
Encoding of Binocular Disparity by Complex Cells in the
Cat’s Visual Cortex

IZUMI OHZAWA, GREGORY C. DEANGELIS, AND RALPH D. FREEMAN
Group in Vision Science, School of Optometry, University of California, Berkeley, California 94720-2020

Ohzawa, Izumi, Gregory C. DeAngelis, and Ralph D. Freeman. for estimating depth, stereopsis, the process of recovering
Encoding of binocular disparity by complex cells in the cat’s visual depth information from binocular disparity, is usually the
cortex. J. Neurophysiol. 77: 2879–2909, 1997. To examine the most robust and accurate for near distances (Howard and
roles that complex cells play in stereopsis, we have recorded extra- Rogers 1995; Pierce and Benton 1975). It has been demon-
cellularly from isolated single neurons in the striate cortex of anes- strated that binocular disparity alone can give rise to a vividthetized paralyzed cats. We measured binocular responses of com-

sensation of depth without the presence of any other depthplex cells using a comprehensive stimulus set that encompasses all
cues (Julesz 1960, 1971; Wheatsone 1838).possible combinations of positions over the receptive fields for the

The neural analysis of visual information for stereopsis istwo eyes. For a given position combination, stimulus contrast could
thought to begin in the primary visual cortex because it isbe the same for the two eyes (2 bright or 2 dark bars) or opposite

(1 bright and 1 dark). These measurements provide a binocular the first stage along the visual pathway where neurons may
receptive field (RF) profile that completely characterizes complex be activated by stimulation of either eye and because exten-
cell responses in a joint domain of left and right stimulus positions. sive binocular interactions occur between stimuli presented
Complex cells typically exhibit a strong selectivity for binocular to the two eyes simultaneously (Barlow et al. 1967; Ferster
disparity, but are only broadly selective for stimulus position. For 1981; Hubel and Wiesel 1962, 1968; LeVay and Voigt 1988;
most cells, selectivity for disparity is more than twice as narrow Nikara et al. 1968; Ohzawa and Freeman 1986a,b; Ohzawaas that for position. These characteristics are highly desirable if

et al. 1990; Pettigrew et al. 1968; Poggio and Fischer 1977;we assume that a disparity sensor should exhibit position invariance
von der Heydt et al. 1978). Although there are numerouswhile encoding small changes in stimulus depth. Complex cells
studies that present descriptions of how neurons respond tohave nearly identical binocular RFs for bright and dark stimuli as
binocular stimuli, little is known as to the specific neurallong as the sign of stimulus contrast is the same for the two eyes.

When stimulus contrast is opposite, the binocular RF also is in- circuitry that endows these neurons with the ability to re-
verted such that excitatory subregions become suppressive. We spond to stereoscopic stimuli. We do not yet know, for exam-
have developed a disparity energy model that accounts for the ple, the roles that simple and complex cells play with respect
behavior of disparity-sensitive complex cells. This is a hierarchical to stereopsis. Although both types of neurons clearly are
model that incorporates specific constraints on the selection of tuned for binocular disparities (Ferster 1981; Joshua and
simple cells from which a complex cell receives input. Experimen- Bishop 1970; Pettigrew et al. 1968), only complex cellstal data are used to examine quantitatively predictions of the model.

appear to respond selectively to dynamic random dot stereo-Responses of complex cells generally agree well with predictions
grams (DRDS), which are defined by binocular disparityof the disparity energy model. However, various types of deviations
alone (Poggio et al. 1985, 1988; Poggio and Poggio 1984;from the predictions also are found, including a highly elongated
Poggio 1995). These findings suggest that complex cellsexcitatory region beyond that supported by a single energy mecha-

nism. Complex cells in the visual cortex appear to provide a next may perform more advanced and specialized processing of
level of abstraction in encoding information for stereopsis based binocular information for stereopsis than simple cells.
on the activity of a group of simple-type subunits. In addition to Because the overall size of a complex cell receptive field
exhibiting narrow disparity tuning and position invariance, these (RF) is much larger than its optimal width for a bar-shaped
cells seem to provide a partial solution to the stereo correspondence stimulus (Emerson et al. 1987; Gaska et al. 1994; Movshon
problem that arises in complex natural scenes. Based on their binoc- et al. 1978a), it is expected that multiple image features inular response properties, these cells provide a substantial reduction

the visual scene (with sizes optimally excitatory to the cell)in the complexity of the correspondence problem.
will fall into the RF of each complex cell (Fig. 1A) . Unlike
simple cells, which have multiple discrete flanks and appear
capable of signaling the presence of multiple features withinI N T R O D U C T I O N
the RF (Fig. 1B) by a linear transform (Gabor 1946; Geisler

One of the most remarkable features of the visual system and Hamilton 1986; Ohzawa et al. 1996; Robson 1983; Wat-
is the ability to see the world in three-dimensional depth. son 1991), complex cells seem to face a more difficult binoc-
The visual system reconstructs depth from the pair of two- ular correspondence problem, i.e., identification of corre-
dimensional images projected on the retinas of the two eyes. sponding image features in left and right images. This is one
These two images are very similar, but they contain small of the key problems in stereopsis (Julesz 1968, 1971; Marr
variations in the position of corresponding features in the and Poggio 1976). As illustrated in Fig. 1C (Julesz 1968,
visual scene, because the two eyes see the world from 1971), the correspondence problem arises because there is
slightly different view points. This positional variation is inherent ambiguity in attempts to match corresponding fea-

tures in left and right images. Without an appropriate filteringcalled binocular disparity. Although there are other means
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FIG. 1. Binocular correspondence problem is illustrated in relation to 2 major receptive field (RF) types: simple and
complex. A : complex cells generally have large RFs that may contain several targets (bars) as illustrated (h and j) . B :
simple cells, on the other hand, have discrete RF subregions. C : when multiple targets are present as in A , there are large
number of possible binocular matches (all intersections of rays) including false matches (●) and correct matches (enclosed
in a horizontal ellipse) , (redrawn after Julesz 1971). Number of possible matches grows with square of number of targets
in each image. Any stereo vision system must be able to solve the binocular correspondence problem, i.e., that of finding
correct matches for left and right targets. If a complex cell responds in a nondiscriminatory manner to any conjunction of
left and right targets within its RFs, it will not be able to tell the difference between correct and false matches. D : configuration
of C is shown again in a Cartesian coordinate system.

mechanism, false targets (dots in Fig. 1, C and D) may Movshon et al. 1978a; Ohzawa et al. 1990). However, they
possess similar spatial frequency tuning properties to thoseelicit as much excitation as correctly matched targets (open

and filled squares in Fig. 1, C and D) . An examination of of simple cells and only slightly broader orientation tuning
characteristics (Gizzi et al. 1990; DeValois et al. 1982; Mov-Fig. 1C indicates that one of the appropriate filtering opera-

tions may be the selection of the matches contained within shon et al. 1978b). When studied with binocular stimuli,
their disparity tuning is often narrower than the overall RFthe horizontally elongated ellipse. When plotted in a familiar

Cartesian coordinate system (XL , XR) , the desired region of size predicts (Joshua and Bishop 1970; Pettigrew et al.
1968). This high degree of selectivity is thought to originatesensitivity for such a filter is an elongated diagonal region

as shown in Fig. 1D . Such a sensitivity map may be de- from multiple underlying RF subunits (Gaska et al. 1987,
1994; Movshon et al. 1978a; Ohzawa and Freeman 1986b;scribed as the binocular receptive field of the cell. We exam-

ine quantitatively if complex cells possess binocular RF pro- Spitzer and Hochstein 1985; Szulborski and Palmer 1990).
Properties of these RF subunits appear to be similar in everyfiles similar to that shown in Fig. 1D . It is also of interest

to know the effects of stimuli falling outside the elongated respect to those of simple cells: 1) Within a monocular RF
of a complex cell, spatial antagonism between neighboringdiagonal area. They could cause suppression or have no

effect. We also examine the responses of models in the same subregions may be demonstrated by studying interactions
between two stimuli that are presented at a variety of spatial(XL , XR) domain, and compare predicted responses with the

binocular RFs obtained from cells. separations (Movshon et al. 1978a; Szulborski and Palmer
1990). 2) These two-stimulus interaction profiles accuratelyIn addition to studying response properties of complex

cells as outlined above, we wish to devise a physiologically predict the orientation and spatial frequency tuning of the
complex cell (Gaska et al. 1994; Movshon et al. 1978a;realistic model for the role of these cells in binocular pro-

cessing. Such a model must be consistent with the physiolog- Szulborski and Palmer 1990). 3) RF subunits of complex
cells combine input from the two eyes in a linear mannerical data we obtain, as well as with findings from previous

studies. We know that the RFs of complex cells appear (Ohzawa and Freeman 1986b). Furthermore, electrical stim-
ulation of LGN afferents evokes mostly polysynaptic excita-generally broad in spatial extent, and nonspecific with re-

spect to the sign of contrast (bright or dark) of a bar or edge tion in pyramidal neurons, especially in layers 2/3 (Douglas
and Martin 1991). These findings strongly suggest a hierar-stimulus (DeAngelis et al. 1995b; Hubel and Wiesel 1962;
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chical model of a complex cell that consists of a simple cell Stimuli and data acquisition
subunit stage and an output stage at which multiple subunits A tangent screen with a back-projected bar stimulus was used
are combined. for initial exploration of RFs. The position and orientation of the

On the basis of physiological findings outlined above, bar were controlled by a joystick to facilitate manual exploration.
a number of monocular hierarchical models of complex Visual stimuli for quantitative measurements were generated on a
cells has been proposed (Adelson and Bergen 1985; Emer- matched pair of cathode ray tube displays and presented dichopti-

cally through half-silvered front-surface mirrors angled at 457 inson et al. 1992; Gaska et al. 1994; Pollen et al. 1989) . In
front of the animal’s eyes. The mean luminance of the displaysthis study, we develop a model that is suitable for the
was 45 cdrm02 by direct viewing and 17 cdrm02 as viewed throughbinocular case (Ohzawa et al. 1990) and derive a theoreti-
the half silvered mirrors. The screens were placed at 57 cm fromcal framework in which physiological results may be com-
the cat’s eyes, at which distance they subtended 28 1 227.pared quantitatively with model predictions. For this pur-

The displays were driven by a PC-based dichoptic visual stimu-pose, we obtain a complete characterization of response lator with two graphics adapters (Imagraph) and had a spatial
properties of complex cells in the joint space-disparity- resolution of 1,024 1 804 pixels. The two displays were refreshed
time domain and then compare these properties with pre- at a frame rate of 76 Hz. The timing of video frames for the two
dictions of specific models (Fleet et al. 1996, 1997; Oh- displays was synchronized by hardware so that the dichoptic stim-
zawa et al. 1990; Qian 1994, 1997) . uli might be delivered without onset asynchrony. The stimulator

generated sync pulses that indicated stimulus onset and timing
of temporal modulation. These pulses were recorded by the data

M E T H O D S acquisition system along with the spike data.
Conventional amplifiers, oscilloscopes, and audio speakers were

Surgical methods, experimental apparatus, and neurophysiologi- used to monitor raw signals from the microelectrodes. Spike data
cal recording procedures have been described in detail elsewhere and stimulus sync pulses were recorded by custom-built data acqui-
(DeAngelis et al. 1993a; Ohzawa et al. 1996). Brief descriptions sition systems. A separate computer was used to control experi-
and procedures not described previously are presented here. ments and to perform preliminary real-time analysis of incoming

data. The PC-based visual stimulator was controlled via a serial
port, and the acquired spike and stimulus sync data were receivedSurgical procedure from the data acquisition systems via high-speed interfaces. Suffi-
cient information to reconstruct each trial, as well as times ofAdult cats (2–4 kg) were prepared for electrophysiological re-
occurrence of all spikes and sync pulses, were saved to a file tocording as follows. First, a subcutaneous injection was given of
allow flexible and complete reanalysis of data. The data were re-Atropine sulfate (0.2 mg/kg) and Acepromazine (1 mg/kg). An-
corded with 1 ms (previous system) or 40-ms (current system)esthesia was induced and maintained during surgery with halothane
resolution.(2.5–3% in oxygen). Electrocardiogram (ECG) electrodes and a

rectal temperature probe were installed. ECG and core temperature
Recording procedureswere monitored using a PC-based physiological monitoring system

(Ghose et al. 1995), which logs heart rate and temperature auto- Tungsten-in-glass microelectrodes (Levick 1972) were used for
matically every 5 min. Catheters were inserted into femoral veins extracellular recording from neurons in the striate cortex. To in-
on two limbs for infusion of drugs and fluids. A glass tracheal crease the chance of encountering cells, two electrodes were
cannula was inserted immediately after tracheostomy. A stereotaxic mounted in a protective guide tube. They were driven in parallel
apparatus was used to position the animal’s head securely. Lido- with a single microelectrode drive (Inchworm, Burleigh). To mini-
caine ointment (5%) was used at pressure points. The skull was mize tissue damage, the two electrodes were not glued together to
exposed, and two small machine screws were inserted for use as allow cortical tissue to pass between them. After confirming under
electroencephalogram (EEG) electrodes. Then, a craniotomy was a microscope that the electrodes do not penetrate blood vessels on
performed to access the central representation of the visual field in the cortical surface, a small amount of agar in warm Ringer solution
the striate cortex (Horsley-Clark P4 L2.5) . The dura was removed was applied to stabilize the cortex. Then molten wax was applied
carefully to allow insertion of microelectrodes. After this point, over the agar and the surrounding cranial bone to form a sealed
anesthesia was administered by intravenous injection of sodium chamber. This provided additional stability and protected the agar
thiamylal (Surital) . Then, paralysis was induced with an initial from drying.
dose of gallamine triethiodide (Flaxedil, 7–10 mg/kg), and the After isolation of spike waveforms, the position and approximate
animal was placed under artificial respiration. Anesthesia for the preferred orientation of the RFs (for each eye) were recorded using
rest of the recording session was maintained by a combination of a bar stimulus projected on the tangent screen. Then, an interactive
nitrous oxide (70% mixed with oxygen) and Surital (1 search program (DeAngelis et al. 1993a) was used to determine
mgrkg01

rhr01) . Paralysis was maintained by continuous infusion optimal parameters with a small circular patch of drifting sinusoidal
of Flaxedil (10 mgrkg01

rhr01) in lactated Ringer solution con- grating. Initial estimates of the optimal spatial frequency, orienta-
taining 5% dextrose. To maintain a proper level of respiration, a tion, and the center location of RFs were obtained. These values
CO2 sensor (Hewlett-Packard 47210A) was used. For the remain- were refined by subsequent quantitative measurements under com-
der of the experiment, four physiological parameters: heart rate, puter control. As a routine procedure, orientation tuning, and direc-
temperature, end-tidal CO2 level, and EEG amplitude, were dis- tion selectivity were measured first for each eye. Then, spatial and
played continuously and logged by the monitoring system (Ghose temporal frequency tuning curves were obtained. Each curve was
et al. 1995). The system provides voice warnings if any of these defined by 7–11 points, and a cubic spline procedure (Press et al.
parameters exceed preset limits. Pupils were dilated with 1% atro- 1992) was used to locate the peaks of the tuning curves.
pine sulfate solution, and nictitating membranes were retracted
with 5% phenylephrine HCl. Contact lenses of appropriate power Binocular RF measurement and analysis
with 4 mm artificial pupils were placed over the corneas. Locations
of optic disks and the area centrales were mapped onto a tangent A reverse correlation procedure (DeBoer and Kuyper 1968; Eg-

germont et al. 1983; Jones and Palmer 1987a; Sutter 1974, 1975)screen using a reversible ophthalmoscope.
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FIG. 2. A method of obtaining detailed binocular RF maps
is illustrated. An exhaustive set of dichoptic stimuli is pre-
sented in which all possible combinations of left and right
stimulus positions are included for each left-right permutation
of contrast sign: dark-dark, bright-bright, dark-bright, and
bright-dark. Stimuli in the set are presented in random order,
1 by 1, at a rate of 20–25 stimuli /s. Stimulus presentations
are repeated after reshuffling the sequence. Resulting spike
trains are cross-correlated with the stimulus sequence using
a procedure known as reverse correlation (see text) .

was used to study binocular RFs. Details of our monocular reverse Presentation of such a stimulus sequence elicited a train of
spikes. For each spike generated, a causal stimulus pair that wascorrelation method have been described previously (DeAngelis et

al. 1993a, 1995a; Freeman and Ohzawa 1990; Ohzawa et al. 1996). likely to have elicited the spike was identified by looking up the
stimulus that preceded the spike by a given delay (Fig. 2, top) .A binocular version of the reverse correlation method was similar

to the monocular one except that each stimulus consists of a pair For the real-time analysis during measurements, we used a delay
of 40–70 ms, empirically determined to be effective for mostof bars presented dichoptically, as illustrated schematically in

