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In 3 experiments, the authors investigated the ability of observers to extract the probabilities of successive
shape co-occurrences during passive viewing. Participants became sensitive to several temporal-order
statistics, both rapidly and with no overt task or explicit instructions. Sequences of shapes presented
during familiarization were distinguished from novel sequences of familiar shapes, as well as from shape
sequences that were seen during familiarization but less frequently than other shape sequences, demon-
strating at least the extraction of joint probabilities of 2 consecutive shapes. When joint probabilities did
not differ, another higher-order statistic (conditional probability) was automatically computed, thereby
allowing participants to predict the temporal order of shapes. Results of a single-shape test documented
that lower-order statistics were retained during the extraction of higher-order statistics. These results
suggest that observers automatically extract multiple statistics of temporal events that are suitable for
efficient associative learning of new temporal features.

Our visual experience consists almost entirely of spatiotemporal
events created by observer movement through the visual array
(through eye, head, and body movements) and/or by independent
movements of objects with respect to the static environment.
Therefore, the computational task facing the visual system during
the interpretation or learning of new visual scenes is one of
extracting spatiotemporal correlations. A simple classification of
these spatiotemporal correlations is illustrated in Figure 1, in
which low-level visual analyzers respond to the presence of one or
more object features in two or more time frames. Several different
types of spatiotemporal correlations could be present across mul-
tiple time frames: (a) no change in the features or the position of
the object, (b) a change in object position, with no change in the
features of the object, (c) a smooth transformation of one or more
features, with no change in position, or (d) an abrupt change in one
or more features of the object, with or without a change in position.
Type A is a prototypical example of static vision, in which high
spatial correlations among a set of features are present for ex-
tended periods of time. Type B is an example of object motion
(short- or long-range, depending on the magnitude of the change in
position across frames). Type C is an example of object rotation (in
either 2-D or 3-D) or object deformation. And Type D is an

example of a sudden replacement of one object with a new object,
or a saccade to a new target.

This classification highlights the fact that sensitivity to temporal
statistics across a variety of different scales plays a crucial role in
most aspects of vision, including extracting temporal correlations
between small patches of two sequential images falling onto the
retina during continuous viewing, integrating visual information
across saccades, or identifying visual event sequences. Indeed, the
two-dimensional spatial nature of visual input (at the level of the
retinal image) has diverted attention from the equally important
fact that visual information is also defined in the temporal domain,
just like auditory information. A case can be made that there is no
visual information without temporal information, and thus decod-
ing the processing mechanisms of temporal correlations is not just
related to some special cases or nonvisual sensory modalities, but
is an essential requirement for understanding vision.

It is important to note that in Type A, B, and C tasks illustrated
in Figure 1, the spatiotemporal correlations are computed from
highly redundant images, where the analyzers operate over brief
temporal intervals. As a result, even in cluttered scenes, the cor-
respondence between object features across time frames is rela-
tively straightforward. And, in fact, the visual system has evolved
a number of low- and mid-level analyzers that rapidly and effi-
ciently extract spatiotemporal correlations in Type A tasks (Chubb,
Econopouly, & Landy, 1994; Julesz, 1981), Type B tasks (Wata-
maniuk & Sekuler, 1992; see also Lee & Blake, 1999), and Type
C tasks (Johansson, 1973). In contrast, Type D tasks involve low
spatial redundancy over frames (typically different images), sug-
gesting that feature matching across time frames may not provide
useful information for computing spatiotemporal correlations. In
the absence of any feature matches across time frames, the task
becomes one of extracting the serial order of a set of discrete
objects encoded in memory. Therefore, Type D tasks are ideally
suited for studying temporal correlations with the least inference
from the automatic activation of low- and mid-level visual ana-
lyzers, which are specialized for detecting spatial correlations.
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This type of task, which is the focus of the present series of
experiments, enables us to study which temporal statistics are used
to temporally bind discrete objects across scenes.

In contrast to the visual domain, in which spatial correlations are
so fundamental to object perception and relatively little attention
has been directed to temporal correlations, the auditory domain
involves stimuli that are fundamentally temporal in nature. For
example, speech and music are complex time-varying modulations
of frequency and intensity whose primitives (phonemes and notes)
are concatenated into a temporal stream to form higher level
groupings (syllables/words and melodies). The importance of tem-
poral correlations in the auditory domain has been demonstrated
by Saffran, Newport, and Aslin (1996), who showed that adult
listeners are remarkably sensitive to auditory order information in
speech streams and can rapidly learn such order information from
mere exposure to initially unfamiliar stimuli. Subsequent experi-
ments demonstrated this same temporal-order sensitivity in chil-
dren (Saffran, Newport, Aslin, Tunick, & Barrueco, 1997) and in
8-month-old infants (Aslin, Saffran, & Newport, 1998; Saffran,
Aslin, & Newport, 1996), as well as in a nonhuman primate
(Hauser, Newport, & Aslin, 2001). These studies provide strong
evidence that a robust learning mechanism is available in adults,
children, infants, and monkeys to extract the sequential structure of
rapid auditory events. Saffran, Johnson, Aslin, and Newport
(1999) also demonstrated that these abilities are not unique to
speech, because adults and infants show the same segmentation
and grouping of rapid streams of tones.

