
Asymptotically Admissible Texture Synthesis

Yingqing Xu1, Song-Chun Zhu2

Baining Guo1, Heung-Yeung Shum1

1 Microsoft Research China
2 The Ohio State University

May 14, 2001

Abstract

Recently there is a resurgent interest in example based texture analy-
sis and synthesis in both computer vision and computer graphics. While
study in computer vision is concerned with learning accurate texture mod-
els, research in graphics is aimed at effective algorithms for texture synthe-
sis without necessarily obtaining explicit texture model. This paper makes
three contributions to this recent excitement. First, we introduce a theoretical
framework for designing and analyzing texture sampling algorithms. This
framework, built upon the mathematical definition of textures, measures a
texture sampling algorithm using admissibility, effectiveness, and sampling
speed. Second, we compare and analyze texture sampling algorithms based
on admissibility and effectiveness. In particular, we propose different design
criteria for texture analysis algorithms in computer vision and texture syn-
thesis algorithms in computer graphics. Finally, we develop a novel texture
synthesis algorithm which samples from a subset of the Julesz ensemble by
pasting texture patches from the sample texture. A key feature of our al-
gorithm is that it can synthesize high-quality textures extremely fast. On a
mid-level PC we can synthesize a 512 � 512 texture from a 64 � 64 sam-
ple in just 0.03 second. This algorithm has been tested through extensive
experiments and we report sample results from our experiments.

1

1 Introduction

Texture analysis and texture synthesis have attracted much interest recently in
computer vision and computer graphics. A key question in texture study is what
human vision perceives from texture images. More precisely, what are the suf-
ficient and necessary (or minimum) texture features and statistics so that a pair
of texture images sharing such statistics can be regarded as the ”same class” of
texture for human perception. This theme, studied by psycho-physicists who are
interested in the early stage of visual perception, dates back to (Julesz, 1962)[6].
In late 1980’s and early 1990’s, the psychological study also pointed to a con-
jecture that human texture perception is governed by the empirical histograms of
Gabor filtered images, inspired by the success of Gabor filters as a model for V1
cells and in image coding. Two texture images are regarded the same class if they
share the same histograms for a band of Gabor filtered images. Unfortunately, a
rigorous study of this problem was prohibited by the lack of mathematical tools
for synthesizing texture pairs that share a given set of statistics.

Motivated by the psychology studies, Heeger and Bergen in 1995 proposed
a pyramid based algorithm for texture synthesis that can approximately match
marginal histograms of filter responses[5]. A mathematical model called FRAME
is proposed in (Zhu, Wu and Mumford, 1997) [15]. The FRAME model inte-
grates the filters and histograms into Markov random field models and adopts an
accurate but expensive Markov chain Monte Carlo (MCMC) method for texture
synthesis. Furthermore, the selection of feature statistics is well posed on a mini-
max entropy principle [15]. Other interesting algorithms explore texture synthesis
with joint statistics of filter responses. For example, (De Bonet, 1997) synthesized
textures by matching joint histogram of a long vector of filter response [2]. (Por-
tilla and Simoncelli, 2000) studied an iterative projection method for matching the
correlations of some filter responses[9]. These methods, among many other work
in the literature, represent two distinct paths of texture synthesis. The first path
learns analytical models of texture using Markov random fields, and synthesize
texture by stochastic sampling from the model[1, 15]. The second path synthesize
texture by matching statistics without deriving analytical texture model[2, 9, 14].
The two paths are unified by the equivalence between the Julesz ensemble and
FRAME models [12].

More recently, several algorithms have also been proposed to synthesize tex-
tures by matching only local distributions. For example, a non-parametric estima-
tion of MRF models is introduced by (Efros and Leung, 1999)[3], which can be
further accelerated using a tree-structured VQ method (Wei and Levoy, 2000)[11].

2

The idea of estimating a non-parametric density can be traced back to Papat and
Picard, 1993)[8], where they estimate an auto-regression model for ”growing”
texture by sampling from a cluster-based model. These methods are good for
synthesis (e.g., easy to be implemented and good-quality synthesis results), but
inconvenient for analysis.

