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Constraints on Statistical Language Learning
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How do learners discover the structure in linguistic input? One set of cues which learners might use to acquire
phrase structure are the dependencies, or predictive relationships, which link elements within phrases. In order tc
determine whether learners can use this statistical information, adults and children were exposed to artificial lan-
guages that either contained or violated the kinds of dependencies that characterize natural languages. Additione
experiments contrasted the acquisition of these linguistic systems with the same grammars implemented as non
linguistic input (sequences of nonlinguistic sounds or shapes). Predictive relationships yielded better learning for
sequentially presented auditory stimuli, and for simultaneously presented visual stimuli, but no such advantage
was found for sequentially presented visual stimuli. Learning outcomes were not affected by the degree to which
the input contained linguistic content. These findings suggest that constraints on learning mechanisms that mirro
the structure of natural languages are not tailored solely for language learning. Implications for theories of lan-
guage acquisition and perceptual learning are discussexo2 Elsevier Science (USA)
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One of the central questions in the field ofvords, and classes of words in the service of
language acquisition is the nature of the mechdiscovering underlying structure.
nisms that underlie the transfer of information While the idea that surface distributional pat-
from the child’s linguistic environment to theterns point to pertinent linguistic structures
child’s mind. The range of mechanisms proholds a distinguished place in linguistic history
posed to subserve this process mirrors the coe-g., Bloomfield, 1933; Harris, 1951), statistical
plexity of the knowledge that children eventulearning has only recently reemerged as a poten
ally possess about their native language. In thial contributing force in language acquisition
present research, we focused on one type @hiough see Maratsos & Chalkley, 1980). This
mechanism hypothesized to underlie aspects rehewed interest in statistical learning has beer
language acquisition: the process of statistichleled by developments in computational mod-
learning, or the detection of patterns of soundsling, the widespread availability of large cor-
pora of child-directed speech, and empirical re-
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acquisition devices. However, for statisticatemarkably similar to one another, despite sur-
learning to be a viable component of languagtace differences. How does this long-standing
acquisition, learners must be able to deteabservation mesh with the hypothesis that
input statistics that are pertinent to linguistidearning plays a central role in language acqui-
structure amid all the irrelevant information insition? In particular, an overly powerful learn-
the input. To do so, statistical learning mechang device should readily learn structures that
nisms must beonstrained or biasetb prefer- arenot present in natural languages, as well as
entially perform certain kinds of computationsthose structures that are ubiquitous in human
over certain kinds of input. The pertinent generfanguages. The solution explored here is that
alizations to be drawn from a linguistic corpughe learning mechanisms applied to language
are surrounded by irrelevant possible generatray be constrained to preferentially learn cer-
izations. Any learning device without the righttain types of patterns (e.g., Bever, 1970; Chris-
architectural, representational, or computationéilansen, 1994; Christiansen & Devlin, 1997;
constraints risks being sidetracked by the misllefson & Christiansen, 2000; Morgan, Meier,
leading generalizations available in the inpu& Newport, 1987; Newport, 1982, 1990). If
(e.g., Gleitman & Wanner, 1982; Pinker, 1984)the structures that are most learnable are als
There are an infinite number of linguistically ir-those that recur cross-linguistically, then the
relevant statistics that an overly powerful statissimilarity of human languages may have roots
tical learner could compute, in principle: for ex-in the learning process itself: constraints on
ample, which words are presented third ifanguage learning may shape the structure of
sentences or which words follow words whos@atural languages.
second syllable begins witth (e.g., Pinker,  To explore these issues, the current experi-
1989). ments address the hypothesis that statistica
One way to avoid this combinatorial explo-learning is constrained: learners are most
sion would be to impose constraints on statistlikely to track those statistical properties of
cal learning, such that learners perform only &anguage that will afford the discovery of natu-
subset of the logically possible computationsial language structure. The aspect of language
Learning in biological systems is limited by in-addressed by these studies is hierarchica
ternal factors; there are species differences phrase structure. While words are spoken anc
the specific types of stimuli that serve as priviperceived serially, our representations of se-
leged input (e.g., Garcia & Koelling, 1966;quences of words are highly structured. Con-
Marler, 1991). External factors also stronglysider the sentenc&he professor graded the
bias learning, because input from structuredxam This sequence of words cannot be
domains consists of nonrandom information. ligrouped as follows-The) (professor graded
order for statistical learning accounts to sucthe) (exam)-because words that are part of
ceed, language learners must be similarly cothe same phrase are separated. For example
strained: humans must be just the type of statisleterminers likethe require nouns; separating
tical learners who are best suited to acquire thbese two types of words violates the depend-
type of input exemplified by natural languagesency relations which are part of native speak-
focusing on linguistically relevant statisticsers’ knowledge of English. The correct group-
while ignoring the wealth of available irrele-ing, (The professor) (graded (the exam))
vant computations. Such constraints mighteflects English phrase structure, which gener-
arise from various sources, either specific tates a nonlinear hierarchically organized struc-
language acquisition or from more general cogure. Hierarchical phrase structure represents
nitive and/or perceptual constraints on humafascinating learning problem, because the
learning. child must somehow arrive at nonlinear struc-
A related issue pertaining to learning-baseture that is richer than is immediately sug-
theories of language acquisition concerns thgested by the serial structure of the input. How
nature of language itself. Human languages ado children make this leap? Innate knowledge
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is one possibility; prosodic regularities andencies, along with other types of cues to phrase
other types of grouping cues may also serve t&tructure, is that they enhance learnability (e.g.,
chunk the input into phrasal units (e.g., MorMorgan et al., 1987). We can then ask whether
gan, Meier, & Newport, 1987, 1989). the use of predictive dependencies is a con-
Another type of potentially useful informa-straint onlanguagelearning or whether this
tion in the input suggests a statistical learningiechanism also operates over material from
solution (see also Morgan & Newport, 1981)other domains.
Linguistic phrases contaimlependency rela- To address these questions, we contrasted tf
tions the presence of some word categories daequisition of two artificial languages in a series
pends on others. For example, English noums$ six experiments. One of the languages con
can occur without determiners likbe or a. tained predictive dependencies, while the othel
However, if a determiner is present, a noun athd not; both languages also contained many
most always occurs somewhere downstreamther statistical properties. After exposure, we
This type of predictive relationship, which charassessed learning outcomes for the two lan
acterizes basic phrase types, may offer a statigjiiages. We began by testing adult learners i
cal cue that highlights phrasal units for learner&xperiment 1. Experiment 2 extended the inves.
Research using artificial languages with phragigation of the role of predictive dependencies in
structure grammars suggests that adult and chitthguage learning to include child learners. In
learners can exploit predictive dependencies Experiments 3-5, we assessed the domain-ger
discover phrases (Saffran, 2001). erality of the hypothesized constraint on learn-
These studies suggest that people are skilléag using materials drawn from nonlinguistic
statistical learners. But what about the condomains. Experiment 6 further explored modal-
straints required for the successful acquisitioity differences by examining the effects of si-
of languages? A particularly useful type of conmultaneous versus sequential presentation o
straint would bias statistical learning mechaeetecting predictive dependencies in visual
nisms to detect the types of structures observéasks. The overarching goals of these investiga
in natural languages. In the current research, wimns were to ask whether predictive dependen
focused on the possibility that learners magies affect the learnability of sequential struc-
preferentially acquire the predictive dependerture and to assess the domain-generality of thi:
cies consistently observed in natural languagesonstraint on learning.
Predictive dependencies may be recast as condi-
tional probabilities, a type of statistic known to EXPERIMENT 1
be pertinent to learners across domains (e.g.,To investigate the contributions of predictive
Aslin, Saffran, & Newport, 1998; Rescorla,dependencies to language acquisition, we con
1966). To the extent that predictive dependerirasted the acquisition of two artificial gram-
cies and human learning mechanisms are a goothrs. One of these grammars, Language P, cor
fit, we would expect that learners exposed ttained predictive dependencies as cues to phras
languages containing predictive dependenciasructure; if one member of a phrase was pres
(like natural languages) would outperforment, the other member was always present. Th
learners exposed to languages that lack prediother grammar, Language N, did not contain
tive dependencies (unlike natural languagespredictive dependencies as a cue to phrase stru
Learners confronted with serially presentedure; the presence of one member of a phrase di
input may be constrained to detect the prediaiot predict the presence of the other membet
tive relations between different lexical catefollowing exposure, we assessed language
gories (amid all the other statistical propertietearning using the same test for all participants.
of the sequence of words and word categoriedyf, predictive dependencies assist in learning
which in turn would facilitate the detection ofbasic syntax, then participants acquiring Lan-
phrase structure. If this is the case, then one reguage P should outperform participants acquir-
son languages may contain predictive dependig Language N.
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Method Importantly, the directionality of the statisti-
cal patterns in Language P is the opposite of th
native language of our participants. In English,