Fiser and Aslin (2001) extended these results from the auditory
temporal domain to the visual spatial domain. They created a large
(� 100) set of six-element scenes, which adults viewed at a rate of
one every 2 s, with no instructions provided to guide their learning.
After this passive familiarization to the scenes, participants judged
in a two-alternative forced-choice posttest which of two scenes
was more familiar. One of the two test scenes contained a subset
of elements in a spatial configuration identical to those presented
in some of the familiarization scenes, and the other test scene was
composed of the same number of elements but in a novel or less
predictable spatial configuration. Participants reliably chose the
familiar spatial configuration over the novel or less predictable
spatial configuration, even though there were no instructions pro-
vided during familiarization, and no feedback given during famil-
iarization or test. These results show that spatial correlations can
be extracted from a large set of multielement scenes based solely
on the statistics of the spatial configuration of the elements. What
remains unclear is whether these statistical learning abilities are
specialized for the dominant dimensions of different sensory mo-
dalities—temporal in the auditory domain, where rapid temporal
events are ubiquitous, and spatial in the visual domain, where
spatial relations are of paramount importance—or whether they
also operate in the temporal dimension for the visual domain.

Several recent results suggest considerable variability in the
learning of temporal correlations across scenes. For example,
change-blindness tasks (Simons & Levin, 1997), the integration of
information across saccadic eye movements (Henderson, 1997;
Irwin, 1996), and memory of distractor items in a visual search
task (Horowitz & Wolfe, 1998) all suggest minimal access to
temporal correlations. Other results suggest that context (e.g.,
preceding scenes in the sequential presentation of many scenes)
implicitly promotes associations across scenes (Chun & Jiang,
1998, 1999; Chun & Nakayama, 2000; Olson & Chun, 2001), and
that target priming can facilitate visual search (Maljkovic & Na-
kayama, 1994, 1996, 2000). Moreover, there is an extensive liter-
ature that demonstrates learning of new associations across scenes
in humans (Cleeremans & McClelland, 1991; Cohen, Ivry, &
Keele, 1990; Reed & Johnson, 1994; Stadler, 1992) and infants
(Kellman & Short, 1987). Thus, under some circumstances, there
is clear evidence that temporal correlations can be learned across
scenes, even when no feedback is provided to guide the learning
task. Therefore, the question addressed by the present study was
not whether it can be done, but rather how and what kind of
temporal correlations can be used to develop temporal features of
events, and whether the rules used to extract these temporal cor-
relations are similar to those for spatial features under static
conditions.

The present series of experiments investigated these issues by
extending the paradigm used by Saffran, Aslin, and Newport
(1996) from the auditory to the visual modality. Three questions
were the focus of our investigations: (a) Is there evidence for
unsupervised statistical learning of the temporal order of visual
stimuli in human adults in the absence of first-order temporal
statistical signatures?; (b) Does such learning involve concurrent
computations of both first- and higher-order temporal statistics?;
and (c) In what form is the information extracted about temporal
statistics applied in recognition tasks?

Both the spatial and the temporal statistics in our experiments
were quite simple, thereby enabling us to precisely control all

Figure 1. Illustration of four types of spatiotemporal correlations across
a two-image sequence: (A) no change (identity), (B) object movement, (C)
smooth feature transformation, and (D) object change.
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relevant statistical relations and to avoid the “combinatorial ex-
plosion” problem that occurs with more complex stimulus sets. For
the temporal statistics, we used changes in a single shape that
moved back and forth across a visual display. For the spatial
statistics, we used a small set of highly discriminable simple
shapes. The underlying assumption of this approach was that, on
the basis of low-level visual analyzers, participants could easily
identify the shapes as they were presented. Thus, any difficulty
they had in extracting the temporal structure of the stream of
shapes could not be attributed to the difficulty of individual shape
discrimination.

Experiment 1

The goal of the first experiment was to determine whether
human adults are sensitive to the temporal structure of a continu-
ous sequence of shapes when the frequency of the individual
shapes in the sequence was equated. Twelve shapes were orga-
nized into four temporal triplets, so that if one element of the triplet
appeared on the screen, the next shape in the triplet always
appeared next in the sequence. The shapes were presented in
temporal succession at a uniform rate so that duration could not be
used to group or segment the shape sequence. Because the fre-
quency of individual shapes and the frequency of shape triplets
were uniform across the shape sequence, the only structure the
participants could rely on for grouping and segmentation was the
ordering of the shapes. Thus, successful learning minimally re-
quired the extraction of temporal-order statistics among the pairs
or triplets of shapes. Moreover, because participants were not
informed that the shapes were organized into triplets, or that they
should attend to any temporal grouping of the shape sequences, the
task involved statistical learning that was unsupervised.

Method

Participants. Undergraduates from the University of Rochester, who
were paid $6 per session for their participation, served as the participants
in each of the experiments reported in this study. All participants were
naive with respect to the purpose of the experiment and participated only
in one experiment. In Experiment 1, there were 8 participants.

Stimuli. Twelve simple, arbitrary, black shapes were generated on a
white background (see Figure 2). The largest extent of the individual
shapes was equated at 5.65°. Special care was taken to provide distinct
shapes so that even after considerable low-pass filtering they were not
easily confused with each other.

