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Abstract
We propose a methodfor segmenting gray-value images.

By segmentation, we mean a map from the set of pixels to
a small set of levels such that each connected component
of the set of pixels with the same level forms a relatively
large and “meaningful” region. The method  finds a set of
levels with associated gray values byjirstjinding junctions
in the image and then seeking a minimum set of threshold
values that preserves the junctions. Then it finds a seg-
mentation map that maps each pixel to the level with the
closest gray value to the pixel data, within a smoothness
construint.  For a convex smoothing penalty, we show the
global optimal solution for an energy function that fits the
data can be obtained in u polynomial time, by a novel use of
the muximum-flow algorithm. Our upproach  is in contrast
to a view in computer vision where segmentation is driven
by intensity gradient, usually not yielding closed bound-
aries.

1. Introduction

Image segmentation is a prototypical problem in com-
puter vision, where one needs to organize the image and
separate figure from ground.

This problem incorporates and goes beyond edge detec-
tion, since the output of the system must be regions delin-
eated by closed contours.

1.1. Background

Of course, the large clustering community [ 131  have dis-
cussed various distinct approaches to this problem, e.g., the
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merge and split techniques, the K-mean approach, and oth-
ers. Usually, they are not described as solutions to clear
optimization criteria.

A class of approaches to this problem is an extension of
the edge-detection view of images [ 1,4,8,9,  1.5, 161,  where
image contrast (intensity gradient information) with some
grouping process yields the final image boundaries. These
techniques do not always yield closed boundary contours as
the output, and they are never guaranteed to be optimized
in polynomial time on the size of the image. Gradient ap-
proaches have other difficulties. While it is true that usually
large image gradient are perceived as region boundaries,
small intensity changes can also yield ‘region boundaries
(illusory contours being an extreme example).

Region approaches are our main interest. Most of the
work, however, is ad-hoc when predefining the number
of regions or predefining values for the regions. Layers
approaches have shown promises in motion segmentation
(Weiss [21]),  and they yield segmentation directly (Darrell
and Pentland [6]).  Their usual problems are to estimate the
number of layers and the values associated with the layers,
where ad-hoc methods or prohibitive optimization compu-
tations (e.g., reducing to EM algorithms) are employed.

Recently, Shi and Malik [20],  in a related approach to
the one by Sarkar and Boyer [19],  have proposed an in-
teresting method that uses graph partitioning techniques to
find what they call the normalized cut. Because their ap-
proach is again computationally prohibitive to solve ex-
actly, they use a generalized eingenvalue approximation
technique. The maximization of total dissimilarity between
different groups of pixels and similarity within groups is in-
teresting and we also consider it in a different form.

The optimization step in our approach is in the spirit
of graph partition, but we map our optimization problem
(grouping criteria) to a minimum cut problem on a directed
graph. An advantage of our approach is that the globally
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optimal solution is obtained in a polynomial time by the use
of the maximum-flow algorithm. Moreover, we propose
a new way of estimating the number of layers and their
values based on junction information.

(weights) for discontinuity penalties according to the con-
text information, as [2]  later but independently included in
their method.

2. Formulation of the problem
1.2. Our approach

A segmentation is a classification of pixels into a small
set of labels, which we call levels in this paper, because
here each of them is associated with a gray value. Sup-
pose we assign to each pixel the level with the nearest gray
value. This is likely to yield an unsatisfactory result if
the number of levels and their associated gray values are
chosen arbitrarily. Thus, we wish to determine the opti-
mal set of levels and gray values. We do this by detecting
junctions in the image and choosing gray values that are
needed to preserve the junctions in the resulting segmenta-
tion. Given a set of levels, we then assign one of the levels
to each pixel. Though simply assigning the nearest level
to each pixel may work in the noise-free case, in general
we would also need some smoothing effect for the result-
ing segmentation to be useful. So we minimize a certain
energy functional that balances the fitness to the data and
the smoothness of the assignment map. The optimal solu-
tion is obtained by mapping the model to a maximum-flow
problem in a directed graph, and solving it in a polynomial
time.

Intuitively, we are proposing the use of the maximum-
flow algorithm as a mechanism that group distinct regions
of detected junctions into larger regions.