Forty monolingual English-speaking underpegictors precede the member of the phras

gradua_tes a.t the Universit;_/ of Rochester partiGip o they predict (e.g., determiners precede
pated in this study. Subjects were randomlyq, ns prepositions precede noun phrases, ar
assigned to the two experimental conditiongansitive verbs precede their objects). Languags
Three addltlongl subjects (one from the Larp employed the opposite pattern: the predictor C
guag_e_P condition and two from the Langugge Mllows A, G follows C, and F follows the C

condition) were excluded from the analysis f0|5hrase. Any attempt to project English structure

making errors on the practice trials presenteg the artificial language should have resultec
immediately prior to testing. All subjects in this, poor learning outcomes.

and all subsequent experiments gave informedThe second language did not contain predic

consent. tive cues to phrase boundaries (Language N, fo

nonpredictive). This grammar was characterizec

by overarching optionality: the presence of one
The artificial grammars were adapted fronword type never predicted the presence of an

the languages used by Morgan and Newpodther. Note, however, that Language N still pos-

(1981) and Saffran (2001); exposure sentencessses phrase structure of a sort—atheencef

are listed in Appendix 1. Each letter in theone word type within a phrasal unit predicts the

grammar represents one form class, consistipyesence of another (e.g., if Anst present, D

of two to four monosyllabic nonsense wordsnust be present). Language N contained the

(see Table 1). same form classes and vocabulary as Languag
One of the languages used in this study wasa(see Table 1).

small phrase structure grammar (Language P,

for predictive), in which dependencies between

word categories afforded predictive cues to S - AP + BP

phrases (e.g., if D is present, A must be present). AP [(A) + (D)] (must have at

Participants

Description of the Linguistic Systems

(2) Language N:

(1) Language P least one; if both, A precedes D)
S - AP+ BP+ (CP) BP - CP+F
AP - A + (D) CP - [(C) + (G)] (must have at
BP . CP4+F least one; if both, C precedes G)
CP_ C+(G) Languages P and N are similar on other perti-

nent dimensions. Both languages contained the
Language P contains the type of predictiveame number of grammatical categories anc
structure found in natural languages. In Aocabulary items. Language N generates fewel
phrases, A words can occur without D wordsentence types (9) than Language P (12). Fo
but D words perfectly predict the presence of #he purpose of these experiments, only sentenc
words; the same relationship obtains betweent@pes with five or fewer words were used (eight
words and G words. Similarly, C phrases catypes for Language P, nine for Language N).
occur without F words (as optional units at theanguage N also had shorter sentences on avel
ends of sentences; the optional CP was necegie: Language P generated 60% more five-worc
sary to balance the languages in terms of sesentences than Language N and only 40% a:
tence types), but if an F word is present, a @any three-word sentences. Importantly, the
phrase must precede it. The conditional probawo-word pairs (phrases) that were manipulated
bility of A|D is 1.0; the same is true of the otheduring testing (AD and CG) occurred equally
within-phrase pairs in the language. often in both languages.
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TABLE 1 P or Language N) four times, with a short
Word Categories from the Artificial Language break after the second repetition. After the
fourth and final repetition of the sentences,

Category subjects received a test designed to examin
A biff hep mib rud  their learning of the rules.
g El"’; F')‘;rlr neb 9 Rule testIn order to test the effects of predic-
E jux vot tive dependencies on language learning, partici
F dupp loke jux vot pants exposed to Languages P and N receive
G tiz pilk the same test. Each test item included a pair o

sentences: a novel grammatical sentence and ¢
ungrammatical sentence, recorded by the

A trained female speaker produced 50 sespeaker who recorded the exposure materials
tences from each language, chosen randonig contrast the two groups of language learners
with the constraint that each word occurred witthe grammatical items were legal in both lan-
similar frequency in both languages and that AQuages, and the ungrammatical items were ille:
and CG occurred equally often in both langal in both languages (see Table' Zjhe test
guages. Each sentence list was recorded in titems thus assessed the acquisition of rules comn
random orders, with uniformly descendingnon to both languages. Test sentences are liste
prosody across each sentence. Words occuriad\ppendix 2. After hearing each sentence pair,
at a rate of approximately two words per secongarticipants were asked to determine whethe
Approximately 2s of silence separated each setve first or the second sentence in the pail
tence. The speech was recorded using a Sagunded more like the exposure language and t
Walkman Pro tape deck. Each recorded blogkark their response on an answer sheet.
consisted of 100 sentences (the two orderings ofEach of the four rules was tested by six novel
the 50 sentences) and was approximately 7 nmsentence pairs, rendering 24 forced-choice tri-
in duration. als. Participants received four practice trials pre-
ceding the test in order to clarify the test instruc-
tions: two trials in English and two in the

Participants were exposed to either Lannonsense language (with incorrect sentence
guage P or Language N in an incidental learnzonsisting of scrambled word order). These
ing paradigm used previously by Saffran et alpractice trials also provided exclusion criteria to
(1997) and Saffran (2001), to minimize theensure that learners were attending during expo
effects of strategic learning processes. Whilsure; participants who made errors were ex-
participants listened to the exposure materialduded from the analysis.
(via a Sony tape deck and speakers), they were
asked to create an illustration using the chil-
dren’s computer coloring game KidPix2 on a The first analysis asked whether subjects suc
Mac Quadra. Participants were informed thateeded in learning Language P and Language N
there would be a nonsense language playing Each group’s overall performance was signifi-
the background, but were not informed aboutantly better than would be expected by chance
the structure of the language. We also infor Language P, the total score was 17.9 of &
formed participants that they would be testeg@ossible 241(19) = 10.42,p < .0001; for Lan-
on the nonsense language, but did not tell theguage N, the total score was 16(29) = 7.44,
which aspects of the language would be tested.
Because participants knew they would be *An additional rule was included in the test administered
tested, this procedure was not fully incidentalin all five experiments. However, because this rule only ap-

All participants were tested individually in aplied to the structure of Language P, the results from items
p P y testing this rule were not included in the analyses reported ir

single session, hearing the 7_'min recorde@lis paper. Inclusion of this rule does not change the overal
block of 100 sentences (from either Languaggattern of results.

Procedure

Results and Discussion
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TABLE 2

Rules Tested in Experiments 1-5

177

Rule

1 Sentences must contain an A phrase.
BIFF KLOR SIG PILK JUX [A-D-C-G-F]
*SIG PILK JUX [C-G-F]

2 D words follow A words, while G words follow C words.
HEP PELL LUM PILK JUX [A-D-C-G-F]
*HEP PILK LUM PELL JUX [A-G-C-D-F]

3 Sentences must contain an F word.
MIB LUM PILK VOT [A-C-G-F]
*MIB LUM PILK [A-C-G]

4 C phrases must precede F words.
RUD PELL NEB DUPP [A-D-C-F]
*RUD PEL DUPP [A-D-F]

p < .0001. Table 3 presents subjects’ medearners:F(1,38) = 4.52,p < .05. This differ-

scores on the individual rules tested. ence suggests that Language P was easier f

Our main hypothesis concerned differences subjects to acquire than Language N.

learning as a function of structural differences Because all learners received the same test,

between the two languages. To address thssunlikely that features of the test itself differ-

question, the overall scores for the two languagmtially influenced Language P and N learners
groups were compared using an ANOVA. LanHowever, there remains the possibility that sur-
guage P learners outperformed Language fice variables in the exposure sentences influ

TABLE 3

Mean Scores and Significance Tests (Two-Tailed) against Chance (Three of Six Possible),

for Language P and Language N, Experiments 1-6

Rule

Experiment No. 1 2 3 4

Language P
1 Linguistic auditory (adult) 4.40 ** 4.00%* 4.75% 4.75%
2 Linguistic auditory (child) 4.60** 3.20 5.20** 4.27*
3 Nonlinguistic auditory 4.52*%* 4.06** 3.98** 4.59**
4 Linguistic visual 4.45% 3.55%* 4.53** 4.53**
4 Nonlinguistic visual 5.19** 4.19** 4.31* 4.27*
5 Nonlinguistic auditory 4.74*% 3.78** 3.82* 4.67*
5 Nonlinguistic visual 4.58** 3.92** 4.21% 4.04**
6 Simultaneous visual 5.43** 5.68** 5.00** 4.96**

Language N
1 Linguistic auditory (adult) 3.25 3.60* 5.35%* 4.00**
2 Linguistic auditory (child) 3.07 3.33 3.80* 3.80*
3 Nonlinguistic auditory 3.71** 3.97** 4.54%* 3.66**
4 Linguistic visual 3.90** 3.40 4.70%* 3.93*
4 Nonlinguistic visual 4.72* 4.08** 4.52%* 3.84**
5 Nonlinguistic auditory 3.64* 3.28 3.52 3.96*
5 Nonlinguistic visual 4.75%* 3.63** 4.67* 3.72%
6 Simultaneous visual 5.18** 5.89** 4.15** 3.96**

*p < .05.

