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Abstract

The human brain manages to correctly interpret almost every visual image it receives from the environment. Underlying this
ability are contour grouping mechanisms that appropriately link local edge elements into global contours. Although a general view
of how the brain achieves effective contour grouping has emerged, there have been a number of different specific proposals and
few successes at quantitatively predicting performance. These previous proposals have been developed largely by intuition and
computational trial and error. A more principled approach is to begin with an examination of the statistical properties of contours
that exist in natural images, because it is these statistics that drove the evolution of the grouping mechanisms. Here we report
measurements of both absolute and Bayesian edge co-occurrence statistics in natural images, as well as human performance for
detecting natural-shaped contours in complex backgrounds. We find that contour detection performance is quantitatively
predicted by a local grouping rule derived directly from the co-occurrence statistics, in combination with a very simple integration
rule (a transitivity rule) that links the locally grouped contour elements into longer contours. © 2001 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

During the past decade, a number of psychophysical
(Kellman & Shipley, 1991; Field, Hayes, & Hess, 1993;
McIlhagga & Mullen, 1996; Dakin & Hess, 1998),
neurophysiological (Bosking, Zhang, Schofield, & Fitz-
patrick, 1997; Kapadia, Westheimer, & Gilbert, 1999),
and computational (Sha’ashua & Ullman, 1988; Parent
& Zucker, 1989; Yen & Finkel, 1998) studies have
helped develop the 75-year-old Gestalt notion of ‘good
continuation’ (Wertheimer, 1958) into rigorous ac-
counts of contour grouping. The general view that has
emerged can be summarized using three processing
stages. In the first stage, local contour elements are
extracted using spatial filtering like that observed in
primary visual cortex. In the second stage, ‘binding
strengths’ are formed between local contour elements.
These binding strengths are often described by a local

grouping function (an ‘association field’ according Field
et al., 1993), which specifies binding strength as a
function of differences in the position, orientation, con-
trast, and so on, of the contour elements. In the third
stage, an integration process uses the local binding
strengths to group the local elements into global
contours.

If the grouping mechanisms evolved to optimize con-
tour perception in the natural environment then the
shape of the local grouping function should be closely
related to the statistical co-occurrence of edge elements
in natural images, and explanations of contour group-
ing that are based upon edge co-occurrence should
better account for human ability to detect natural
contours in complex backgrounds. To test these predic-
tions we measured the probabilities of all possible
geometrical relationships between pairs of edge ele-
ments extracted from natural images. We measured
both the absolute co-occurrence statistics, which in prin-
ciple could be ‘learned’ directly from the images with-
out feedback, and the Bayesian co-occurrence statistics,
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which would require feedback via interaction with the
environment.1 Then, we derived a local grouping func-
tion directly from the edge co-occurrence probabilities,
combined this local grouping function with a very
simple integration rule, and compared the predictions
to parametric detection data for naturalistic contours.

2. Absolute edge co-occurrence statistics

2.1. Methods

2.1.1. Edge extraction
The first step in measuring the edge co-occurrence

statistics is to extract edge elements from natural im-
ages. Edge elements were extracted from 20 representa-
tive natural images by measuring local contrast energy
across orientation at all potential edge locations.
Twenty images were selected to represent a wide range

of natural terrain (see Fig. 1). Each image was con-
verted to 8-bit gray scale using Adobe PhotoShop, and
then windowed with a circular aperture to a diameter of
480 pixels.

Significant edge elements were then extracted from
each image using a method that mimics the response
characteristics of neurons in primary visual cortex.
First, potential edge locations were identified by filter-
ing the image with a non-oriented log Gabor function
having a spatial-frequency bandwidth of 1.5 octaves,
and a peak spatial frequency of 0.1 cycles/pixel.2 Each
zero-crossing pixel in the filtered image (within a radius
of 216 pixels of the image center) was regarded as a
potential edge element.