A continuous movie of a shape sequence was generated using Macro-
media Director (Version 8.0, Macromedia, San Francisco; see Figure 3).

A 5.7°-wide � 15.4°-long static, black, vertical bar was positioned in the
middle of a 21-in. 1,024-pixel � 768-pixel Sony computer monitor for the
entire duration of the movie. The movie consisted of a single shape that
moved smoothly with constant speed, horizontally back and forth between
the sides of the screen, halfway between the top and bottom of the screen.
As the moving shape came into contact with the vertical bar, it was
gradually occluded by the bar. When the shape was completely oc-
cluded, it changed to 1 of the other 11 shapes. The changed shape
continued on the same trajectory with no interruption, gradually emerg-
ing from behind the vertical bar on the other side of the screen. It took
exactly 1 s for a shape starting from the center (covered completely by
the vertical bar) to move to the side of the screen and return to the initial
position behind the bar.

The change from one shape to the other was not random but rather
followed a strictly imposed structure. Each shape appeared an equal
number of times during the shape sequence. The 12 shapes were
grouped arbitrarily into four base triplets, shown by the three adjacent
shapes in Figure 2, and referred to as A-B-C, D-E-F, G-H-I, and J-K-L.
A base triplet represented a consistent structure in the stream; that is, if
A-B-C was a base triplet, then whenever A appeared on the screen, it
always changed next to B, which in turn always changed to C, when
passing behind the bar. After C, only the first shape element from one
of the other three base triplets could be presented (i.e., immediate
repetition of a base triplet was not allowed). Each of the remaining base
triplets followed a given base triplet with equal probability. This
structure created a continuous flow of shapes in which the four base
triplets followed each other in random order (subject to the constraints
described above), and assured that each individual element appeared on
both sides of the central occluding bar equally often.

The underlying structure of this shape sequence consisted of the follow-
ing temporal statistics. The first-order statistics, the probability of appear-
ance of each of the 12 shapes, was equated and therefore provided no
information for grouping or segmentation. The probability of any shape—
for example, P(A) or P(L)—was .083. The second-order statistics, defined
by the joint probability of pairs of successive shapes, varied by position
within the shape sequence as follows. The joint probability of shape pairs
within any of the four base triplets—for example, P(A,B) or P(K,L)—was
.083, whereas the joint probability of shape pairs spanning two base

Figure 2. The 12 basic shapes, grouped into four triplets, that were used
in all of the experiments. The enclosing boxes are only for demonstrative
purposes.

Figure 3. Sample frames from the video animation used to present the
continuous stream of shape sequences. A single shape moved in a contin-
uous movement from behind the vertical occluder on either the left or right
side, moved to the edge of the screen, moved back behind the occluder, and
then changed to a different shape when it reappeared on the other side of
the occluder. (Arrows demonstrate the motion of shapes and were not
visible in the experiments.)
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triplets—for example, P(C,D) or P(I,A)—was .027.1 The third-order sta-
tistics of adjacent triplets were redundant with the second-order statistics.
That is, the joint probability of any base triplet—for example, P(A,B,C)—
was .083, and the joint probability of any triplet spanning a base triplet
boundary—for example, P(C,D,E) or P(H,I,A)—was .027.

Procedure. A 6-min movie was generated by concatenating 96 base
triplets in a semirandom fashion so that no repetitions of base triplets or
triplet pairs (e.g., Triplet1, Triplet3, Triplet1, Triplet3) occurred, and the
number of base triplets was identical in each third of the movie. Partici-
pants were instructed to view the movie so that they would be able to
answer questions about what they saw. No information was given to the
participants about the potential temporal sequencing of the shapes. After
the movie, a two-interval forced-choice (2IFC) test was given to the
participants, with 32 test pairs. Each of these test pairs consisted of one of
the four base triplets and one of four “impossible” triplets that were
generated from three successive shapes that had never occurred after each
other in the training shape sequence. That is, the probability for each of the
two shape pairs in the impossible triplets appearing in the movie during
training—for example, P(B,E)—was 0. Each base triplet was paired with
each impossible triplet in two different orders to yield the 32 test pairs. In
each test pair, the two triplets were shown in a left–right–left sequence,
with a 1-s pause between triplets. Participants were instructed to judge
which of the two test triplets was more familiar on the basis of the training
movie in a balanced 2IFC posttest. They were allowed unlimited time to
make their decision, but typically responded within 2–3 s.

Results and Discussion

All 8 participants easily discriminated the base triplets from the
impossible triplets (mean percent correct � 95%), t(7) � 25.57, p
� .0001, despite the fact that all 12 shapes appeared with equal
probability, that the four impossible triplets contained the same
shapes as the base triplets, and that there were no segmentation
cues (other than the sequential statistics) in the familiarization
sequence. Thus, participants must have based their judgments on
the rapid learning from the shape sequence of a higher-order
temporal statistic than the first-order statistic of single-shape ap-
pearance probability. The simplest of these statistics is the joint
probability of two shapes appearing in a particular order in the
sequence. Of most importance, the participants became sensitive to
this temporal-order information in an unsupervised manner, with-
out any instruction to pay attention to pairs or triplets in the shape
sequence.