**p < .01.
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enced performance during testing. In prior rahe input frequencies for all word pairs for each
search using a very similar grammar (Saffraitem), anchor strength (the composite of the
2001), we used analyses of covariance to rulleput frequencies for the initial and final word
out a number of surface variables which mighgairs for each item), uniqueness (the number o
have influenced mapping between exposure anabrd pairs in each item that never occurred in
test items, including bigram frequencies othe input), and similarity (the number of words
chunk strength (e.g., Knowlton & Squire, 1996by which each item differed from the most sim-
Perruchet & Pacteau, 1990; Redington &ar sentence in the input). In addition, we in-
Chater, 1996; Servan-Schreiber & Andersortluded the length of each test item as a factor. A
1990), frequencies of beginning and ending biroted previously, Language P sentences wer
grams, or anchor strength (e.g., Perruchet, 199dnger, on average, than Language N sentence
Reber & Lewis, 1977), legality of the first ele<{(P, 4.24 words; N, 3.88 words). On the test,
ment (e.g., Reber & Allen, 1978; Tunney & Alt-grammatical sentences were longer, on average
mann, 1999), presence of unique chunks (e.ghan ungrammatical sentences (grammatical
Meulemans & Van der Leden, 1997), and ove#.71 words; ungrammatical, 3.58 words). The
all similarity to individual exposure stringsLanguage P sentences were thus closest i
(e.g., McAndrews & Moscovitch, 1985, Vokeylength to the grammatical sentences, wherea
& Brooks, 1992). Because some of these factotise Language N sentences were closest in lengt
may have differed in the exposure sentences forthe ungrammatical sentences. This imbalanc
Languages P and N, we entered the current datéses the possibility that Language P learner:
into an analyses of covariance (ANCOVA) iroutperformed Language P learners outper-
which string and substring features were enteréokrmed Language N learners because their inpu
as covariates. The question of interest wasgas closest in length to the grammatical sen-
whether grammatically (whether or not a giveitences, while Language N input was closest ir
test item violated a rule of the language) woulkéngth to the ungrammatical sentences.
continue to exert differential effects on the two An underlying assumption of ANCOVA is
language groups’ (P versus N) performance, &®@mogeneity of regression slopes. To test this
measured by a significant grammaticality bwnssumption, we first examined the interaction
language interaction, once other factors repreffects between the two factors and each of the
senting surface characteristics of the stimutiovariates. None of the interactions were signif-
were entered into the model. icant, consistent with homogeneity of regression
The test consisted of 24 forced-choice paislopes. Because the assumption of homogeneit
contrasting grammatical and ungrammaticalf slopes cannot be rejected, the effects of the
items, rendering 48 items for the ANCOVAcovariates can be estimated by a single slope
from each language condition. Language P atahd the interaction terms that included a covari-
Language N scores for each item were includede were eliminated from the final models.
separately, rendering a total of 96 items for the The final model thus consisted of three fac-
ANCOVA. The dependent variable was the praors and six covariates, and the interaction termn
portion of times each item was endorsed dsr the two main effects (Grammaticality
grammatical. Items were then coded accordirlganguage). As shown in Table 4, the main ef-
to measures shown to be pertinent in prior artifiects of GrammaticalityH(1,90) = 74.4] and
cial grammar learning studies. GrammaticalitfFirst Word Legality F(1,90) = 5.58] were sig-
was coded as a two-level factor: items were apificant, as was the interaction between Gram:
ther grammatical or not. Language (P versus M)aticality and LanguageF{1,90) = 7.22].
and legality of the first word were also coded aBhese results suggest that other than the legalit
two-level factors. The remaining factors weref the first word, surface variables did not con-
all continuous variables computed for each tesibute to subjects’ endorsement of items, and
item relative to the exposure corpus from eithgrammaticality continued to exert effects even
Language P or N: chunk strength (the average when the variance accounted for by the surfac
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TABLE 4
ANCOVA F Values for Experiments 1-5
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0.11
9.99**
0.15
0.15

3 (Nonlinguistic
74.5%*

2 [Linguistic
auditory] (child)
62.9%*

0.29
35.5%*
0.27
2.02

1 [Linguistic
auditory] (adult)
74 4%
0.08
7.2%*

0.01
5.58*
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223« v_aria_lk_JIes was removed. More importantl_y, the
RRR=R significant interaction between Grammaticality
and Language indicates that Language P and |
learners showed different levels of responses t
items as a function of their grammaticality. If
length or other surface variables differentially
T affected the two conditions, then we would have
SN 98 expected the Grammaticality Language inter-

e action to be removed when these variables wer
included in the analysis. Instead, the results sug
gest that the surface variables cannot explain th
differential performance of Language P versus

019 o Language N learners.
5329 The results of Experiment 1 suggest that the

° availability of predictive dependencies in the
input assists rudimentary language learning—or,
conversely, that a lack of predictive dependen-
cies impedes learning. Clearly, it is not the case

Sogs that languages Iacki_ng predictive_(_jependencies

woS S are unlearnable; participants acquiring Language
N exceeded chance performance. However, the
lack of predictive dependencies impaired overall
learnability relative to Language P, at least given
the exposure and test items used in this experi:

@ © o ment. These findings suggest that learners ma:

0N o © .

SRUR= take advantage of the dependencies that charac

terize natural language phrase structure in the
course of language acquisition.

An immediate question raised by these find-
ings is whether adult strategic learning processe
led to the P versus N performance difference.
Despite the use of the incidental procedure, it is
possible that our adult participants noticed the
optional elements in the Language N input and
were misled to believe that they were being ex-
posed to random structures, rendering poorer ou
comes. A related question concerns the hypothe

0.30

0.09

7.66**
2.89

1.64

7’5%5 sized constraint to detect and use predictive
a dependencies. In order for this bias to assis

learners acquiring their native language, it must
be present during childhood. To address thes
two issues, the next experiment compared chilc
learners exposed to Language P and Language |

=S EXPERIMENT 2

gy |458

g ‘é’% \A\AT - M?thod -

SZTE|* ¢ 5 Children are less likely than adults to impose

56 learning strategies in artificial grammar learning

Chunk strength
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tasks or to attempt to “translate” the nonsenseent 1, except that the children received as
input into their native language. Thus, resultmany practice trials in English as necessary tc
from child learners are unlikely to reflect lab-inensure that they understood the procedure, a
duced learning strategies. Prior research showell as additional practice trials using the non-
ing the difficulty of eliciting metalinguistic sense words; the children received stickers as
judgments from young children (e.g., Slavoff &motivator after every third test trial.
Johnson, 1995) led us to test children who were ) )
older than 7 years 6 months, but still within the Results and Discussion
critical period for language learning (had we The first analysis asked whether the children
used older children, it would be unclear whethesucceeded in learning Language P and Lan
the results of our experiments are pertinent guage N. Each group’s overall performance was
child language learners). Based on prior resignificantly better than would be expected by
search using similar procedures with childreohance: for Language P, the total score wa:s
(Saffran, 2001), we anticipated that the adults7.27 of a possible 2414) = 6.30,p < .0001;
would outperform the children due to the tasfor Language N, the total score was %44) =
demands induced by the forced-choice testirj24,p < .05. Table 3 presents subjects’ mean
procedure. However, we hypothesized that chiscores on the individual rules tested.
dren, like adults, would show enhanced test per- To contrast performance on Language P ver-
formance when predictive cues to phrase strusds Language N, the overall scores for the two
ture were available during learning over thoskanguage groups were contrasted in an ANOVA.
when they were not. Language P learners outperformed Language N
learners:F(1,28) = 7.12,p < .05. This differ-
ence suggests that Language P was easier fc
Thirty monolingual English-speaking childrenchildren to acquire than Language N. As in Ex-
were recruited from after-school programs imperiment 1, we submitted the results to an AN-
Madison, Wisconsin. The children ranged in ag€OVA to determine whether surface variables
from 7 years 6 months to 9 years 8 months ancbuld account for the P versus N difference. As
were randomly assigned to the two experimentahown in Table 4, Grammaticality={1,90) =
conditions (Language P mean age, 8 years 62.9] and Uniquenes§&{1,90)= 7.66] were sig-
months; Language N mean age, 8 years 1 monthjficant, as was the interaction between Gram-
Parents gave informed consent prior to testing. maticality and Languagd-[1,90) = 32.5]. Like
the adults, the children’s differential perform-
ance on Languages P and N was not a function o
The children were exposed to either Lansurface features of the exposure and test items.
guage P or Language N from Experiment 1. As We next compared the children’s perform-
in Experiment 1, we used an incidental learningnce with that of the adults from Experiment 1.
paradigm. However, because results from pri@ two-factor ANOVA including age (child ver-
studies on syntax learning suggested that tkas adult) and language (P versus N), with tota
cover task of coloring on the computer might bscore as the dependent measure, revealed ma
too engaging for the children (Saffran, 2001kffects of Age [F(1,66) = 4.07,p < .05] and
we gave the children quiet toys to play with durtanguage ff(1,66) = 12.51,p < .001], with a
ing exposure (Legos, Etch-a-Sketch, and colononsignificant interaction between Age and
ing books). As in Experiment 1, we told the chilLanguage F(1,66) = 1.24, n.s.]. While adults
dren that there would be a nonsense languagerformed better than children overall, the ef-
playing in the background and that they wouléects of predictive dependencies emerged ir
be tested later in the study, but they were tolabth age groups. Although these children are be
nothing about the structure of the language. Exond the age at which first language syntax is
posure was otherwise identical to that in Expetypically acquired, the results suggest that pre-
iment 1. Testing was identical to that in Experidictive dependencies may be available for use ir

