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Abstract
All illusory surface jigures yield a perception of a sur-

face occluding another one or the background. Occluded
surfaces yield completion, a phenomena known as amodal
completions. It is intriguing that for some images illusory
surfaces are perceived, but not for other images (see jig-
ure I). Also, illusory su faces may have portions occluded.
We aim to understand these phenomena.

Our approach detects intensity edges and junctions.
From the junctions we seek to find an optimal image orga-
nization, i.e., multiple ordered suqaces  with the ordering
accounting for salience. The most salient being the figure,

while the other sugaces  are classified as background. A de-
cision of which surface is the visible one (on top) is made
locally, at each pixel, allowing the salient suqace  (figure)
to have portions occluded, i.e., with amodal completions.
We accountfor a variety of imagery not explained before.

1. Introduction

When the Kanizsa Square [8]  image and the Four
Crosses image are shown (see figure 1) various possible
visual organizations, figure-ground separations, are plau-
sible. In the Kanizsa Square image the dominant organi-
zation is of a vivid (bright white) illusory square in front
of four black discs with a white background. In the Four
Crosses image the figure of four crosses (or, more pre-
cisely, of eight rectangles) in a white background is seen
as the dominant organization. Why do we not see the illu-
sory white square in this case ? Why do we see an illusory
white square for the Kanizsa square ? We are also intrigued
by salient illusory surfaces that exhibit amodal completions
(see figure 1). We follow Ringach and Shapley [ 131  to ar-
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gue for one model that account for both phenomena, illu-
sory completions and amodal completions. Once an orga-
nization is selected, how do we make a decision of what is
in front or behind ?
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Figure 1. a. The Kanizsa Square image. b. The
Four Crosses image. There is no strong percep-
tion of a white square. c. The Two Fish image.
In this case the salient surface, either one, has
portion of it occluded (amodal completion).

Our model provides a theory of illusory surfaces that ex-
plains and interconnects both, a reconstruction of the sur-
faces and an explanation for when they are or are not per-
ceived. Our approach to find the optimal organization is by
(i) detecting edges and junctions ; (ii) assigning, at each
junction, a set of hypotheses of the local salient surface
configuration and their likelihood; (iii) diffusing these hy-
potheses (blocked by the edges); and (iv) selecting the best
image organization (set of hypotheses); (v) deciding which
surface pixels are on top or occluded.

Our main contributions are

1. Phenomenologically, we offer an explanation for the
presence of the vivid illusory square in the Kanisza
Square and the absence of the square on the Four
Crosses (see figure 1). We also account for amodal
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completions, i.e., for salient surfaces that can have oc-
cluded regions.

2. Theoretically, we argue for an organization selection
criteria based on the “entropy” of the diffusion of a
set of hypotheses plus a bias to illusory surfaces that
have smooth shape, i.e., a bias to remove L-junctions
(to see L-junctions as T-junctions.)

3. Which surface is visible (on top) is determined at each
pixel, locally, based on the local surface probabilities.
The visible regions emerge as collections of “top” pix-
els, and a salient surface can be partially occluded.

Comparison to previous approaches Many computa-
tional models have been proposed to describe the forma-
tion of illusory contours. The first approach to propose
a propagation of edges is due to Ullman[lS].  Others in-
clude Grossberg & Mingolla[6] Guy & Medioni[S], Kell-
man & Shipley[9] . Approaches seeking regions are given
by Brady and Grimson[2], Nitzberg and Mumford  and Sh-
iota [ 1 l] , Kumaran, Geiger and Gurvits[ IO].

The discussion on visual organization dates back at least
to the labeling scheme by Huffman [7] . These approaches
are too weak to constraint in the sense that they allow for far
to many possible organizations (all of them equally likely).
Williams and Hanson [ 161  and Williams and Rubin [ 171
propose a linear programming method based on local in-
formation at junctions, that is partially considered here.
However, they do not take into account neither region in-
formation nor local properties of the reconstructed illusory
contours. Shashua and Ullman [ 141  do have a line integra-
tion/selection approach that address organizational issues,
and within the “line extension” ideas, it is the closest work
to ours, but ours take a surface reconstruction view of the
problem.

