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Abstract—

 

Three experiments investigated the ability of human ob-
servers to extract the joint and conditional probabilities of shape co-
occurrences during passive viewing of complex visual scenes. Results
indicated that statistical learning of shape conjunctions was both
rapid and automatic, as subjects were not instructed to attend to any
particular features of the displays. Moreover, in addition to single-shape
frequency, subjects acquired in parallel several different higher-order
aspects of the statistical structure of the displays, including absolute
shape-position relations in an array, shape-pair arrangements inde-
pendent of position, and conditional probabilities of shape co-occur-
rences. Unsupervised learning of these higher-order statistics provides
support for Barlow’s theory of visual recognition, which posits that
detecting “suspicious coincidences” of elements during recognition is

 

a necessary prerequisite for efficient learning of new visual features.

 

Humans’ visual experience consists of many complex spatiotem-
poral events that, under familiar circumstances, are rapidly and effort-
lessly interpreted with very few errors.

 

1

 

 However, in an unfamiliar
environment, such as a tropical rainforest or an exotic marketplace,
complex scenes containing numerous three-dimensional objects are
initially difficult to interpret. Yet, after a brief period of familiariza-
tion, observers are able to identify many exemplars of the initially un-
known objects in these unfamiliar scenes. It has been suggested that
this fundamental process of observational learning, which occurs au-
tomatically and without instruction, is what enables human infants to
make sense of their visual environment during early development
(Gibson, 1969). This learning process is also viewed as the general
basis by which adults extract invariant visual features from multiple
exemplars of a class of objects (Helmholtz, 1910/1925; Hochberg,
1981).

Experiments investigating the nature of this ability have all used
feedback during training, and have found that observers are proficient
at extracting components from exemplars of initially unknown scenes;
they become “experts” in a given visual domain (e.g., Gauthier & Tarr,
1997; Quinn, Palmer, & Slater, 1999). Clearly, any learning during
such a training process relies crucially on statistical components of the
scenes, and the learned features can be characterized by statistics
ranging from simple element frequency to higher-order spatial-tempo-
ral structures. Yet it has long been argued that when feedback is not
provided during training, statistical learning alone cannot explain the
ability to develop descriptors of visual experiences, or component fea-
tures of objects, because of the prohibitive complexity of this unsuper-
vised learning task, variously referred to as the “curse of dimensionality”

(Duda & Hart, 1973) or the “combinatorial explosion” (von der Mals-
burg, 1995) problem. However, a clear empirical test of the adequacy
or inadequacy of a statistical-learning mechanism, one that demon-
strates which attributes are acquired in an unsupervised visual percep-
tion task, has not been reported previously.

We examined this issue by having observers view complex scenes
to determine which statistics of visual features they naturally became
sensitive to in the absence of feedback. The computational problem in
all such statistical-learning tasks is to determine whether the simul-
taneous appearance of two features in a particular spatial relation, as
indicated by their joint probability, 

 

P

 

(A, B), is merely a random co-
occurrence or a significant feature signaling an important underlying
structure (Atick, 1992; Barlow, 1989, 1990). If the joint probability of
a particular feature co-occurrence is low, then it would seem likely
that those two features are unrelated. But over a large number of ex-
emplars, nearly all joint probabilities will be low because of the large
number of independent features in complex scenes. Thus, some robust
decision criterion must be adopted so that relatively high joint proba-
bilities among a sea of low joint probabilities are attended to and
learned.

We investigated the ability of human observers to extract joint
probabilities by creating a simple, highly structured set of exemplars
in which all of the statistics among a discrete set of features (shapes)
were under precise control. For the displays, we created a large num-
ber of visual scenes, each consisting of 6 two-dimensional shapes, se-
lected from a set of 12, arranged on a fixed grid (Fig. 1). The shapes
were chosen to be sufficiently complex that they were both easily dis-
criminable and unfamiliar. Moreover, the complexity of the shapes
prevented the automatic emergence of new shapes from the combina-
tion of adjacent low-level visual features (e.g., a line from a series of
dots). Finally, the grid, which was continuously present during the ex-
periment, was used to minimize uncertainty about the absolute and
relative spatial positions of the shapes. Thus, in our task, observers
could learn the higher-order spatial relations among the shapes only
by computing one or more statistics from the distribution of the exem-
plars and not from Gestalt laws of organization or from prior familiar-
ity with the shapes.