Experiment 2

The first experiment demonstrated that adults are naturally
sensitive to some higher-order temporal statistics, minimally to the
joint probability of shape pairs from a continuous stream of shapes.
However, the test items used in Experiment 1 were maximally
different in their joint probabilities. Both of the shape pairs in the
base triplets had joint probabilities of .083, whereas both of the
shape pairs in the impossible triplets had joint probabilities of 0. In
Experiment 2, we asked two further questions about the types of
higher-order temporal statistics that adults can compute from vi-
sual shape sequences. First, can participants learn temporal statis-
tics from shape sequences when the joint probabilities of shape
pairs in the test items are all nonzero? Second, do participants rely
on the joint probabilities of all three shapes in a base triplet, or do
they rely on information about shape pairs when judging the
familiarity of test triplets from the shape sequence? This second

question has implications for the manner in which statistical in-
formation extracted from the shape sequence is represented and
used.

Method and Stimuli

The shape stimuli and the training movie (and hence the imposed
temporal structure of the movie) were exactly the same as in Experiment 1.
The difficulty of the 2IFC discrimination task was increased by replacing
the impossible triplets with part triplets. Part triplets consisted of either the
last shape of one base triplet and the first two shapes of another base triplet
(3-1-2) or the last two shapes of one base triplet and the first shape of
another base triplet (2-3-1).2 Thus, in contrast to an impossible triplet,
which never appeared in the training sequence, a part triplet did appear in
the training sequence, but with lower probability. The joint probability of
both types of part triplets—for example, P(C,D,E) and P(B,C,D)—was
.027, a value one third that of the base triplets. However, the order of joint
probabilities of shape pairs within the two types of part triplets differed.
For the 3-1-2 part triplets, the first shape pair had a joint probability of .027
and the second shape pair had a joint probability of .083. Thus, the only
difference between this part triplet and a base triplet was the joint proba-
bility of the first shape pair. In contrast, for the 2-3-1 part triplets, the only
difference between the base triplets and the part triplets was in the second
shape pair. The number of different part triplets in the training movie was
balanced. If participants relied solely on the first shape pair during the 2IFC
posttest, then the 3-1-2 part triplets but not the 2-3-1 part triplets should be
discriminable from the base triplets. However, if participants used both
shape pairs that defined a base triplet equally, performance should be equal
in the two different part-triplet test conditions. Separate groups of 8
participants were tested in the two part-triplet conditions.

Results and Discussion

The results of the two part-triplet tests along with the results
from Experiment 1 are shown in Figure 4. The results from the
3-1-2 condition revealed that participants reliably discriminated
the base triplets from the part triplets (M � 69.1%), t(7) � 4.75,
p � .0021. Thus, even when the only difference between the test
triplets was the nonzero joint probability of one of the two shape
pairs, grouping and segmentation from the shape sequence was
possible. This demonstrates that learning in the visual domain can
be accomplished when the differences in magnitude between
higher-order temporal statistics are quite subtle.

However, the results from the 2-3-1 condition indicated that
when the order of the joint probabilities of the shape pairs was
reversed in the part triplets, performance dropped to chance
(M � 55.4%), t(7) � 1.14, p � .29. This drop was significant
compared with the results in the 3-1-2 condition, t(14) � 2.18, p
� .05. It should be assumed that the statistical information avail-
able in the 3-1-2 and the 2-3-1 tests was exactly the same: A base
triplet had to be discriminated from a triplet having one pair with

1 The definition of the joint probability of a shape pair P(A,B) in our task
is the probability that a random selection of two successive shapes in the
stream will result in the ordered shape pair A,B. Similarly, the definition of
the joint probability of a shape triplet P(A,B,C) is the probability that a
random selection of three successive shapes in the stream will result in the
ordered shape triplet A,B,C.

2 For example, some possible 3-1-2 part triplets were C-D-E, F-G-H, or
C-G-H. Some of the possible 2-3-1 part triplets were B-C-D, H-I-A, or
E-F-J.
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joint probability of P � .083 and a second pair with P � .027.
Thus, there appears to be a constraint on the statistical information
that is used to make temporal-order judgments. Participants ap-
peared to base their decision on the first available higher-order
statistic contained in the test triplets: the joint probability of the
first shape pair. In the 3-1-2 condition, but not in the 2-3-1
condition, the joint probability of the first shape pair differed from
the base triplet. Of interest, this same asymmetry was obtained by
Saffran, Newport, and Aslin (1996) in the auditory domain, al-
though the structure of their part triplets was slightly different
(X-1-2 and 2-3-X, where X was an “out-of-order” syllable from the
speech stream).

Experiment 2A

The difference in performance on the two test conditions in
Experiment 2 could simply reflect the greater difficulty of attend-
ing to the statistics of the second shape pair in the test triplets. To
explore this alternative, we reran both testing conditions on two
new groups of 8 participants with a training session that was twice
as long as in Experiment 2 (12 min vs. 6 min). Participants’
performance in the 3-1-2 condition was again significantly above
chance (M � 75.4%), t(7) � 4.71, p � .0022, improving slightly
but not significantly as compared with Experiment 2. Performance
in the 2-3-1 condition remained unchanged from Experiment 2 and
was not significantly above chance (M � 54.3%), t(7) � 0.69, p �
.51. The difference in performance between the two conditions
remained significant, t(14) � 2.56, p � .05. Thus the extended
familiarization did not change the pattern of results from Experi-
ment 2, suggesting that participants indeed treated the two test
conditions differently.