Our approach follows previous work of Kumaran,
Geiger and Gurvits[ lo]. However, their model could
not distinguish between the Kanizsa Square and the Four
Crosses, i.e., could not account for why the illusory square
is salient in one figure but not the other. We also note that
their minimum cost criteria gaves the four inducers as the
most salient surface in the Kanizsa Square figure, and not
the illusory square. Our new model resolves this problem
and the global minima are the desired salient surface (in
agreement with human perception).

Moreover, different from any previous work we account
for saliency with amodal completions (see figure 1 c.)

2. Junctions and surface hypotheses

It is well known that when occlusions are detected, an
immediate sensation of depth change occurs. Local oc-

clusion cues are provided by T-junctions, Y-junctions, L-
junctions (corners) and line endings. Each of these cues
could suggest various local occlusion scenarios, e.g., cor-
ners have multiple occlusion interpretations (see figure 3).
We focus this work on L-junctions (corners).

2.1. Hypotheses: Multiple Surfaces

Say we have detected a total of P junctions, indexed by
p = l,..., P. We define a binary parameter 3Li = 0,1 indi-
cating whether a junction p is present or not at pixel k. We
are indexing the pixels according to raster scanning con-
vention, i.e., k = 0, 1, . . . . N2 - 1 where N is the width of the
square image. To represent multiple surfaces, say S sur-
faces, we have each one indexed by s = 1, . . . . S. We define
a set of M hypotheses {Ha;  a = 1, . . , M}, each one assign-
ing a possible configuration to a detected junction (see fig-
ure 2). The map p + a(p)  E { 1,2, . . . . M} assigns to each
junction p a hypotheses H,.

In order to represent a junction hypothesis assignment,
a(p),  at the pixel level we introduce a binary data field

{c$@(~)“;  s = l,...,S}, where (~$“(~)“)k  = 1 represents a
pixel k assignment to surface s by hypothesis a at junction

P.
Note that given a hypothesis (at a junction), a pixel may

be assigned to multiple surfaces, to account for overlaps

(amodal completions), i.e., we can have (~$“(~)‘~)k  = 1 and

(obr”“(p)‘p)k  = 1 for s # s’ (see figure 3.) ’
Next step is to obtain a saliency map, a probability of a

pixel k to be assigned to a surface s.

1. a. b. d. e.

Figure 2. Each L-junction (corner) suggests
five (5) possible local salient surface interpre-
tations. Note that (b) and (c) suggest three sur-
face layers, with the hat of the T as the salient
one, while (e) removes the junction from the
salient surface.

3. Salient Surfaces

Let us assume we are given {a(p)}  for all p. We now
show how to reconstruct multiple surfaces. Our view is
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3.1. Fitting the surfaces to the hypotheses

a. Kanizsa Square Top Occluded

q
Threshold

q
Figure 3. (a) Kanizsa Square image with 128 x
128 pixels. The optimal organization of the top
surfaces (white is salient, grey is second layer,
and black is the third layer); and occluded lay-
ers (amodal completions). (b) Hypothesis (the
winner) consist of two layers of junction hy-
potheses. For each junction, white (or black)
represents (~$$l’)“)k  = 1 (or0);  The result of dif-
fusions. 0 = 0.47, with 3L = 0.06.

to diffuse the hypotheses, as if we are diffusing a set of
probability distributions about surfaces. Let us be more
precise.

We define E’,(k) to be a probability of a pixel k to be at
surface s. Thus, G = 1 (eF(k) = 0) indicates that the pixel k
is with probability one (zero), assigned to a surface s. Note
that a pixel may be assigned to multiple surfaces, i.e., we
can have qF(k)  = 1 and PJ’(~) = I for s # s’. Our views is
that this surface probability will take the hypothesis value
(1 or 0) at the junction locations and be diffused from the
junctions to every pixel in the lattice. Our aim is to recover
the probability F’,(k) for all s and all k.