The paradigm we employed is superficially similar to two other
lines of research that bear on related issues. Johnson, Peterson, Yap,
and Rose (1989) presented a total of seven letters and digits simulta-
neously within a 4 

 

�

 

 4 grid. After viewing 128 grids (scenes) in which
element frequency ranged from 2 to 24 instances, subjects showed
sensitivity to element frequency, even when instructed only to look at
the elements in each scene. Thus, a low-level statistic (relative fre-
quency or probability) can be extracted from multielement arrays dur-
ing passive viewing. Chun and Jiang (1998, 1999) examined the
influence of context—the background elements that surround a single
target element—in a visual search task. Subjects showed faster search
times to targets embedded in familiar contexts than to targets embed-
ded in novel contexts. Contextual familiarity emerged from the re-
peated pairing of targets in specific background arrays, even though
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1. We are not concerned here with phenomena that are due to rapid tempo-
ral changes of scenes under specialized circumstances, such as change blind-
ness and attentional blink.
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subjects were instructed to seek a particular target element and were
unaware of the consistent mapping between targets and contexts.
These results demonstrate that a specific shape, which is the explicit
object of attention, can be associated implicitly with a multielement
background array. However, it remains unclear whether higher-order
statistics can be learned from multielement arrays when there is no ex-
plicit object of attention, and which particular statistics are used dur-
ing this process of observational learning.

 

EXPERIMENTS 1 AND 2

Method

 

Subjects

 

Separate groups of 20 naive subjects participated in the two exper-
iments. The subjects were undergraduates at the University of Roches-
ter who were paid $6.00 for their participation.

 

Stimuli

 

Twelve arbitrary complex shapes were created in the Canvas draw-
ing program from simple two-dimensional figures. The shapes were
black on a white background and were displayed within a 3 

 

�

 

 3 grid.
The maximum height and width of the shapes were scaled to be equal,
and to be half of the extent of each cell in the grid. The stimuli were
presented on a 21-in. Sony Trinitron 500PS monitor at 1024 

 

�

 

 728
resolution from a 1-m viewing distance. The extent of the 3 

 

�

 

 3 grid
was 13.7

 

�

 

, and the maximum size of the shapes was 2.29

 

�

 

. Stimuli
were presented on a Macintosh G3 computer using Matlab and the
Psychophysics Toolbox (Brainard, 1997; Pelli, 1997).

 

Design

 

Each experiment consisted of two phases: familiarization and test.
During the familiarization phase of each experiment, but unknown to
the subjects, the 12 shapes were organized into six base pairs, each
base pair consisting of two given shapes in a particular spatial relation
(Fig. 1a). Base pairs can be thought of as objects or rigid parts, in that
if one of the elements of a base pair appeared in a given scene during
familiarization, the other element always appeared in an invariant spa-
tial relation to it. The specific assignment of the 12 shapes to the six
base pairs was randomized across subjects to ensure that specific
shape pairs were not unusual and more (or less) easily learned.

As shown in Figure 1a, the six base pairs were organized into three
orientation groupings: horizontal, vertical, and oblique. The scenes
were created by selecting one base pair from each of the three orienta-
tions and then randomly positioning these three base pairs in the 3 

 

�

 

 3
grid so that each base pair would neighbor at least one of the other
pairs (Fig. 1b). This use of spatial adjacency ensured that the learning
of base pairs was not facilitated by obvious segmentation cues. In Ex-
periments 1 and 2, the foregoing constraints on how base pairs could
be arranged in the 3 

 

�

 

 3 grid limited each base pair to four possible
locations within the grid, and created a total of 144 possible scenes,
which were presented to each subject, in random order, during famil-
iarization. Because each base pair appeared in half of the scenes, and
the two shape elements of a base pair always appeared together, the
probability of appearance for each element, as well as the joint proba-
bility of the two shapes in each of the six base pairs, was .50. The con-
figuration of the base pairs resulted in accidental co-occurrences when
one shape of one base pair was located next to another shape of a dif-
ferent base pair. The joint probability of such coincidental non-base
pairs was fairly homogeneous and typically less than .02, a value
much smaller than that of the base pairs.