Fig. 2. neurons. However, the choice of this delay was not critical because
we reanalyzed the data for delays ranging from 0 to 300 ms orA binocular RF profile is defined in a joint two-dimensional

domain (XL , XR) that includes the conjunction of left and right more as soon as a run was completed. For example, for the right-
most spike shown in Fig. 2, a look-up in the stimulus sequenceRFs (see Fig. 1D) . Bright and dark bars of optimal orientations

were presented in randomized order, at all possible combinations identifies k as the causal stimulus, which happens to be a pair of
bright and dark bars presented to the left and right eyes, respec-of left and right stimulus positions. Typically, 20 stimulus locations

were used for each eye. This defined a 20 1 20 point stimulus tively, at the locations indicated. An element in the two-dimen-
sional map at the corresponding location (XL , XR) is incremented.grid in the (XL , XR) domain. Because each eye may be shown

either a bright or dark bar, there were four permutations of bright In this example, only the map for bright-dark stimulus combination
is shown, but note that there are a total for four such maps, oneand dark stimuli at each grid point. Therefore each binocular RF

measurement tallied responses to 1,600 (20 1 20 1 4) distinct for each permutation of bright and dark stimuli for the two eyes.
Stimulus sequences were repeated, with random reshuffling of thestimuli. The sheer size of the binocular stimulus set limited the

stimulus configuration for each eye to a long bar that was moved stimulus set, until smooth profiles were obtained (or until the unit
was lost) . Typically, a total of 20–40 sequences was used, whichalong the axis perpendicular to the preferred orientation. Each stim-

ulus was presented for three to four video frames (40–53 ms/ took 20 min to 1 h. This process yielded a complete binocular RF
map for a given correlation delay. However, as we have empha-stimulus or 19–25 stimuli /s) in a randomized sequence without

any blank frames. Even at this rapid presentation rate, a complete sized for the monocular case, RFs should be considered in the joint
space-time domain because spatial and temporal profiles are clearlystimulus sequence lasted 64–85 s.
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interdependent in many cases (DeAngelis et al. 1995b). For this the left margin of each domain (i.e., the left-most vertical
reason, we computed binocular RFs in the joint domain of space cross-section) represents a monocular RF profile for the right
and time (XL , XR, T), or in the related domain of binocular dispar- eye. Compared with the excitation level at the peak of the
ity and time (D, T), where T is the correlation delay. monocular profile, there is a suppression of the response

along the diagonal for the bright-dark and dark-bright combi-
Histology and laminar analysis nations. This indicates that the response is suppressed when

opposite contrasts are presented at the optimal binocularFor each electrode track, electrolytic lesions (5 mA, 10 s) were
disparity (for same contrast combinations) . The above pat-made at 700- to 1,500-mm intervals while the electrodes were

retracted. The animal then was given an overdose of pentobarbital tern of binocular responses is observed frequently among
sodium (Nembutal) and perfused through the heart with Formalin complex cells. These results indicate that many complex
(4% in buffered saline) . Coronal sections (40 mm thickness) of cells respond in a nearly ideal manner, filtering out responses
the visual cortex were made and stained with thionin. Electrode to false targets as outlined in Fig. 1, C and D , when the sign
tracks then were reconstructed. Based on lesions and the depth of contrast is matched for the two eyes.
information for each recorded cell, the laminar locations of the For comparison, results of a similar experiment on a sim-cells were identified. Histological analyses confirmed that all cells

ple cell are presented in Fig. 3B . The response pattern iswere recorded from area 17.
clearly different from that of the complex cell of Fig. 3A .
First, all four panels show different patterns. In particular,

R E S U L T S
patterns for bright-bright and dark-dark stimulus combina-
tions are not the same. In fact, bright-bright and dark-darkWe recorded from a total of 257 neurons in the striate

cortex of 18 normal adult cats. Of these, 115 were classified RF maps are complementary to each other: where there is
a peak in one, there is a blank area in the other. This alsoas complex on the basis of subjective criteria (Hubel and

Wiesel 1962) and on the degree of temporal modulation of applies to bright-dark and dark-bright conditions. The struc-
ture of the binocular RF profile for the simple cell is wellresponses to drifting sinusoidal gratings (Skottun et al.

1991). The remaining 142 cells were classified as simple, predicted from the monocular response profiles given along
the margins (dashed curves) . The binocular pattern is ap-and results for many of these cells are reported elsewhere

(DeAngelis et al. 1991, 1995a; Ohzawa et al. 1996). Of the proximately the sum of monocular excitation from the two
eyes, i.e., those cross-points at which excitation (peaks of115 complex cells, quantitative binocular RF measurements

were completed for 46 disparity selective cells and 8 dispar- monocular profiles) from the left and right eyes coincide,
show highly enhanced responses. On the other hand, at thoseity insensitive cells. Cells were sometimes lost during pre-

liminary grating measurements for spatial frequency tuning locations where a trough in one eye’s monocular profile
meets a peak for the other eye, there is little response. Thisor dichoptic relative-phase sensitivity (Ohzawa and Freeman

1986a). We also should note that we focused on cells that indicates that a bright-excitatory subregion is indeed inhibi-
tory to a dark stimulus and a dark-excitatory subregion isshowed clear relative-phase sensitivity with dichoptically

presented gratings. We did not always perform complete RF inhibitory to a bright stimulus. This simple cell behavior is
consistent with linear spatial summation of inputs from themapping on cells that were nonphase-specific because they

are not likely to be directly involved with stereopsis (Oh- two eyes (Ohzawa and Freeman 1986a). Note that the be-
havior of the complex cell (Fig. 3A) cannot be explained byzawa and Freeman 1986b; Ohzawa et al. 1996). Therefore,

our complex cell sample is biased toward those that exhibited linear mechanisms. The basic pattern of binocular responses
shown in Fig. 3B is duplicated for other simple cells wesome binocular interaction.

Figure 3A shows the measured binocular RF for a repre- have studied. These results suggest that simple cells are
involved in general purpose processing and are not special-sentative complex cell. There are four separate RF maps for

different permutations of bright and dark stimuli presented ized specifically for stereopsis. An array of simple cells rep-
resents a general linear transformation of the retinal images.to the two eyes. The basic characteristics of these RF maps

may be summarized in three main points. First, there is a As such, they are useful for a variety of visual functions
(Ohzawa et al. 1996).clear elongated region of strong excitation along a 457 diago-

nal when stimuli shown to the two eyes have the same con-
trast sign (i.e., bright-bright and dark-dark combinations) . Disparity tuning curves and disparity-time RFs
This pattern of response translates into a region of narrow
selectivity for depth (Fig. 1C) , thus eliminating many possi- The format of data presentation in Fig. 3 is somewhat

unusual in the sense that most binocular data in previousble false matches that could occur within the cell’s RF (Fig.
1D) . Second, responses to bright-bright or dark-dark stimuli studies are presented in the form of a disparity tuning curve

(i.e., a one-dimensional function of disparity) and not as aare nearly identical, indicating that the cell is not sensitive
to the sign of contrast as long as it is matched for the two two-dimensional profile (Pettigrew et al. 1968; Poggio and

Fischer 1977). This is primarily because of methodologicaleyes. Third, for combinations of opposite stimulus contrast
for the two eyes (bright-dark and dark-bright) , there are two limitations in previous studies. It would have taken too long

with traditional peristimulus time histogram techniques, toparallel regions of excitation on each side of the diagonal.
These are nearly equally strong but are weaker than the measure responses to 400 (20 1 20) combinations of stimu-

lus positions. By virtue of its experimental efficiency, theexcitation to the matched combinations of contrast. Note that
responses near the margins of the XL-XR domains represent reverse correlation technique largely eliminates this diffi-

culty, allowing point-by-point measurements of binocularmonocular excitation profiles, because one eye’s stimulus is
outside the RF for that eye. For example, the profile near responses in depth. To allow comparisons, we can reduce
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FIG. 3. Representative data from 2 cells in striate cortex are shown. A : complex cell ( layer 2/3). Binocular RFs in XL-
XR domain are shown as contour plots for 4 permutations of stimulus contrast. The darker the shading within a contour, the
greater the response. Peak response (darkest contours) for this cell was 2.0 spikes per stimulus presentation. Contour levels
are equally spaced, and the same scale is used for all 4 domains. Dashed curves near the margins of each domain represent
monocular RF profiles. Stimulus size, optimal spatial frequency, and orientation were 4 1 0.57, 0.31 c/deg, and 757 (07 is
horizontal and 907 is vertical) , respectively. Stimulus duration and correlation delay were 52.8 and 65 ms, respectively. B :
simple cell ( layer 4) . Monocular responses plotted near the margins of each panel (dashed curves) show the difference of
bright and dark responses. Peak response for this cell was 3.9 spikes per stimulus. Stimulus size, optimal spatial frequency,
and orientation were 5 1 0.57, 0.4 c/deg, and 1557, respectively. Stimulus duration and correlation delay were 52.8 and 60
ms, respectively.

our data to obtain disparity tuning curves. This process is the confounding effects produced by moving stimuli. Similar
problems are present when attempting to interpret monocularillustrated in Fig. 4. A disparity tuning curve is derived by

integrating the two-dimensional XL-XR profile along constant RF profiles measured using moving bar stimuli (DeAngelis
et al. 1995a; Maske et al. 1984; Ohzawa et al. 1996). Directdisparity lines parallel to the 457 diagonal. The resulting

curve is shown at the top-right of Fig. 4. [Note that the comparisons of our disparity tuning curves to those obtained
by moving bar stimuli are not possible because we did notpythagorean geometrical distance relationship does not hold

in the XL-XR domain. For example, the upper left and bottom use such stimuli. In any case, neither our method nor the use
of moving bar stimuli is appropriate for studying sequentialright corners of the XL-XR domain are separated by 10 de-

grees of disparity as depicted in the tuning curve, not by effects. A nonlinear analysis technique (Anzai et al. 1995)
is required to adequately address this problem.7.07 degrees (5r20.5 ) . This is because the XL-XR domain is

distorted from real space as illustrated in Fig. 1C .] Because In addition to facilitating comparisons between our data
and those of previous studies, reducing the XL-XR profile towe integrate over all combinations of positions that corre-

spond to a particular disparity, this derivation process is a disparity tuning curve allows us to examine the temporal
behavior of disparity selectivity. We can compute disparityessentially equivalent to measuring a disparity tuning curve

with a slow moving bar stimulus, in which the total number tuning curves (as in Fig. 4) for a range of correlation delays
between stimulus and response, thus producing a disparity-of spikes generated by a swept bar is plotted as a function

of disparity. Note that the original XL-XR profile is obtained time (D-T) plot. Just as the monocular space-time RF is a
key predictor of direction selectivity for simple cells (Burrusing stationary flashed stimuli. Therefore, the disparity tun-

ing curve generated in this manner is likely to be somewhat and Ross 1986; DeAngelis et al. 1993a,b; McLean and
Palmer 1989; McLean et al. 1994; Reid et al. 1991; Watsondifferent from that obtained by swept bar stimuli. The differ-

ence will probably be more pronounced for direction selec- and Ahumada 1985), the disparity-time RFs can describe
how neurons respond to changes in disparity of binoculartive complex cells for which second and higher order (se-

quential) stimulus effects make a large contribution (Baker stimuli, i.e., motion-in-depth (Cynader and Regan 1978,
1982; Spileers et al. 1990). Figure 5 shows binocular RF1990; Emerson et al. 1987). The disparity tuning curves that

we obtain represent pure disparity sensitivity profiles without profiles as well as disparity-time profiles for a complex cell.

J877-6/ 9k13$$ju02 08-05-97 09:36:50 neupa LP-Neurophys



BINOCULAR DISPARITY ENCODING BY COMPLEX CELLS 2885

XL-XR profiles (Fig. 5A) show characteristics similar to those
of the complex cell in Fig. 3A. Almost identical response
patterns are observed for the two matched contrast sign con-
ditions (bright-bright and dark-dark) each having a single
diagonally elongated region of excitation. The two diagonal
regions of excitation for opposite contrast conditions (bright-
dark and dark-bright) are also similar to those for the cell
of Fig. 3A, except that the responses are stronger. Disparity
tuning profiles, derived as outlined above, are shown in Fig.
5B. These profiles clearly exhibit even-symmetric disparity
tuning. Figure 5C shows D-T profiles for each left-right
contrast sign combination. The D-T profiles have a relatively
simple structure in that the shape of the disparity tuning
curve remains constant over the time course of the response.
Only the response amplitude appears to change over time,
with the peak response occurring at 60 ms for this cell
(dashed horizontal line) . Note, in particular, that the pre-
ferred disparity remains constant over time, i.e., there is no
tilt of excitatory regions in the disparity-time domain. This
indicates that the cell is not particularly sensitive to motion-
in-depth (Cynader and Regan 1978, 1982; Spileers et al.

FIG. 4. A process is shown by which a traditional form of disparity 1990).
tuning curve is derived from data in XL-XR domain. Oblique lines indicate Figure 6 presents data from another cell. Again, XL-XR
loci along which binocular disparity of stimuli is constant. Integrating XL- maps for the two matched-contrast conditions exhibit nearlyXR data along lines of constant disparity yields the disparity tuning curve

identical response patterns, each having a 457 diagonal re-( top right) .
gion of excitation. However, the disparity tuning curves

FIG. 5. Data from another complex cell ( layer 2/3) are shown. A : data are presented in same format as in Fig. 3A .
Peak response for this cell was 3.4 spikes per stimulus. Stimulus size, optimal spatial frequency, and orientation were 20 1
0.47, 0.35 c/deg, and 1457, respectively. Stimulus duration and correlation delay were 52.8 and 60 ms, respectively. B :
disparity tuning curves, obtained by procedure illustrated in Fig. 4, are shown for respective XL-XR plots above. C : time
courses of disparity tuning are shown as disparity-time (D-T) plots. Time delay used for A and B is shown by a horizontal
dashed line.
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FIG. 6. Data from another complex cell ( layer 2/3) are presented in same format as Fig. 5. A : XL-XR plots are shown.
Peak response for this cell was 4.4 spikes per stimulus. Stimulus size, optimal spatial frequency, and orientation were 20 1
0.47, 0.93 c/deg, and 857, respectively. Stimulus duration and correlation delay were 52.8 and 70 ms, respectively. B : disparity
tuning curves for this cell are nearly odd-symmetric with respect to center of envelope. C : disparity-time plots are shown.

shown in Fig. 6B are not even symmetric. There is a promi- tation coincides or occurs at separate positions along a given
path. The existence of these cells is expected, because com-nent dip in the response below the plateau level (monocular

excitation level) on the left side of the excitatory peak, but plex cells that are not selective to disparity have been re-
ported previously (Chino et al. 1994; Joshua and Bishopnot on the right side. This disparity tuning pattern is again

constant over time as indicated by the D-T profiles shown in 1970; Ohzawa and Freeman 1986b). The cell shown in Fig.
7 did not exhibit interocular phase tuning to drifting sinusoi-Fig. 6C . Curiously, for this cell, opposite contrast conditions

(dark-bright and bright-dark) produced little binocular inter- dal grating stimuli presented dichoptically (Ohzawa and
Freeman 1986b).action. For these conditions, the disparity tuning curves in

Fig. 6B do not show clear peaks, and the D-T profiles in
Fig. 6C exhibit very little structure. Disparity energy model