Participants

Procedure
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the process of first language acquisition. Fututdadison participated in this study participated
work will extend investigations of predictive de-n this study for course extra credit. Forty-six of
pendencies to include late infancy and toddlethe participants were assigned to Language F
hood:; it has recently been demonstrated that iand 35 were assigned to Languagé N.
fants as young as 12 months (Gomez & Gerken,
1999) and even 8 months (Marcus, VijayarMaterials
Bandi Rao, & Vishton, 1999) can learn rudi- To create nonlinguistic auditory stimuli, we
mentary syntactic patterns generated by artitiranslated Languages P and N into nonlinguis:
cial grammars. tic sounds drawn from the digitized bank of
The findings from Experiments 1 and 2 supalert sounds provided with Windows 98. Each
port the hypothesis that predictive dependenciesrd corresponded to a different sound, cho-
play a role in acquiring rudimentary syntax irsen to be highly discriminable (an ascending
language learning. We can then ask whether daizz, a chord, chimes, etc.). Sound “sentences
tecting structures using dependencies betweganerated by Language P and N were pre
classes of items is a learning process particeented auditorily at the same rate as the lin.
larly tailored for linguistic input or whether thisguistic stimuli in Experiment 1. The stimuli
learning mechanism can operate over materialeere combined for presentation using Super-
drawn from other domains. Biases in learningab software running on a PowerPC. “Words”
mechanisms may develop tightly coupled witloccurred at a rate of approximately two per
the particular structure they are designed to asecond, with two sec of silence separating eacl
quire. Alternatively, constraints to use predictiveentence. The stimuli were recorded from the
statistics may be a more general feature of tilemputer using a Sony Minidisk recorder for
acquisition of serially presented information. Tglayback to experimental participants. Follow-
directly test the domain specificity of this learning exposure, participants received the forced-
ing process, we contrasted the acquisition choice test used in Experiment 1, translatec
Languages P and N using nonlinguistic materinto nonlinguistic sounds. No linguistic infor-
als. Participants received auditory exposure toation was available for learners during expo-
“languages” in which the “words” were distinc-sure or testing.
tive nonlinguistic computerized sounds. We
then asked whether Language P learners wolfecedure
continue to outperform Language N learners The procedure was identical to that of Exper-

given nonlinguistic input. iment 1, except that the cover task of coloring
on the computer during exposure was not usec
EXPERIMENT 3 we planned to contrast the auditory nonlinguis-

To assess the role of predictive cues in nonlif® materials from Experiment 3 with visual
guistic auditory learning, we translated Lanfonlinguistic materials (Experiment 4), and we

guages P and N into a vocabulary of nonlingui§-°“|d not use a visual cover task with the visual

tic sounds. All other aspects of the experimeffaming tasks.

were identical to those of Experiment 1. We

hypothesized that if predictive cues afford learn-

ability benefits for structures other than lan- 2rhe impalance in subject assignments reflects the prior
guage, then Language P learners should outpese of the exclusion criterion described in Experiment

form participants exposed to Language N. 1:participants making errors on the practice test were origi-

nally excluded from the analyses. As a very large number of
Method participants (37) were excluded by this criterion, it is likely

etho that the criterion was overly conservative; the results re-

Participants ported in Experiments 3—-6 include all participants tested re-

i i . . gardless of their performance on the practice test. In all

Eighty-one monolingual English speakingases; the results of the analyses are unaffected by the inclu

undergraduates at the University of Wisconsirsion of the previously excluded participants.
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Results and Discussion N regardless of the linguistic status of the

, . i materials.
The first analysis asked whether subjects suc-Tne results of the first three experiments sug

ceeded in learning Language P and Language fbst that predictive dependencies support learn
Each group’s overall performance was 3|gn|f'rng, even when the input is nonlinguistic. These
cantly better than would be expected by chancgdings mirror prior results suggesting that the
for Language P, the total score was 17.52 of @mputation of sequential transitional probabil-
possible 241(45) = 11.87,p < .0001; for Lan- jties in word segmentation tasks can occur

guage N, the total score was 15.884) = \yhether “words” are created from syllables
8.73,p < .0001. Table 3 presents subjects’ megGaffran, Newport, & Aslin, 1996b; Saffran,
scores on the individual rules tested. Aslin, & Newport, 1999) or nonlinguistic tones

To assess differences in learning as a functiq@affran, Johnson, Aslin, & Newport, 1999;
of structural differences between the two lansaffran & Griepentrog, 2001). The ability to
guages, we contrasted the overall scores for th@e sequential transitional probabilities in word
two language groups in an ANOVA. Languag&egmentation has also been demonstrate
P learners significantly outperformed Languaggcross modalities: learners can track the transi
N learnersF(1,79) = 4.03,p < .05. As in the tional probabilities between elements when
linguistic task used in Experiments 1 and 2presented with visuomotor patterns (Hunt &
Language P was easier for subjects to acquipslin, 2001) and visuospatial patterns (Fiser &
than Language N. To ensure that this pattern g{slin, 2001).
results was not due to surface variables, we ap-In Experiment 4, we asked whether the
plied the ANCOVA model from Experiment 1 availability of predictive dependencies would
to these data. As shown in Table 4, the only sigaffect learning across modalities. If the con-
nificant effects were Grammaticalitf"(1,90)= straint to detect predictive dependencies is
74.45] and the Grammaticality Language in- domain-general, then the modality within
teraction F(1,90) = 9.99], supporting the hy- which the input is implemented should not af-
pothesis that the differential performance of théect learning, and materials containing predic-
Language P and N groups was due to structuréive cues to phrase structure should be learne
properties of the two languages. better than materials that do not. We thus antic-

To determine whether linguistic and nonlin-Hpated that learners exposed to Language F
guistic auditory materials are learned differpresented visually would outperform learners
ently, we contrasted the results from the preseacquiring Language N.
experiment with the findings from Experiment
1. The only difference between the two experi- EXPERIMENT 4
ments lies in their vocabularies, which were This study is a conceptual replication of Ex-
nonsense words in Experiment 1 and nonsenperiments 1 and 3 in the visual domain. Learn-
sounds in Experiment 3. The grammars (Larers were presented with either visual nonsens
guages P and N) and test materials were identirords or visual nonsense shapes, following the
cal. We submitted the total scores from Experigrammars of either Language P or Language
ments 1 and 3 to a two-factor ANOVA N. The timing parameters for the sequential
including domain (linguistic versus nonlinguis-presentation of visual forms were identical to
tic) and language (P versus N). The analysis réhose used for the presentation of auditory
vealed a main effect of LanguagE([L,117)= forms in Experiments 1-3. Following expo-
7.88,p < .01], with Language P learners out-sure, learners received the test used in the
performing Language N learners. The maimprevious experiments, implemented in either
effect of Domain F(1,80) = 1.01, n.s.]. and the visual nonsense words or visual nonsense
interaction between Domain and Languagshapes. If predictive dependencies assist learr
[F(1,80)= .16, n.s.] were not significant. Thus,ers in acquiring basic syntactic structure in vi-
Language P was learned better than Languageal learning tasks, then participants acquiring
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Language P should outperform participantBrocedure
acquiring Language N. We can also assess therpe procedure was identical to that of Exper-
effects of linguistic versus nonlinguistic stim-
. . . iment 3.
uli in the visual domain.