In this paper, we intend to contribute to the recent excitement of texture syn-
thesis in both theoretical and practical aspects. Firstly, we introduce a theoretical
framework for designing and analyzing texture sampling algorithms. While a tex-
ture sampling algorithm is ”acceptable” as long as it can synthesize satisfactory
textures, it is critical to understand how to measure these algorithms in more rig-
orous terms. Our theoretical framework, built upon the mathematical definition of
textures from [14, 12], measures a texture sampling algorithm using admissibility,
effectiveness, and sampling speed. For a texture synthesis algorithm, admissibil-
ity measures the perceived difference in the texture characteristics of the sample
texture and synthesized texture, whereas effectiveness measures the richness of
the textures generated.

Secondly, we demonstrate how to analyze texture sampling algorithms based
on admissibility and effectiveness. In particular, we show that there should be
different design criteria for texture analysis algorithms in computer vision and
texture synthesis algorithms in computer graphics. In texture analysis, a texture
sampling algorithm must be optimally admissible, i.e., be consistent with the def-
inition of the texture — the Julesz ensemble. For texture synthesis, on the other
hand, an algorithm is acceptable provided that it samples from a subset of the
Julesz ensemble. Realizing the difference in design criteria allows us to better
balance the trade-off of admissibility, effectiveness, and sampling speed when de-
signing texture synthesis algorithms.

Finally, we develop a novel texture synthesis algorithm which trades effec-
tiveness for speed. The equivalence of the Julesz ensemble and FRAME models
[12] states that texture synthesis can be done without necessarily learning Markov
random field models provided that the texture is synthesized on a large image
lattice[14]. Our algorithm adopts this strategy and samples from a subset of the
Julesz ensemble by pasting texture patches from the sample texture. A key feature
of our algorithm is that it can synthesize high-quality textures extremely fast. On
a mid-level PC we can synthesize a 512 � 512 texture from a 64 � 64 sample in
just 0.03 second. This algorithm has been tested through extensive experiments
and we report sample results from our experiments.

The paper is organized as follows. In Section (2), we introduce the concepts of
admissibility and effectiveness for texture sampling algorithms. In Section (3), we

3

Figure 1: The lattice system and boundary conditions (shaded areas) for texture
images.

first analyze various synthesis algorithms under this framework. Then we present
our fast texture synthesis algorithm along with some experiments. We conclude
the paper with a discussion in Section (4).

2 Admissibility and Effectiveness

In this section, we introduce the concepts of admissibility and effectiveness for
texture sampling algorithms.

2.1 Texture Definition

We denote an image lattice by �. As Figure 1 shows, � can be of arbitrary shape
and may not be connected. We denote by @� the boundary of lattice � and show
@� as the shaded areas in Figure 1. A texture image is denoted by I� with bound-
ary condition I@�. In practice, we often ignore the effects of boundary conditions
as the lattice � goes to infinity (or big enough) in the sense of Von Hove, which is
defined as follows.

Definition 1 A lattice is going to infinity in the sense of Von Hove if the ratio
between the area of its boundary condition to the area of the lattice goes to zero,
i.e., lim�!1

j@�j
j�j

= 0.

In this paper we assume the Von Hove sense for any large lattice. For example,
we say a lattice is large enough if j@�j

j�j
� 1=20.

Now we are ready to give a rigorous definition for what we mean by ”a texture”
following [14].

4

Definition 2 As image lattice �!1 in the Von Hove sense, the boundary effects
and statistical fluctuation diminishes in the absence of phase transition, 1 a texture
is defined as a set

(h) = fI : h�(I) = h g: (1)

where h�(I) is the statistics extracted by human texture perception.

As discussed in [14, 12], the definition of a texture is up to human visual percep-
tion. If h�(I�) is the features and statistics extracted by human visual cortex, then
all texture images having the same statistics are perceived as the same texture.

As a spatial phenomenon, a texture cannot be defined on one point or even any
finite image lattice � because the statistical fluctuation of h(I�). We must define
texture on an infinite lattice, i.e. � ! 1 in the Von Hove sense. On an infinite
�, the statistical fluctuation will diminish and we obtain a deterministic definition
of texture. Thus a vector h identifies a texture on infinite lattice � – just like a
wavelength � or (r; g; b) identifies a color! As Figure 2.a shows, different textures
correspond to disjoint sets in the image space. Each texture set is associated with
a distribution, denoted by q(I;h) which is uniformly distributed within
(h) and
zero outside. We use the word ensemble from statistical physics to refer to a
texture definition.