Not all complex cells exhibit clear binocular interactions
as shown in Figs. 3, 5, and 6. Figure 7 presents results from We have proposed a model for disparity-selective complex
a cell that had no apparent binocular interaction. In Fig. 7A, cells based on a combination of simple-cell subunits (Ohzawa
excitation due to left and right eye monocular stimuli extends et al. 1990). Here, we present the model’s behavior in detail
as vertical and horizontal bands, respectively, forming a and examine quantitatively whether it provides an adequate
cross-shaped profile. At the intersection of these bands, the description of experimental data. Figure 8A illustrates the
excitation level is generally higher. This is most pronounced model for a complex cell that is tuned to zero disparity. The
for the left-most panel (dark-dark) , but it is also visible for model consists of a minimum of four simple-cell subunits
the middle two panels. This pattern occurs because excitation that are combined to produce the output of a complex cell.
from the two eyes adds together at the intersection. However, In this sense, the model is hierarchical and gives a concrete
the transformed disparity tuning curves are flat, as shown in functional design to the original scheme proposed by Hubel
Fig. 7B . This may be understood by examining the proce- and Wiesel (1962). Our model is also a natural binocular
dure for deriving a disparity tuning curve, as depicted in extension of monocular complex cell models (Adelson and
Fig. 4. A diagonal line at any location in Fig. 4 will cross Bergen 1985; Emerson et al. 1992; Pollen et al. 1989). Each
the peaks of excitation for the left and right eyes, given a subunit is binocular and linearly combines inputs from the
sufficient path length. Therefore the cumulative response two eyes (Ohzawa and Freeman 1986a). The output of the

subunits passes through a half-squaring nonlinearity beforeremains constant regardless of whether the monocular exci-
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FIG. 7. Data are illustrated for a complex cell ( layer 5) that is not sensitive to binocular disparity. A : there is no diagonal
structure in these XL-XR plots unlike cells in previous figures. Peak response for this cell was 2.7 spikes per stimulus. Stimulus
size, optimal spatial frequency, and orientation were 20 1 0.257, 0.95 c/deg, and 1607, respectively. Stimulus duration and
correlation delay were 52.8 and 100 ms, respectively. B : disparity tuning curves are nearly flat for all permutations of
stimulus contrast. D-T plots are not shown because there is no structure in any of the plots.

converging onto a complex cell (Emerson et al. 1989, 1992; The response of complex cell C1 is then given by adding
the contribution from subunits S3 and S4 to Eq. 4Heeger 1992a,b; Ohzawa et al. 1990; Pollen et al. 1989). The

output of the subunit S1 at the top of Fig. 8A to a line stimulus
RC1(XL , XR) Å RS1 / RS2 / RS3 / RS4 Å {exp(0kX 2

L) cos (2pf XL)(or a thin bar) is given by
/ exp(0kX 2

R) cos (2pf XR / c)}2 / {exp(0kX 2
L) sin (2pf XL)RS1(XL , XR) Å Pos [exp(0kX 2

L) cos (2pf XL)

/ exp(0kX 2
R) sin (2pf XR / c)}2 . (5)/ exp(0kX 2

R) cos (2pf XR / c)]2 (1)

where k is the factor that determines the width of the subunit This function is shown as a contour plot in Fig. 8C and is
RFs and f is the spatial frequency. These two parameters very similar to the responses of the complex cells shown in
are assumed to be equal for the two eyes, and this assumption Figs. 3A and 5A for the matched contrast conditions. A
is supported by our data for simple cells (Ohzawa et al. traditional disparity tuning curve also is obtained for the
1996). The parameter c is the phase difference between left model, using the procedure described in Fig. 4, and plotted
and right RFs. Pos [£] is a half-rectifying function below the two-dimensional profile in Fig. 8C . The disparity

tuning curve is quite similar to those shown in Figs. 4 andPos [£] Å £ for £ ¢ 0
5B . The case described in Fig. 8A (c Å 0) produces a cell

Å 0 for £ õ 0. (2) that is tuned to zero disparity as indicated by the dashed
diagonal line in Fig. 8C .This is a relatively straightforward model of a simple cell

Models that compute the sum-of-squares (e.g., Eq. 5) arewith linear binocular convergence (Ohzawa and Freeman
called ‘‘energy models’’ on the basis of a formal definition1986a) and a half-squaring nonlinearity (Emerson et al.
of energy (Adelson and Bergen 1985). For example, in1989, 1992; Heeger 1992a,b; Pollen et al. 1989). This latter
physics, the integral over time of the square of a voltagecomponent may be considered as a form of ‘‘soft threshold’’
waveform across a resistor is proportional to the energy(Carandini et al. 1996). The phase difference, c, accounts
dissipated within the resistor. This notion may be generalizedfor the observation that the left and right RFs of simple cells
to neural signals. Simple-cell subunits that feed into a com-may have different shapes (DeAngelis et al. 1991, 1995a;
plex cell ( i.e., a binocular energy unit) must meet specificFreeman and Ohzawa 1990; Ohzawa et al. 1996). For sim-
requirements to produce a sufficiently smooth binocular pro-plicity, we use even- and odd-symmetric subunit RFs as
file. First, all monocular parameters must be the same amongshown in Fig. 8A . This nonbiological restriction (DeAngelis
the four subunits, including spatial frequency, orientation,et al. 1993a; Field and Tolhurst 1986) is removed later.
size, and position of the RF envelopes. This has been shownIn Fig. 8A , we show the case of c Å 0. Plots for c x 0
to be true for most simple cells (Ohzawa et al. 1996; Skottunare shown later. Because the subunits S1 and S2 have in-
and Freeman 1984). The requirement does not apply toverted RFs and for any function g(a)
phase, however. Second, all subunits must share a common

Pos [g(a)] 2 / Pos [0g(a)] 2 Å g(a) 2 , (3) preferred disparity as measured with bar or grating stimuli
(Ohzawa and Freeman 1986b). Although simple cells dothe sum of contributions from the top two subunits S1 and
not possess a unique preferred disparity to noise stimuli andS2 is given by
hence they tend not to respond to dynamic noise stereograms

RS1(XL , XR) / RS2(XL , XR) Å {exp(0kX 2
L) cos (2pf XL) (Poggio et al. 1985; Qian 1994; Zhu and Qian 1996), they

do exhibit a clear disparity tuning to bar or grating stimuli/ exp(0kX 2
R) cos (2pf XR / c)}2 (4)
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(Ferster 1981; LeVay and Voigt 1988; Ohzawa and Freeman subunit at the top of Fig. 8A yield the binocular response at
S1, which is even-symmetric along both the horizontal and1986b). Third, the phases of the four subunits (not left and

right RF phases) must differ from each other by multiples vertical axes. The response is strongest at the center of the
profile, where the peaks of monocular excitation coincide.of 907 (Pollen et al. 1989). Our model assumes that these

conditions are fulfilled. Responses of the second subunit, at S2, are shown in the
second panel of Fig. 8B . Again, the binocular response pat-To illustrate how each of the four subunits contributes to

the final complex cell response, XL-XR maps for the individ- tern is related closely to the monocular RF structure shown in
Fig. 8A (second subunit from top). The binocular responseual subunits are shown in Fig. 8B . The binocular response

profile of each subunit exhibit the pattern of excitation and exhibits four peaks at locations where peaks in the two mon-
ocular RF profiles coincide. Note the similarity of the binoc-inhibition that is well predicted by monocular RFs of the

subunit. For example, even-symmetric monocular RFs of the ular responses of the model’s subunits to those of the simple
cell shown in Fig. 3B . This is not surprising given that
binocular simple cells combine input from the two eyes in
a linear manner (LeVay and Voigt 1988; Ohzawa and Free-
man 1986a), as do the subunits in the model. The binocular
response of the complex cell, as an XL-XR map, is given in
Fig. 8C . This is the sum of the four subunit profiles shown
in Fig. 8B . Note that the four subunit profiles, each of which
lacks any elongation along the diagonal, combine to produce
a remarkably smooth, diagonally elongated complex cell bin-
ocular RF profile.

Binocular responses to opposite contrast stimuli to the
two eyes are shown in Fig. 8D (Ohzawa et al. 1990). The
response pattern may be expressed as

RC1(XL , XR) Å {exp(0kX 2
L) cos (2pf XL)

0 exp(0kX 2
R) cos (2pf XR / c)}2 / {exp(0kX 2

L) sin (2pf XL)

0 exp(0kX 2
R) sin (2pf XR / c)}2 . (6)

This equation is identical to Eq. 5 , except for the sign inver-
sion of the right-eye terms. There is prominent suppression
along the diagonal, exactly at the location where there is an
excitatory region in Fig. 8C . In this case, the cell exhibits
two diagonal bands of excitation for opposite contrast condi-
tions, again at the disparities where there was suppression
in Fig. 8C .

The form of nonlinearity that follows binocular conver-
gence in the linear subunits is important. The model shown
in Fig. 8A employs a squaring nonlinearity that produces a
smooth binocular response profile as shown in Fig. 8C . If,
instead, a simple half-wave-rectifying nonlinearity is used,
the otherwise identical model produces a binocular response
as shown in Fig. 8E . For both monocular and binocular
portions of the responses (responses near the edges and the

FIG. 8. A disparity energy model is illustrated. A : a complex cell (Cx)
tuned to 0 disparity is modeled as consisting of 4 simple subunits (S).
Each subunit combines input from 2 eyes linearly according to left and
right RFs ( left) . Output of each subunit goes through a half-squaring nonlin-
earity that represents the fact that only postsynaptic potentials that exceed
a threshold value elicit action potentials. ‘‘Tap points’’ (S1–S4) are in-
cluded for reference in B. B : binocular responses in XL-XR domain are
shown as contour plots for 4 subunits. The darker the shading, the stronger
the response. Responses are normalized for each plot to show details of
weaker responses such as those for S2. C : binocular responses of complex
cell are shown. This is simply a point-by-point sum with appropriate scaling
of all 4 subunit RFs in B . The plot represents responses to bright or dark
bar stimuli presented to both eyes. Compare this to experimental data in
Fig. 3A. D : binocular responses to opposite contrast conditions are shown,
i.e., a bright bar to 1 eye and a dark bar to the other. E : responses are
shown of a model that employs a half-rectifier instead of a half-squarer as
the output nonlinearity for simple subunits. Note that substantial ripples
remain in the complex cell response profile, but the overall response pattern
is similar to that of C .
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central diagonal, respectively) , substantial ripples are ob-
served in the profile. Except for these ripples, however, the
basic pattern of the response is similar to that of the squaring
configuration shown in Fig. 8C . Additional subunits may be
used in the model to smooth out the ripples to obtain a
final smooth profile. However, the nonlinearity must be of
a squaring form if the number of subunits is to be minimized.

Phase model

We previously have proposed an efficient scheme for en-
coding binocular disparity information by a population of
simple cells in the striate cortex (DeAngelis et al. 1991,
1995a; Freeman and Ohzawa 1990; Ohzawa et al. 1996).
This scheme is called a phase model because disparity infor-
mation is encoded by binocular simple cells that have differ-
ent RF phases (i.e., shapes) for the two eyes. The traditional
notion of binocular disparity encoding is based on a position
model, in which disparity is encoded via positional offsets
of left and right RFs. We now examine predictions of our
complex-cell model whose subunits have phase or position
shifts. If the model provides different results for the phase
and position schemes, we will be able to evaluate the
schemes by examining data from complex cells.

A predicted response of a binocular energy unit based on
the phase model is shown in Fig. 9A . Phases of the subunit
RFs (right column) differs by 907 for the two eyes. We
previously have shown that a substantial fraction of simple
cells have RF profiles that are different for the two eyes
(DeAngelis et al. 1991, 1995a; Freeman and Ohzawa 1990;
Ohzawa et al. 1996). Therefore the scheme shown in Fig.
9A is quite reasonable with respect to the existence of the
required subunits. Note that the only difference between the
model complex cells in Fig. 8A and 9A is that the phases
of the right eye RFs are shifted by 907 in the same direction

FIG. 9. Two possible mechanisms are shown for creating complex cellsfor all four subunits. With this construction, the binocular
that are tuned to a non-0 binocular disparity. A : phase model. Four subunits

response (Fig. 9A, left) no longer shows a symmetric profile (right) have RF structures that differ in phase. All 4 units have a left-right
with respect to the diagonal (compare with Fig. 8C) . Instead, phase difference of 907. Left : vertical and horizontal dashed lines represent

peaks of monocular RF profiles for left and right eyes, respectively. Peaka region of excitation is shifted from and parallel to the 457
binocular response (center of darkest contour) does not fall on diagonaldiagonal indicated by a dashed line. The odd-symmetry of
dashed line. Disparity tuning curve (solid curve below XL-XR plot) is odd-

the binocular response is clear in the disparity tuning curve symmetric. B : position model. Organization of subunits is identical to that
shown below the two-dimensional profile in Fig. 9A . This of Fig. 8A , except that all subunits have a positional shift of their right

RFs. The XL-XR plot is also a shifted version of Fig. 8C . Disparity tuningresponse pattern is very similar to that of the cell shown in
curve is even-symmetric.Figs. 6, A and B ( left 2 panels) . It will be shown below

that the phase of this disparity tuning curve is c, the phase
Position modeldifference between the left and right RFs of the subunits.

Note that the intersection of the peaks of monocular exci- The position model combines four simple-cell subunits
tation (intersection of vertical and horizontal dashed lines) exactly as in Fig. 8A , except with a common positional
does not coincide with the peak of the binocular response, offset. This is shown in Fig. 9B (right) . Because the under-
indicated by the contours with the darkest shading. In other lying structure of the subunits is the same as that for Fig.
words, a combination of monocularly optimal stimuli does 8A , the binocular response pattern is also the same. The
not result in a binocularly optimal stimulus. The maximum whole response pattern is shifted downward, reflecting the
binocular response is obtained when stimuli for the two eyes offset of the right RFs of the subunits. The disparity tuning
are at nonoptimal locations within the monocularly measured curve obtained from the two-dimensional map has exactly
RFs. This may be how a binocular complex cell that prefers the same shape as that for Fig. 8C and is even symmetric.
a non-0 disparity is constructed from subunits that have dif- The cell has a preferred disparity that is non-0 as indicated
ferent RF structures for the two eyes, and it provides an by the shift of the excitatory peak from the diagonal dashed
extension of the phase model to complex cells (Fleet et al. line. The position of the peak of the binocular response is

completely predictable from the intersection of the peaks of1996, 1997).
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monocular responses, as shown by the fact that the peak of described graphically in Fig. 10A for the case of c Å 07. It
is clear from Fig. 10A that the diagonal region of excitationthe binocular response lies exactly at the crossing of the

horizontal and vertical dashed lines. Note that the binocular in the leftmost panel is due to the binocular term plotted in
the rightmost panel. Monocular responses (middle 2 panels)energy units shown in Figs. 9B and 8A have identical shapes,

despite the fact that the units are tuned to different dispari- appear horizontal and vertical bands of excitation and deter-
mine the response near the margins of the leftmost panel.ties. Thus these two cases cannot be distinguished unless

one has an accurate measurement of zero disparity (i.e., Two suppressive bands (shown with dashed contours in the
rightmost panel) on each side of the excitatory diagonalcorresponding points) . This information is not readily avail-

able in our paralyzed preparation. region create interruptions in the binocular response in the
leftmost panel. For an intuitive interpretation of this binocu-
lar response (the rightmost panel) in actual three-dimen-

Hybrid phase and position model sional space, it may be helpful to visualize a sandwich held
out in space, with layers of the sandwich perpendicular to

It is possible that neither the phase nor position model the cyclopean direction of gaze. A stimulus of appropriate
accurately describes the binocular RFs of cortical cells. Dis- orientation will be excitatory if it falls within the central
parity information may be encoded by a hybrid mechanism (filling) layer and inhibitory if it falls within the surrounding
based on both phase and positional differences (Anzai et al. (bread) layers.
1995; Fleet et al. 1996, 1997; Jacobson et al. 1993; Qian Note that the monocular terms are independent of the
and Zhu 1997; Zhu and Qian 1996). Preliminary evidence phase difference, c, between left and right RFs, and that the
from our lab indicates that, in fact, both phase and positional symmetry of the binocular response profile is determined
offsets contribute to a simple cell’s disparity preference (An- solely by the third (binocular) term of Eq. 7 . In Fig. 10B ,
zai et al. 1995). In the absence of absolute eye position this binocular term is shown for the phase difference c Å
information in our paralyzed preparation, the positional off- 907. One may see readily how the pattern of response pre-
set component cannot be measured. However, the phase sented in the leftmost panel is produced by the sum of the
component may be estimated exactly by determining the monocular responses and the binocular term (the rightmost
phase of the disparity tuning curve. In other words, for the panel) , which, here, is odd symmetric.
energy model, the phase of the disparity tuning profile ex- Observe also that the subunit RFs do not have to be even
actly reflects the phase difference, c, of the RF profiles for or odd symmetric as shown in Fig. 8A , i.e., their phases do
the two eyes, regardless of the degree of positional offset. not have to be multiples of 907. The absolute phases of
Therefore, the symmetry of binocular response profiles pro- subunit RFs do not affect the complex cell response because
vides a signature for the phase model. However, the hybrid they are canceled in the third term of Eq . 7 (Fleet et al.
model cannot be ruled out even if asymmetry is found in 1996; Qian 1994; Zhu and Qian 1996). Only the phase
the profiles. difference between subunits (not c, the phase difference

between left and right RFs) must be multiples of 907 for a
minimum configuration. If more subunits are allowed, even

Evaluation of the models this quadrature constraint may be removed.
To examine how well the energy model fits the data from

With the limitations described above, we are able to evalu- cells, we have performed decompositions of binocular re-
ate the validity of the models. Specifically, we can determine sponses from the cells shown in Figs. 5 and 6. Results are
experimentally the contribution of the phase difference be- illustrated in Fig. 11. Figure 11A shows a decomposition of
tween left and right subunit RFs to a given complex cell’s the binocular response (dark-dark) for the cell of Fig. 5.
disparity tuning. This is because there is a direct relationship The original data in the leftmost panel may be decomposed
between the left-right phase difference of the subunit RFs into left eye, right eye, and binocular responses in the three
and the symmetry of the binocular response profile for the panels to the right. The rightmost panel shows the residual
complex cell that combines these subunits. We have seen error of the fit. Fitting of the two-dimensional profile was
this graphically for the cases of phase difference c Å 07 performed by a modified Levenberg-Marquardt optimization
(Fig. 8) and c Å 907 (Fig. 9A) . In general, for any value algorithm using Matlab (MathWorks) . To allow for varia-
of c, the expression in E. 5 may be simplified as tions in the data such as inexact centering of RFs, ocular

dominance (Hubel and Wiesel 1962), and other scaling fac-RC1(XL , XR) Å exp(02kX 2
L) / exp(02kX 2

R)
tors, the actual function used for the fit is given by

/ 2 exp[0k(X 2
L / X 2

R)] cos [2pf ( XL 0 XR) 0 c] (7) AL exp[02k(XL 0 X0L)2] / AR exp[02k(XR 0 X0R)2]

/ 2AB exp[0k((XL 0 X0L)2 / (XR 0 X0R)2)]Equation 7 shows that the binocular response of a disparity
energy unit defined by Eq. 5 may be expressed as the sum 1 cos [2pf ((XL 0 X0L) 0 (XR 0 X0R)) 0 c] / C (8)
of three terms: two monocular response terms and a binocu-
lar term (Fleet et al. 1996, 1997). The monocular terms where the additional parameters are as follows: X0L and X0R

are center positions of monocular RFs for the left and rightdescribe Gaussian-shaped profiles as would be obtained by
monocular mappings of the left and right RFs. The third eyes. AL , AR, and AB are scaling factors that account for

ocular dominance and balance of monocular and binocular(binocular) term is a two-dimensional Gabor function
(Daugmann 1985; Gabor 1946; Jones and Palmer 1987a,b; terms. Note that, for a strict energy model, AB Å ALrAR.