It is simpler, notation and representation wise, to refer
to the image lattice as a continuous space. In this case
1: + hP(~,y),  I’,(k) t f’s(x,y)  and so on. Note that the
set of probabilities {P,(k)} become a distribution Ps(x,y).
For completeness and clarity we offer both formulations,
continuous and discrete. The computations are based on
the discrete formulation.

We require P, to fit one of the hypotheses o~(I’)‘I  at
each junction p, i.e.,

qa;;‘“(“LP
)k =  hf’f’s(k) ‘%p,s,

or, more flexibly, we can assign an error function

N2-I P

Error 1 {a(p)))  = c c [~~(df;“‘p”p(k)  - ?s(k))2],
k=O  p=l

or in the continuous

Error = 11 i hp(x,y)(~;;‘“iP)‘P(~,y) - &(~,y))~11,
p=l

where we have considered the distance measure
11v(~,y)l1 = JJ v(x,y) dxdy, assuming v(x,y) > 0.

3.2. Smoothness assumption

In order to diffuse the information, the probabilities P,,
from the sparse junction locations we consider the cost

N2-1

Smoofh({P,))  = C C hj(P,(k) - 9r(j)12],
k = O  jcNh

where Nk = {k+ l,k- l,k-N,k+N}  is the four neigh-
borhood set of pixel k, and the diffusion coefficients

pk,j = I-1 (1 - ek,;)  ,

are zero when there is an edge between pixels k and j,
eki = 1, and /_J in the absense of it, eki = 0. The edge
detection is assumed to take place at the input level. The
smoothing/diffusion coefficients p,ik  = ,U (1 - ejk)  prevent
smoothing along intensity boundaries. In the continuous,
this cost gives

smmh = IlPcl(&Y) vs(~,Y))211 I
where V = (g , &, is the gradient operator.

3.3. Diffusion from sparse data

The final cost function, for each surface s and set of hy-
potheses {a(p);p = 1, . ..P}. is then the sum of both criteria,
error to fit the hypotheses and smoothness of the saliency
map, i.e.,

E,( { P,} 1 {a(p)})  = Error + Smooth. (1)
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This energy has its minimum PS(x,y) satisfying the
Euler- Lagrange equation

i q$“(PLP
- E)(X,Y) + V.~b,Y)VP,(~,Y)l  = 0.

p=l

(2)

This is analogous to a Fokker-Plank equation for probabil-
ity distributions in statistical physics [ 121  . The optimal
solution can be obtained by the Green’s function method,
and yields

NX,Y) =

JJ G(x-x’,y-y’)  i hp(~~,?,‘)~~~~~~~~(x~,y~)  dx’dy’>
p=l

where G(x,y)  is the Green’s function, i.e., it is essentially
the inverse of the operator induced by equation 2. This is a
linear operation on the data (a convolution), depending on
the coefficients ,~(x,y). In the discrete case equation 2 has
the linear form

D p, = hP ov4Ph
.\ 0 1 (3)

where the N2 x N2 diagonal matrix ?J’ has entries hi. The
symmetric and band limited matrix D has five non zero
diagonals. More precisely, D has the following structure:
(i) Diagonal elements Dkk  = (C,‘=, hf) +&k-N +pk,k+N+
pk,k-1  + pk,k+,  ; (ii) There are four off-diagonals with non
Zero &XlleIltS.  Along TOW k, Dk,k_  1 = -/&k_ 1, &$+I =
-pk,k+I  > Dk,k+N =  -pk,k+N>  and Dk,k-N =  -pk,k-N>  rcPre-
senting the west, east, south, and north first neighbor inter-
actions, respectively.

Determining the Green’s function is equivalent to invert-
ing the matrix D. To solve equation (3) we use Cholesky
decomposition, since it is well suited given that the ma-
trix D is a block tridiagonal, symmetric, positive matrix.
On a 2-dimensional lattice with N’ sites this method takes
0(N4) operations. Results are shown in Figures 3,4, 8, 6.