Experiment 3

The previous experiments established that adults are sensitive to
at least one higher-order temporal statistic of a shape sequence,
which we characterized by the joint probabilities of two or more
simple single shapes appearing in a particular consecutive order.
However, there was another statistic present in these shape se-
quences that may have been used by the participants to learn the
underlying temporal-order information. That other statistic is the
conditional probability of successive shape pairs, as given by the
following formula:

P(Y |X) � P(X, Y)/P(X),

where P(X) is the probability of Event X, P(X,Y) is the joint
probability of the sequence of Events X and Y, and P(Y |X) is the
conditional probability of Event Y given Event X. In the present
context, P(X) is the probability that a simple shape appears in a
given position in the movie sequence, P(X,Y) is the joint proba-
bility that the ordered shape pair X–Y appears consecutively in the
movie, whereas P(Y |X) is the conditional probability that Shape Y
follows Shape X given that X appeared. The goal of the present
experiment was to determine whether human observers are sensi-
tive to conditional probabilities when the joint probabilities have
been equated.

Given that participants in Experiments 1 and 2 could extract
information about shape sequences using joint probabilities, why is
it interesting to determine whether they are also able to compute
conditional probabilities? The fundamental difference between
joint and conditional probabilities of two events is that the first
signals the probability of co-occurrence, whereas the latter mea-
sures the predictive power of one event with respect to another.
One should consider the following simple example in which many
different events occur in a long sequence. Three of these
events—A, B, and C—occur with unequal frequency, such that A
is more frequent than B or C—that is, P(A) �� P(B), P(C). It
should be assumed that after Event A, many other events can
follow, among them one seventh of the time, Event B. In contrast,
assume that Event C is followed almost exclusively by Event B. If
the frequency of Event C—that is, P(C)—is one seventh of the
frequency of Event A, then the following situation occurs. The
joint probabilities of P(A,B) and P(C,B) are about equal; in other
words, B following A happens as frequently as does B following C.
However, when A appears in a sequence, we have very little
certainty (one seventh to be exact) that the next event will be B,
whereas the appearance of C almost completely assures us that the
next event will be B. In other words, paying attention to the joint
probabilities would rank the events A-followed-by-B and
C-followed-by-B as equally important, yet C is superior to A in
terms of reducing our uncertainty (enhancing the predictability) of
future events.

The importance of detecting conditional probabilities comes
from a long line of research based on information theoretical
considerations. This research posits that reducing uncertainty, or
increasing the efficiency of the coding of sensory information, is
essential for associative learning and ultimately for normal func-
tioning in the brain (Atick, 1992; Attneave, 1954; Barlow 1961,
1989; von der Malsburg, 1981). These theories rely heavily on the
implicit assumption that humans are sensitive to and use condi-
tional probabilities embedded in sensory inputs, because otherwise

Figure 4. The results of Experiments 1 and 2. The y-axis is truncated
below 50%, which is chance performance in both experiments. Perfor-
mance in Experiment 1 (leftmost solid bar) and on the 3-1-2 test of
Experiment 2 was significantly above chance, whereas performance on the
2-3-1 task was not (solid bars). The striped bars indicate performance in
Experiment 2A in which the training was extended from 6 to 12 min. More
extensive training did not eliminate the difference between the results of
the 3-1-2 and the 2-3-1 type of experiments, and it did not elevate the
results of the 2-3-1 experiment to significantly above chance performance.
Error bars show standard errors.
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efficient learning and redundancy reduction would be implausible.
Conditional probabilities have also been shown in animals to better
characterize what they learn about associative contingencies than
simple frequencies of occurrence or co-occurrence (Rescorla &
Wagner, 1972; see also Gallistel, 1990). Sensitivity to conditional
probabilities has also been shown by human infants in the learning
of speech sequences (Aslin et al., 1998), and by adults in the
learning of spatial correlations in visual patterns (Fiser & Aslin,
2001) and spatiotemporal correlations in a serial reaction time
(SRT) task (Hunt & Aslin, 2001).

In the structure imposed on the shape sequences in the previous
experiments, each simple shape appeared the same number of
times—that is, P(X) � k. As a result, joint probabilities and
conditional probabilities were correlated. Thus, it is not possible
from Experiments 1 and 2 to determine whether grouping and
segmentation were based on joint or conditional probability com-
putations from the shape sequences. To address this question, the
structure of the shape sequences in the training movie of Experi-
ment 3 was changed. As a result, in the test session it became
possible to compare triplets that appeared exactly the same number
of times during training—that is, P(A,B,C) � k—but for which the
conditional probabilities were very different. Such a change in
structure involved unequal frequencies of base triplets. This struc-
ture also enabled us to examine a second question, whether par-
ticipants are also sensitive to the differences in the frequencies of
individual shapes.

Method and Stimuli

The 12 simple shapes and the method of presentation in Experiment 3
were identical to those of Experiments 1 and 2. However, the imposed
structure of the shape sequences was changed by making the frequency of
two of the four base triplets double that of the other two base triplets. As
in Experiments 1 and 2, base triplets did not repeat in immediate succes-
sion. For counterbalancing reasons, the number of triplets in the training
movie increased slightly from 96 to 108 triplets. In addition, the total
duration of the movie was increased to 12 min because extraction of
conditional probabilities, when the joint probabilities were equated, was
predicted to be a more difficult task.