Definition 3 An ensemble E is a set where elements may repeat. Thus it includes
a base set
 and a frequency f , E =<
; f >.

On a large lattice, a texture
(h) is called a Julesz ensemble in (Zhu, Liu, and Wu,
2000). Because the uniform frequency in a Julesz ensemble, we don’t distinguish
the base set and the ensemble itself.

2.2 Admissibility

Given a texture example I�o on lattice �o
2, let h = h

�(I�o) be the observed statis-
tics. Denote by
�(h) the Julesz ensemble of the synthesized texture on lattice
�. For a given texture synthesis algorithm A, there must exist a corresponding
ensemble

EA =<
A; fA > :

1So far there is no confirmed example of phase transition in realistic texture, and thus we
choose not to discuss this issue in this paper.

2As a lattice does not have to be connected, we consider the case of multiple observed texture
images as different components of �o.

5

a. Ensembles on infinite �

b. Ensembles on finite �

Figure 2: The ellipse represents the image space
� = Gj�j where G is the set
of grey levels for pixel intensity. Two ensembles overlap with each other on finite
lattice and are disjoint on infinite lattice.

In Figure 3, the Julesz ensemble is represented by an ellipse in the image space

�.

A basic property of a texture synthesis algorithm is whether the synthesized
textures satisfy the texture definition according to the Julesz ensemble.

Definition 4 For a texture synthesis algorithmAwith ensemble EA =<
A; fA >,
A is said to be admissible if
A �
�(h). A is said to be optimally admissible if

A =
�(h) and fA is the maximum entropy distribution.

In Figure 3, the
A1 and
A2 areas represent the sampling sets of a non-admissible
algorithm A1 and an admissible algorithm A2 respectively.

In practice, requiring an algorithm be admissible is often too restrictive. As
we shall see, many successful texture synthesis algorithms are only asymptotically
admissible, not admissible.

Definition 5 If an algorithm is admissible when �o ! 1, then we say it is
asymptotically admissible.

For an algorithm A that is not admissible, we use admissibility to measure
how far A is from being admissible. Suppose that for a texture sample I�o on

6

Figure 3: In the image space
�, the ellipse represents the Julesz ensemble
�(h).
The sampling sets
A1 and
A2 are for a non-admissible algorithm A1 and an
admissible algorithm A2 respectively.

a lattice �o, the texture synthesis algorithm A estimates some statistics hA in a
k-dimensional feature space and synthesize a texture from the ensemble EA =<

A; fA > based on A. To make A admissible, one may choose a higher dimen-
sional statistics hA and hope to make
A a subset of
(h). However, due to finite
observations, the estimation error for the statistics hA becomes large when the di-
mension increases. As a result, the actual texture ensemble
A may grow outside
the Julesz ensemble.

Inspired by the Fisher’s information measure, we propose to measure admis-
sibility by the inverse of the estimation variance

aA =
1

jvar[hA]j
=

1

jE[hA � E[(hA])T (hA � E[hA])]j

Why is admissibility an important measure for texture synthesis algorithms?
Simply put, the admissibility measures the perceived difference in the texture
characteristics in the sample texture I�o and synthesized texture I�. The more
admissible an algorithm A is, the smaller is the perceived difference in the texture
characteristics because the ensemble
A defined by the estimated statistics hA is
more properly contained by the the Julesz ensemble
(h).

In practice, we cannot observe an infinity image although the Julesz ensemble
is defined on infinite lattice. Thus we never know what the true Julesz ensemble
is, never really know the true h. Because of ergodicity, we can take the ”single
image statistics averaged over infinite lattice” as the ”expected statistics averaged
over the whole ensemble of images”. Note that the concept of admissibility is
related to but different from the ”practical ergodicity” in [9].

7

Therefore, a practical definition for admissibility becomes that “an algorithm
is admissible with a confidence factor”, or specifically,

p(jĥ� hj < �) > 1� Æ:

for some small positive values of Æ; �.
Similar to the limit definition in calculus, given pre-set � and Æ, we need an

observed image I with size N = N(�; Æ) so that the above equation is satisfied.
Each algorithm can be measured by the size of NA it needs for a given �; Æ. The
smaller the NA, the ”more admissible” the algorithm. An algorithm is asymp-
totically admissible if for any � there exists a finite lattice size N such that the
estimation error is under �.