The spatial frequency of the two-dimensional Gabor functionMarceljà 1980) that is oriented at 457. This relationship is
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FIG. 10. Responses of complex cell energy model in XL-XR domain may be decomposed into 3 terms: left and right
monocular response terms and a purely binocular term. This decomposition is shown graphically for 2 phase differences of
left and right subunit RFs, A : c Å 07 and B : c Å 907. Monocular components are identical and independent of phase
difference. Binocular term is a Gabor function that is oriented at 457. Phase difference, c, determines symmetry of binocular
component.

for the binocular term is given by f , and C is a constant sponse term (the 4th panel in Fig. 11C) that shows a nearly
odd-symmetric profile (c Å 707) . The parameters of the fitoffset that may be necessary to account for spontaneous

discharge and spikes that are uncorrelated to stimuli. A total to the bright-bright responses are also similar (c Å 827, not
shown). In agreement with the predictions shown in Fig.of nine free parameters is used. Three panels that represent

the monocular and binocular terms of the fit, and a fourth 9B , the intersection of the peaks of the monocular RFs
(dashed lines in the 1st and 4th panels in Fig. 11C) doesthat shows the residual error, are plotted (with the same

scale) in Fig. 11A. The fit appears reasonable as there is no not coincide with the peak of the fit to the binocular response
(Ohzawa et al. 1990). Thus the energy model, as shownhighly systematic structure in the error profile. The right eye

response is substantially weaker than the left eye response. in Fig. 9A , provides a reasonable fit. However, there are
significant deviations from predictions of the energy models.The binocular response component shows nearly exact even-

symmetry (c Å 3.77, see Fig. 10) with an excitatory region The residual error of the fit in Fig. 11C shows clear structure
in the form of regions that are oriented approximately atat the center (Fig. 11A) . The intersection of the vertical and

horizontal dashed lines, representing the peak positions of 457. It appears as if the positive diagonal region in the Gabor
function for the binocular response does not provide a suffi-left and right monocular excitation, respectively, falls ex-

actly on the peak of the binocular component. Recall that ciently long diagonal to fit the data. In addition, responses
to opposite contrast conditions for the two eyes, shown inthis was also the predicted behavior of the model for c Å

07, as shown in Fig. 8. A fit for the bright-bright data gives Fig. 11D (and Fig. 6) , exhibit hardly any diagonal structure.
This is reflected in the small amplitude of the binocularnearly an identical set of parameters for the binocular com-

ponent (cÅ07.07, not shown). Figure 11B shows a decom- response term (the 4th panel of Fig. 11D) . Clearly, this is
a deviation from the predictions of the simplest energy modelposition of the bright-dark response from the same cell. Mon-

ocular responses are quite similar to those in Fig. 11A , indi- presented in Eqs. 5 and 7 .
cating insensitivity to the sign of stimulus contrast. However, Monocular analyses of complex cell RFs provide a clue
the binocular response shows a clear inversion of phase as to the possible cause of the residual error shown in Fig. 11C.
indicated by a suppressive central region shown by the It has been shown that a single energy unit (consisting of 4
dashed contours (c Å 187.47; see Fig. 8D for comparison subunits as shown in Figs. 8 and 9) may not necessarily
with the model) . Again, there is no obvious structure in the cover the whole RF area of the complex cell, and therefore
error profile, indicating a reasonably good fit. Overall, the multiple (at least°4 or 5) energy units are needed for some
data for this cell are represented well by the disparity energy complex cells (Ohzawa et al. 1995). Details of this analysis
model of Eqs. 5 and 7. will be presented elsewhere. Note that the spatial extent of

an energy unit cannot be increased by simply using a largerData from another cell (shown previously in Fig. 6) are
fit by the same procedure, and the results are shown in Fig. subunit because this will increase the spatial extent of the

binocular term uniformly in all directions, not simply along11, C and D . This cell had an asymmetric disparity tuning
curve (Fig. 6B) . This also is revealed in the binocular re- the 457 diagonal (see DISCUSSION). In principle, it should be
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FIG. 11. Data from 2 complex cells are fit by the energy model. Two monocular terms and a binocular term of fit (see
Eq. 8) are shown along with the residual error term. All 4 terms of fit are presented as contour plots using the same amplitude
scale. A : fitted profile (dark stimuli for both eyes) for complex cell presented in Fig. 5 is shown. Data are from an additional
measurement performed using a larger spatial domain (8 1 87) than that shown in Fig. 5 (6 1 67) . Vertical and horizontal
dashed lines in data and binocular term panels indicate peak locations of left and right monocular responses, respectively.
B : same as A except that responses to bright-dark stimuli are shown. C : fitted profile (dark stimuli for both eyes) is shown
for the cell presented in Fig. 6. D : same as C except that responses to bright-dark stimuli are shown.

possible to model these profiles by allowing multiple energy (fit and error panels have the same amplitude scale in each
case) , and no systematic structure is apparent. Note thatunits (each with 4 simple-cell subunits) and fitting the model

to the data. However, the use of multiple energy units pre- Fig. 12D depicts a cell with a large imbalance in response
strengths for bright and dark stimuli, with the bright stimulussents a practical problem in data modeling, because it is

likely to cause a loss of stability and uniqueness of solutions eliciting only weak excitation. This is reflected in the fact
that the data and fit panels for the dark-bright condition (Fig.due to the increased the number of free parameters. There-

fore fits based on multiple energy units have not been at- 12D, right) consist predominantly of vertical contours that
show a dominant left eye response. Bright response for thetempted. With these limitations in mind, we have proceeded

with fits of the single energy unit model to data. right eye is very weak as indicated by the absence of hori-
zontal contours. The results from these cells confirm that aFits of a single energy unit are shown in Fig. 12 for four

more cells from this group. Only fits for dark-dark and dark- single energy unit model is sufficient to describe binocular
behavior of a substantial subset of complex cells.bright responses are shown for each cell, because profiles

for the remaining two conditions of contrasts are generally However, this model is clearly not adequate for some cells
and two examples of this case are shown in Fig. 13. In Fig.very similar. In addition, the fits are not broken down to

three terms (see Eq. 7) , but instead are shown as the sum 13A, a cell with a highly elongated diagonal is illustrated,
and this cannot be fit well with a single energy unit model.of all terms. For all four examples, the fits capture the main

features of the raw data very well for both dark-dark and The error term for the dark-dark condition (Fig. 13A, left)
shows clear high amplitude residual peaks that lie on thedark-bright conditions. The residual error of the fits is small
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FIG. 12. Four examples (A–D) are shown of complex cell responses that are fit well by a single energy unit model.
Data, fit and error plots are presented for each cell. Fits are not decomposed into separate monocular and binocular terms.
Left 3 panels present responses to dark stimuli for 2 eyes and right 3 panels show responses to dark and bright bars for left
and right eyes, respectively. XL-XR profiles for dark-dark and dark-bright conditions are fit independently. Fit and error plots
are shown using the same amplitude scale. Stimulus duration (ms), correlation delay (ms), optimal spatial frequency,
orientation, domain size, stimulus size, maximum spikes per stimulus, and laminar location of the cells are A : 52.8, 60, 0.56,
357, 6 1 67, 15 1 0.57, 2.7, 2/3; B : 52.8, 70, 0.4, 1677, 3.5 1 3.57, 4 1 0.57, 1.5, 6; C : 39.6, 75, 0.29, 407, 7 1 77, 8 1
0.47, 4.9, 2/3; and D : 52.8, 60, 0.83, 1607, 4 1 47, 20 1 0.57, 3.9, 2/3, respectively.

diagonal. For the dark-bright condition (Fig. 13A, right) , and the phase of the fit to the dark-dark profile are plotted
for each cell on a polar coordinate system relative to thosethere is a vertical residual contour that cannot be accounted

for by the fit. For the cell shown in Fig. 13B, the dark-dark of the bright-bright profile. The distance from the origin to
a point depicts the amplitude (on a logarithmic scale) ,condition provides a very good fit with a nearly perfect even

symmetry (c Å 0.457) . However, the dark-bright condition whereas the angle represents the phase. The amplitude and
the phase of the corresponding bright-bright condition ishas an unexpected phase value (cÅ 557) . For this condition,

the energy model predicts an inversion of phase from the normalized to the point (AB, c) Å (1, 0) . Therefore a given
point will fall near the coordinate (1, 0) if the dark-darkdark-dark condition (c Å 180.57; see Fig. 8, C and D) . This

latter deviation does not appear to be accounted for by a profile is closely similar to that of the bright-bright condition,
as predicted by the disparity-energy model. A dense clustermultiple energy unit model.
of points around the expected region demonstrates that theTo examine how well the disparity-energy model fits data
prediction is fulfilled for most complex cells. Of 40 cells,from all complex cells, parameters of the fits to the binocular
the phase for the dark-dark condition for 36 cases is withinRF profiles are compared for the four stimulus conditions.
457 of that for the bright-bright condition. The mean { SDThis analysis was performed for 40 cells. The disparity-
of the phase is 03.3 { 38.17. The relative amplitude of theenergy model predicts that the amplitude, AB, of the binocu-
dark-dark condition with respect to the bright-bright condi-lar component in Eq. 8 is the same for the four conditions
tion is 1.5 { 1.4.of bright and dark stimulus combination for the two eyes.

It also predicts that the phase, c, is the same for the matched Figure 14B presents results of the same analysis per-
formed for mismatched polarity conditions, i.e., bright-darkpolarity conditions, but is different by 1807 between matched

and opposite polarity conditions. In Fig. 14A , the amplitude (h) and dark-bright (j) . Again, the amplitude and phase
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FIG. 13. Two cases (A and B) are shown for which a single energy-unit model did not give satisfactory fits. Results are
presented in the same format as that for Fig. 12. Stimulus duration (ms), correlation delay (ms), optimal spatial frequency,
orientation, domain size, stimulus size, maximum spikes per stimulus, and laminar location of the cells are A : 52.8, 75, 0.9,
777, 5.5 1 5.57, 6 1 0.47, 0.6, 2/3; B : 26.4, 50, 0.41, 1257, 10 1 107, 10 1 0.57, 5.2, 6, respectively.

are plotted relative to those of the bright-bright condition. profile, and therefore without assuming a specific model, this
Although the degree of scatter in phase is larger for these computation cancels monocular contributions to the response
conditions, nearly one-half of the points fall near the ex- and yields a purely binocular response profile. This produces
pected value of 180 { 457. There is a notable lack of points a single composite profile for each cell without discarding
in the range 0 { 457. When we examine cells by using any data and incorporates data that are otherwise difficult to
multiple criteria for different stimulus conditions, phase was deal with, e.g, the lack of binocular response component
within the expected range for 30 of 40 cells (75%) jointly for shown in Fig. 11D and the imbalance of response strengths
one opposite contrast condition and the dark-dark condition. for bright and dark stimuli (Fig. 12D) . This computation is
Under the strictest criteria, phase was within {457 of the equivalent to a procedure for deriving a second-order Wie-
expected value for all three conditions (dark-dark, bright- ner-like kernel in nonlinear systems analysis (Emerson et
dark, and dark-bright) for 13 of 40 cells (33%). Note that al. 1987, 1989). For a special case of the single energy unit
this represents a high degree of organization. If phase rela- model, it may be shown that the sum (BB / DD 0 BD 0
tionships were completely random, we would expect only DB) represents the binocular response component isolated
1.6% (0.253) of the cells, or less than one cell out of our in the third term of Eq. 7 and shown in the rightmost panels
sample, to satisfy all of the three criteria, because the proba- of Fig. 10, A and B. Because it is in this profile that the most
bility of each phase falling within 457 of a given value is interesting information is contained regarding the binocular
1/4. The means { SD of phases for bright-dark and dark- processing, the single XL-XR profile is further processed in
bright conditions are 198 { 647 and 190 { 687, respectively. accordance with the procedure of Fig. 4 to obtain a disparity
On average, amplitude for the mismatched polarity condi- tuning curve and a disparity-time (D-T) plot.
tions appears to be smaller than that for the bright-bright Representative data summarized this way from 10 cells
condition. The means { SD are 0.76 { 0.58 and 0.82 { are presented in Fig. 15. For each cell (A–J) , the top panel
0.63 for bright-dark and dark-bright conditions, respectively. shows the composite XL-XR profile. The bottom panels depict
The source of this response amplitude difference between the D-T profile and a disparity tuning curve taken at a time
matched and opposite polarity conditions is not clear. Taken delay indicated by a horizontal dashed line. All of the exam-
together, the disparity-energy model appears to provide a ples show clear diagonal structure in the XL-XR profiles. The
reasonable description of the data for a substantial fraction of cells (A–J) are ordered roughly according to the degree of
complex cells. However, under strict joint criteria, deviations asymmetry in the disparity tuning curves from highly even-
from the predictions of the models are present for the major- symmetric to those that are not. For example, Fig. 15A de-
ity of cells. picts a cell that had nearly exact even-symmetry, whereas

the disparity tuning curves for the cells of Fig. 15, E–I,
Quantitative analysis of disparity tuning properties clearly do not. The asymmetry is obvious in the XL-XR pro-

files as well as in the D-T profiles and disparity tuningTo analyze the data further without relying on assumptions
curves. The cell shown in Fig. 15J had an inverted disparityspecific to the single energy unit model, we construct a
tuning curve with central suppressive flank and an excitatorycomposite RF profile from the data for all four contrast
flank on each side. This type of cell is found rarely, and theconditions: BB (bright-bright) , DD (dark-dark) , BD
S/N ratio was relatively low [(S / N) /N Å 12.2 dB]. The(bright-dark) , and DB (dark-bright) . For each cell, the com-
S/N ratio is defined as the energy (sum of squares) of theposite binocular RF profile is given by BB / DD 0 BD 0

DB. Regardless of the exact shape of the binocular response disparity tuning curve (dots) to the energy of the profile at
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a delay of 050 ms (not shown). Using a negative delay
measures correlation with future events. Therefore, by defi-
nition, the resulting profile should represent the noise level
(Ohzawa et al. 1996). The ratios are given in decibels,
dB Å 10rlog10(S /N) . Despite the low S/N ratio for the cell
shown in Fig. 15J , the mean { SE of the phase of the
best-fitting disparity tuning curve (obtained by a Levenberg-
Marquardt optimization on the XL-XR profile) was 148 {
10.3 degrees. For other cells, the S/N ratios were higher and
the SEs for the phase were typically only several degrees.