Second, the original image was filtered with oriented
log Gabor functions having a spatial frequency band-
width of 1.5 octaves and an orientation bandwidth of
40°, which are the average values reported for primate
visual cortex (Geisler & Albrecht, 1997). The peak
spatial frequency of the log Gabor filters was set to 0.1
cycles/pixel. This value was picked so that the spatial
scale of the filter kernels (‘receptive fields’) were
matched to the size of the contour elements used in the
psychophysical experiments. Filtered images were ob-
tained for log Gabor functions in both sine and cosine
phase, at every 10° of orientation. The sine and cosine
filtered images were squared and summed to obtain the
contrast energy at each orientation for each zero-cross-
ing pixel. The normalized contrast energy at each orien-
tation was then obtained by dividing the contrast
energy at that orientation by the sum of the contrast
energies across all orientations, plus a constant. (The
constant was set so that the half-saturation contrast of
the response to an optimal sine wave grating corre-
sponds to the average in monkey primary visual
cortex).

Third, a zero-crossing pixel was regarded as a signifi-
cant edge element if the peak of the normalized con-
trast energy across orientation exceeded 10% of the
maximum possible response; however, the specific value
of this threshold had a relatively minor effect on the
results. The orientation of this significant edge element
was then obtained by finding the centroid of the con-
trast energy distribution across orientation. The mathe-
matical details of the edge extraction are given in the
Section A.1.

Fig. 3A shows the edge elements extracted from one
of the 20 images. Each red pixel shows the location of
the center of a significant edge element. The orientation
of the edge element is not shown, but we have found
that the orientations generally correspond closely to
subjective judgments of contour orientation.

Fig. 1. Representative natural images. Edge elements were extracted
from these 20 images in order to estimate the edge co-occurrence
statistics for natural images. The images were obtained from the
Kodak web site: http://www.kodak.com/digitalImaging/samples/im-
ageIntro.shtml.

1 The term ‘absolute’ is used to distinguish simple unconditional
probability from conditional probability (Feller, 1968); the absolute
co-occurrence statistics are based upon absolute probabilities and the
Bayesian co-occurrence statistics are based upon conditional proba-
bilities.

2 In analyzing the natural images we assumed a viewing distance
such that the pixel size was the same as in our psychophysical
experiments (0.03° on each side). Thus, 0.1 cycles/pixel corresponded
to 3.3 cycles deg−1.
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Fig. 2. The geometrical relationship between edge elements. There are
three parameters: the distance between the centers of the elements, d,
the orientation difference between the elements, u, and the direction
of the second element with respect to the orientation of the reference
element, f.

The line segments in Fig. 3B show, at each distance,
the most probable orientation difference for each possi-
ble direction. In other words, for each of the 6 distances
and 36 directions, we located the orientation difference
with the highest probability and plotted, at the given
direction, a line segment with this orientation differ-
ence. The color of the line segment indicates the relative
probability.5 As can be seen, for all distances and all
directions, the most likely edge element is approxi-
mately parallel to the reference element, with greater
probabilities for elements that are nearby and co-linear
with the reference element. This result shows that there
is a great deal of parallel structure in natural images,
presumably due to the effects of growth and erosion
(e.g. the parallel sides of a branch, parallel geological
strata, etc.), perspective projection (e.g. the elongation
of surface markings due to slant), shading (e.g. the
illumination of a branch often produces a shading
contour parallel to the side of the branch), and so on.

The line segments in Fig. 3C show, at each distance,
the most probable direction for each possible orienta-
tion difference. In other words, for each of the 6
distances and 36 orientation differences, we located the
direction with the highest probability and plotted a line
segment with the given orientation difference (tilt) at
the bin location of this most probable direction. As can
be seen, the two horizontal wedge-shaped regions repre-
sent the most likely co-occurring edge elements. Specifi-
cally, for all distances and all moderate differences in
orientation, the most likely edge element is approxi-
mately co-circular with the reference element (i.e., the
two elements are tangent to the same circle), with
greater probabilities for elements that are nearby and
co-linear with the reference element. This result pre-
sumably reflects the relatively smooth shapes of natural
contours, and it provides direct evidence that the
Gestalt principle of good continuation has a general
physical basis in the statistics of the natural world.