Method
Participants The first analysis asked whether subjects suc
eeded in learning Language P and Language N

One-hundred and seven monolingual Engl'ﬁ%—'fr the Linguistic Visual condition, each

\s/\p;eakmg u'\;dz_rgraduattte_s_att tZe. U?f;\(ers[[ty d;% oup’s overall performance was significantly
Isconsin-Madison participated in this Sty o 1han would be expected by chance: fol

for course extra credlt.. F'ﬁ.y “SIX partlc:'pant‘ﬁ_anguage P, the total score was 16.8 of a poss
were assigned to the Linguistic Visual condi:

: . ..~ ble 24,1(29) = 8.45,p < .0001; for Language
tion, and 51 were assigned to the Nonllngwsnﬁ, the total score was 15.825) = 5.08,p <

Visual condition. Within each condition, the ,

. : : .0001. Both groups’ overall performance was

participants were assigned to either Language(li-p o

or Language N. also significantly better than would be expected
by chance for the Nonlinguistic Visual condi-

Materials tion: for Language P, the total score was 17.9 o

To create the stimuli for the Nonlinguistic@ Possible 241(25) = 13.38,p < .0001; for
Visual condition, we translated Languages Ranguage N, the total score was 17.184) =
and N into shapes (for a similar methodologyl0-01,p < .0001. Table 3 presents subjects’
see Goldowsky, 1995). Each “word” was a sinfn€an scores on the individual rules tested.
gle distinctive nonsense shape (e.g., a red asym-T0 assess differences in learning as a functior
metric oval with yellow dots). Each shape wa®f structural differences between the two lan-
approx 3 in. in diameter. Category membershiguages, we submitted the overall scores for the
could not be induced by shape similarity, unlikéwo language groups in each condition to an
in prior studies by Morgan and Newport (1981)ANOVA. In the Linguistic Visual condition,
The shapes were presented on a computer mdranguage P and Language N learners did no
itor, using SuperLab software running on dliffer, F(1,54)= .82, n.s. Similarly, in the Non-
PowerPC. The shapes were presented, one airguistic Visual condition, Language P and
time, in the center of the monitor, using theLanguage N learners did not diffét(1,50) =
same timing parameters as those in the auditoly39, n.s. Unlike in the auditory materials from
experiments; presentation was sequential, witBxperiments 1-3, Language P we easier for
the onset of one shape following the offset oubjects to acquire than Language N when the
the previous shape. The Linguistic Visual condimaterials were presented visually.
tion was identical, except that instead of shapes, We applied the ANCOVA model from Experi-
the nonsense words from Experiment 1 werment 1 to the results from each condition (see
presented in typed capital letters, one at a timéble 4). In the Nonlinguistic Visual condition,
in the center of the monitor. Following expo-the only significant effects were Grammaticality
sure, participants received a forced-choice tef£(1,90) = 118.66] and First Word Legality
analogous to the tests used in Experiments 1-#(1,90) = 5.09]. The lack of a significant inter-
in which they saw two sequences (of shapes iaction between Grammaticality and Language
the Nonlinguistic Visual condition or of words [F(1,90) = .003, n.s.] is consistent with the re-
in the Linguistic Visual condition). As in the au- sults reported above, in which Language P and N
ditory tasks, participants were asked to detescores did not differ. However, in the Linguistic
mine whether the first or the second sentence Wisual condition, both GrammaticalityF[1,90)
the pair was more similar to the exposure lan= 107.4] and the Grammaticalitx Language
guage. Participants indicated their response viateraction F(1,90)= 16.75] were significant, as
a key press. well as Similarity F(1,90) = 5.25]. This result

Results and Discussion
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indicates that while the Language P and Nnent 4 stand in contrast with those of the audi-
groups in the Linguistic Visual condition weretory studies reported in Experiments 1-3.
not significantly different in the ANOVA re-  Importantly, the findings from Experiment 4
ported above, removing the variance caused Isypport the contention that Language P igmot
other variables in the ANCOVA revealed an efherentlyeasier to learn than Language N or that
fect of predictive dependencies on performancéhe test invariably favors Language P learners
We hypothesize that the difference in results aslastead, these results suggest that predictive de
function of analytic technique may be due to inpendencies impact learning in the auditory
creased sensitivity of the analysis of covariancenodality, but not the visual modality, at least for
Participants may have used different strategies the stimuli used in these experiments. The ab
this task. In particular, some participants magolute levels of performance are comparable
have verbalized the materials, essentially geneseross modalities; it is not the case that auditon
ating auditory materials despite the visual predearners outperform visual learners overall.
entation. The increased sensitivity of the analysi/hat differ are the patterns of performance; vi-
of covariance may have permitted the discoversual and auditory presentations appear to elici
of subtle P versus N differences not apparent idifferent constraints on learning, with a greater
the analysis of variance. effect of dependency cues on auditory learning.
As in Experiment 3, we asked whether the One reason the auditory and visual presenta:
linguistic and nonlinguistic visual materialstion conditions may have led to different out-
were learned differently by contrasting the resomes concerns our original research question
sults of the Linguistic Visual and Nonlinguisticdo predictive dependencies assist learners ir
Visual conditions. The only difference betweeiboth linguistic and nonlinguistic tasks? It is
the two conditions lies in the materials, whiclpossible that although the auditory nonlinguis-
were either nonsense shapes or written nonsetisestimuli from Experiment 3 did not contain
words. The grammars (Languages P and N) alidguistic content—the “words” were beeps and
test structures were identical. We submitted thmizzes taken from a bank of computer alert
total scores from the two conditions to a twosounds—Iearners may have recoded the nonlin
factor ANOVA including domain (linguistic ver- guistic sounds as linguistic. For example, listen-
sus nonlinguistic) and language (P versus Ngrs may have translated the sounds into words
None of the factors were significant: Languagencoding them as “high beep, chime, honk, bur-
[F(1,103) = 2.72, n.s.]; DomainH(1,103) = ble . . .” If this is the case, then learners may
2.28, n.s.]; interaction between Domain antave treated both of the auditory tasks as lin-
Language (1,103) = .18, n.s.]. Thus, Lan- guistic. Conversely, the visual tasks in Experi-
guage P and Language N were learned equivaent 4 may have been treated as nonlinguistic
lently regardless of the linguistic status of th&@he nonsense shapes, which did not conform tc
materials. known shapes or objects, were difficult to label
While the results from Experiment 4 supporiinguistically. The mixed results for the non-
the conclusion from Experiment 3 that the linsense words may reflect different processing
guistic status of the input does not affect learstrategies: some subjects may have processe
ing in this task, these data suggest a possilitee typed words linguistically, whereas others
modality effect. Unlike stimuli presented in thenay have processed these materials as meat
auditory domain, for which dependencies assisigless letter strings without linguistic content.
learners, the availability of predictive dependenA/e thus designed an additional experiment to
cies does not appear to affect learning in the \attempt to replicate the modality differences ob-
sual domain to the same extent. This was not teerved in Experiments 1-4 using new stimuli.
result we predicted; we expected that if predicdFhe materials in Experiment 5 were chosen so
tive dependencies afford greater learnabilityhat the auditory stimuli would be difficult to
this effect should be observed across presentabel verbally, while the visual stimuli were
tion modalities. Instead, the results of Experieasy to label. If ease of verbalization influenced
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the apparent modality difference in Experifrom the vocabulary. The sounds were presente
ments 1-4, then the pattern of results shouldsing the procedures from Experiment 3. The

flip, such that the visual task should now shovgtimuli for the Nonlinguistic Visual condition
the effects of predictive dependencies. If, howeonsisted of familiar shapes such as circles
ever, the original modality effect persists withsquares, triangles, and crosses. The shapes we
the new stimuli, these findings would suggegpresented using the procedures from Experimer
that predictive dependencies affect learning of. Following exposure, participants received a
sequential stimuli in auditory tasks, but noforced-choice task analogous to the tests used i
visual tasks. the previous experiments: learners either sav
EXPERIMENT 5 two sequences of shapes (in the Nonlinguistic
Visual condition) or heard two sequences of

This study is a replication of the auditorysounds (in the Nonlinguistic Auditory condition)
nonlinguistic task used in Experiment 3 and thgnd Judged which sequence was more similar tc

visual nonlinguistic task used in Experiment 4the stimuli observed during exposure.
We used a new set of nonlinguistic sounds that

are difficult to label—various types of drumsProcedure
and bells—and a new set of nonlinguistic The procedure was identical to those for Ex-

shapes that are easy to label—familiar shapgseriment 3 (for auditory stimuli) and Experi-
such as circles, triangles, and hearts. Followingient 4 (for visual stimuli).