The results of Fig. 15 illustrate the following points. First,
some of the XL-XR profiles show highly elongated diagonal
regions of excitation as exemplified by the cell of Fig. 15F
and also by B and D . For these cells, the extent of the XL-
XR profiles is much larger along the positive (/457) diagonal
than along the negative (0457) diagonal. Considering that
the /457 lines represent constant-disparity lines and fronto-
parallel planes (Figs. 1 and 4), these cells have binocular
RFs that are very wide across the spatial direction (X-Y ) but
are quite narrow in the depth dimension. For the excitatory
subregion of the cell of Fig. 15F, its width along the disparity
dimension is only 1.77 whereas it covers nearly 67 of space
in the frontoparallel plane. Therefore, this cell is nearly four
times more selective to changes in disparity than to changes
in position along the frontoparallel plane.

Second, none of the D-T profiles show any appreciable
tilt of subregions in the disparity-time domain. This was
noted for the cells of Figs. 5 and 6, and we have found
this to be the case for nearly all of our cells. The result
indicates that these cells do not respond selectively to
changes in disparity over time, such as those that occur
during motion-in-depth. This may be well understood by
an analogy to the relationship that exists between the tilt
of monocular space-time (X-T) RFs and cells’ velocity
selectivity. It has been shown for simple cells that the
slope of X-T RFs predicts the preferred velocity and direc-
tion of the neuron (DeAngelis et al. 1993a; McLean and
Palmer 1989; McLean et al. 1994) . Just as a simple cell
that shows no tilt in its X-T RF does not exhibit direction
selectivity, a lack of tilt in the D-T profile of a complex
cell implies that the cell will not exhibit any direction
preference for motion-in-depth. Considering that the ma-
jority of simple cells exhibit some degree of space-time
inseparability (DeAngelis et al. 1993a,b; McLean et al.
1994) , the lack of tilt of D-T RFs is striking. We also
note that the temporal responses seen in these D-T plots
are monophasic, i.e., they are initially either positive or
negative, reach a single peak, and return to zero without
an inversion of the sign of the response. This is in contrast
to the temporal responses of simple cells for which

FIG . 14. Consistency of binocular RFs for 4 permutations of sign
multiphasic temporal impulse responses are the ruleof stimulus contrast is examined. A : amplitude and phase of fit to dark-

dark profile are shown in a polar coordinate system. Amplitude and (DeAngelis et al. 1993a,b ) . These points are examined
phase are plotted as distance of point from origin (on a logarithmic quantitatively below.
scale ) and angle from right-ward horizontal axis, respectively. Parame- We have analyzed further the disparity tuning of complex
ter values are relative to those for bright-bright profile. Thus if dark-

cells by fitting a Gabor function to the disparity tuning curvesdark profile is identical to that for bright-bright condition (as predicted
as shown in the bottom panels of Fig. 15, A–J. The use ofby disparity-energy model ) , point will fall at amplitude Å 1 and

phase Å 07. Dashed lines indicate {457 and 180 { 457. B : similar plots a Gabor function here is primarily for the convenience of
are shown for fits to binocular RFs for opposite contrast conditions. h extracting intuitive parameters from the data. For a single
and j, relative amplitude and phase for bright-dark and dark-bright energy unit model based on Gabor subunits (see Eq. 7) , itconditions, respectively. Again, parameters are shown relative to those

may be shown mathematically that the disparity tuning curvefor bright-bright condition. Disparity-energy model predicts that points
should fall at amplitude Å 1, and phase Å 1807. ( to a thin bar stimulus) is a Gabor function because the
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FIG. 15. Composite binocular RFs and disparity tuning curve are shown for 10 complex cells (A–J) in XL-XR and
disparity-time (D-T) domains. Composite profile is computed as a linear combination of responses to 4 permutations of sign
of contrast for 2 eyes (sum of matched contrast responses minus sum of opposite contrast responses) . This computation
cancels the monocular response terms. – – – (in each D-T plot) , optimal correlation delay for which the disparity tuning
curve is shown below. Dots in disparity-tuning curves represent raw data to which a Gabor function (5 free parameters) is
fit. S/N ratios (see text) in decibels (dB) for cells are A , 21.4; B , 16.7; C , 20.5; D , 16.7; E , 16.2; F , 12.9; G , 10.1; H ,
15.5; I , 11.8; and J , 12.2. Laminar locations are A , 2/3; B , 6; C , 2/3; D , 6; E , 6; F , 2/3; G , 6; H , 2/3; I , 6; and J , 6.
Stimulus duration (ms), optimal spatial frequency, orientation, stimulus size, and maximum spikes per stimulus for cells are
E , 52.8, 0.5, 457, 20 1 0.37, 3.5; G : 52.8, 0.77, 1557, 5 1 0.57, 2.4; H : 52.8, 0.49, 207, 20 1 0.57, 2.1; I : 39.6, 0.14, 17,
20 1 0.57, 1.4; J : 52.8, 0.57, 1407, 20 1 0.57, 0.3, respectively. Details for other cells are presented in previous figure legends.

integral of a two-dimensional Gabor function along the represent a time-slice of the data taken at the correlation
delay indicated by a horizontal dashed line in the D-T plot.length of subregions is a Gabor function (Ohzawa et al.

1990). However, the function provides reasonable fits to the A function of the following form is used for the fit
disparity tuning curve of most of the cells, even for those

Arexp[0kD(d 0 C)2]rcos [2pfD(d 0 C) / cD] (9)
whose XL-XR profiles cannot fully be account for by the
energy model. The fitting procedure is performed using a where A is a scaling factor, d is the independent variable

for disparity, and C is the center of the Gaussian envelopemodified simplex optimization algorithm (Press et al. 1992).
Interactive graphical software is used to set initial parameters of the fitted function. The phase parameter cD of the Gabor

function indicates the symmetry of the disparity tuningof the fit manually, so that the algorithm is less likely to get
trapped in a local minimum. The convergence of the algo- curve. The parameter kD determines the width of the Gabor

function, and hence the total width of the disparity tuningrithm is monitored graphically during fitting. In the disparity
tuning plots, data points are shown as filled circles, and curve. The parameter fD is the disparity frequency, which is
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its selectivity for position. We now quantitatively evaluate
how narrow the disparity tuning is with respect to the width
of the overall RF. As shown in Fig. 16A , we derive an index
of disparity tuning width relative to RF width as a ratio

WD/[(WL / WR)/2] (10)

where WD is the width of an excitatory region in the disparity
dimension, and WL and WR are the RF widths for the left
and right eyes, respectively. WD is obtained from the Gabor
fit to the disparity tuning curve and is given by 1/(2 fD),
which corresponds to half of the period of the sinusoid at
the disparity frequency. WL and WR are measured directly
from contour plots in the XL-XR domain by the strongest
excitatory region. Figure 16B shows the distribution of the
ratios for our sample. The sample size here is slightly larger
than that for Fig. 14 (nÅ 40), because the composite profiles
used here provide more reliable fits and estimation of param-
eters than the raw profiles used for Fig. 14. The mean { SD
of the ratios is 0.46 { 0.21. This indicates that the majority
of cells are more narrowly selective to binocular disparity
than to stimulus position, by a factor of two or more.

Relationships between disparity tuning and monocular
properties

A summary of the relationship between the phase cD of
the disparity tuning curve and the cell’s preferred orientation
is shown in Fig. 17A . This is of interest, because the single
energy-unit model predicts a tight relationship between cD

and the phase difference, c, between the left and right RFs
of subunits (see Fig. 10B and Eq. 7) . In addition, we have
shown for simple cells that there is an anisotropy in the
distribution of the phase difference between left and right
RFs. Specifically, cells tuned to near horizontal orientations
tend to have similar RFs (hence small c) for the two eyes,
whereas those tuned to oblique or vertical orientations have
a variety of phase differences (DeAngelis et al. 1991, 1995a;
Ohzawa et al. 1996). This anisotropy is consistent with the
hypothesis that the visual system employs an optimized en-

FIG. 16. Width of disparity tuning is compared with size of monocular
coding scheme that takes advantage of a statistical bias in theRFs. A : ratio, WD (width of elongated excitatory area) divided by average
distribution of horizontal versus vertical disparities, whichof WL and WR (left and right RF widths, respectively) , is used as a metric

of disparity-tuning width relative to RF width. WD is obtained from dispar- results from lateral placement of the two eyes. Although the
ity-tuning curve as 1/2 of inverse of disparity frequency, because XL-XR single energy unit model is not always sufficient for some
domain is distorted geometrically. WL and WR are estimated from extent of cells, as we have seen above, we still may find a relationshipcontour plots, typically from a contour level that is 5 or 15% of peak. If

between the preferred orientation and cD if these simplecontour at this level is not contained in XL-XR domain, a higher level is
used by incrementally adding 10%. Highest level used was 55% of peak. cells are the subunits that feed into the complex cells.
For any level, LC, used for measurement of RF width, a correction is made For our sample of complex cells, there is no obvious trend
to WD by factor (cos01 LC)/(p /2) . B : histogram is shown of ratio of WD in the distribution shown in Fig. 17A . The data points do
to RF width.

not form a triangle-shaped distribution with vertices at bot-
tom left, top right, and bottom right corners similar to thedefined as the frequency at which disparity tuning curve
distribution for simple cells (DeAngelis et al. 1991; Ohzawaalternates between excitation and suppression. Together, kD,
et al. 1996). In particular, there are cells tuned to near hori-and fD determine the width of an excitatory (or suppressive)
zontal orientations (0) that exhibit a substantial asymmetryregion. Therefore these parameters determine how narrowly
in the disparity tuning curve. Moreover, most cells have aa cell is tuned to changes in disparity. Relationships between
cD value that is õ90. There is no statistically significantthese disparity tuning parameters and monocular RF parame-
dependence of phase of the disparity tuning curve on pre-ters are described below.
ferred orientation (linear regression analysis; P Å 0.4) .

We also have examined the relationship between the dis-Relation between disparity tuning and RF width
tribution of cD and cells’ preferred spatial frequency. This
distribution, shown in Fig. 17B , appears uniform with cellsAs we noted above for Fig. 15F , the selectivity of a

neuron in the disparity dimension can be much sharper than having a wide range of symmetry at every spatial frequency.
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The sample size is smaller by two cells than that for Fig. property of a model (Marr and Poggio 1979). The data are
also relevant to related psychophysical evidence (Legge and17A , because the spatial frequency tuning was not measured

for these cells. Again, there is no statistically significant Gu 1989; Schor and Wood 1983; Smallman and MacLeod
1994). A linear regression analysis ( in the log-log domain)dependence of cD on spatial frequency (linear regression

analysis in the phase vs. log spatial frequency domain; shows significant dependence of disparity range on monocu-
lar spatial frequency (Põ 0.005, slope Å 00.39, correlationP Å 0.26). Considering that simple cells do not show any

dependence on preferred spatial frequency with regard to coefficient Å 00.52). The trend indicates that neurons tuned
to higher spatial frequencies are likely to have smaller dis-the phase difference between left and right RFs (DeAngelis

et al. 1995a; Ohzawa et al. 1996), it is not surprising to find parity ranges. However, the disparity range shrinks with spa-
tial frequency at a rate that is substantially less than thea relatively uniform distribution for complex cells.

We also have examined a possible relationship between exact inverse relationship (slope Å 01).
We also have examined the number of subregions in thethe disparity frequency, fD, and the optimal spatial frequency

(measured by monocularly presented sinusoidal drifting XL-XR map, i.e., the number of positive and negative peaks
in the disparity tuning curve (see Fig. 15). Because thegratings) . An inspection of Eq. 1, 7, and 9 shows that, for

the single energy unit model, the disparity frequency and disparity range shrinks with spatial frequency at a rate less
than 01 (Fig. 17D) , there may be more peaks in the dispar-the optimal frequency of monocular RFs should be the same,

i.e., fD Å f . It is of interest to find out if this relationship ity tuning curve for cells tuned to high spatial frequencies
than those tuned to low frequencies. Consequently, thereholds for our sample of complex cells. Results are shown

in Fig. 17C . It is clear that, for most cells, the disparity may be a greater degree of ambiguity in disparities signalled
by cells tuned to higher spatial frequencies, because thefrequency is substantially lower than the optimal spatial fre-

quency of the cell measured monocularly (average for the preferred disparity is no longer unique for these cells. Results
shown in Fig. 17E indicate that this is not the case. Althoughtwo eyes) . An exact match of the frequencies is indicated

by the solid oblique line in Fig. 17C. A linear regression there is some scatter, for the majority of cells, the number
of disparity subregions is between three and four [3.44 {analysis ( in the log-log domain) shows a significant depen-

dence of disparity frequency on monocular spatial frequency 1.07, (mean { SD)], and there is no significant dependence
on spatial frequency (P Å 0.38). This is primarily due to(P õ 0.005, slope Å 0.29, correlation coefficient Å 0.42).

Note, however, that the slope of the best-fitting line is sub- the fact that the trends shown in Fig. 17, C and D , cancel
each other. Therefore there is no greater degree of ambiguitystantially õ1.0. The cell shown in Fig. 11, A and B , whose

binocular response is fitted well with a single energy unit in disparities signaled by cells tuned to high spatial frequen-
cies. In this sense, the disparity tuning of complex cells doesmodel, exhibits a relatively similar disparity frequency (0.25

c/deg) and optimal spatial frequency (0.35 c/deg). How- not suffer from an analogous monocular ambiguity problem
presented by simple cell RFs, where there tend to be moreever, the cell presented in Fig. 11, C and D , had a disparity

frequency (0.27 c/deg) less than 1/3 of the optimal spatial RF subregions for cells tuned to high spatial frequencies
(see Fig. 13a of DeAngelis et al. 1995a).frequency (0.93 c/deg) measured monocularly. The bar

width of the stimuli used for mapping was 0.4 for this cell,
and spatial blurring cannot explain the difference of a factor Sensitivity to motion-in-depth
of 3. Linear regression analysis shows a trend for cells tuned
to high spatial frequencies to have high disparity tuning As we have noted above, the data of Fig. 15 show that

nearly all binocular RF profiles are oriented vertically in thefrequencies as well. Although a single energy unit model
may be reasonable for those cells that have similar fD and D-T domain. Qualitatively, this predicts that these neurons

are not sensitive to motion-in-depth (Cynader and Reganf , clearly, disparity tuning of other cells is generated through
a much more complex mechanism. Sources of this deviation 1978, 1982; Spileers et al. 1990). We now examine this

issue quantitatively.are unknown. Note that they are not due to a geometric
distortion of the XL-XR domain as described above, because D-T profiles show how a neuron’s preferred disparity

changes over the time course of the response. One way tothe distortion is already factored into the transformation from
the XL-XR space into the disparity domain (Fig. 4) . This determine the rate of change in preferred disparity is to fit

a straight line to the subregions and determine its slope.deviation from the energy model prediction is considered
further in DISCUSSION. The slope, Ddisparity/Dtime, gives the rate of change of

preferred disparity, which may be defined as the preferredAnother parameter we have examined is the relationship
between the optimal spatial frequency and the disparity velocity-in-depth. However, there is a practical problem with

this procedure because there are typically multiple subre-range, which represents the extent of the disparity tuning
curve. Results of this analysis are shown in Fig. 17D . The gions in D-T profiles as shown in Figs. 18A and Fig. 15. A

better estimate of preferred velocity-in-depth may be ob-disparity range is defined as one half of the width of the
Gaussian envelope of Eq. 9 at 5% of the peak. This is a tained by a frequency domain analysis, using an analogous

procedure to that devised for determining the preferred ve-measure of the largest disparity offset, from the center of
the disparity tuning curve, that may still elicit binocular locity of simple cells from their space-time (X-T) receptive

field (DeAngelis et al. 1993a; Ohzawa et al. 1996). First, ainteractions. Therefore, if the center of the disparity tuning
curve is at zero disparity, then the value of the disparity two-dimensional Fourier transform (Bracewell 1978; Press

et al. 1992) of the DT profile is computed. Figure 18Brange represents a disparity limit for binocular interactions
of a given neuron. The data are of interest in relation to the presents the amplitude spectrum computed from the trans-

form of the DT profile in Fig. 18A . The data of Fig. 18Bsize-disparity correlation that have been suggested as a key
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FIG. 17. A : phase of disparity-tuning curve is plotted
against preferred orientation for each cell. When preferred
orientations are different for the 2 eyes, an average value is
used. Original phase domain of 0–3607 is folded into 0–
1807 such that 0 and 907 represent even- and odd-symmetric
disparity-tuning curves, respectively. Similarly, original ori-
entation domain 0–1807 is folded into 0–907 such that 0 and
907 represent horizontal and vertical, respectively. B : phase is
plotted against monocular preferred spatial frequency. Again,
average of left and right spatial frequencies is used. Monocu-
lar preferred spatial frequency is measured using drifting si-
nusoidal gratings of optimal orientation, 40% contrast, and a
temporal frequency of 2 Hz. Sample size is smaller by 2 than
that for A because spatial frequency tuning curves were not
recorded for 2 cells. C : disparity frequency is plotted against
preferred spatial frequency for each cell. Energy model pre-
dicts a match (indicated by a solid diagonal line) between
these 2 frequencies. – – – , linear regression fit in log-log
domain. D : disparity range, which is a metric of extent of
disparity tuning curve, is plotted against monocular preferred
spatial frequency. , inverse relationship between dispar-
ity range and spatial frequency; – – – , linear regression fit.
Value is computed from parameter k of Eq. 9 as
sqrt{[0ln(0.05)]/k} Å 1.73/sqrt(k) , where sqrt and ln rep-
resent square root and natural log functions, respectively. E :
number of subregions in disparity tuning curve is plotted
against monocular spatial frequency. It is defined by 4r(dis-
parity frequency)r(disparity range) and derived from values
plotted in C and D .