 

Procedure

 

During familiarization, subjects saw each of the 144 possible
scenes only once (a total of 7 min). Each scene was shown for 2 s,
with a 1-s pause between scenes. This scene duration is consistent
with the report (Johnson et al., 1989) that judgments about the relative
frequency of seven elements in a 4 

 

�

 

 4 grid minimally require a 2-s
inspection time. Subjects were told to pay attention to the continuous
sequence of scenes so that they would be able to answer some simple
questions after the familiarization phase. No further instructions were
given, thereby ensuring that the subjects were unaware of the aspect of
the changing scenes to which they should attend. There was a 3-min
break between the familiarization and the test phase.

Fig. 1. The 12 basic shapes used in all of the experiments (a) and a
typical scene used in Experiments 1 and 2 (b). As illustrated in (a), the
shapes were arranged into six base pairs, with each base pair defined
by two shapes and a particular spatial relation between them. (The
outlines around the pairs are shown here for illustrative purposes
only.) Assignment of shapes to pairs was randomized across subjects,
but for each subject (as shown here), two base pairs were organized
into each of three orientation groupings (horizontal, vertical, oblique).
Each of the scenes was composed from three base pairs.



 

PSYCHOLOGICAL SCIENCE

 

József Fiser and Richard N. Aslin

 

VOL. 12, NO. 6, NOVEMBER 2001

 

501

 

After the familiarization phase, a temporal two-alternative forced-
choice (2AFC) test phase was conducted. During this test phase, a
base pair and a non-base pair were shown sequentially in particular
positions in the 3 

 

�

 

 3 grid. Each pair was presented for 2 s, with a 1-s
pause between pairs. Subjects had to press a computer key (“1” or
“2”) depending on which of the two test patterns they judged to be
more familiar. Test trials were individually randomized for each sub-
ject, and base pairs and non-base pairs were counterbalanced within a
test session.

In Experiment 1, the non-base pairs were constructed so that nei-
ther of the individual shapes of each pair had appeared in the tested
grid position during the familiarization phase. Figure 2a shows an ex-
ample of a non-base pair in the sample test scene for Experiment 1.
This pair is composed of shapes I and C (see Fig. 1a). However, dur-
ing familiarization, shape I could never appear in the right-most col-
umn of the grid, and shape C could never appear in the lowest row of
the grid. Thus, this non-base-pair test scene (I above C) could not ap-
pear during familiarization. Therefore, subjects could rely on shape

position as well as shape-shape relational information in their 2AFC
comparison of base pairs with non-base pairs.

In Experiment 2, the individual shapes of each non-base pair had
appeared in the tested positions of the grid during familiarization as
frequently as the individual shapes of the base pair had appeared in the
tested positions, but the two shapes of the non-base pair had never oc-
curred together in the tested spatial arrangement in the scenes pre-
sented during the familiarization phase (Fig. 2a). For example, during
familiarization, shape D of Figure 1a could appear in the lower left
corner of the grid, and shape J could appear in the second column of
the lowest row of the grid, but the non-base pair (D left of J) shown in
Figure 2a could not appear during familiarization because when shape
J appeared, shape I was always to its left. Thus, subjects could not rely
on the positional information of individual shapes in the grid to choose
the base pairs in the 2AFC test of Experiment 2.

 

Results and Discussion

 

The results of the first two experiments are shown in Figure 2b. In
Experiment 1, subjects reliably distinguished between base pairs and
non-base pairs when the individual shapes in the non-base pairs were
presented in grid locations inconsistent with the familiarization phase,

 

t

 

(19) 

 

�

 

 6.16, 

 

p

 

 

 

�

 

 .0001. Subjects selected the base pair as the familiar
pattern significantly more often than the non-base pair despite the fact
that the individual shapes, whether contained in the base pair or in the
non-base pair, appeared an equal number of times in the familiariza-
tion scenes [i.e., 

 

P

 

(A) 

 

�

 

 

 

P

 

(B) 

 

�

 

 . . . 

 

P

 

(L)]. Thus, subjects learned,
without feedback, higher-order statistical characteristics of the scenes
that went beyond the frequency of individual shapes.

