) (A16)

Finally, insertingeq. A7andEq. Al16into Eq. 7,we obtain the simple
cell response as

r{t) = O[ryt) + rit)]

0|
X

¢, — ¢+ D

2

)

~ ®[28(t) cos(@(t) + >] (A17)

which isEq. 9in the text.

Derivation of Eq. 13

The binocular interaction RF for complex cells is the impuls
response function obtained by flashing a line with preferred orien

tion (vertical in our case) at timgto locationsx, andx, in the two eyes
respectively. Because for vertical line stimuli, tiglimension ofEq.
7 simply integrates to a constant, we can ignore Yrdimension.

First, the response of the linear filtering of the dichoptically flash
line through the binocular simple cell RFs is given by

fi(x, ) * fi(x, t) = ﬁ{[coswixq + ¢ah(t) + n sin(wpx + ¢paht)]
= [cos (wgx + d)bh(t) + m sin (wex, + $)bh(t)]}

1 R b+ b
= 7\%(& {|E:os<wxx4 + 2

bt b
2

)ah(t)
=
+ [cos( WX, + .~ ¢ )bh(t)

+nsin< Xxf+¢ d)>bh(t)]}

=C, cos(d;) C,sin (%) =C cos<y + %)

+ nsin(w;x,+

(A18)

Y. CHEN, Y. WANG, AND N. QIAN

1

2 \/Z(TX

[<fsin (wix, + %)ah(t) +1 cos(wﬁm + %)aﬁ(t))

+ <7sin (wﬁx, — %)bh(t) +n cos<w§x, - %)bﬁ(t))] (A21)

C=\Ci+C; (A22)
-1 V(@ + b? = 2abcos(wi(x — x) + ¢ )N + nh(t) (A23)
V/ZTO'X
= \/S.(%, %)H(H) (A24)
vy = arctan(C,/C,) (A25)
with
S.(%, %) = (@ + b* = 2abcos(wi(x — %) + ¢_))  (A26)

202

andH(t) defined inEq. 15.According to the energy model, a complex
cell sums up the half-squared outputs of four simple cells, all with
identical RF parameters except their /2 differing in steps ofn/2.
Thus impulse response function of the complex cell to the dichopti-
cally flashed line is

)] + G)[C cos(y +
S. (%, X)H(®)

n important feature oEq. A27is that it is spatiotemporally separable
into S.(x, x,) and H(t), regardless of whether the complex cell is
directional or not. For comparison with the experiments, we transform
the preceding expressions with the same procedures used by Ohzawa
ef al. (1997) for processing their experimental data to obtain the purely
E‘blnocular interaction RF profiles: we first remove purely monocular
responsesaf and b? in Eq. A2§ by subtractingE~ from F*, then
change the variableg andx. to

w

Fx _ b b, +
(%, x,t) = 0| Ccos y+? + 0| Ccos| y+ 2

2 b, + 3

¢i +
+ @] Ccos|y+ 2

)

=C?’= (A27)

=Xx+x% D=x-x (A28)

to make disparityD explicit, and finally integrateR* — F~) with
respect tax, . The final binocular interaction RF, also called— T
profile (Ohzawa et al. 1997), for model complex cells is given by

F(D. ) = f " [S.(D, X)H(®) — S.(D, x,)H(®]dx,
~ SD)H®

where§(D) is defined inEq. 14.This isEqg. 13.No approximation is
used in this derivation.

(A29)
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