1.3. Related work

There are a number of recent work on application of
network-flow algorithms to computer vision. For binary
images, Greig, Porteous, and Seheult [ 10, 1 l] provided an
efficient and optimal solution. Recent work [2,  7, 12, 181
extended this result to more than two levels in different
ways. Since the problem is in general NP-hard, it is (at
least) difficult to find an efficient exact solution to all of
them. Approximate solution is one way: Boykov, Vek-
sle, and Zabih [2]  used an approximate multiway-cut al-
gorithm to solve it approximately for a specific type of
smoothing function, while Ferrari, Frigessi, and de SB [7]
used color coding. Limiting the applicable class of prob-
lems and exactly solving them is another way, including
our approach: Roy and Cox [ 181  used maximum-flow algo-
rithm for N-camera stereo correspondence problem, though
they did not expressly mention the limitation. As a use
of maximum-flow algorithm, our approach is most similar
to [18].  Also, [12], which used directed graph maximum-
flow for binocular symmetric stereo, used varied capacities

We assume the input g to be an image corrupted by
noise. We can typically raster scan an image and so g is
represented by a vector in an N2-dimensional vector space
(for a square image of size N x N.) Then, gk(k = 1, . . . . . Y’)
represents the gray value at pixel k. Here we assume an
g-bit  gray-scale image.

2.1. Junctions and levels

We segment an image by assigning to each pixel a level
it belongs to. Each level has an associated gray value, and
we wish to assign a level with the nearest gray value to each
pixel, within a smoothness constraint.

We first determine the number of levels and their as-
sociated gray values. We take junctions (e.g., corners, T-
junctions) as strong indicators of a region boundary. T-
junctions and corners often arise from overlapping sur-
faces. which we wish to obtain as distinct segments in the
image. Though sometimes they can arise from a mark on a
surface, even in that case it is often appropriate to divide the
mark from the rest as a distinct region. Let us assume that
we have a junction detector (we have m’odified a junction
detection model presented in Parida,  Geiger and Hummel
[ 171.) Each detected junction is a partition of a small disk
in the image into K pie-shaped regions (K = 2 for corners, 3
for T- or Y-junctions, 4 for X-junctions, etc.), each with an
assigned gray value. (See Figure I left.) The detector has
several parameters we can use to filter junctions, including
the contrast between partitions. We set the threshold for the
contrast relatively high, so that only high-contrastjunctions
are detected.

Now, we want these junctions to survive our segmenting
process, since we are supposing these junctions indicate re-
gion boundaries. Therefore, the set F of gray values should
satisfy the following condition:

For each pair (e, e’) of gray values assigned to neigh-
boring regions in a junction, the nearest values in F
to e and e’ are always diflerent.

We look for the minimum set of threshold values that
separates any two neighboring regions in detected junctions
by gray values. Suppose a junction has four regions a, b,
c, and d with gray values e,, eb, e,, and ed in this order, and
that the relations e, < eb, e, < eb, e, < ed, and ed < e, hold.
We call (ea,eb), ( &,eb), (e,,ed),  and (ed,e,) the intervals
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Figure 1. The segmentation process. First, junctions are detected, whose gray values are used to
. . . . .

determine gray values for the levels. The map from pixels to levels are computed using the maximum-
flow algorithm.

associated with the junction. Note that if we define thresh-
olds so that each interval contains at least one threshold,
all four gray values are divided by these thresholds. (See
Figure 1 right.)

Let I be the set of all intervals that are associated with
the detected junctions. We define T to be the smallest
among the sets of gray values satisfying “for any t E I,
there exists r E T such that t E t”. Given such a set T, we
define the set of gray values F = { fi, A,. . . , f~} for the lev-
els to be the smallest set whose Voronoi diagram includes
T. Then for each interval (e,e’) E I, the nearest values in
F to e and e’ are always different. We assume that the gray
values are ordered in a natural manner:

fa < &+I, a = l,...,L- 1. (1)

2.2. The map

The next problem is to assign one of the possible levels
to each pixel k, i.e., to find an assignment of a level u(k) E

{l,..., L} to each pixel k. We expect each grey value data
gk at pixel k to be close to the assigned grey value fa(k).
This suggests a cost

ErMa,k) = 5 G(fa(k) - gk) >
k=l

where G(x) is some error measure for which a square func-
tion is usually employed. However, our approach can han-
dle any function G(x) as efficiently.

We also impose a smoothness constraint on the assign-
ment function, where nearby pixels are encouraged to share
the same level a. We consider the cost

Smoothness(a,k)  = $ c F(u(k)  - u ( j ) ) ,
k= I ~Eh’k

where Nk represents the neighborhood of pixel k. Typically,
a four near neighbors is chosen, setting Nk = (k - 1, k +
l,k-N,k+N). F(x IS a smoothness function and we will)
show in Appendix that F(x) must be a convex function for
our method to guarantee an optima1 solution with polyno-
mial time in N. We point out that the smoothing penalty
function does not depend on the specific grey values fir(k)
but rather on the level assignments u(k). It is important
to stress that the penalty is given to different assignments
rather than a change in gray value f+). It is still the case,
for increasing monotonic F(x), that the further away the
levels the larger is the penalty, since the levels are ordered
as in (1).