represent a tuning surface in the disparity frequency-tempo- quency tuning for other cells. However, comparisons of pre-
ferred velocity distributions suggest that this is a generalral frequency domain. From the location of the peaks, the

preferred disparity frequency, fDopt , and temporal frequency, finding. Figure 19A presents a histogram of preferred veloc-
ity-in-depth for our sample of complex cells. Most of thefTopt , are determined. The preferred velocity-in-depth, VDopt ,

is given by complex cells prefer slow velocity-in-depth, typically õ4
deg/s. The histogram is shown with logarithmically scaledVDopt Å fTopt / fDopt (11)
bins (Movshon 1975), because the velocity values span a

For the cell presented in Fig. 18, VDopt is 2.8 deg/s. For large range and differences near zero velocity are important.
comparison, the preferred velocity of this cell for monocular In contrast, Fig. 19B shows a monocular preferred velocity
motion (and presumably binocular motion along the front- distribution for simple cells. Most of these cells prefer mon-
parallel plane) is 18.4 deg/s, as estimated by the ratio of ocular velocitiesú4 deg/s. The simple cell data are replotted
optimal temporal frequency to spatial frequency determined with logarithmically scaled bins from Fig. 17 of DeAngelis
by separate measurements using drifting sinusoidal gratings et al. (1993a). The difference between the two distributions
(Baker 1990). In other words, the preferred velocity-in- in Fig. 19, A and B , is statistically significant (P õ 0.005,
depth for this cell is more than six times slower than the t-test and Kolmogorov-Smirnov test) . An equivalent histo-
preferred velocity for monocular motion. Unfortunately, we gram is not available for complex cells because monocular
cannot perform this comparison for all of our sample of mapping of receptive fields reveals only the envelope and no

subunit structure that determines their spatial and temporalcomplex cells because we did not measure temporal fre-
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FIG. 18. A frequency domain analysis is performed on a disparity-time RF of a complex cell. A : disparity-time plot of
composite RF of a complex cell shown in a format similar to that of Fig. 15. Stimulus duration (ms), correlation delay
(ms), optimal spatial frequency, orientation, stimulus size, maximum spikes per stimulus, and laminar location of cell are:
39.6, 75, 0.34, 357, 10 1 0.47, 2.1, 6, respectively. B : amplitude spectrum shown here is obtained by a 2-dimensional fast
Fourier transform of data in A . By locating peak in amplitude spectrum (2 peaks are same and symmetric with respect to
origin) , optimal temporal frequency and disparity frequency are determined. Preferred velocity-in-depth is estimated by ratio
of these frequencies. For all cells, disparity frequency estimated by this method matches closely value obtained by a Gabor
function fit to disparity-tuning curve as described for Fig. 15. A 2-dimensional cubic spline is used to locate optimal disparity
frequency in amplitude spectrum. Optimal temporal frequency is obtained by fitting a Gaussian to vertical cross-section of
spectrum at optimal disparity frequency. Note that optimal temporal frequency here is not the same as that determined by
monocular drifting sinusoidal grating stimuli. The former is related to a change in preferred disparity over time, whereas the
latter is primarily determined by temporal frequency tuning of subunits (Gaska et al. 1994).

selectivities (DeAngelis et al. 1995b; Ohzawa et al. 1990). eye because of the approximate linearity of the subunit RF,
As the next best option, Fig. 19C presents the preferred as shown in Fig. 20B (Ohzawa and Freeman 1986b; Ohzawa
velocity data from complex cells from a previous study et al. 1990). For this condition, maximum responses are
(Movshon 1975). The distribution of Fig. 19C appears to obtained for two combinations of the bar positions, because
be shifted slightly to higher velocities than our sample of there are two equal dark-excitatory regions for the right eye.
simple cells shown in Fig. 19B . Our simple cell distribution For other subunits of the energy model, similar displace-
shown in Fig. 19B also differs substantially from the simple ments of the preferred disparity occur.
cell data of Movshon (1975). However, this may be due to The other possible explanation is based on a requirement
a difference in the range of eccentricities from which cells for the matching of stimulus edges. This is illustrated in Fig.
were sampled (DeAngelis et al. 1993a). Taken together, 20, C and D . For the matched contrast condition, both the
there is little change in the preferred disparity over the time left and right edges of the stimuli match at only one disparity
course of complex cell response, as illustrated in the DT (Fig. 20C) . For the opposite contrast condition, as shown
profiles of Figs. 15 and 18A . This is confirmed by the quanti- in Fig. 20D , there can only be a partial match of the edges:
tative analysis of preferred velocity-in-depth. one with the combination of L and R-1, where the rising

edge of the bright left stimulus is matched with the rising
edge of the right dark stimulus. The other edge of the darkOrigin of opposite contrast responses
right stimulus is not matched. The other match is obtained
with L and R-2, where the trailing edges are matched.For the complex cells presented in Figs. 3A and 5, clear

These two possibilities predict widely different results forresponses are evident to dichoptic stimuli that are opposite
variations of the width of the bar stimuli. For the formerin sign of contrast for the two eyes. For these cases, the
(energy model) hypothesis, the disparity separation of theresponses occur at two disparities, one crossed and the other
two excitatory bands for opposite contrast conditions shoulduncrossed with respect to the preferred disparity for same-
be approximately equal to one-half of the period of the sub-contrast stimuli. There are two possible explanations as to
unit RF and should not be highly sensitive to variations inwhy this might occur. We have examined these two possibili-
bar width. For the latter explanation, based on edge-polarityties in a control experiment. One explanation is based on
matching, the disparity separation should be equal to twicethe energy model (see Fig. 8D and Eq. 6) . A more intuitive
the bar width as shown in Fig. 20D . And the disparity offsetaccount is illustrated in Fig. 20, A and B . For the subunit
(from the optimal disparity) of the excitatory bands for the(S1) at the top of Fig. 8A, redrawn here as Fig. 20A , it is
opposite contrast condition should be equal to the bar width.clear that bright bars presented to the two eyes at the center

Results of a control experiment are shown in Fig. 21. XL-of the subunit RFs elicit the maximal response from this
XR profiles are shown for bar widths of 0.2, 0.4, and 0.87, andsubunit. If we invert the sign of stimulus contrast for the
the corresponding disparity tuning curves (see Fig. 4) areright eye (thus introducing a contrast sign mismatch), this

has the equivalent effect of inverting the RF profile for this shown below. The distance between the peak of the central
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in binocular disparity while achieving invariance to alter-
ations in stimulus position along the frontoparallel plane.
We present a disparity energy model for these complex cells.
The model employs a hierarchical organization as originally
proposed by Hubel and Wiesel (1962), in which the output
of multiple simple-cell subunits is combined to produce the
RF of a complex cell. The model provides a remarkably
good fit to the data from many complex cells, but deviations
from the model are found for some neurons. We now con-
sider implications of our results for the general problem of
stereopsis. We also examine potential problems in experi-
mental procedures and interpretation of our data.

Are responses to opposite contrast stimuli undesirable or
beneficial?

At first glance, the responses at nonoptimal disparities
for opposite contrast conditions appear to be an undesirable
phenomenon that adds to ambiguity to the problem of stereo-
scopic matching. From the responses of one neuron, it is not
possible to determine whether the stimulus was a pair of
bright bars at the optimal disparity or whether it was a pair
of opposite contrast bars at another disparity. This ambiguity
must be resolved by additional processing (Blake and Wil-
son 1991). However, as we have seen above, these responses
arise from the fact that the subunit RFs possess multiple
alternating subregions similar to those of simple cells (Fig.
20B) . Therefore the opposite-contrast responses are a natu-
ral consequence of the underlying Gabor-like RF profiles.
For this reason, the kind of ambiguity we observe here is
not unique to stereopsis. For example, responses from one
simple cell alone are not capable of signaling whether a
bright bar is flashed in an ON (bright-excitatory) flank or a
dark bar is positioned in an OFF (dark-excitatory) area.

Contrary to the negative implications of the responses to
opposite contrast targets, as described above, there are some
advantages to this behavior. Although binocular viewing ofFIG. 19. Distribution of preferred velocity-in-depth is presented and
a single isolated bar stimulus never results in a combinationcompared with monocular velocity distributions of cortical neurons. A :

histogram of preferred velocity-in-depth is shown with logarithmically of opposite contrast to the two eyes, these conditions do
scaled (octave-wide) bins. B : distribution of monocular preferred velocities occur for extended patterned stimuli under normal viewing
is given for simple cells recorded from same animals from which complex conditions. Because cortical neurons are tuned to a limitedcells in A were sampled. C : optimal velocity data for complex cells from

spatial frequency band, we may consider responses of aMovshon (1975) are presented in same format.
given neuron by using the band-limited version of visual
stimuli prefiltered to the pass band of the cell. Any visualexcitatory band (solid contours) and that of the suppressive
stimulus will elicit essentially the same response as that tobands (dashed contours) remains constant at Ç1.57 for all
a semiperiodic pattern of bright and dark bands that alternatethree stimulus bar widths, and therefore no dependence on bar
approximately at the cell’s optimal spatial frequency (Fleetwidth is observed. On the other hand, optimal subunit spatial
et al. 1996; Marr 1982; Marr and Poggio 1979). This condi-frequency is estimated to be 0.29 c/deg by a spatial frequency
tion is illustrated schematically in Fig. 22A for the XL-XRtuning measurement using drifting sinusoidal gratings (Mov-
domain. Segments of a dark-bright-dark sequence are shownshon et al. 1978a). This agrees well with the disparity frequen-
as stimuli to the left and right eyes along the horizontal andcies obtained by fitting of the one-dimensional disparity tuning
vertical axes, respectively. Consider a complex cell that hascurves: 0.24, 0.30, and 0.25 c/deg for the bar widths 0.2, 0.4,
an XL-XR map as shown (solid contour indicating excitationand 0.87, respectively. These results are in agreement with the
to matched contrast and dashed contours indicating excita-interpretation shown in Fig. 20, A and B , and therefore strongly
tion to opposite contrasts as in Fig. 15). The binocular com-suggest that the origin of responses at nonoptimal disparities
bination of these stimuli are excitatory for the cell every-under opposite contrast conditions is the multiple subregions
where in the XL-XR domain. For example, the central brightof the subunit RFs.
portions of the left and right stimuli cause excitation because

D I S C U S S I O N they fall exactly in the diagonal excitatory band for matched
stimuli (s) . Dark stimuli on both ends similarly fall on theWe show here that complex cells respond in a characteris-

tic manner that allows a high degree of sensitivity to changes diagonal excitatory band with matched contrast sign (●) .
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FIG. 20. Two hypotheses are presented to account for origin of responses to opposite contrast stimuli for 2 eyes. A :
energy model predicts that responses to opposite contrast stimuli originate from presence of multiple subregions in linear
subunits. For linear subunits and simple cells, an inversion of sign of stimulus contrast causes apparent inversion of RF
profile. B : an alternative hypothesis is based on matching of stimulus edges. This hypothesis predicts that excitatory regions
to opposite contrast stimuli are separated by twice the stimulus width, w.

However, there are also other combinations of left and right the natural environment where these mismatches occur in
abundance.stimulus elements (individual bright and dark bars) as shown

by horizontal and vertical dashed lines, many of which are
opposite in the sign of contrast for the two eyes. Note that Role of complex cells in solving the binocular
these opposite combinations (bipartite circles) fall exactly correspondence problem
on the appropriate regions in the XL-XR map (dashed con-
tours) , thus providing additional excitation for the neuron. The stimulus configurations shown in Fig. 22, A and B , are
Therefore a periodic binocular stimulus with the appropriate similar to that of Fig. 1D , which illustrates a large number of
disparity is more effective than a single bar stimulus, even possible ‘‘false matches’’ that arise in binocular viewing of
though such stimuli generate a large number of stimulus natural stimuli. Figure 1D originates from Julesz (1968,
combinations with contrast sign mismatches. 1971), and this figure has been duplicated in subsequent

Figure 22B shows that exact locations of the stimuli with articles and books to illustrate the complexity of the problem
respect to the cell’s RFs are not important as long as the faced by any stereoscopic vision system (Marr 1982; Marr
binocular disparity remains unchanged. Stimuli in this condi- and Poggio 1976). Interestingly, complex cells, in the form
tion are shifted by 907 in phase for the two eyes. Again, it of disparity-energy units, appear to provide a processing
is clear that various combinations of individual bright and stage necessary for solving the problem. Not only are com-
dark segments of stimuli fall into appropriate regions of the plex cells excited by stimuli that are matched correctly,
binocular RF, providing much larger overall excitation than point-by-point, for the two eyes, but they also are excited
a single contrast-matched target. Therefore, not only is the by stimulus combinations that are considered from the tradi-
ambiguity problem due to opposite contrast not unique to tional point of view to be incorrect matches (bipartite circles
complex cells and the disparity encoding problem, these in Fig. 22). And yet, this behavior is advantageous, as the

situation inevitably occurs under most natural viewing con-responses are actually beneficial for the visual system in

FIG. 21. Results of an experiment to test hypotheses
of Fig. 20. Binocular RFs in XL-XR domain and disparity
tuning curves are shown for 3 stimulus widths of 0.2,
0.4, and 0.87. This cell was recorded from layer 2/3.
Stimulus edge hypothesis fails.
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ditions. In other words, false-matches (bipartite circles)
should not necessarily be rejected but make an important
contribution to identifying the correct overall match between
local regions in the left and right images.

Given these considerations, the following picture emerges.
Disparity sensors, as implemented by complex cells, solve
the matching problem for a localized region of space. This
is a partial solution that raises the level of primitives that
are matched binocularly from individual white and black
elements of images (as illustrated by Fig. 1) to small patches
of image approximately the size of the RFs. Then, the match-
ing problem still remains to be solved across these spatially
distributed image patches. For a subsequent processing stage
that receives the output of these complex cells, this reduces
the complexity of the binocular matching problem (as mea-
sured by the number of false matches) by a factor of four
to nine or more, given that at least two to three subregions
typically are present in a subunit RF (DeAngelis et al. 1995a;
Gaska et al. 1994; Movshon et al. 1978a; Szulborski and
Palmer 1990). Therefore, the response of complex cells to
opposite contrast stimuli does not compound the problem of
ambiguous stereo matches (Blake and Wilson 1991).
Rather, it contributes positively to the solution of the stereo
matching problem. In retrospect, the original presentation of
the correspondence problem (Julesz 1971; Marr and Poggio
1976) may have overemphasized the complexity of the prob-
lem, because it is likely that nowhere in the stereo processing
stream, the system actually tries to match individual black
and white elements in the two images.