2.3 Effectiveness

Another property of a texture synthesis algorithm is the richness of textures it
generates.

Definition 6 For any texture synthesis algorithm A, the richness of the algorithm
is measured by the entropy of its ensemble frequency on the base set.

rA = entropy(fA) = �
Z

A

fA(I�) log fA(I�) dI�:

A more intuitive measure for the richness rA is the volume of the base set of
A, i.e., j
Aj. It is trivial to prove the following proposition.

Proposition 1 For any texture synthesis algorithm A with uniform ensemble fre-
quency,

rA = entropy(fA) = log j
Aj+ const:

The constant is determined by the discretization of the image space.
Now we define the effectiveness of an admissible algorithm as follows.

Definition 7 For an admissible algorithm A, the effectiveness of the algorithm is
defined as the difference,

eA = entropy(fA)� entropy(q(I;h)):

8

In case of uniform ensemble frequency,

eA = log
j
Aj

j
�(h)j

and the effectiveness of a texture synthesis algorithm is the logarithmic portion of
the ideal Julesz ensemble it explores! It is trivial to prove the following proposi-
tion.

Proposition 2 An optimally admissible algorithm A has maximum effectiveness
eA = 0.

3 Design Texture Sampling Algorithms

Based on the theoretical framework introduced in the last section it is straight-
forward to discuss the design criteria for texture analysis in computer vision and
texture synthesis in computer graphics.

3.1 Design Criteria

Admissibility, effectiveness and synthesis speed can be used to analyze and com-
pare existing texture sampling algorithms, particularly those of texture synthesis
in graphics.

� In computer vision, a texture model and texture analysis algorithm should
be optimally admissible. For example, the FRAME model is preferred be-
cause it is consistent with the Julesz ensemble. Although a model that
is not optimally admissible may still be successful in texture segmenta-
tion/classification in a small data set, it looses generality in building large
vision systems.

� In computer graphics, a texture synthesis algorithm should preferably be
admissible, but it does not have to be optimally admissible. For texture
synthesis, the admissibility is more important than effectiveness.

� In practice, a designer often needs to trade off between the speed of algo-
rithm and its effectiveness. As a result, many previous synthesis algorithms
are not admissible, but only asymptotically admissible.

Next we examine some of the existing texture synthesis algorithms in graphics
and see how they trade off admissibility, effectiveness and synthesis speed.

9

Figure 4: The trade-off of admissibility, effectiveness, and sampling speed of a
number of existing texture synthesis algorithms. The algorithms are numbered as
follows: (1) = (Heeger and Bergen, 1995), (2) = (Zhu, Wu, and Mumford, 1996),
(3) = (DeBonet 1997), (4) = (Portilla and Simoncelli, 2000), (5) = (Zhu, Liu, and
Wu, 2000), (6) = (Efros and Leung 1999), and (7) = (Wei and Levoy, 2000). The
3D box is for the patch pasting algorithm proposed in this paper.

3.2 Sampling algorithms for texture synthesis

There are mainly two sampling strategies used by current texture synthesis al-
gorithms. The first strategy, called ensemble sampling for short, is to compute
global statistics in feature space and thereby sample images from the texture en-
semble directly on a large image lattice. The second strategy is to compute local
conditional Gibbs distributions and thus synthesize pixels incrementally.

Algorithms using the first sampling strategy include (Heeger and Bergen, 1995),
(Debonet, 1997), (Zhu, Liu, and Wu, 2000), and (Portilla and Simoncelli, 2000).
When using this strategy one samples texture images from an ensemble, and usu-
ally one may sacrifice the effectiveness for fast speed of synthesis or for ease of
sampling. For example, (Heeger and Bergen, 1995) has difficulties in synthesize
textures with distinguishable features. This is not really because the marginal
statistics they used are not enough for these textures (which was argued by some
people in the literature), but the algorithm cannot match these statistics exactly.
That is, their pyramid collapse method was sampling from an ensemble which is
not a subset of
(h) as it supposed to be. Then (Debonet, 1997) used a similar
algorithm on a pyramid. Since De Bonet used a much larger amount of statis-

10

tics, i.e. the joint histogram of some > 50 filters (more than 50 dimensional
histogram) that limits the ensemble of the algorithm within the Julesz ensemble
for more textures.