The optimal solution 9: (k) is bounded by the maximum

and minimun values of &‘U(p)‘p,  i.e., by 0 and 1. This prop-
erty allows us to interpret the optimal solution P,“(k) as the
probabilities of pixel k being or not assigned to the surface
s.

3.4. Illusory surfaces and their boundaries (con-
tours)

Given the probabilities {f’,(k)} we devise a pixel deci-
sion where if f’,(k) > 0.5 we say pixel k is at surface s and

if P,(k) < 0.5 it is not. We can then find the boundaries
of a surface s (illusory contours) as the locations where the
probability changes from below 0.5 to above it (see results
in figures 3).

4. Visual Organization

We have devised a scheme to reconstruct multiple sur-
faces. However, we have assumed an organization to be
provided, i.e., a(p) was prefixed. We now discuss the main
theme of this paper, how to select the optimal a(p). Our
criteria will be based on the result of the reconstructions
PT.

t 9
t 9

b d
b d

r=7/15 ~7129 I=7143

Distance(L) vs Entropy

Figure 4. A sequence of Kanizsa Square images
with different ratios, r = R/L, where R is the ra-
dius of the circles, and L is the distance between
inducers. The graph of the entropy S versus r for
the Kanizsa square. We crudely estimated that
the change in perception from the organization
where the square is on top to the one where the
four inducers on top occurs for r = 7/20 = 0.35.

4.1. Prior distribution for the hypotheses

It is plausible that each junction-hypothesis configura-

tion (c$(‘)“)  hk as a different probability to occur. Salient
surfaces, including illusory surfaces, encountered in nature
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tend to have smooth shapes. We conjecture such a bias for
smooth surface shapes when selecting figure from ground.
This bias will prefer to see an L-junction (corner) as a T-
junction, thus eliminating an infinity curvature (corner) hy-
potheses. We propose a cost criteria

Cl ({a(p)}) = -#(L - junction + T - junction).

The more L-junctions are “eliminated”, hypothesized as
T-junctions, the more likely is the organization.

We note that a similar measure could be provided by the
total number of L-junctions of the final thresholded solu-
tion, for all surfaces. The less the number of L-junctions
the more likely is the organization to be perceived. In this
case, we could write the criteria as

C({a(p)}) = i #f. - junctions(q,).
s= I

The main computational disadvantage of the second cri-
teria is that it requires the result of the reconstruction. How-
ever, we can not rule out C, since there is one main dif-
ference between the two criteria: L-Junctions that are cre-
ated only due to the reconstruction are only evaluated by
C. These are very rare situations, but figure 5 suggest that
C may be more appropriate. C favor organizations yield-
ing surfaces with shapes that have less “turns” We have
adopted in this paper the criteria C and not Cl. A somewhat
similar criteria is offered in [ 171,  based on a contour driven
view of the problem.

I
Rectangle s Reconstructions

Figure 5. The Rectangle image with 128 x 128
pixels. The perceived organization is of a rect-
angle in front of a background. The hypoth-
esis that eliminates all L - juncrions  would see
two curtains covering a much longer rectangle.
However, other L - junctions are created from the
reconstruction, the ones that are formed with
the frame of the image.

4.2. Entropy of the visible surfaces

The entropy criteria, per pixel, for each hypothesis map
{u(p),p  = 1, . . . . P}, is given by

where c,!(k)  = E’,(k) if pF(k) > 0.5, but e:(k)  = 0 other-
wise. Only the region that can be visible contributes to the
entropy. Then, N,: are the number of pixels where surface s
can be visible, i.e., where p,(k) > 0.5. This criteria encour-
ages “sharp” diffusions for the possible visible surface, i.e.,
it bias for F,(k) that are closer to 1,

To identify the need for this criteria we consider fig-
ure 4, a sequence of Kanizsa square images with its in-
ducers varying the separation distance. As the separation
increases the perception of the square diminishes and fade
away. The junctions are unchanged and so this affect is
only due to the entropy criteria.