exposure, learners received the test used in the
previous experiments, implemented in the vo- Results and Discussion
cabulary of sounds or shapes used during expo-The first analysis asked whether subjects suc
sure. If the modality effect observed in the priObeeded in |ea|’ning Language P and Language N
experiments was an artifact of stimulus choicgor the Nonlinguistic Auditory condition, each
or ease of labeling, then learners acquiring Vigroup’s overall performance was significantly
sual stimuli should now be more affected by th@etter than would be expected by chance: fol
presence or the absence of predictive dependaminguage P, the total score was 17.0 of a poss
cies. If, however, the original modality effectple 24,t(26) = 9.37,p < .0001; for Language
persists, then learners in the auditory conditiorN, the total score was 14.424) = 3.34,p <
but not the visual condition, should show en-01. Each group’s overall performance was alsc
hanced performance on Language P relative tignificantly better than would be expected by
Language N. chance for the Nonlinguistic Visual condition:
Method for Language P, the total score was 17.04 of ¢
possible 241(23) = 5.77,p < .0001; for Lan-
Participants guage N, the total score was 16.1[B5) =
One hundred and twelve mono|ingua| EnngOS,p <.0001. Mean scores on the individual
lish speaking undergraduates at the Universifiiles are shown in Table 3.
of Wisconsin-Madison participated in this study To assess differences in learning as a func-
for course extra credit. Fifty-two of the particition of structural differences between the two
pants were assigned to the Nonlinguistic Audlanguages, we submitted the overall scores for
tory condition, and 60 were assigned to th#e two language groups in each condition to an
Nonlinguistic Visual condition. Within eachANOVA. In the Nonlinguistic Auditory condi-
condition, participants were assigned to eithdion, Language P learners significantly outper-
Language P or Language N. formed Language N Iearner§(1,50) = 8.74,
p < .01. As in the auditory presentations from
Experiments 1-3, participants listening to the
The Nonlinguistic Auditory stimuli consistedinput performed better given Language P than
of digitized recordings of various types of belldanguage N. However, in the Nonlinguistic
and drums. Each sound corresponded to a wortsual condition, Language P and N learners

Materials
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did not differ, F(1,58) = .09, n.s. As in Experi- Whether modality of presentation affected the re-
ment 4, Language P wamt easier for subjects sults. The main effect of Language (P versus N)
to acquire than Language N when presentdd(1,108) = 6.67,p < .05] and the interaction
visually. To ensure that this pattern of result§etween Language and Modalit¥([L,108) =
was not due to surface variables, we applied tib63,p < .05] were both significant, while the
ANCOVA model from Experiment 1 to thesemain effect of modality (visual versus auditory)
data, as shown in Table 4. For the Nonlinguisti¢F(1,108)= 3.01, n.s.] was not significant. The
Auditory condition, the only significant effects significant interaction suggests that the effects of
were Grammaticality F(1,90) = 26.4] and predictiveness were not uniform across modali-
the Grammaticality X Language interaction ties and that, consistent with the separate condi
[F(1,90) = 9.35], supporting the hypothesistion analyses, Language P was easier to acquir
that the differential performance of the Lanthan Language N only when the presentation
guage P and N groups was due to structurslas auditory. These findings replicate the pat-
properties of the two languages. For the Nonlintern of results observed across the first four
guistic Visual condition, only the main effectexperiments.

of Grammaticality was significant=[1,90) =

44.75]; predictive dependencies did not aﬁec?vera" Analyses

performance in this condition. To further explore the locus of effects across
_ experiments, the next set of analyses compare
Visual versus Auditory Results the results from Experiments 1-5, as shown in

We next compared the two conditions fronfig. 1. The X2x2 ANOVA contrasted lan-
Experiment 5 to one another to determinguage (P versus N), linguistic status (linguistic

B Language N
24 - [J Language P

20

Mean scores (chance = 12)