The results in Fig. 3B and Fig. 3C are quite robust.
All of the individual images in our sample show the
same basic pattern, and the results for a random selec-
tion of 10 images are very similar to those for the
remaining 10 images. As a control, histograms were
also computed for white noise images; as expected, the
resulting plots were random except for a small effect
near the reference line due to the effect of the band-pass
filtering. Also, a preliminary analysis at a smaller scale
(2 octaves higher) suggests that the edge co-occurrence
statistics are very similar across spatial scales.

2.1.2. Edge co-occurrence probability
The geometrical relationship between any given pair

of edge elements can be described with three parame-
ters: the distance between the element centers, d, the
orientation difference between the elements, u, and the
direction of the second element relative to the orienta-
tion of first (reference) element, f (see Fig. 2). For each
image, we compared every edge element with every
other edge element, giving us a very large set of triplets
(d, u, f), which were then binned into a three-dimen-
sional histogram (bin widths: wd=8 pixels, wu=10°,
and wf=10°).3 We combined the histograms for all 20
images, and then corrected for the variation in bin size
and the effects of the finite circular image aperture (see
Section A.2). The corrected histogram gives the abso-
lute probability, p(d, u, f), of observing an edge ele-
ment at every possible distance, orientation difference,
and direction from a given (reference) edge element.4

2.2. Results

The result of the above statistical analysis is a three-
dimensional probability density function, p(d, u, f),
derived from the 20 images in Fig. 1. Examination of
this three-dimensional function reveals two important
statistical properties of natural images. These properties
are shown in Fig. 3B and Fig. 3C, which summarize the
full probability function. The layout of these plots
corresponds directly to the geometry in Fig. 2, with the
center horizontal line segment representing the refer-
ence element. The radial distance of an element from
the reference represents the distance d, the angular
location around the circle (the azimuth) represents the
direction f, and the tilt of an element represents the
orientation difference u.

3 Each element in a given pair served as the reference elementthus,
each pair of elements entered into the histogram twice.

4 For notational simplicity we let (d, u, f) represent both a real
valued vector and a discrete valued bin. It should be clear from the
context which meaning is intended.

5 To simplify the probability scale, the three-dimensional probabil-
ity density function was normalized so that the peak of the function
is 1.0.
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3. Bayesian edge co-occurrence statistics

3.1. Methods

Both evolution and developmental mechanisms could
exploit the statistical property in Fig. 3C to form a
local grouping function that is qualitatively appropriate
for contour grouping (see later). However, for this local
grouping function to be computationally appropriate, it
would need to be the case that the greater the absolute
co-occurrence probability, the more likely the edge
elements belong to the same physical contour. Al-
though this is plausible, a local grouping function could
be derived from natural image statistics in a more
rational fashion using Bayesian statistical decision the-
ory. In the (optimal) Bayesian approach, two edge
elements should be bound together if it is more likely
that they arose from the same physical contour, C, than
from different physical contours, �C. That is, two
elements should be bound together if the likelihood
ratio,

L(d, u, f)=
p(d, u, f �C)

p(d, u, f ��C)
, (1)

is greater than a criterion b, where b is the ratio of the
prior probabilities,

b=
p(�C)

p(C)
=

1−p(C)
p(C)

. (2)

These Bayesian statistics (the likelihood ratio func-
tion and ratio of the prior probabilities) were measured
for each image, from the same set of edge elements that
were used to measure the absolute co-occurrence statis-
tics. To do this we used an image tracing method (see
also Brunswick & Kamiya, 1953; Elder & Goldberg,
1998). Recall that each edge element was centered on a
zero-crossing pixel. All of these significant zero-crossing
pixels were highlighted in a bright color in the original
image (e.g. Fig. 3A). Using a mouse, observers selected
zero-crossing pixels that belonged to the same physical
contour. Once the observer had selected all the pixels
belonging to the same physical contour, those pixels
were restored to their values in the original image, and
the observer started on a new contour. This procedure
continued until all the edge elements were assigned to a
unique contour. We found that the observers could
process the images with the fewest numbers of edge
elements in 2–3 h, whereas the images with the greatest
numbers of edge elements might take 6–8 h. The
resulting contour assignment information allowed us to
compute two conditional co-occurrence probability
functions, one for when the elements belonged to the
same contour, p(d, u, f �C), and one for when the ele-
ments belonged to different contours, p(d, u, f ��C).
We then took the ratio of these probability functions to
obtain the likelihood ratio function (see Eq. (1)).