Algorithms using the second sampling strategy include (Zhu, Wu, and Mum-
ford, 1996, 1997), (Elfros and Leung, 1999) and (Wei and Levoy, 2000). The first
method estimates the FRAME (Gibbs, or MRF) model using observed marginal
histograms h(I�o) which are often easy to estimate accurately with �o being rea-
sonably big, say 128 � 128 pixels. The second and third methods estimate a
one dimensional conditional MRF (FRAME or Gibbs) density p(IvjI@v) in a non-
parametric method by an empirical histogram,

p̂(I(v)jI@v) =
X
i

�iÆ(I(v)� Ii(v));
X
i

�i = 1:

v = (x; y) is a single pixel and Ii(v); 8i are the intensities in the observed image
under some similar boundary condition I@v. The weight �i measures the simi-
larity. In this work the statistics h

� is implicit in the neighborhood @v. Large
neighborhood size means strong statistical constraints and small ensemble of the
sampling algorithm. In comparison to the analytical FRAME model in (Zhu, Wu,
and Mumford, 1997), this non-parametric method is faster to estimate although it
is subject to much larger statistical fluctuations because in a small image I�o there
may only be a few sites that have neighborhood which is similar to I@v.

Fig. 4 illustrates the trade-off between admissibility, effectiveness and synthe-
sis speed for the above texture synthesis algorithms3. We qualitatively group these
methods into three different groups with similar properties in terms of admissibil-
ity and effectiveness: group 1 with method 1, group 2 with method 3, 6 and 7 and
group 3 with method 2, 4 and 5.

From our discussion of these algorithms it is easy to see that many of them
are not admissible. For example, in (Elfros and Leung, 1999) the estimated MRF
density p̂(IvjI@v) is generally not the same as the conditional distribution of the
Julesz ensemble q(IvjI@v;h), although p(IvjI@v) does converge to q(IvjI@v;h) as
�o goes to infinity and (Elfros and Leung, 1999) is asymptotically admissible. To
measure the admissibility, we can first set an estimation error tolerance �, then
compute the size of the observed lattice �0 needed to achieve this error tolerance
as discussed before.

3Note that the comparison here is mostly qualitative. The quantitative comparison is hard in
practice because of the variability of feature statistics used by different algorithms explicitly or
implicitly.

11

Referring to Fig. 4, we have (Heeger and Bergen, 1995) at one end of the
admissibility axis. Although their algorithm uses 1D marginal histograms which
can be estimated quite accurately, the algorithm cannot guarantee close match of
the statistics. (De Bonet 1997) is less admissible than the algorithm of (Elfros
and Leung, 1999) and (Wei and Levoy, 2000) because the estimation of joint
histogram in high dimension could generate very large variance. At the other end
of the admissibility axis, (Zhu, Wu, and Mumford, 1996) loses some admissibility
to (Zhu, Liu, and Wu, 1999) because the former introduces computational error in
learning the Gibbs model.

The analysis of the effectiveness of the algorithms in Fig. 4 is similar to the
admissibility analysis of these algorithms. Generally speaking, the more statistics
an algorithm uses, the less flexible the the algorithm is and its effectiveness suffers
as a result. For example, (Heeger and Bergen, 1995) has a higher effectiveness
ranking than (De Bonet 1997) and (Elfros and Leung, 1999) because (Heeger and
Bergen, 1995) uses only marginal histogram and it samples the histogram which
has greater entropy than those used by (De Bonet 1997) and (Elfros and Leung,
1999).

Fig. 4 not only provides a qualitative way to compare the existing algorithms
but also suggests how to design new algorithms. As mentioned earlier, the ensem-
ble sampling strategy potentially allows us to achieve fast synthesis speed by com-
promising effectiveness. Unfortunately, the fastest algorithm using the ensemble
sampling strategy, (Heeger and Bergen 1995), has low admissibility, which is a
big drawback for graphics applications since the design criteria for texture syn-
thesis in graphics dictate the importance of admissibility over effectiveness. Can
we achieve fast speed without big sacrifice in admissibility ? We answer this
question affirmatively by presenting an extremely fast algorithm that has average
admissibility.