Because participants in the test phase of Experiment 2 based their
judgments of familiarity on the initial shape pair of a triplet, the test phase
of Experiment 3 assessed sensitivity to the initial shape pair of triplets and
part triplets rather than to the entire triplets. After exposure to the movie,
sensitivity to conditional probabilities was tested by comparing the initial
shape pairs of the two infrequent base triplets with the initial shape pairs of
the two part triplets formed from the two frequent base triplets. Because
these part triplets consisted of the 3-1-2 pattern that was learned in
Experiment 2, the first transition within the part triplet was the between-
base-triplets transition (3-1). The sequencing constraints in the training
movie resulted in the tested shape pairs from the base triplets appearing in
the training movie exactly the same number of times as the 3-1 shape pairs
from the part triplets; thus, the joint probabilities of the tested shape pairs
from the base and part triplets were exactly the same. In contrast, there was
a pronounced difference between the conditional probabilities of the first
shape pair of the base triplets and the part triplets. In the base triplet, both
shape pairs had conditional probabilities of 1.0 (Shape A perfectly pre-
dicted Shape B, and Shape B perfectly predicted Shape C). However, the
conditional probability of the first shape pair of the part triplet was .5,
because half of the time the last shape of a frequent base triplet was
followed by one of the infrequent base triplets, and the other half of the
time it was followed by the other frequent base triplet. This difference in
the conditional probability of the first shape pair was the only statistical

information that participants could use to discriminate between the tested
shape pairs.

The test phase consisted of two parts. In the first part, sensitivity to the
difference in conditional probabilities was tested with shape pairs as
described above. Specifically, the sequence of the first two shapes of the
rare base triplet, a base pair—P(B|A) � 1.0—was compared with the
sequence of the last Element I of one of the frequent triplets followed by
the first Element J of the other frequent triplet, a part pair—P(J|I) � .5. As
in Experiments 1 and 2, participants had to choose the pair that looked
more familiar on the basis of the familiarization movie. In the second part
of the test, single shapes from the frequent triplets were compared with
single shapes from the infrequent triplets. Participants were asked to
choose the shape that appeared more frequently in the familiarization
movie.

Results and Discussion

Twenty participants were tested in the experiment. As shown by
the dark bars in Figure 5, participants selected base pairs reliably
more often than part pairs (M � 66.3%), t(19) � 2.73, p � .015.
This suggests that the difference between higher and lower con-
ditional probabilities of shape pair transitions within the base and
part triplets was detected and used by participants in the discrim-
ination task. Participants’ performance was also reliably above
chance in selecting the more frequent single element in the second
part of the test (M � 85.8%), t(19) � 11.38, p � .0001. This
suggests that the participants were able to encode both first-order
and higher-order temporal statistics from the visual stream of
shape sequences. Although we cannot conclude that participants in
the preceding experiments based their performance on conditional
probabilities (because joint probability statistics were available),
the present experiment demonstrates that even when differences in
joint probability statistics are not available, participants can use
conditional probability statistics to group and segment a shape
sequence.

Experiment 3A

In Experiment 2A, we found that doubling the familiarization
period did not change the pattern of results, leaving intact the
significant difference between detecting part triplets of the 3-1-2
and 2-3-1 types. This can be explained by assuming that, after
reaching a plateau, the effect of the additional familiarization
offered only a small but nonsignificant advantage in extracting
joint probabilities. However, in general, there must be a phase
during the early extraction process when increased familiarization
moves performance from chance to above-chance levels. To en-
sure that the results of Experiment 3 were not due to some
idiosyncracies of the test items, independent of familiarization, we
reran Experiment 3 with half the duration of familiarization.

To avoid confounding effects of less power, the number of
participants was increased from 20 to 32. The results are shown by
the hatched bars in Figure 5. With reduced familiarization, partic-
ipants performed significantly worse on the pair test than in
Experiment 3, t(50) � 2.09, p � .05, and more important, they
could not reliably discriminate the base pairs from the part pairs
(M � 48.1%), t(31) � 0.33, p � .73. They could, however,
discriminate the single shapes in the movie based on their fre-
quency of occurrence (M � 73.9%), t(31) � 7.45, p � .0001,
although this performance was also significantly worse than par-
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ticipants’ performance with single elements in Experiment 3,
t(50) � 2.49, p � .02. Taken together, these results confirm that
exposure time does matter in extracting descriptions of complex
shape sequences. These results also suggest that participants re-
quired more exposure to extract higher-order statistical character-
istics of sequences (i.e., conditional probabilities) than to extract
lower-order statistics.