There are two types of higher-order statistics that the subjects
could have used to distinguish base pairs in Experiment 1. First, they
could have learned that certain individual shapes never appeared in
certain grid positions (i.e., the joint probability of shape and grid posi-
tion). Second, they could have learned that the joint probability of
shape-pair co-occurrence was much higher for base pairs than for non-
base pairs, regardless of their position in the grid. Experiment 2 was
designed to test whether subjects are able to perform the task even
when the first source of information is not available. As shown by the
second bar in Figure 2b, subjects judged the base pairs as more famil-
iar than the non-base pairs even when they could not rely on absolute
grid position to distinguish between base pairs and non-base pairs,

 

t

 

(19) 

 

�

 

 3.28, 

 

p

 

 

 

�

 

 .005. Because of the identical training and instruc-
tions in the two experiments, and because participants did not know
which type of test items would be presented, the results of the two ex-
periments demonstrate that participants learned both position-depen-
dent and position-independent higher-order statistics of the training
scenes, in parallel and in 7 min or less. However, subjects’ perfor-
mance was significantly weaker in Experiment 2 than in Experiment 1,

 

t

 

(38) 

 

�

 

 2.32, 

 

p

 

 

 

�

 

 .03, suggesting that the test is easier when the ab-
solute position of the shapes, as well as their joint probability of co-
occurrence, can be utilized.

 

EXPERIMENT 3

 

The problem with exclusive reliance on joint probabilities is that
they often do not signal the predictiveness of feature co-occurrences.
Consider, for example, a simple case in which there are five features:

 

�

 

, 

 

�

 

, X, Y, and Z. Features 

 

�

 

 and 

 

�

 

 always co-occur (they never occur
in isolation), but their joint probability is relatively low. In contrast,

Fig. 2. Sample test trials (a) and results (b) from Experiments 1 and 2.
The sample trials show base pairs (top row) and non-base pairs (bot-
tom row), in particular grid positions. In the graph giving the results,
the y-axis is truncated below 50%, which was chance performance in
both experiments. Error bars indicate standard errors of the mean.
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features X and Y both co-occur with feature Z, but because of varia-
tions in the frequency of co-occurrence, 

 

P

 

(X, Z), 

 

P

 

(Y, Z), and 

 

P

 

(

 

�

 

, 

 

�

 

)
are equal. If joint probability were the sole criterion for attending to
and learning about the reliability of co-occurrences, then the more pre-
dictive relation between 

 

�

 

 and 

 

�

 

 would be acquired no more readily
than the less predictive relations between X and Z and between Y and
Z. A statistic that better captures this predictive relation is conditional
probability, 

 

P

 

(

 

�

 

|

 

�

 

), because it normalizes the joint probability of the
two features, 

 

P

 

(

 

�

 

, 

 

�

 

), with respect to the probability of the predicting
feature, 

 

P

 

(

 

�

 

). In this simple example, all joint probabilities are equal,
but the conditional probability of 

 

�

 

 given 

 

�

 

 is 1.00, whereas the condi-
tional probabilities of Z given X and Z given Y are .50. Thus, condi-
tional probabilities provide a superior metric for extracting invariant
properties from highly variable visual scenes (Atick, 1992; Barlow,
1989, 1990).

In Experiment 3, the joint probabilities of some of the base pairs
and some of the non-base pairs were equated by varying the relative
frequency of the different base pairs during the familiarization phase.
Specifically, the frequency of two of the six base pairs was doubled,
and extra constraints were added so that when these more frequent
base pairs appeared together in the scene, their relative position would
be the same in half of those scenes. As a result, the number of “acci-
dental” co-occurrences of shapes across the two more frequent base
pairs (cross-pairs) was equal to the number of co-occurrences of the
two shapes within the rare base pairs. In other words, the joint proba-
bilities of the cross-pairs and some of the base pairs were identical;
these test items made up the 

 

frequency-balanced

 

 condition. Thus, in
contrast to Experiments 1 and 2, the differences in joint probabilities
between base pairs and cross-pairs could not be utilized during the test
phase of this experiment. Nevertheless, the conditional probability of
the rare base pairs was 1.0 (when one of the shapes appeared, the other
shape always appeared in the proper relative grid position), whereas
the conditional probability of cross-pairs was .50, because only half of
the time during the familiarization phase did the second shape appear
in conjunction with the first shape (Fig. 3a).