Exp. 1: Ling auditory

Exp. 2: Child ling auditory
Exp. 3: Nonling auditory 1
Exp. 4: Ling visual

Exp. 4: Nonling visual 1
Exp. 5: Nonling visual 2
Exp. 5: Nonling auditory 2

FIG. 1 Mean scores and standard errors for the Language P and N groups for Experiments 1-5.
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vs. nonlinguistic), and modality (visual versudure of the auditory world. Auditory informa-
auditory). The main effect of Language was sigion is fleeting by nature; sounds do not persist
nificant, with Language P learners outperformin time. This is most obviously true of linguistic
ing Language N learner§(1,354)= 17.28,p information, where sounds occur in rapid suc-
< .0001. None of the other main effects wereession, requiring the listener to integrate over a
significant: Linguistic status=(1,354) = .79, window of time. Most other auditory experi-
n.s.; ModalityF(1,354)= 3.38, n.s. Only the in- ences are similarly sequenced: for example,
teraction between Language and Modality wasonsider musical patterns, nonlinguistic vocal-
significant,F(1,354)= 4.98,p < .05; all other izations across species, and passing footstep:
interactionsF(1,266)< 2, n.s. Consistent with The nature of the auditory world requires listen-
the results of the individual experiments, presers to track sequences and to note the relation
entation modality affected the degree to whickhips between events separated in time. Visua
the availability of predictive cues affected therocessing also contains a temporal aspect, bu
results, with Language P performance exceethe visual world is typically more stable and
ing Language N performance only in the audiess fleeting than the auditory world. Interrogat-
tory conditions. Importantly, whether the mateing a visual scene requires the viewer to track
rials were linguistic or nonlinguistic did notthe relationships of objects in space and to note
affect the results, supporting the hypothesis thapatiotemporal correlations between parts of
a constraint to detect predictive dependenciesabjects to detect movement, but unlike with au-
not tied solely to language learning. dition, the objects themselves persist in time.
) The processing capacity called upon by visual
Modality Effects scenes thus entails simultaneous processing c
Experiments 1-5 revealed interesting differinformation in the viewer’s environment, lead-
ences between sequential learning in the audig to the speculation that visual information is
tory and visual domains. While all of the experinherently less sequential than auditory infor-
iments using auditory materials elicited strongenation (with notable exceptions, such as signec
performance on Language P than on Languagmguages, gesture, and facial expressions). |
N, the experiments using visual materials rehis is the case, then materials in the visual
vealed no differences between the languagesodality may not tap into a constraint to use the
The overall levels of performance were comparedictiveness of elements to acquire sequentia
rable across modalities, consistent with priastructure to the same extent as the processing c
findings that basic statistical learning processes,ditory information.
such as detecting transitional probabilities, op- These differences between the auditory anc
erate similarly across domains (e.g., Fiser &isual environments are consistent with the oft-
Aslin, 2001; Hunt & Aslin, 2001; Saffran et al.,cited observation that learners in serial recall
1996b, 1999; Saffran & Griepentrog, 2001). Theasks actually perform better given auditory
modality differences appear to arise when wian linguistic stimuli (see Penney, 1989, for
consider the impact of predictive dependenciextensive review). Modality effects indicating
which, unlike the transitional probabilities ex-auditory superiority for tasks requiring sequen-
plored in our previous work, are computed ovdral learning and memory appear across ar
word categories (rather than individual tokensgjrray of procedures, including short-term mem-
and which generate hierarchical relationshipsry tasks with linguistic and nonlinguistic ma-
not tied to immediate adjacencies. terials, order judgments, frequency estimation,
Why might predictive dependencies influrhythm perception, suffix effects, temporal out-
ence sequence learning in the auditory domaiput order, and even the resolution of temporal
but not in the visual domain? One hypothesis ianaphors (e.g., Broadbent, 1956; Frick, 1985;
that predictive relationships among items preGlenberg & Fernandez, 1988; Glenberg &
sented sequentially are processed preferentiallpna, 1991; Jakimik & Glenberg, 1990; Penney,
in audition due to the generally sequential nat975; Rollins, Schurman, Evans, & Knoph,
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1975; Savin, 1967; Watkins & Peynircioglu, Method
1983). -
. . . Participants
Interestingly, visual superiority emerges
when tasks entail simultaneous processing Fifty-six monolingual English speaking un-
rather than sequential processing (e.g., Broadergraduates at the University of Wisconsin-
bent, 1956; Penney, 1989; Rollins et al., 1975Madison participated in this study for course
This literature is consistent with the observatiogxtra credit. Half of the participants were as-
that what must be learned in the visual envirorsigned to Language P and half were assigned t
ment often requires attention to simultaneouslyanguage N.
present elements arrayed in space. It is possible
that, given a visual task that entailed simultanel\-/late”als
ously present predictive dependencies rather The vocabulary was drawn from the Nonlin-
than sequential dependencies, learners wouddiistic Visual condition from Experiment 4,
show the same type of Language P advantagehich consisted of distinctive nonsense shapes
as we found in the auditory experiments usinghe shapes were presented on a computer mon
sequential stimuli. We designed Experiment €or, using SuperLab software running on a Pow-
to test the hypothesis that learners engaged émPC. Each sentence (consisting of three to five
visual tasks use predictive dependencies bshapes) was displayed on the monitor, with
tween elements simultaneously present in thghapes arrayed such that each form class alway
display. That is, unlike the sequential presentasccurred in a particular position on the screen.
tion used in the previous experiments, learnefBhat is, “A word” shapes always occurred in the
in a visual task might capitalize on the predicupper righthand corner, whereas “F word”
tive dependencies in Language P given simultahapes always occurred in the center of the bot
neous presentations. tom of the screen. Each shape sentence wa
shown for 3 s, with a 2-s blank screen between
EXPERIMENT 6 sentences. We chose to use this arrayed layou
This experiment was a conceptual replicarather than a sequentially ordered layout, to de-
tion of the Nonlinguistic Visual condition from crease the probability that learners would use &
Experiment 4. Rather than presenting théeft-to-right sequential processing strategy. Fol-
shapes one by one, with the same timing pdewing exposure to either Language P or N, par-
rameters as in the auditory experiments, eacltipants received a forced-choice test analogours
“sentence” in Experiment 6 was presented sto the tests used in Experiments 1-5, in which
multaneously, with all of the shapes from thehey saw two shape sentences, each arrayed sp
sentence arrayed spatially on the screen for 3tially. Participants were asked to determine
Predictiveness in the simultaneous task entailedhether the first or the second sentence in the
the same pattern of dependencies as in the gEir was more similar to the exposure language.
quential task, but without respect to sequentidtarticipants indicated their response via a key
order. For example, in Language P, if a D worgbress.
occurred on the screen, an A word simultane- One difference in the test from the previous
ously occurred on the screen. However, in Larexperiments concerns Rule 2. Because Rule -
guage N, a D word could occur either with ortests knowledge of a shift in sequential position
without an A word. Other than the simultaneity(flipping the positions of D and G), items test-
of presentation, Experiment 6 was identical tang this rule necessarily differed from those
Experiment 4 in the shapes and sentences useskd in the sequential tasks. Instead of switch-
during exposure and testing. We hypothesizedg the temporal positions of D and G words,
that learners might be attuned to dependenciese switched the spatial positions of D and G
between visual elements when those elementgords. For example, if during exposure, D
are simultaneously available, leading to a Lanwords occurred in the top right corner and G
guage P advantage. words occurred in the center of the screen,
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these positions were switched for ungrammatthe data were submitted to an ANCOVA. Sev-
cal items testing Rule 2. Because of thigral of the covariates used in the prior analyses
change, Rule 2 no longer assessed anythimgere not applicable, given the lack of sequential
about the grammatical structure of the laninformation in these materials; the model thus
guage; instead, Rule 2 assessed whether leaineluded only the Grammaticality and Lan-
ers remembered the spatial position of individguage factors and the Length and Similarity co-
ual elements. We thus collected Rule 2 data s@riates. As shown in Table 5, the main effects
that the test was equal in duration to the testsf Grammaticality F(1,90)= 251.82] and Sim-
used in Experiments 1-5, but did not includélarity [F(1,90) = 4.03] were significant, as was
the Rule 2 data in the analyses, as these data #iie  Grammaticality X Language interaction
not pertinent to the acquisition of grammar. WéF(1,90) = 4.63]. These results suggest that the
did not substitute additional rules because thidifferential performance of the Language P and
would have complicated comparisons with thé&l groups was not due to surface variables, but
prior experiments. was a function of the availability of predictive
dependencies in the input.
We next compared the results from Experi-
Other than the simultaneous presentation afent 6 to the results from the analogous condi-
the shape sentences, the procedure was idetith of Experiment 4, the Nonlinguistic Visual
cal to those for Experiments 4 and 5 (visualondition, in which the same shapes were used
condition). but sentences were presented sequentially. Th
ANOVA included two factors: Language (P
versus N) and Mode of presentation (sequential
The first analysis asked whether subjects sugersus simultaneous). The dependent variable
ceeded in learning Language P and Language\Mas the mean score including Rules 1, 3, and 4
Both groups performed significantly better thafas discussed above, the use of simultaneou
would be expected by chance (total scores presentation in Experiment 6 altered what Rule
Rules 1, 3, and 4): for Language P, the tot&l was testing, making it difficult to compare
score was 15.39 of a possible 4;7) = 17.52, performance on this rule across experiments).
p < .0001; for Language N, the total score waBoth of the main effects were significant: Lan-
13.29,t(27) = 8.69,p < .0001. Table 3 presentsguage F(1,101) = 11.18,p < .01]; Mode
subjects’ mean scores on the individual ruld$=(1,101)= 4.63,p < .05]. This pattern of re-
tested. sults suggests that Language P learners outpe
To assess differences in learning as a functidormed Language N learners overall and that
of structural differences between the two lanlearners exposed to material in the simultane-
guages, we submitted the overall scores for theus mode outperformed learners exposed tc
two language groups (for Rules 1, 3, and#) material in the sequential mode. The interac-
an ANOVA. Language P learners significantly
outperformed Language N learneFq1,54) =

Procedure

Results and Discussion

11.76,p < .01. These findings support the hy- TABLE S
pothesis that learners detect and use predictive ANCOVA F-Values for Experiment 6
dependencies 'n_V|5ual tasks when the stimutcior Experiment 6 Simultaneous Visual
are presented simultaneously. To ensure that iealt 51 g
- rammaticality .
these results were not due to surface Varlablqc_ganguage 0.08
Grammaticalityx Language 4.63*
) ) Length 0.09
®Analyses including Rule 2 show the same pattern of ISimilarity 4.03*

sults as the reported analyses excluding the Rule 2 data:

F(1,53)= 8.31,p < .01. Because Rule 2 did not assess ac- *p < .05.
quisition of the grammar given simultaneous presentation, ** p < .01.
we focus here on the results excluding Rule 2. df =1, 90.
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B Language N
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Mean score (chance = 9)

Exp. 4: Sequential visual Exp. 6: Simultaneous visual

FIG. 2 Mean scores and standard errors for the language P and N groups for the sequentially presented shape!
in Experiment 4 (Nonlinguistic Visual condition) and the simultaneously presented shapes in Experiment 6.

tion between Language and Mode was also sig- GENERAL DISCUSSION

nificant, [F(1,101) = 4.89,p < .05]. This re- This series of experiments was designed tc
sult suggests that the mode of presentation haddress two questions. First, do human learner
a differential effect on the use of predictive dedetect and use predictive dependencies, like
pendencies. As shown in Fig. 2, learners in théhose that characterize phrases in natural lan
sequential condition (Experiment 4, Nonlin-guages, as a cue to linguistic structure? Seconc
guistic Visual condition) showed no differences the use of predictive dependencies reserve
in learning rates as a function of the availabilsolely for linguistic tasks, or does this learning
ity of predictive dependencies. However, premechanism operate in nonlinguistic domains as
dictive dependencies did affect learning in thavell? The results of Experiment 1 suggest that
simultaneous condition (Experiment 6). Relaadults were more successful at learning an artifi
tive to the other three groups, the learners igial language when the grammar includes pre-:
the simultaneous Language P group performetictive dependencies as a cue to phrase struc
best. It is unclear whether this was due to posture. Experiment 2 extended these results tc
tive effects of predictive dependencies oinclude child learners, suggesting a constraint
learning in Language P or deleterious effects afn learning that may be available during the
the absence of predictive dependencies in Lagears in which children acquire their native lan-
guage N; the baseline level of performance iguage. Experiment 3 demonstrated that the us
simultaneous visual tasks may exceed the basd- predictive dependencies in learning phrase
line level of performance in sequential visuaktructure is not limited to language learning
tasks. Nevertheless, the results support the hiasks.