Deviations of neural responses from predictions of the
disparity energy model

Although the energy model provides a good description
of the data from many complex cells (Figs. 11 and 12),
various instances and degrees of deviation were found. For
some complex cells, it appears that a single energy unit
consisting of four simple subunits is not sufficient. For these
cells, a diagonal region of excitation extends along the fron-
toparallel plane over a much longer distance than can be
accounted for by a single energy unit (Figs. 11C and 13A) .
Additional energy units appear necessary to cover the large
spatial extent of these neurons’ RFs. The requirement for

FIG. 22. Schematic illustrations are shown that describe benefits of re-
multiple energy units still places the overall scheme within sponses to opposite contrast stimuli. A : a typical binocular RF in XL-XR domain

is shown in relation to a likely stimulus configuration with multiple targets forthe scope of the energy model. After all, a single energy
each eye. Solid diagonal contour represents an excitatory subregion to matchedunit model is the most parsimonious configuration that satis-
contrast stimuli, while dashed contours depict excitatory regions to oppositefies the properties that actual complex cells exhibit, and it
contrast stimuli (see Fig. 15). ª, opposite contrast targets; s and ●, contrast

is not surprising that neurons collect input from many more matched targets. All targets fall within appropriate regions of binocular RF.
cells than the minimum configuration requires. In fact, such Band-pass nature of linear subunits guarantees that stimulus periodicity, as

shown, is predominant spatial frequency component for any natural complexan extended spatial coverage is beneficial because it provides
scenes. B : same binocular RF is insensitive to exact monocular positions ofincreased positional invariance while retaining narrow selec-
stimuli as long as binocular disparity is appropriate for the cell.tivity to disparity. There is some psychophysical evidence

that humans may rely on such mechanisms (McKee et al.
1990). Recent computational studies also show that pooling tial region cannot be achieved by merely increasing the RF

size of individual subunits in a single energy-unit model. Ifactivities of multiple energy units can eliminate false
matches and reduce noise in disparity estimates (Fleet et al. the subunit RF size is increased while the preferred spatial

frequency is fixed, there will be additional spatial subregions1996; Qian and Zhu 1997). Note that multiple energy units
must be tuned to a single common disparity. This requires within the RF. This should lead to a corresponding increase

in the number of subregions (alternating excitatory and sup-a remarkable degree of specificity of neural wiring, when
one considers that the total number of subunits is four times pressive regions) in the disparity tuning curve. However, we

do not observe such extra regions for the cell of Fig. 6B ,the number of energy units. Also note that an extended spa-
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which clearly had a large spatial extent, as shown in Fig. range of complex cells, as defined by the extent of the dispar-
ity tuning curve (Fig. 17D) , decreases with a slope substan-12C . Multiple energy units that are spatially distributed with

partial overlap can provide a large spatial coverage without tially less than 01 as predicted by a strict phase model.
This is also consistent with the psychophysical findings. Itintroducing additional ripples.

Another deviation from predictions of the energy model is likely that both of these factors, disparity frequency and
disparity range, of neurons must be taken into account whenis the tendency for disparity frequency to be lower than

optimal spatial frequency as measured monocularly with si- attempting to relate psychophysics and physiology on the
issue of size-disparity correlation.nusoidal gratings (Fig. 17C) . Assuming that the optimal

spatial frequency represents the selectivity of linear subunits Another type of deviation of cell responses from predic-
tions of the energy model is an inconsistency regarding dif-(Gaska et al. 1994; Movshon et al. 1978a; Szulborski and

Palmer 1990), the energy model predicts a close match be- ferent combinations of the sign of stimulus contrast. We find
cases in which the energy model provides an almost perfecttween the two. Interestingly, similar deviations have been

found with monocular measurements between RF data and fit for one combination of stimulus contrasts, while failing
for others. Some of this type of deviation is probably attribut-those from measurements with sinusoidal gratings. Optimal

and cutoff spatial frequencies predicted from monocular sec- able to a differential effectiveness of bright and dark stimuli
for some complex cells. That is, it is not unusual to findond-order kernels were slightly lower (Ç0.25 octaves) than

those measured with grating stimuli for complex cells cells that respond better to bright stimuli than to dark stimuli,
or vice versa. However, there are deviations that cannot be(Gaska et al. 1994; Szulborski and Palmer 1991). Although

the origin of the discrepancy between disparity frequency explained by such asymmetries of responses to the sign of
contrast. For example, the cell presented in Fig. 11C shows aand spatial frequency is not clear, it is possible that the

deviation that we find for disparity frequency shares a com- reasonable fit for the dark-dark condition, though it probably
needs more energy units. The cell also had nearly balancedmon basis with those found monocularly.

A linear regression of the data in Fig. 17C reveals a statis- responses to bright and dark stimuli (Fig. 6) . However, the
response to the bright-dark condition (Fig. 11D) exhibitstically significant correlation between the optimal spatial fre-

quency and the disparity frequency. However, the slope is hardly any binocular interaction. The energy model predicts
that this condition should also cause an elongated excitatoryõ1, which means that cells tuned to high spatial frequencies

tend to have a lower disparity frequency than the energy region oriented at 457 but shifted to a different disparity.
The binocular term for Fig. 11D should have been nearlymodel predicts. The physiological basis of this deviation is

not clear. One possibility is that the deviation is due to gain as strong as that for Fig. 11C with phase inversion of the
binocular term. The reason for this type of deviation is notnormalization mechanisms that may operate at various stages

of the energy model. A computational study indicates that clear.
gain normalization mechanisms are able to modify details
of disparity tuning curves, e.g., by attenuating secondary Lack of sensitivity to motion-in-depth
peaks in disparity tuning curves (Fleet et al. 1995). Our
current model is a strictly feed-forward version and does RFs of most cells show no obvious signs of orientation

(i.e., tilt ) in the D-T domain (Fig. 15), indicating that thenot include any gain normalization mechanisms. Based on
prevalence of gain control phenomena observed in cortical preferred disparity of the cell does not change over the time

course of the response. A quantitative evaluation of re-neurons (Albrecht et al. 1984; Carandini and Heeger 1994;
Heeger 1992a,b; Ohzawa et al. 1982, 1985), such mecha- sponses in the frequency domain shows that cells are not

sensitive to motion-in-depth (Cynader and Regan 1978,nisms must clearly be incorporated.
Although we cannot speculate any further on possible 1982; Spileers et al. 1990) as indicated by extremely low

values of velocity-in-depth (Fig. 19A) . These results may becauses of the disparity frequency shift, we note that there
may be a psychophysical manifestation of this deviation. related to a psychophysical finding that speed discrimination

performance for targets moving in depth is very poor, andThe deviation of the disparity frequency, to a lower value
than is predictable by the optimal spatial frequency, becomes the task is possible only when the targets move slowly (Har-

ris and Watamaniuk 1995). The lack of motion-in-depthmore pronounced as the spatial frequency increases (see the
regression line in Fig. 17C) . Because of an inverse relation- sensitivity for complex cells is not surprising because none

of the simple cells sampled in a previous study (n Å 65)ship between the frequency and the period, the lower the
disparity frequency, the larger the equivalent disparity range had opposite preferred directions of motion for the two eyes

(DeAngelis et al. 1995a; Ohzawa et al. 1996). In addition,becomes for a given range of phase. This trend predicts a
disparity range that is larger than that predicted from a strict most cells maintained a constant preferred disparity over the

time course of the response. Even for space-time inseparablephase model. Therefore this deviation is indeed consistent
with the psychophysical finding that the binocular fusion cells, the rate of change in the RF phases was matched

closely between the two eyes (DeAngelis et al. 1995a; Oh-range for band-pass filtered random-dot stereograms be-
comes larger than the range predicted by the phase model zawa et al. 1996). Preferred monocular velocities for the

two eyes also are matched closely, indicating that direction-at high spatial frequencies (Smallman and MacLeod 1994).
Other studies show a similar trend except that there is a selective simple cells primarily encode information about

motion within fronto-parallel planes (Ohzawa et al. 1996).relatively abrupt transition near the spatial frequency of 2.5
cycles/deg (Legge and Gu 1989; Schor and Wood 1983) If these simple cells serve as subunits for complex cells, a

lack of tilt of RF orientation in the D-T domain is expected.instead of a gradual change as reported by Smallman and
MacLeod (1994). We also should note that the disparity Results presented in this paper are based on first-order
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binocular responses in the sense that we have measured re- Applying analogous considerations to the representation
of depth, we ask how many complex cells (energy units)sponses to a single binocularly viewed target in three-dimen-

sional space. Therefore, conceptually, our D-T plots (Figs. are required per spatial frequency, location, and orientation
for a complete representation of binocular disparity. Ac-15 and 20A) are analogous to the X-T plots obtained in

monocular studies of simple cells (DeAngelis et al. 1993a, cording to the general encoding rule mentioned above, this
number should be two. Equations 5 and 6 show that an1995a; McLean and Palmer 1989; McLean et al. 1994). In

both cases, we measure RFs in response to a single target in energy unit carries a strictly positive signal (a sum of squares
is always positive) . Therefore there is no need to doublereal space. However, the procedural aspects of the analyses,

presented herein for complex cells, involve computations of the number to construct a push-pull organization. The binoc-
ular term of Eq. 7 carries a bipolar signal, but the two monoc-second-order responses, or interactions between two stimuli,

because there are two stimuli for a binocular target, one for ular terms provide a conditioned excitation level about which
responses may be modulated by the binocular term. A recenteach eye. Although these X-T and D-T RFs provide rich

information on cell responses to motion and motion-in- computational study also shows that only two complex cells
per position are needed for reliable estimation of disparitydepth, respectively, they alone may not give us a complete

picture. This is one limitation of the present study. A com- (Qian and Zhu 1997). Note that the complex cell stage, as
modeled, has no inhibitory input that subtracts linearly fromplete evaluation of monocular motion sensitivity requires

motion stimuli consisting of at least two sequentially pre- the converging excitatory input from the subunits. Therefore
the suppression that we mentioned, when describing the bin-sented stimuli with spatial offsets (Emerson et al. 1987,

1992). Similarly, for binocular studies, it appears necessary ocular response that is driven below the monocular excitation
levels (Figs. 3A , 5, and 6), is an indirect effect of reducedto measure the interactions between two sequentially pre-

sented binocular targets in three-dimensional space. Al- responses of the simple subunits, which then are carried over
to the complex cell stage. Thus we have avoided the termthough, conceptually, such stimuli are second-order in real

space, nominally there will be a total of four stimuli for ‘‘inhibition’’ in referring to the reduction of a complex cell’s
response to levels below the monocular excitation. However,controlled dichoptic presentation. Thus, the analyses re-

quired will be fourth-order. Analyses of such high-order this does not mean that inhibition is not involved in con-
structing these complex cell RFs. Intracellular recordingsinteractions may be extremely difficult even with modern

nonlinear analysis techniques (Anzai et al. 1995; Sutter from complex cells clearly show strong inhibitory postsyn-
aptic potentials to visual stimuli as well as to electrical stimu-1991).
lation in the LGN (Ferster 1986). As we note above, gain

How many disparity energy units are needed for a normalization and contrast gain control mechanisms must
complete disparity representation? rely on some form of inhibition, possibly both divisive and

subtractive ones (Carandini and Ferster 1996; Carandini etWhat is the minimum number of cells required to imple-
ment a given neural computation? This is an important ques- al. 1996; Heeger 1992a,b) . Inhibition that is involved in

these mechanisms is likely to operate at the complex celltion for a number of reasons. Although there appears to
be an abundance of neurons in the visual cortex, it seems stage as well as for simple cells (Fleet et al. 1995, 1996b).
reasonable to assume that the brain encodes information in
an efficient manner. Many aspects of visual information en- Disparity-insensitive complex cells
coding seem to be designed for high efficiency, such as the
representation of binocular information by a population of About 40% of complex cells are not tuned for binocular

disparity (Hammond 1991; Ohzawa and Freeman 1986b).simple cells (DeAngelis et al. 1991, 1995a; Ohzawa et al.
1996), and the representation of space-time information in Data from only one such neuron are presented in this paper

(Fig. 7) , because our primary focus was on disparity-sensi-the LGN (Dan et al. 1996). We have shown for the disparity-
energy model that a minimum of four simple subunits is tive cells. The role of these cells remains a matter of specula-

tion. Their output may provide a signal that is useful fornecessary to build a disparity-sensitive complex cell (Fig.
8A) . If these subunits are capable of signalling negative motion and texture detection as well as contrast gain control

and gain normalization (Heeger 1992a). These are functionsvalues (i.e., inhibition), then two linear subunits will suffice
(Fleet et al. 1996, 1997). In general, image representation that do not require binocular input.

On the other hand, it is possible that these nondisparity-schemes based on decompositions into wavelets and Gabor-
like orthogonal basis functions require two neurons that can selective cells play a role in stereopsis. Recalling Eq. 7 and

Fig. 10, we note that nondisparity-sensitive cells provide atransmit bipolar signals (positive and negative) for each
location, spatial frequency, and orientation (Daugmann signal that is the sum of monocular responses, as represented

by the first two terms of Eq. 7 . By subtracting the output1985; Geisler and Hamilton 1986; Robson 1983; Sakitt and
Barlow 1982; Watson 1983; Watson and Ahumada 1989, of a nondisparity-sensitive cell from that of a disparity-sensi-

tive cell with the same RF position, it is possible to compute1991). Because simple cells cannot signal negative values in
their spike discharges due to a lack of spontaneous activity, a the pure binocular interaction component represented by the

third term of Eq. 7 . This term represents a binocular cross-push-pull configuration requires double the number of cells
(Pollen and Ronner 1981; Pollen et al. 1989). An array of correlation operation that may be important for stereopsis

(Fleet et al. 1996). Regardless of whether there is a neuronthese simple cells is thought to form a coarse-to-fine binocu-
lar image representation for encoding disparity information that actually computes the difference, it is clear that signals

for computing binocular correlation are readily availableas well as form information (Marr and Poggio 1979; Ohzawa
et al. 1996; Wilson et al. 1991). within the striate cortex.
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Hierarchical models and roles of simple and In our previous paper on encoding of binocular informa-
tion by simple cells (Ohzawa et al. 1996), we emphasizedcomplex cells
that simple cells should not be considered to be playing an

The energy model that we have proposed has a hierarchi- exclusive role for a specific visual function, such as stereop-
cal structure in which signals from a specific set of simple sis or form perception, because the information they carry
cell like subunits feed into a complex cell. Many complex may be used for a variety of other perceptual tasks. Instead
cells respond almost exactly as predicted by the energy of trying to associate simple cells with a specific function
model, although some deviations are found. Although, the such as stereopsis, we have described the notion that, as a
hierarchical organization of disparity-sensitive complex cells population, simple cells encode nearly complete but uncom-
is quite likely, the question of whether these subunits are mitted information, via a binocular linear transform, which
actually simple cells still remains open. For example, it is may be used for any purpose, including, but not limited to,
possible to attribute the subunits to a part of the complex stereo, motion, and form perception. Simple cells may be
cell structure, such as a portion of a dendrite that may operate selected according to appropriate sets of constraints to pro-
as an independent integration unit (Mel 1993; Shepherd duce second stage neurons in the visual cortex. Complex
1996). This possibility is reinforced by two factors. First, cells appear to be the next stage of processing for specific
the distribution of the phase of the disparity tuning curves binocular tasks, because disparity-sensitive complex cells
for our sample of complex cells (Fig. 17A) does not follow must be collecting input from a set of simple cells that share a
the asymmetry in the distribution for simple cells common preferred disparity. Given the possibility that many
(DeAngelis et al. 1991; Ohzawa et al. 1996). If the complex simple cells may feed into a complex cell, this is a remark-
cell RF is constructed from the simple cells’ output ac- ably tight constraint, which apparently is satisfied for many
cording to the energy model, the two distributions should cells. Similarly, complex cells also must have a specific
be closely similar. Second, the disparity frequency tended organization of their subunits to function as motion energy
to be lower than the monocular preferred spatial frequency sensors (Adelson and Bergen 1985; Emerson et al. 1992).
(Fig. 17C) . Again, if the hierarchical energy model is cor- The rules for selecting appropriate simple cells for a motion
rect, the two frequencies should be the same. There are two sensor are similar to those for disparity energy sensors, and
possibilities for the cause of these discrepancies: one is that there is also a set of strict constraints for the selection. As
the hierarchical assumption that signals flow from simple to with simple cells, however, it probably would be a mistake
complex cells is not correct. The other is that the energy to divide the complex cell population into a group that is
model is incorrect in that complex cells may combine simple responsible for stereopsis only and another that is responsible
cell output using an entirely different scheme. Unfortunately, for motion processing only. Most likely, the same set of
it is not possible to determine, based on our current knowl- complex cells performs computations for both functions at
edge, which of these factors contribute to the discrepancies. the same time. A computational modeling study shows that
Therefore, although it appears unlikely that the visual system such an integrated model of motion-stereo representation is
is built in an inefficient manner by which complex cells indeed possible (Qian 1994; Qian and Andersen 1996).
duplicate identical computations that are performed by sim- In conclusion, we have presented results of detailed mea-
ple cells, there is a clear lack of direct evidence for monosyn- surements of binocular responses from complex cells, and
aptic connections from simple cells to complex cells (Ghose comparisons of the data with predictions of the disparity
et al. 1994; Toyama et al. 1981; but see Alonso 1996; Liu energy model. There is generally good agreement between
1993). Direct LGN input to complex cells also has been the data and the model predictions. Combined with the re-
reported (Bullier and Henry 1979a–c; Henry et al. 1979; sults from simple cells (Ohzawa et al. 1996) and other stud-
Hoffmann and Stone 1971; Stone 1972; Tanaka 1983). ies, we now have a reasonable functional schematic diagram
However, such input does not necessarily contradict a basic of the early stages of binocular visual information pro-
hierarchical structure, i.e., both hierachical and direct LGN cessing, as well as a clearer picture of the roles that simple
input may be present simultaneously. Nevertheless, we must and complex cells play in the striate cortex.
conclude that the precise nature of the RF subunits of com-
plex cells is still unknown. We thank G. Ghose for help with the experiments and A. Anzai for

discussions and for suggesting the use of composite profiles in Fig. 15. WeAlthough the exact details of complex cell circuitry are
also thank Drs. D. J. Fleet and H. S. Smallman and two anonymous review-yet to be worked out, we now know a great deal about how
ers for valuable comments on the manuscript.to build a unit that is functionally equivalent to a real neuron. This work was supported by National Eye Institute research and CORE
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World Wide Web at http:// totoro.berkeley.edu/izumi/stereopsis/.one. The motion energy model (Adelson and Bergen 1985;

Present address of G. C. DeAngelis: Dept. of Neurobiology, StanfordEmerson et al. 1992; Pollen et al. 1989) provides a good
University School of Medicine, Stanford, CA 94305-5401.

functional schematic of complex cells for monocular motion Address for reprint requests: I. Ohzawa, School of Optometry, University
and motion parallel to frontoparallel planes. Similarly, the of California, 360 Minor Hall, Berkeley, CA 94720-2020.
disparity energy model described here presents a reasonable

Received 7 November 1996; accepted in final form 4 February 1997.functional circuitry of complex cells for stereopsis. The fact
that a computational model based on an array of disparity

REFERENCESenergy units can solve dynamic random dot stereograms
(Qian 1994) provides strong support for the scheme that we ADELSON, E. H. AND BERGEN, J. R. Spatiotemporal energy models for the

perception of motion. J. Opt. Soc. Am. 2: 284–299, 1985.have proposed.