 

Method

 

In Experiment 3, an independent group of 20 subjects viewed a
25-min sequence of scenes,

 

2

 

 with the same instructions as in Experi-
ments 1 and 2. Each scene was composed of three base pairs, as in Ex-
periments 1 and 2, but the size of the grid was increased to 5 

 

�

 

 5 to
allow for the added constraints on base-pair location during familiar-
ization (see Fig. 3a). A total of 212 unique scenes was presented twice
(in random order), with a scene duration of 2 s. The extent of the 5 

 

�

 

5 grid was 11.4

 

�

 

, and maximum size of each shape was 1.14

 

�

 

. Some of
the base pairs (depicted on the left in Fig. 3a) had a higher frequency
of appearance than other base pairs. This resulted in equal frequency
of appearance of the two cross-pairs (depicted on the right in Fig. 3a)
and the two rare base pairs (not shown). However, the conditional
probability of these frequency-balanced cross-pairs was only half that
of the rare base pairs.

After the familiarization phase, subjects completed two temporal
2AFC tests, one with shape pairs and one with single shapes. In the

pair-based 2AFC test phase, subjects indicated which of two shape
pairs, one rare base pair and one frequency-balanced cross-pair, was
more familiar. In the single-shape 2AFC test, subjects judged which
shape was more frequent during the familiarization phase. In contrast
to the test displays in Experiments 1 and 2, all single-shape and shape-
pair test displays in Experiment 3 were located in the center of the grid
to eliminate absolute grid position as a relevant source of information.

 

Results and Discussion

 

Because the co-occurrence frequency of base pairs and cross-pairs
was equated in Experiment 3, the only information available for the
subjects to distinguish between these two test items was the predict-
ability between individual shapes, that is, the conditional probability
between the elements of the shape pairs. As shown in Figure 3b, sub-
jects were sensitive to this information, as indicated by their reliable
selection of the base pairs as more familiar than the frequency-bal-
anced cross-pairs, 

 

t

 

(19) 

 

�

 

 3.53, 

 

p

 

 

 

�

 

 .005. In addition, the results of
the single-shape task demonstrated that while subjects were extracting
higher-order statistics, they also maintained sensitivity to the fre-
quency of the individual shapes, 

 

t

 

(19) 

 

�

 

 6.61, 

 

p

 

 

 

�

 

 .0001.

 

GENERAL DISCUSSION

 

In three experiments, we found that subjects spontaneously and in
parallel learned first-order and a variety of higher-order statistics from
the spatial arrangement of shapes in scenes. The learned statistics
ranged from single-shape frequency, to absolute shape position in an
array, to shape-pair arrangement independent of position, and finally
to position-independent conditional probability of shape co-occurrence.
The learning was unsupervised because no instructions directed the
subjects’ attention to the underlying base-pair structure or any other
characteristic of the scenes. In addition, most subjects spontaneously
reported that they were unaware of the relation between the test trials
and the familiarization displays, and felt that they were often guessing.

These results are important because virtually every recent model
aimed at describing how visual recognition operates relies on the
learning of higher-order statistical features from complex scenes (Bar-
low, Kaushal, & Mitchison, 1989; Dayan, Hinton, Neil, & Zemel,
1995; Mel, 1997; Penev & Atick, 1996; Poggio & Edelman, 1990;
Riesenhuber & Poggio, 1999), yet there is only indirect evidence that
humans are able to extract the statistics required for carrying out such
learning efficiently, unless they are given some form of feedback to
constrain the statistical-learning process. Especially instructive are the
frequency-balanced shape-pair results from Experiment 3 because
they demonstrate statistical learning that is more complex than simple
sensitivity to the frequency of appearance of single shapes or pairs of
shapes.

 

3

 

 A number of studies have reported that humans are sensitive

 

2. Pilot testing revealed that shorter durations of familiarization were insuf-
ficient for above-chance learning of conditional probabilities for frequency-
balanced shape pairs.

 

3. Our goal was to provide subjects with a variety of precisely controlled
statistics in static, presegmented, spatially adjacent, multishape displays. Un-
doubtedly, objects in the real world contain a variety of statistics that are less
well controlled. However, it is not clear whether this greater real-world vari-
ability is advantageous (assisted by correlated cues) or disadvantageous
(harmed by unsegmented features). In the absence of detailed information
about the distribution of image features in natural scenes, our results are never-
theless important in demonstrating that sophisticated statistical-learning mech-
anisms are available and capable of operating in real time to rapidly extract
shape co-occurrences.
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to appearance frequencies (e.g., Hasher & Zacks, 1984; Johnson et al.,
1989), but unsupervised learning of conditional probabilities has not
been reported before in the visual domain, and even in the auditory
domain it has been reported only in the context of sensitivity to transi-
tional probabilities of phonemes in infants (Aslin, Saffran, & New-
port, 1998).