3.3 Texture Synthesis by Patch Pasting

We will now present our algorithm which can be used to synthesize high-quality
textures extremely fast with some compromise in effectiveness.

This algorithm, first appeared in [13] as a technical report, has been suc-
cessfully used in texture mapping 3D surfaces (Praun, Frinkelstein, and Hoppe,
2000)[10].

Suppose we partition the lattice of synthesis � into a set of n disjoint patches,

12

Figure 5: Texture synthesis results. The input samples are of size 64 � 64. The
synthesized textures are of size 256� 256.

13

Figure 6: More texture synthesis results. The input samples are of size 128� 128.
The synthesized textures are of size 256� 256.

and denote each partition as �.

� = fRi : i = 1; 2; :::; ng; [ni=1Ri = �; and Ri \Rj = ;:

Definition 8 The diameter �(R) of a patch R is the longest distance between two
points in R. The diameter of a partition �(�) is the largest diameter out of all the
patches in �.

�(�) = maxf�(R) : R 2 �g:

The diameter and shape of these patches are constrained so that each of the region
is smaller than the observed texture lattice �o, i.e., Ri � �o after a translation.
We denote by
� the set of all possible partitions with various n.

� = f� : Ri � �o; 8Ri 2 �g:

Definition 9 For each patch R 2 �, we decompose it into interior RI and bound-
ary @RI , so that for each pixel v 2 RI , its statistics features (filter responses) can
be computed within R, while pixels in @RI involves pixels outside RI .

Figure 7 illustrates a partition � with the interiors of the patches shown by blue
color and the boundary conditions by the red color.

14

Figure 7: The partition of images

The patch-pasting algorithm works as follows.

Step 1: Randomly draw a partition � 2
�, d1 � �(�) � d2. The
sizes d1 and d2 affect the effectiveness and speed of the synthesis.

Step 2: For each R 2 �, repeat the following

a) Randomly draw a point v 2 �o so that v 2 R after a
translation.

b) Paste I�o inside R.

In practice, we first randomly draw a patch of irregular shape from �o and then
paste it onto � at a random location with occlusion between patches. To ran-
domly paste texture patches over � while reducing overlap of the patches, we
control the pasting locations using Arnold’s Cat Map from the field of determin-
istic chaos [13]. To reduce the seams between pasted texture patches, we apply
alpha-blending at the edges of pasted patches.
Algorithm Analysis: This simple algorithm does not correctly handle the bound-
ary conditions. Nevertheless, the algorithm is asymptotically admissible. Suppose
h
� is the statistics extracted by human vision, and h = h

�(I�o) is the observed
statistics, and thus the Julesz ensemble of this texture is
�(h). The statistics of
the synthesized image is a mixture of statistics from the interior and boundary,

h(I�) =
nX
i=1

[
jRI

i j

jRij
h(IRI

i
) +
j@RI

i j

jRij
h(I@RI

i
):

15

Texture Size T(HB) T(PP) Mem(HB) Mem(PP)
400� 400 157 0.026 8Mb 4.8Mb
512� 512 278 0.042 12Mb 5.0Mb
800� 800 579 0.101 27Mb 6.2Mb
1024� 1024 1112 0.151 44Mb 7.4Mb

Table 1: Timing and memory usage comparison between the patch-pasting
method and (Heeger and Bergen, 1995). The “T(HB)” column lists timings of
(Heeger and Bergen, 1995) in seconds. The “T(PP)” column lists timings of the
patch-pasting algorithm in seconds. The “Mem(HB)” and “Mem(PP)” report the
memory usages of (Heeger and Bergen, 1995) and the patch-pasting method re-
spectively.

For large observation �o, the interior regions can be made big enough so that the

boundary statistics are negligible, i.e. j@RI

i
j

jRij
goes to zero and thus the algorithm

becomes admissible.
Beside the problems at the patch boundaries, the patch-pasting algorithm does

not suffer other admissibility problems. This makes the algorithm more admissi-
ble than (Efros and Leung, 1999), which estimates conditional probabilities in the
order of 20x20 dimensions and can have very large estimation errors.