General Discussion

In a series of experiments, we found that human adults are
highly sensitive to the temporal statistics of image sequences. They
learned these temporal-order statistics very rapidly, in as little as 6
min, and without an overt task or explicit instructions. Moreover,
sequences of shapes presented during familiarization were distin-
guished from novel sequences of familiar shapes (Experiment 1),
as well as from shape sequences that were seen during familiar-
ization (part triplets) but less frequently than base triplets (Exper-
iment 2). Because all 12 shapes were presented with the same
frequency during familiarization in these studies, our results dem-
onstrate that human observers are sensitive to at least the joint
probability of successive shape pairs. Moreover, the results of
Experiment 3 revealed that observers were sensitive to another
statistic embedded in the shape sequences: the conditional proba-
bilities of successive shape pairs. Even when joint probabilities did
not differ, conditional probabilities were automatically computed,
presumably in an attempt to predict the temporal order of shapes in
the sequence. Sensitivity to this statistic improved with prolonged
exposure during familiarization, but became significant only after
sensitivity to first-order statistics emerged, suggesting that simpler
statistics are extracted first. Despite this progression in extracting
higher-order statistics, the results of the single-shape test docu-
mented that sensitivity to lower-order statistics was retained, sug-

gesting that a range of statistics are available to apply to as yet
unforeseen tasks.

An intriguing aspect of the results from Experiment 2 is that
observers failed to discriminate between base triplets and part
triplets when the initial shape pair of the part triplet was from
within a base triplet. This failure cannot be attributed to an inabil-
ity to discriminate certain shape pairs, because when the test phase
involved pairs rather than triplets (Experiment 3) the within-triplet
shape pairs were reliably discriminated from the between-triplet
shape pairs. Therefore, the failure to use differences in joint
probability that were present in the second shape pair of a part
triplet is presumably due to the test context, indicating that when
two triplets were being compared, the second shape pair in the
triplets did not carry much weight in the discrimination judgment.

Does this difference in performance indicate that participants in
the 3-1-2 group “learned” the triplets, whereas participants in the
2-3-1 group did not? Such an account is both highly implausible
and unrelated to the primary importance of our findings. The
implausibility stems from the fact that the two groups of partici-
pants performed differently despite identical exposure during the
familiarization phase. Moreover, although the sequence of shapes
during familiarization was constrained by its triplet structure, there
was no nonstatistical information (e.g., pauses or duration differ-
ences) by which participants could group the shapes into triplets.
Thus, from the point of view of the participants, they had no
explicit knowledge of the triplet structure until the moment that
they read the instructions for the posttest. Given the nature of our
2IFC posttest, it is unclear whether participants implicitly ex-
tracted triplets during the familiarization phase, or whether they
simply became sensitive to the pairwise statistical relations present
in the stream of shapes. Our claims center on learning temporal
correlations across scenes, not on the learning of triplets per se.
Thus, although identifying triplets can be cast into this framework,

Figure 5. The results of Experiment 3. The bars on the left indicate the percent of selecting the frequency-
balanced shape pair with 1.0 conditional probability as the more familiar shape pair in the pair two-interval
forced-choice (2IFC) test over the shape pair with .5 conditional probability. The bars on the right indicate the
percent of selecting the more frequent single shape correctly in the single 2IFC test. Solid bars are for 25 min
of training and striped bars are for 12.5 min of training. Only the shorter training in the pair test failed to exceed
chance performance. Error bars show standard errors.
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pairwise shape information present during the familiarization
phase is completely sufficient to discriminate between familiar and
novel triplets. Therefore, the smallest step across time—learning
correlations between two successive frames—is the mechanism by
which we presume participants solved our posttest, and which
accounts for the difference between the results with 3-1-2 and
2-3-1 triplets.3

Another intriguing question arising from our study is the order
in which various statistics—for example, joint or conditional prob-
abilities—are extracted as the stimulus materials are presented
during familiarization.4 From our results, it is clear that sensitivity
to first-order correlations (appearance frequency) precedes both
joint and conditional probabilities. However, once this low-order
information is acquired, there is no a priori reason to favor either
of these second-order statistics because each can be computed
from the other on the basis of the raw appearance frequencies.
Although most traditional computational approaches begin with
the extraction of first moments, and only then the extraction of
conditional statistics derived by “normalization,” such a sequential
process might not apply to biological systems. As previously
mentioned in Experiment 3, the information contained in condi-
tional probabilities has ecological advantages. Thus, conditional
probabilities may not be derived from joint probabilities, but rather
continuously updated as each new element appears in the input
stream. The biological apparatus supporting such an on-line com-
putational mechanism would involve a multiplicative interaction
or gating between and within neurons, which has been shown to be
ubiquitous in the brain (Hausser, Spruston, & Stuart, 2000).

Although our results are not the first to demonstrate that infor-
mation about shape sequences can be learned, they differ from
previous experiments in that they were obtained with precise
control over the available spatial and temporal statistics of the
sequences, thereby allowing inferences about which specific sta-
tistics were learned. Previous visual search studies (e.g., Chun &
Jiang, 1998, 1999) have shown that the spatial or featural context
in which an object is presented—that is, a joint probability statis-
tic—can facilitate object detection. However, these search tasks
involve a target object to which the participant’s attention is
explicitly directed. Extraction of shape information from images of
a rotating object has been claimed to be facilitated by observing
the smooth temporal sequence from multiple viewpoints (Stone,
1999), but other results have failed to show such an advantage
(Harman & Humphrey, 1999). These discrepancies may have
resulted from the fact that these studies used a Type C task (see
Figure 1) in which the specific statistics available in the image
sequences were not well controlled, thereby allowing participants
to use a variety of low-level spatial correlations during learning. In
a Type D task, Olson and Chun (2001) showed that attention
directed to a specific target shape facilitated reaction times when
the preceding context of temporally ordered shapes was predict-
able. Although predictability minimally involves joint probabili-
ties, their design did not allow for an interpretation based on
conditional probabilities.