This smoothness function will encourage regions to
grow (not to have too many small regions) and account for
noise errors.
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Our criteria for an optimal assignment a(k) is the mini-
mization of the following functional, the sum of both error
and smoothness cost:

2.3. Brief comparison to MRF

The energy (2) looks similar to the one used in the
Markov Random Field (MRF) model [ 1, 8, 91,  where they
search for a reconstruction function f(k) that minimizes
(MAP estimation)

Unfortunately, this optimization problem is in general
NP-hard, and a problem with MRF is that the optimization
is extremely slow. However, for a class of MRF problems
in which the penalty function F(.r) is convex, our method
can obtain a global optimum solution in a polynomial time.
In fact, though the model (2) is not in general an MRF
of type (3),  it includes MRF model (3) as a special case
where F = {fi ,f2,. . ,f~} is evenly distributed, and for
convex F(x), it can solve the problem efficiently. In ad-
dition, our method can solve a more general class of prob-
lems efficiently: Our model of discontinuities is based on
the penalty for different levels a -+ b assigned to neighbor-
ing pixels, regardless of the value of fa - jj,. Hence, our
model (2) with convex F(x) can have, viewed in terms of
grey-value change, discontinuity penalty that is more like a
step function, or multiple well.

3. Mapping the optimization problem to a
maximum-flow algorithm

In this section we explain the segmentation assignment
architecture that utilizes the maximum-flow algorithm to
obtain the globally optimal assignment, with respect to the
energy (2).

3.1. The directed graph

We devise a directed graph and let a cut represent an as- Note in this formulation we use a directed graph in
signment function k I+ a(k) so that the minimum cut corre- contrast to other application of network-flow algorithms to
sponds to the optimal assignment. Let !%f be the set of all computer vision.

Data Edge

a
0

Constraint Edge

Figure 2. A directed graph. An edge is given by
a tuple of graph nodes (u,v).  A cut of the graph
can be thought of as a surface that separates
the two parts. The optimal cut is the one that
minimizes the sum of the capacities associated
to the cut edges. Each node has 6 outgoing
edges (except for boundary).

possible assignments, i.e.,

We define a directed graph G = (V, E) a$ follows:

v = {hk 1 b,k) E M>u{s,f)

E  =  EDUECUEP.

In addition to the source s and the sink t, the graph has a
vertex U,k for each possible assignment (a,k) E %f. The
set E of edges is divided into subsets ED, EC, and Ep, each
one having a capacity with a precise meaning in terms of
the model (2), which we will explain in the following sub-
sections.

We denote a directed edge from vertex u to vertex v as
(u,v). Each edge (u,v) has a nonnegative capacity c(u, v).
A cut of G is a partition of V into S and T = V \ S such
that s E S and t E T (see figure 2). We mean by a cut of
an edge (u,v) that u E S and v E T. This is the only case
that the cost c(u, v) of the edge contributes to the total cost

cuES,VET  c(u, v). We note that if the cut is through the edge
(u,v) with u E T and v E S the cost is c(v,u),  which is in
general different from c(u, v). It is well known that by solv-
ing a maximum-flow problem one can obtain a minimum
cut, a cut that minimizes the total cost over all cuts. (See
[3]  for details.)
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Figure 3. Data edges are depicted as black ar-
rows. Four of them are cut here, representing
an assignment a(l)=l, a(2)=2,  a(3)=2,  and a(4)
= 3. Penalty edges are represented by gray
arrows. By crossing consecutive penalty ca-
pacities, the cost is added linearly, accounting
for the function F(x)=lxl.  Constraint edges are
depicted as dotted arrows. They ensure that
the assignment a(k) is a function. These edges
cannot be cut, preventing the cut from “going
back”.

Let us now analyze the different set of edges ED, Ep,
and EC.

3.2. Data edges

From each vertex &k, there is one outgoing data edge:
(u&,u,(k+lJ)  if k < L, or (u,k,t) otherwise. It has a capac-
ity Error(a,  k) = G(f,  -gk).  Thus, the capacities associated
to these edges will contribute to account for the first term
of (2). We denote the set of data edges by ED. If a data
edge originating from u,,k is cut, we interpret that this cut
represents an assignment of level a to pixels k. Figure 3
shows the nodes and data edges. The cut shown represents
amatch{(a,k)}={(l,l),(2,2),(3,2),(4,3)}.  Also,edges
(s,ulk)  are added for all k with infinite capacity. Note these
edges are actually unnecessary and s and first layer vertices
{u,klk = 1 . .I*} can be merged to one vertex, but for clar-
ity are shown thus.