In terms of effectiveness, the volume of the ensemble is in the order ofO(j
�j�
mn), where n is the largest number of region in a partition, and m is the number
of different patches in I�o that can fill a region. We can sacrifice effectiveness to
improve the speed by using large patches, since m, n and
� all decrease when
the patch sizes increase. In an extreme case, we use a tiling method, where the
baseset of the ensemble has only one element4! It is the fastest algorithm one can
get, but it is the most ineffective algorithm for texture sampling.

3.4 Experimental Results

Synthesis Speed: To compare our synthesis speed with existing texture synthesis
methods, we have implemented (Heeger and Bergen, 1995), which is one of the
faster methods. Table 1 provides the statistics for synthesizing textures of various
sizes from an 128� 128 input texture sample. These statistics were gathered on a

4The tiling method in the image space corresponds to a single point inside the Julesz ensemble
(Figure 3).

16

(a)

(b)

(c)

(d)

(e)

Figure 8: Comparison of the patch-pasting method and previous methods on three
different input texture patterns. (a) Samples; (b) our patch-pasting method; (c) De
Bonet 1997; (d) Wei and Levoy 2000; (e) Efros and Leung 2000.

17

Figure 9: The effect of patch size on the randomness of the texture. From left to
right, the first texture is a tiling obtained with the maximum patch size and the
other textures are obtained with increasingly smaller patch sizes.

PC with a 450 Mhz Pentium III processor and 128 Mb of main memory. Roughly
speaking, the patch-pasting method is about 6,500 times faster than (Heeger and
Bergen, 1995). Notice that as the the size of the synthetic image increases, the
memory usage grows much faster for (Heeger and Bergen, 1995) than for the
patch pasting.
Texture Quality: Fig. 5 and Fig. 6 show some of our texture synthesis results. In
terms of quality, both (Heeger and Bergen, 1995) and the patch-pasting algorithm
work well on noisy textures with non-distinguishable features. When the input
sample texture has distinguishable features, (Heeger and Bergen, 1995) ceases to
be effective while the patch-pasting algorithm continues to produce good results.
We shall compare the patch-pasting method with (De Bonet, 1997) and (Wei and
Levoy, 2000), which are more successful in capturing distinguishable features.

In Fig. 8 compares the results the patch-pasting method, (De Bonet, 1997),
and (Wei and Levoy, 2000) on three different input sample textures. In top row,
(Wei and Levoy, 2000) generates the best results, whereas (De Bonet, 1997) fails
to capture the local features of the texture. In the middle row, (De Bonet, 1997)
performs better than the patch-pasting method as well as (Wei and Levoy, 2000).

18

In the bottom row, all three methods generate satisfactory results, with the result
of patch-pasting method most resembling the given sample texture.
Controlling Patch Size and Randomness:

The patch pasting algorithm has a parameter, i.e. the diameter of the partitions
which shall be selected once only off-line. It is a trade-off between admissibility
and effectiveness. Intuitively, the patch size should be chosen as the smallest upon
it produces textures with statistics error below a perception threshold �

Step 1:Choose a set of sufficient statistics h�.

Step 2:Start with a small size A and repeat the following.

a) Synthesize I� with size A.
b) Compute error = jh�(I�)� h

�(I�o)j.
c) If error � � then output A, otherwise A A + Æ.

Otherwise stop.

Fig. 9 shows the effect of patch size on the randomness of the texture. When
the entire input sample texture is one patch, we get a tiling. As the patch size be-
comes increasingly smaller, the synthesized texture becomes more random. This
is because a smaller patch captures smaller local features of the input sample tex-
ture and randomly distributing these features in the synthesized texture increasing
its randomness.

3.5 Texture Synthesis by Patch-based Sampling

Taking a close look at the examples in which the patch-pasting perform poorly, we
can see that the main problem is the mismatched features across the patch bound-
aries. We have extended our patch-pasting method to match boundary statistics
to achieve seamless texture synthesis. The method, called patch-based sampling,
is described in detail in our technical report [7]. Similar idea has also been in-
dependently developed by Erfos and Freeman [4]. Figure 10 shows some of the
examples by our patch-based sampling approach5.

5More examples are available at the following web site
www:cis:ohio � state:edu=oval=Texture=MSRTexture=Homepage=datahp1:htm.