4.3. Organization Criteria

Thus, our final organization criteria is the sum of both,
entropy per pixel and bias towards smooth shapes, i.e.,

The parameter h balances both criteria. To estimate
h we can use the experiments shown in figure 4 for the
Kanizsa square image. As the ratio of the radius of the
circles (inducers) and length of the square (distance be-
tween inducers) gets smaller, the perceived square, hypoth-
esis 1 (Hl), gets weak and eventually the illusory figure
fade away yielding the four inducers figure, hypothesis 2
(H2). During this process, as the ratio of the radius of the
circles and length of the square gets smaller, the entropy S
gets larger, while C(u(p)) stays constant (see figure 4). For
H 1 four L-junctions are counted while the entropy varies as
the distance between inducers vary according to the graph
shown in figure 4. For H2, twelve (12) L-junctions are
present, while the entropy is zero (all e,(k) = 0,l). Thus,
at the configuration where the perception changes from Hl
to H2. we have

4h+S* = 12h + h=S”/8,

where S’ is the entropy of the configuration at the transition
point (perception wise). We have crudely estimated h =
0.06 and adopted in all our experiments.

We have studied a variety of illusory figures. We report
results that focus on the Kanizsa Square (see figures 3 and
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4) and the Four Crosses (see figures 7 and 8). The organi-
zation criteria explains why the illusory square is perceived
in the Kanisza square image while not well perceived in the
Four Crosses one.

Two Fish Top Amodal Completion

Hvnothesis Diffusion Threshold

Figure 6. The Two Fish image and its results. In
this case pixels where the salient surface is vis-
ible (probabilities above 0.5) may still be amodal
completed because other surfaces may have lo-
cally higher probabilities (come on top).

5. Surfaces: Salient, visible, top and amodal
completions

Given a set of winner hypotheses {a*(p),p  = l,...,P}
we obtain {P,(k)} for each surface s. We have argued that
the surface s with largest entropy per pixel is considered
the salient one. For example, in the Four Crosses image
the rectangle with largest area was selected as the salient
one (see figure 7). There is still a question to be posed, are
salient surfaces the same as top surfaces ? For the Two Fish
images (see figure 6) we have the larger fish as salient, but
yet, portions of it are amodal completed (not on top). Let
us now account for this phenomena with the machinery we
have just built.

We have defined a pixel k to belong to a visible surface
s whenever P,(k) > 0.5. The entropy per pixel per surface
is computed based on the visible surfaces. The decision for
a surface s to be or not salient depends on the entropy per
pixel. To decide for each pixel k which surface is perceived,

Four Crosses Top Occluded

MM
Hvnothesis D Sl=O.lO. s2=0.29 Threshold

Figure 7. The Four Crosses image, 128 x 128
pixels; Top surfaces for the winner hypothe-
sis with brightness representing saliency; and
Occluded surfaces (amodal completions). The
winner hypothesis, D. Note that the larger (and
not smaller) rectangles are salient because of
the lower entropy.

we invoke the order of the local probabilities p,(k). We
order surfaces locally according to pY(k). More precisely,
surface s is on the top of surface s’ at pixel k if f’,(k) >
f’,,(k).  Thus, we define top surface s at pixel k if

P,(k) > C/(k) v’s’ # s.

Amodal completions are then defined at pixel k as sur-
faces s at pixels k where I’,(k) > 0.5 and they are not on
top. It is clear that a visible surface, where f’,(k) > 0.5,
can be amodal completed or on top. We examine for the
Two Fish images (see figure 6) these distinctions: Saliency,
visible, top and amodal completions.
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#
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Figure 8. The Four Crosses image’s hypothe-
ses, A, B, and C; Hypothesis D is shown
in figure 7. There are (4+36=40),  (32+0=32),
(48+0=48),  and (16+16=32)  corners (L-junctions)
at hypothesis A, B, C and D respectively. The
organization criteria O(a(p)) are 2.63,2.34,2.88,
and 2.12 respectively, making the winner to be
hypothesis D. The second voted hypothesis is
for the four crosses on top, while the illusory
square, hypothesis A, has a lower score.
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