 

4

 

The present results support the conjecture that the brain performs
effective associative learning by spontaneously and automatically ex-
tracting independent components from complex visual scenes (Bar-
low, 1990; Helmholtz, 1910/1925; Hinton & Ghahramani, 1997). This
possibility is in agreement with the suggestions and physiological
findings that the primary visual cortex (V1) generates a sparse, effi-
cient representation of visual scenes (Field, 1994; Vinje & Gallant,
2000), whereas areas beyond V1 compute more complex, higher-order
descriptors based on this early representation (Logothetis & Shein-
berg, 1996; Tanaka, 1996). Although we have no direct evidence about
the neural mechanisms that mediate statistical learning in the multi-
shape task reported here, it is likely that the learning in our task occurs

 

4. Other studies from our research group (Saffran, Aslin, & Newport, 1996;
Saffran, Johnson, Aslin, & Newport, 1999; Saffran, Newport, & Aslin, 1996)
did not employ designs that separated the effects of conditional probabilities
from the frequency of n-grams.

Fig. 3. A sample scene (a) and results (b) from Experiment 3. The sample scene illustrates
frequent base pairs (on the left) and frequency-balanced non-base pairs (on the right). The
graph shows the results of the pair and the single-element test comparisons. In the graph giv-
ing the results, the y-axis is truncated below 50%, which was chance performance in both
tests. Error bars indicate standard errors of the mean.
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at a higher level in the visual system than the low-level (e.g., Fahle &
Edelman, 1993; Karni & Sagi, 1993) and mid-level (Ahissar & Hoch-
stein, 1997; Liu & Weinshall, 2000) types of perceptual learning re-
ported in the literature.

Our results, as well as those of Chun and Jiang (1998, 1999), dem-
onstrate that higher-order statistics among spatial arrays of shapes can
be extracted involuntarily, because our subjects were not instructed to
attend to particular sources of information. However, our results are
not necessarily in conflict with other studies reporting that some as-
pects of attention or feedback may be needed for learning during vi-
sual tasks (Ahissar & Hochstein, 1993; Johnson et al., 1989; Shiu &
Pashler, 1992). For example, our subjects were asked to fixate and at-
tend to the visual displays, and we suspect that failure to do so consis-
tently would have resulted in a significant decline in discrimination
performance. However, we do suggest that once subjects engage their
general attention to scenes, statistical-learning processes are automati-
cally activated, and these processes are sufficient to extract a variety of
lower- and higher-order statistics. We further suggest that inefficient
deployment of attention, or explicit generation of incorrect hypotheses
about the underlying structures, may interfere with this automatic sta-
tistical-learning process. Clearly, statistical learning is not the only
mechanism available to learners, even under implicit conditions, but
we believe that statistical-learning mechanisms are widely available
across modalities, domains, and species (Hauser, Newport, & Aslin,
2001).

If, as suggested by our results, subjects rely on statistical learning
in processing unknown scenes, how can one reconcile this with the
combinatorial-explosion problem, which states that there are not
enough exemplars to learn the necessary higher-order probabilities in
complex natural scenes? Recent large-scale computer simulations
have shown that the most efficient object recognition system utilizes
features at many different levels of complexity, ranging from very
simple features to features constructed by conjunctions based on
higher-order conditional probabilities (Mel & Fiser, 2000). However,
if the more complex features are recruited only as needed—that is,
only when lower-order features fail to provide sufficient information
to solve a particular task—then the minimally sufficient number of
features decreases exponentially as their complexity increases. There-
fore, a full-blown search through high-dimensional feature spaces is
not necessary to solve the recognition problem. These results imply
that if humans are able to access increasingly higher-order statistics
from scenes, but use only a constrained set of these statistics to extract
higher-order features, learning may avoid the combinatorial-explosion
problem (Geman, Bienenstock, & Doursat, 1992). Our findings, that
subjects learned both position-dependent and position-independent
statistics in the first two experiments and learned the frequency of in-
dividual elements as well as conditional probabilities for shape pairs
in the third experiment, support the hypothesis that the human brain
indeed employs such a strategy to reduce the combinatorial-explosion
problem.
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