19

Figure 10: Texture synthesis examples by combining patch-pasting and boundary
matching.

20

4 Summary and Discussion

In this paper, we have introduced a theoretical framework for designing and ana-
lyzing texture sampling algorithms. Specifically, we measure a texture sampling
algorithm by its admissibility, effectiveness and sampling speed. After analyzing
existing texture sampling algorithms, we propose different design criteria for tex-
ture analysis algorithms in vision and texture synthesis algorithms in graphics. We
have developed a novel texture synthesis algorithm which simply pastes texture
patches from the sample texture, yet generates good quality results. In particular,
we combine patch pasting with boundary matching to obtain seamless synthesized
textures. Our algorithm can synthesize high-quality textures extremely fast.

Texture images are record of the effects erected by natural stochastic processes
in the physical world. Texture perception in human vision intends to character-
ize texture phenomena with a certain “purpose”. Thus it summarizes texture by
statistics h. Procedural (physics based) texture synthesis algorithms intended to
simulate the physics, while statistics based algorithms approximate human per-
ception. The latter are obviously more general.

Almost all texture modeling and synthesis are based on the notion that per-
ception extracts some essential statistics. We believe this assumption is just a first
order approximation to human perception. In future work, we should study texture
algorithms that capture the internal representations in perception beyond feature
statistics. This should lead to hierarchical texture models.

References

[1] G. R. Cross and A. K. Jain. Markov Random Field Texture Models. IEEE
Trans. PAMI, 5:25–39, 1983.

[2] J. S. De Bonet. Multiresolution Sampling Procedure for Analysis and Syn-
thesis of Texture Image. In Computer Graphics Proceedings, Annual Con-
ference Series, pages 361–368, August 1997.

[3] A. A. Efros and T. K. Leung. Texture Synthesis by Non-Parametric Sam-
pling. In Proceedings of International Conference on Computer Vision,
1999.

[4] A. Erfos and W. Freeman. Quilting for Texture Synthesis and Transfer. In
To Appear at Siggraph2001, August 2001.

21

[5] D. J. Heeger and J. R. Bergen. Pyramid-Based Texture Analysis/Synthesis.
In Computer Graphics Proceedings, Annual Conference Series, pages 229–
238, July 1995.

[6] B. Julesz. Visual Pattern Discrimination. IRE Transactions of Information
Theory, (IT8):84–92, 1962.

[7] L. Liang, C. Liu, Y. Q. Xu, B. Guo, and H. Y. Shum. Real-time Texture
Synthesis by Patch-based Sampling. In Microsoft Research Technical Report
MSR-TR-2001-40, April 2001.

[8] K. Popat and R.W. Picard. Novel cluster-based probability model for tex-
ture synthesys, classification, and compression. In Proceedings of SPIE Vis.
Comm., 1993.

[9] J. Portilla and E. Simoncelli. A parametric texture model based on joint
statistics of complex wavelet coefficients. Int. Journal of Comp. Vision,
(40(1)):49–71, 2000.

[10] E. Praun, A. Finkelstein, and H. Hoppe. Lapped Texture. In Computer
Graphics Proceedings, Annual Conference Series, pages 465–470, July
2000.

[11] L. Y. Wei and M. Levoy. Fast Texture Synthesis Using Tree-Structured Vec-
tor Quantization. In Computer Graphics Proceedings, Annual Conference
Series, pages 479–488, July 2000.

[12] Y. N. Wu, S. C. Zhu, and X. W. Liu. Equivalence of Julesz Ensemble and
FRAME Models. Int’l Journal of Computer Vision, 38(30):245–261, 2000.

[13] Y. Q. Xu, B. Guo, and H. Y. Shum. Chaos Mosaic: Fast and Memory Effi-
cient Texture Synthesis. In Microsoft Research Technical Report MSR-TR-
2000-32, April 2000.

[14] S. C. Zhu, X. Liu, and Y. Wu. Exploring Texture Ensembles by Efficient
Markov Chain Monte Carlo. IEEE Trans. on PAMI, 22(6), 2000.

[15] S. C. Zhu, Y. Wu, and D. B. Mumford. Minimax Entropy Principle and
Its Application to Texture Modeling. Neural Computation, (9):1627–1660,
1997 (first appeared in CVPR96).

22