3.3. Penalty edges (discontinuity)

Penalty edges are defined as

EP = {(u,L,u,J) I (a,k) E M;J’ E &}

These edges are for paying for discontinuities (region
boundaries). Edges in Ep are cut whenever a change in
the level occurs. For instance, if level a is assigned to pixel
k and level a + 2 is assigned to pixel k + 1, two edges will
be cut, namely (k+~,k+l,~~+~,k)~ and (b+2.k+l,va+2,k).

We set the capacity to be some constant value. By cross-
ing consecutive penalty capacities the cost is added lin-
early, yielding a cost function F(x) = 1x1. While we have
used a simple connectivity and capacity setting here, we
could seek more genera1 connectivity of the form

EP = {(UukPb,;) 1 (a,k),  (h_d  E M;j  E Nk),

with arbitrary capacity.
By setting the capacity for these edges, we control the

smoothness function F(x) between levels. We prove in Ap-
pendix that for any genera1 form of connectivity graph,
where maximum-flow can be applied, the edge penalty
must yield convex smoothing function F(x). This fol-
lows from the requirement that the capacities must be non-
negative. ConverseIy,  it can be shown that any convex func-
tion F(x) can be used as the smoothness function.

3.4. Constraint edges

Constraint edges are for enforcing that the assignment
a(k) is a function, i.e., that each pixel is assigned only one
level.

EC = {(&kr&-l,k)  I (a,k)  E M,a > I>.

The capacity of each constraint edge is set to infinity.
Therefore, any cut with a finite total flow cannot cut these
edges. Note that, because the edges have directions, a con-
straint edge prevents only one of two ways to cut them. In
Figure 3, constraint edges are depicted as dashed arrows,
and none is cut.

4. Implementation and Results

We implemented the architecture explained in the last
section. For maximum-flow algorithm we used standard
push-relabel method with global relabeling [5].

Our system successfully segmented various images into
only a few levels. Figure 4 shows the segmentation of the
image Gear into two, three, and four gray values. Figure 5
shows the segmentation of the image Squirrel into three
gray values.
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Figure 4. Segmentations of the image Gear (a)
into two (b), three (c), and four(d) gray values.

Appendix: Maximum-flow optimization and
convex prior models

In this appendix we prove that this use of the maximum-
flow algorithm can only be applied to optimize Markov
models of first order (neighborhood of size one) with prior
models whose discontinuity penalties are convex. While
this is a severe restriction on the class of functions F(x),
it is still of great use, especially because we are applying
F(x) to the assignment function a(k) and not to the values
f&l, i.e., although F(a) is convex on a, it is not always the
case that F(li(f))  is convex as a function off, where we
denote by C(f) the corresponding level a that is associated
with a gray value f.

F(x) must be convex

We briefly outline a proof that F(x) has to be convex.
Each node u,& has, in general, neighbors to all nodes in

column k - 1, i.e, has in general non-zero capacity at

c(u&,ubj)  # 0 ,  w h e r e j  E Nk, a n d

c(u,k,ubj)  = 0, otherwise

Figure 5. Segmentation of the image Squirrel.

The smoothing function F(x), at a pixel k, is the result
of a cut through various edges bridging nodes UC,&  and Ubi,
where{jENk=(k-l,k+l,k-N,k+N)}.Letusfocus
on the bridge between pixel k and k - 1. In the directed
graph, this cut goes through a column of hypothesis sepa-
rating these two pixels k and k - 1. Say hypothesis at k is
u(k) while at k - 1 is u(k - 1). The smoothing cost depends
only on la(k) - u(k - l)l, and this is the sum of all capac-
ities that are cut by the jump column. Thus, the capacities
between any two nodes should depend only on the differ-
ence between the two node hypothesis, hence we assume

C(Ua(k),kiUa(k-l),k- I) =  cMk),4k-  1)).
Given the assignment change from a at pixel k - 1 to b

at pixel k, we have the smoothness function to be the sum
of all the capacities being cut. More precisely,

F(u-b)=  i i c(u’,b’)+ i f:c(u’,b’)
a’=1  K=b+l a’=u+  1 b’= 1

Examining the second derivative, it follows

a’F(u - b)

ikZ2
=  2c(u,b) 2 0 ,
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since all the capacities are non-negative. Therefore, the dis-
continuity penalty cost F(x) must be a convex function, i.e.,
second derivative is always non-negative. This is a limi-
tation of the use of the maximum-flow algorithm. While
there is this limitation, our experiments do yield good so-
lution with the linear cost F(x).
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