J877-6/ 9k13$$ju02 08-05-97 09:36:50 neupa LP-Neurophys



BINOCULAR DISPARITY ENCODING BY COMPLEX CELLS 2907

ALBRECHT, D. G., FARRAR, S. B., AND HAMILTON, D. B. Spatial contrast correlation methods in auditory research. Q. Rev. Biophys. 16: 341–414,
1983.adaptation characteristics of neurones recorded in the cat́s visual cortex.

EMERSON, R. C., CITRON, M. C., VAUGHN, W. J., AND KLEIN, S. A. Nonlin-J. Physiol. Lond . 347: 713–739, 1984.
ear directionally selective subunits in complex cells of cat striate cortex.ALONSO, J. M. The microcircuitry of complex cells in cat striate cortex.
J. Neurophysiol. 58: 33–65, 1987.Soc. Neurosci. Abstr. 22: 489, 1996.

EMERSON, R. C., KORENBERG, M. J., AND CITRON, M. C. Identification ofANZAI, A., OHZAWA, I., FREEMAN, R. D., AND COHN, T. E. Do simple cells
intensive nonlinearities in cascade models of visual cortex and its relationin the cat’s striate cortex encode binocular disparity through position and
to cell classification. In: Advanced Methods of Physiological System Mod-phase incongruities? Soc. Neurosci. Abstr. 21: 1648, 1995.
elling, edited by V. Z. Marmarelis. New York: Plenum, 1989, vol. 2, p.BAKER, C. L., JR. Spatial- and temporal-frequency selectivity as a basis for
97–111.velocity preference in cat striate cortex neurons. Visual Neurosci. 4: 101–

EMERSON, R. C., BERGEN, J. R., AND ADELSON, E. H. Directionally selective113, 1990.
complex cells and the computation of motion energy in cat visual cortex.BARLOW, H. B., BLAKEMORE, C., AND PETTIGREW, J. D. The neural mecha-
Vision Res. 32, 203–218, 1992.nism of binocular depth discrimination. J. Physiol. Lond . 193: 327–342,

FERSTER, D. A comparison of binocular depth mechanisms in Areas 17 and1967.
18 of the cat visual cortex. J. Physiol. Lond . 311: 623–655, 1981.BLAKE, R. AND WILSON, H. R. Neural models of stereoscopic vision. Trends

FERSTER, D. Orientation selectivity of synaptic potentials in neurons of catNeurosci. 14: 445–452, 1991.
primary visual cortex. J. Neurosci. 6: 1284–1301, 1986.BRACEWELL, R. N. The Fourier Transform and its Applications (2nd ed.) .

FIELD, D. J. AND TOLHURST, D. J. The structure and symmetry of simple-New York: McGraw-Hill, 1978.
cell receptive-field profiles in the cat’s visual cortex. Proc. R. Soc. Lond.BULLIER, J. AND HENRY, G. H. Ordinal position of neurons in cat striate
B Biol. Sci. 228: 379–400, 1986.cortex. J. Neurophysiol. 42: 1251–1263, 1979a.

FLEET, D. J., HEEGER, D. J., AND WAGNER, H. Computational model ofBULLIER, J. AND HENRY, G. H. Neural path taken by afferent streams in
binocular disparity (Abstract). Invest. Opthalmol. Visual Sci. 36, Suppl. :striate cortex of the cat. J. Neurophysiol. 42: 1264–1270, 1979b.
365, 1995.BULLIER, J. AND HENRY, G. H. Laminar distribution of first-order neurons

FLEET, D. J., HEEGER, D. J., AND WAGNER, H. Modelling binocular neuronsand afferent terminals in cat striate cortex. J. Neurophysiol. 42: 1271–
in the primary visual cortex. In: Computational and Biological Mecha-1281, 1979c.
nisms of Visual Coding , edited by M. Jenkin and L. Harris. Cambridge,BURR, D. AND ROSS, J. Visual processing of motion. Trends Neurosci. 9:
UK: Cambridge Univ. Press, In press.304–307, 1986.

FLEET, D. J., WAGNER, H., AND HEEGER, D. J. Encoding of binocular dispar-CARANDINI, M. AND FERSTER, D. Visual adaptation hyperpolarizes cells of
ity: energy models, position shifts and phase shifts. Vision Res. 36: 1839–CARANDINI, M. AND HEEGER, D. J. Summation and division by neurons in
1857, 1996.primate visual cortex. Science Wash. DC 264: 1333–1336, 1994.

FREEMAN, R. D. AND OHZAWA, I. On the neurophysiological organizationCARANDINI, M., HEEGER, D. J., AND MOVSHON, J. A. Linearity and gain
of binocular vision. Vision Res. 30: 1661–1676, 1990.control in V1 simple cells. In: Cerebral Cortex, Cortical Models, edited

GABOR, D. Theory of communication. J. Inst. Elec. Eng . 93: 429–457,by E. G. Jones and P. S. Ulinski. New York: Plenum, In press.
1946.CHINO, Y. M., SMITH, E. L., YOSHIDA, K., CHENG, H., AND HAMAMOTO,

GASKA, J. P., JACOBSON, L. D., CHEN, H. W., AND POLLEN, D. A. Space-J. Binocular interactions in striate cortical neurons of cats reared with
time spectra of complex cell filters in the macaque monkey: a comparisondiscordant visual inputs. J. Neurosci. 14: 5050–5067, 1994.
of results obtained with pseudowhite noise and grating stimuli. VisualCYNADER, M. AND REGAN, D. Neurones in cat parastriate cortex sensitive
Neurosci. 11: 805–821, 1994.

to the direction of motion in three-dimensional space. J. Physiol. Lond . GASKA, J. P., POLLEN, D. A., AND CAVANAGH, P. Diversity of complex cell
274: 549–569, 1978. responses to even- and odd-symmetric luminance profiles in the visual

CYNADER, M. AND REGAN, D. Neurons in cat visual cortex tuned to the cortex of the cat. Exp. Brain Res. 68: 249–259, 1987.
direction of motion in depth: effect of positional disparity Vision Res. GEISLER, W. S. AND HAMILTON, D. B. Sampling-theory analysis of spatial
22: 967–982, 1982. vision. J. Opt. Soc. Am. 3: 62–70, 1986.

DAN, Y., ATICK, J. J., AND REID, R. C. Efficient coding of natural scenes GHOSE, G. M., FREEMAN, R. D., AND OHZAWA, I. Local intracortical connec-
in the lateral geniculate nucleus—experimental test of a computational tions in the cat’s visual cortex: postnatal development and plasticity. J.
theory. J. Neurosci. 16: 3351–3362, 1996. Neurophysiol. 72: 1290–1303, 1994.

DAUGMANN, J. G. Uncertainty relation for resolution in space, spatial fre- GHOSE, G. M., OHZAWA, I., AND FREEMAN, R. D. A flexible PC-based physi-
quency, and orientation optimized by two-dimensional visual cortical ological monitor for animal experiments. J. Neurosci. Methods 62: 7–
filters. J. Opt. Soc. Am . 2: 1160–1169, 1985. 13, 1995.

DEANGELIS, G. C., OHZAWA, I., AND FREEMAN, R. D. Depth is encoded in GIZZI, M. S., KATZ, E., SCHUMER, R. A., AND MOVSHON, J. A. Selectivity
the visual cortex by a specialized receptive field structure. Nature Lond . for orientation and direction of motion of single neurons in cat striate
352: 156–159, 1991. and extrastriate visual cortex. J. Neurophysiol. 63: 1529–1543, 1990.

DEANGELIS, G. C., OHZAWA, I., AND FREEMAN, R. D. Spatiotemporal orga- HAMMOND, P. Binocular phase specificity of striate cortical neurones. Exp.
nization of simple-cell receptive fields in the cat’s striate cortex. I. General Brain Res. 87: 615–623, 1991.
characteristics and postnatal development. J. Neurophysiol. 69: 1091– HARRIS, J. M. AND WATAMANIUK, S. N. Speed discrimination of motion-
1117, 1993a. in-depth using binocular cues. Vision Res. 35: 885–896, 1995.

DEANGELIS, G. C., OHZAWA, I., AND FREEMAN, R. D. Spatiotemporal orga- HEEGER, D. Normalization of cell responses in cat striate cortex. Visual
nization of simple-cell receptive fields in the cat’s striate cortex. II. Lin- Neurosci. 9: 181–198, 1992a.
earity of temporal and spatial summation. J. Neurophysiol. 69: 1118– HEEGER, D. Half-squaring in responses of cat striate cells. Visual Neurosci.
1135, 1993b. 9: 427–443, 1992b.

DEANGELIS, G. C., OHZAWA, I., AND FREEMAN, R. D. Neural mechanisms HENRY, G. H., HARVEY, A. R., AND LUND, J. S. The afferent connections
underlying stereopsis: how do simple cells in the visual cortex encode and laminar distribution of cells in the cat striate cortex. J. Comp. Neurol.
binocular disparity? Perception 24: 3–31, 1995a. 187: 725–744, 1979.

DEANGELIS, G. C., OHZAWA, I., AND FREEMAN, R. D. Receptive-field dy- HOFFMANN, K. P. AND STONE, J. Conduction velocity of afferents to cat
namics in the central visual pathways. Trends Neurosci. 18: 451–458, visual cortex: a correlation with cortical receptive field properties. Brain
1995b. Res. 32: 460-466, 1971.

DEBOER, E. AND KUYPER, P. Triggered correlation. IEEE Trans. Biomed. HOWARD I. P. AND ROGERS, B. J. Binocular Vision and Stereopsis. New
Eng. 15: 169–179, 1968. York: Oxford Univ. Press, 1995.

DEVALOIS, R. L., ALBRECHT, D. G., AND THORELL, L. G. Spatial frequency HUBEL, D. H. AND WIESEL, T. N. Receptive fields, binocular interaction and
selectivity of cells in macaque visual cortex. Vision Res. 22: 545–559, functional architecture in the cat’s visual cortex. J. Physiol. Lond . 160:
1982. 106–154, 1962.

DOUGLAS, R. J. AND MARTIN, K.A.C. A functional microcircuit for cat HUBEL, D. H. AND WIESEL, T. N. Receptive fields and functional architec-
visual cortex. J. Physiol. Lond . 440: 735–769, 1991. ture of monkey striate cortex. J. Physiol. Lond . 195: 215–243, 1968.

JACOBSON, L. D., GASKA, J. P., AND POLLEN, D. A. Phase, displacement,EGGERMONT, J. J., JOHANNESMA, P.I.M., AND AERTSEN, A.M.H.J. Reverse-

J877-6/ 9k13$$ju02 08-05-97 09:36:50 neupa LP-Neurophys



I. OHZAWA, G. C. DEANGELIS, AND R. D. FREEMAN2908

and hybrid models for disparity coding (Abstract). Invest. Ophthalmol. ing slit with receptive fields in correspondence. Exp. Brain Res. 6: 391–
410, 1968.Visual Sci. 34, Suppl. : 908, 1993.

JONES, J. P. AND PALMER, L. A. The two-dimensional spatial structure of PIERCE, D. M. AND BENTON, A. L. Relationship between monocular and
binocular depth acuity. Ophthalmologica 170: 43–50, 1975.simple receptive fields in the cat striate cortex. J. Neurophysiol. 58:

1187–1211, 1987a. POGGIO, G. F. Mechanisms of stereopsis in monkey visual cortex. Cereb.
Cortex 3: 193–204, 1995.JONES, J. P. AND PALMER, L. A. An evaluation of the two-dimensional Gabor

filter model of simple receptive fields in cat striate cortex. J. Neurophys- POGGIO, G. F. AND FISCHER, B. Binocular interaction and depth sensitivity
iol. 58: 1233–1258, 1987b. in striate and prestriate cortex of behaving Rhesus monkey. J. Neurophys-

iol. 40: 1392–1405, 1977.JOSHUA, D. E. AND BISHOP, P. O. Binocular single vision and depth discrimi-
nation. Receptive field disparities for central and peripheral vision and POGGIO, G. F., GONZALEZ, F., AND KRAUSE, F. Stereoscopic mechanisms
binocular interaction on peripheral single units in cat striate cortex. Exp. in monkey visual cortex: binocular correlation and disparity selectivity.
Brain Res. 10: 389–416, 1970. J. Neurosci. 8: 4531–4550, 1988.

JULESZ, B. Binocular depth perception of computer-generated patterns. Bell POGGIO, G. F., MOTTER, B. C., SQUATRITO, S., AND TROTTER, Y. Responses
Syst. Tech. J. 39: 1125–1162, 1960. of neurons in visual cortex (V1 and V2) of the alert macaque to dynamic

random-dot stereograms. Vision Res. 25: 397–406, 1985.JULESZ, B. Experiment in perception. Psychol. Today 2: 16–23, 1968.
JULESZ, B. Foundations of Cyclopean Perception . Chicago, IL: Univ. of POGGIO, G. F. AND POGGIO, T. The analysis of stereopsis. Annu. Rev. Neu-

rosci . 7: 379–412, 1984.Chicago Press, 1971.
LEGGE, G. E. AND GU, Y. Stereopsis and contrast. Vision Res . 29: 989– POLLEN, D. A., GASKA, J. P., AND JACOBSON, L. D. Physiological constraints

on models of visual cortical function. In: Models of Brain Function,1004, 1989.
edited by R. M. J. Cotterill. Cambridge, UK: Cambridge Univ. Press,LEVAY, S. AND VOIGT, T. Ocular dominance and disparity coding in cat
1989, p. 115–135.visual cortex. Visual Neurosci. 1: 395–414, 1988.

POLLEN, D. A. AND RONNER, S. F. Phase relationships between adjacent simpleLEVICK, W. R. Another tungsten microelectrode. Med. Biol. Eng. 10: 510–
cells in the visual cortex. Science Wash. DC 212: 1409–1411, 1981.515, 1972.

PRESS, W. H., FLANNERY, B. P., TEUKOLSKY, S. A., AND VETTERLING, W. T.LIU, Z. Functional microcircuitry of the striate cortex: a cross-correlation
Numerical Recipes in C (2nd ed.) . Cambridge, UK: Cambridge Univ.study (PhD thesis) . Cambridge, MA: Harvard Univ., 1993.
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