pothesis that learning in the visual system is While the effect of predictive dependencies
more attuned to dependencies between simukliably emerged across these experiments, th
taneously available elements arrayed in spaciferences in performance across language
than to sequentially available elements arrayegtoups were not large. In particular, Language N
in time. learners were quite successful overall, thougf
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not quite as successful as the Language P leaceptual/processing differences or to experience
ers. Itis possible that a more sensitive test migimt each modality. That is, the perceptual learn-
show greater differences. The test used in theisg systems in each modality may be special-
experiments does not invariably target knowlzed to perform best on sequential or simultane-
edge of the underlying structure of the laneus input, in the absence of experience.
guage—learners could succeed on many teSiternatively, our processing capacities in each
items by knowing something about which itemsodality may have been shaped via experience
go where and which items follow which othetto specialize in different types of learning, given
items. It is thus possible that a test assessitige nature of the auditory and visual worlds.
deeper structure knowledge (perhaps involvin@ne way to explore these two explanations for
transformations) would tease the two languagbe modality difference would be to test individ-
groups’ performance apart to a greater extent. bials who have been extensively exposed to &
addition, the generality of our conclusions isigned language. Signed languages contair
limited by the use of only a single pair of gramextensive sequential structure (in addition to
mars; it would be extremely useful to examinsimultaneous structure), with elements that
predictive dependencies in other types of strumust be tracked and combined over time as in
tures, including grammars like English (andpoken languages. It is possible that individuals
many nonlinguistic systems, such as music) iwho sign would be sensitive to the predictive
which dependencies link events in a forward ddependencies in the visual experiments, since
rection, unlike the backward dependencies us#tey may be more specialized in detecting and
here. Moreover, the dependencies tested in thassing sequential structure in the visual modality
grammars were limited to neighboring elethan individuals who are not speakers of signed
ments, unlike the long-distance dependenciéenguages. Such manipulations would allow us
characterizing natural languages. Nevertheleds, tease apart the cause of the visual/auditory
the results point to a possible constraint omodality differences in the use of predictive de-
learning: humans can detect and use predictipendencies given sequentially presented input.
dependencies to acquire phrase structure and
perform more poorly when these dependencies
are not present amongst the statistics of theThe predictive dependencies internal to
input, without respect to the linguistic nature ophrases are a hallmark of natural languages
the task. However, organization into phrases and hierar-
) chies also characterizes nonlinguistic sequentis
Modality Effects information processing (e.g., Lashley, 1951).
The results of Experiments 4—6 support th&he kinds of structure at issue serve to organiz
hypothesis that predictive dependencies aand package serial information into manageabl
used by learners when the dependencies lie behunks, which then enter relationships with one
tween elements presented in a manner appropanother. The generation of hierarchical structure
ate to perceptual learning capacities in eagbhresumably maximizes cognitive economy, fa-
modality. In the auditory modality, where infor- cilitating the transmission of more complex in-
mation is generally serial and fleeting, sequerfermation than could otherwise be transmitted
tial presentation elicits effects of predictive dein a serial channel. Pinker and Bloom (1990)
pendencies: dependencies allow learners to @&gue that “hierarchical organization character-
together events across time. Learners can alems many neural systems, perhaps any systen
detect and use predictive dependencies in tlieat we would want to call complex . . . Hierar-
visual modality, but not when the input is sechy and seriality are so useful that for all we
guential. Instead, learners make use of depend-
e_nCIeS when they_ link spatially f_;lrrayed and 4t is ynclear how to devise a simultaneous auditory lan-
simultaneously available elemefiti.is unclear guage to fill out the parametric variations in modaliti-
whether these effects are due to inherent penultaneous/sequential presentation.

Constraints on Statistical Learning
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know they may have evolved many times isuggests that universal word order typologies
neural systems” (p. 726). When applied to symnay reflect the ease with which different types
tax, this kind of argument suggests that granof systems are learned (Christiansen & Devlin,
mars look the way they do because these kin#l897).
of organizational principles are the human engi- With respect to statistical learning, the pres-
neering solution to the problem of serial order.ent research runs counter to the assumption th:
It is conceivable that the packaging of seriatatistical language learning accounts—or any
inputs into higher order organization facilitatesther type of theory that assigns an importan
not only language production and processingple to linguistic input—are necessarily under-
but also language acquisition. Systems that azenstrained. As research on animal learning ha
highly organized are more learnable than syamply demonstrated, learning in biological sys-
tems that are not—as long as the system of @ems is highly constrained (e.g., Gallistel, 1990;
ganization is consistent with the learner’s cognzarcia & Koelling, 1966; Marler, 1991). There
tive structure. These ideas suggest a possildesvery reason to believe that statistical learning
alternative to the traditional innate universalk similarly constrained; the purported in-
grammar explanation for the pervasiveness tfctability of statistical learning need not be as-
particular linguistic features cross-linguisticallyserted prima facie. What exactly these con-
If human learners are constrained to preferestraints will turn out to be and whether they will
tially acquire certain types of structures, thenonfer sufficient explanatory power remain em-
some of the universal structures of natural lapirical questions. More generally, our focus on
guages may have been shaped by these ctearning provides a needed bridge between thec
straints (e.g., Bever, 1970; Christiansen, 1994ies focused on nature and theories focused o
Christiansen & Devlin, 1997; Ellefson & Chris-nurture, because constrained learning mecha
tiansen, 2000; Newport, 1982, 1990). Applyingnisms require both experience to drive learning
these ideas to the current research, the predictaed preexisting structures to capture and manip
dependencies that characterize phrase structutate those experiences.
may recur cross-linguistically because they en-
hance learnability. On this view, languages APPENDIX 1:
evolve to fit the human learner. To the extent,
that this type of view is correct, the striking sim- L ACE
ilarities among human languages may reflect .. — dupp
constraints on human learning abilities. hep Ilum loke
The present research begins the task ofmib neb jux
recharacterizing language universals in terms of rud sig vot
constraints on learning by recasting the distribu- Piff lum dupp
. . ; . . hep cav jux
tional features and dependencies inherent in hi- .~ sig loke
erarchical phrase structure into cues detected,,q neb vot
during the learning process. In the case of the2 ADCE
constraint to interpret predictive relations as sig- |« o lum dupp
naling a unit, the phrase, we find the beginnings hep pell neb loke
of an explanation for why languages contain mib klor sig jux
within-phrase dependencies: human learnersrud pell cav vot
may best acquire internal structure in sequential "€ klor sig dupp
. . biff pell sig vot
input when that structure is marked by strong .. pell lum jux
predictive relationships between elements. Fu- g kior cav loke
ture research will continue to pursue the hypoth- 3 ACGE
esis that constraints on learning play an impor- . = . dupp
tant role in shaping the structure of natural nep jum pilk loke
languages. For example, computational researchmib neb tiz jux

nguage P Sentences
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APPENDIX 1—eontinued

rud sig pilk vot
rud neb pilk dupp
mib lum tiz loke
biff cav pilk jux
hep sig tiz vot

4. ADCGF

biff klor cav pilk jux
biff pell sig tiz vot

rud pell lum tiz dupp
mib klor lum pilk loke
mib pell cav tiz jux
rud klor sig pilk vot
hep klor neb tiz loke
rud pell neb pilk dupp

5. ACFC

biff sig dupp cav
hep cav loke neb
mib lum jux sig
rud neb vot lum
rud cav jux lum
hep sig loke neb

6. ADCFC

mib klor cav vot sig
rud pell lum loke neb
hep klor sig dupp lum
biff pell neb jux cav

7.ACGFC

biff cav tiz jux lum
hep lum pilk vot sig
mib sig pilk dupp cav
rud neb tiz loke lum

8. ACFCG

biff neb jux lum tiz
hep cav loke neb pilk
mib sig dupp cav pilk
rud lum vot sig tiz

Language N Sentences

1. ACF

biff cav dupp
hep lum loke
mib neb jux
rud sig vox

2. ADCF

bif klor lum dupp
hep pell neb loke
mib klor sig jux
rud pell cav vot
hep klor sig dupp
biff pell neb vot

3.DCF
klor neb jux

klor sig dupp
pell cav vot

4. AGF

biff tiz jux
hep pilk lok
mib tiz loke
rud pilk vot

5. ADGF

biff pell tiz dupp
mib pell pilk jux
rud klor tiz loke
hep klor pilk vot
rud pell tiz jux
mib klor pilk dupp
hep pell tiz vot

6. DGF
klor pilk loke
klor pilk dupp

7. ACGF

biff cav tiz dupp
hep lum pilk loke
mib neb tiz jux
rud sig pilk vot
rud neb pilk dupp
mib lum tiz loke
biff neb pilk jux
hep cav pilk vot

8. ADCGF

biff klor cav pilk jux
biff pell sig tiz vot
rud pell lum tiz dupp
mib klor lum pilk loke
mib pell cav tiz jux
rud klor sig pilk vot
hep klor neb tiz loke

9. DCGF

klor neb pilk jux

pell lum pilk dupp
klor sig tiz vot

pell cav tiz loke

klor neb tiz jux

pell sig pilk dupp

klor lum tiz vot

pell sig tiz loke

rud pell cav pilk dupp

APPENDIX 2:

Test Items

Rule 1: Sentences Must Contain an A Phrase

biff klor sig pilk jux [A-D-C-G-F]
*sig pilk jux [C-G-F]
hep pell lum tiz dupp [A-D-C-G-F]

*lum tiz dupp [C-G-F]

193
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APPENDIX 2—eontinued mib klor sig tiz loke [A-D-C-G-F]
*mib klor loke [A-D-F]
mib klor cav tiz vot [A-D-C-G-F]
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