The results of our experiments are also qualitatively different
from the extraction of temporal correlations by low- and mid-level
visual analyzers, because the time course of learning is on the
order of minutes rather than the immediate (less than 500 ms)
latency to detect coherent motion or texture segregation. However,
like these lower-level mechanisms, the process of extracting tem-

poral correlations on our tasks was unsupervised. Participants were
not instructed to segment or group the shape sequence but were
merely told to attend to the display, in contrast to studies of
perceptual learning in which a well-defined task and a long learn-
ing phase are required for participants to show improvements in
performance (Goldstone, 1998). Nevertheless, the fact that partic-
ipants extracted statistical descriptors as complex as the temporal
conditional probability of shape pairs without any instruction
supports the hypothesis that this type of unsupervised learning is a
common component of the different classes of temporal observa-
tional learning reported at various levels in the visual system,
including low- and mid-level analyzers (e.g., Ball & Sekuler,
1982; Frensch, Buchner, & Lin, 1994; Vidyasagar & Stuart, 1993).

Our experiments also have some similarities with the SRT
literature (see Cleeremans, 1993; Cleeremans, Destrebecqz, &
Boyer, 1998). Those studies, like the present experiments, use a
continuous stream of visual events, but they also require a motor
response as the participants perform a discrete button-pressing
task. In SRT tasks, learning can be based on either the temporal
statistics of the visual stimuli or on the spatiotemporal character-
istics of the motor responses. Thus, care must be taken to explore
sensitivity to the temporal statistics embedded in the visual se-
quences rather than in the motor responses (Koch & Hoffman,
2000; Willingham, 1998). Although many studies have shown that
performance improves in an SRT task (e.g., Cohen et al., 1990;
Lewicki, Hill, & Bizot, 1988), most of these studies did not control
the first-order statistics of movement frequencies (Reed & John-
son, 1994). Studies that have controlled for first-order statistics
report that learning is correlated with the level of statistical struc-
ture in the sequences (Reed & Johnson, 1994; Stadler, 1992), and
Hunt and Aslin (2001) showed that higher-order statistics alone
can lead to faster reaction times. Although Howard, Mutter, and
Howard (1992) showed that observation of the visual stimulus
locations in an SRT display (in the absence of the motor responses)
transferred to the SRT task, the sequences they used did not
differentiate between joint and conditional probabilities.

Our experiments also have some similarities to the literature on
artificial grammar learning, in that conditional probabilities for
shape pairs could be described by the rules of a finite-state gram-
mar (Reber 1967, 1989). One important difference is that those
studies present training sentences with an already segmented input
stream (either spatially or temporally), thereby providing the
learner with anchor points from which initial statistical computa-
tions may proceed. In our experiments, no anchor points were

3 To definitively answer the question of whether participants learned
triplets per se rather than only pair-based statistics, one would need to
construct a test where triplet probabilities are uncorrelated with both
first-order (appearance frequency) and second-order (covariations of pairs)
statistics. Although the first requirement was fulfilled in our experiment,
the second was impossible to fulfill within the framework of triplet testing
because there are only two pairs in a triplet, and they are connected by the
middle element. To generate two test items with identical second-order but
different higher-order statistics, one would need the freedom to vary the
position of shape pairs within the test items, which is not possible with
triplets.

4 We thank an anonymous reviewer for directing our attention to this
issue.
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present until after the familiarization phase, when the participants
began the 2IFC posttest.

The present results are conceptually identical to those reported
in the auditory domain for temporal sequences (Aslin et al., 1998),
in the visual domain for spatial configurations (Fiser & Aslin,
2001), and in the visuomotor domain for an SRT task (Hunt &
Aslin, 2001). In all these experiments, participants showed strong,
automatic sensitivity to conditional probabilities between events,
an aspect of human perception that is crucial for effective asso-
ciative learning of new features (Atick, 1992; Barlow, 1989). Such
similarity between the auditory, visual, and visuomotor modalities
suggests that, although spatial and temporal information plays a
different role in different modalities, the basic mechanisms by
which information is processed are very similar across the spatial
and temporal domains. Such a uniform mechanism for deriving
higher-order descriptions from sensory input may help to create
common representations across independent domains or modali-
ties, thereby simplifying the process of interaction with other
mechanisms such as attention.

In summary, we have shown that human observers can extract
higher-order temporal statistics from a continuous stream of sim-
ple shapes. They perform this statistical learning rapidly, and in an
unsupervised manner, suggesting that the underlying mechanism is
well suited to the learning of visual events in the natural environ-
ment. Particularly impressive is the ability to extract a variety of
statistics and retain them in memory for computations that may be
needed when lower-order statistics are insufficient to make pre-
dictions about event sequences. Despite these demonstrations of
rapid and robust learning mechanisms, there must be constraints on
statistical learning to prevent the combinatorial explosion problem.
Further research will be needed to document the full extent of
these constraints.
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