In assigning edge elements to a contour, the observ-
ers were instructed that the same physical contour
could be a surface boundary, a surface marking
boundary, a shadow boundary or a lighting boundary
(i.e. these were to be regarded as different physical
sources). To deal with junctions, the observers were
instructed not to group across junctions making sharp
acute angles. These instructions for junctions are some-
what ambiguous, but because relatively few selected
contour elements fall across junctions, the specific in-
structions must have a relatively minor effect on the
overall statistics (although this remains to be tested
explicitly).

In our software, the observers were given the ability
to zoom in and out, toggle the highlighted edge pixels
on and off, switch between the grayscale and full color
versions of the image, and make corrections. Under
these conditions, the two observers (WSG and a naı̈ve
observer CAF) generally reported a high degree of
confidence in assigning edge pixels to physical contours.
Presumably this confidence derives from the fact that
humans are very good at correctly interpreting images
when the full set of cues (shape, color, lighting, shad-
ing, texture) is available, and when the images are
natural, so that all of the observer’s experience with the
natural world can be brought to bear. The agreement
between the two observers was quantified by comparing
their final likelihood-ratio functions.

The value of the ratio of the priors, b, was also
obtained directly from the image tracing data; however,
its value depends strongly on the area of the analysis
region; specifically, the values of b increases as the area
of the analysis region increases. Thus, our approach has
been to ignore the value of b in considering models of
performance based upon the Bayesian statistics, and
instead, leave it as a single free parameter — a global
decision criterion — analogous to the decision criterion
in signal detection theory (Green & Swets, 1974).

3.2. Results

The central result of the Bayesian analysis is a three-
dimensional function that gives the likelihood ratio that
any given pair of edge elements belong to the same
physical contour versus different physical contours. Fig.
3D plots this full three-dimensional function based
upon all 20 images for both observers (note that here,
all 36 orientations are plotted at each distance and
direction). The individual functions are quite similar.
This is shown in Fig. 4, where the log likelihood ratio
values for observer CAF are plotted against the log
likelihood ratio values for observer WSG. If the likeli-
hood ratio functions are the same then the data should
fall on a straight line of slope one through the origin
(the solid line). The correlation between the likelihood
ratio functions for the two observers is quite high
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Fig. 3. Statistical analysis of edge co-occurrence in natural images. For each image, edge elements were extracted, and then each edge element was
compared with other edge elements. (A) Edge elements. Each red pixel in this image indicates the location of the center of a significant edge
element; the orientations of the elements are not shown. (B) First edge cooccurrence property. The line segments show the most frequently
occurring orientation difference for each given distance and direction from the central reference element. The color of a line segment indicates the
relative probability. (C) Second edge co-occurrence property. The line segments show the most frequently occurring direction for each given
distance and orientation difference from the central reference element. (D) Bayesian likelihood-ratio function. Each line segment shows a possible
geometrical relationship between an element and the reference element. The color of a line segment indicates the likelihood that the element and
reference belong to the same physical contour divided by the likelihood they belong to different physical contours. (E) A thresholded local
grouping function derived from the edge co-occurrence plot in C. (F) A thresholded local grouping function derived from the Bayesian
likelihood-ratio function in D.

(r=0.98). Note that the increased scatter at small
log-likelihood values is expected because log probabil-
ities are generally more variable when the estimated
probabilities are small.

As can be seen in Fig. 3D, edge elements that are
co-circular (i.e. consistent with a smooth continuous
contour) are more likely to belong to the same physi-
cal contour. These results support our interpre-
tation of the absolute statistics in Fig. 3C, and

provide further evidence that the Gestalt principle of
good continuation has a physical basis in the statis-
tics of the natural world. Most importantly, these re-
sults allow us to determine a maximum likelihood
(optimal) local grouping function for contour group-
ing in natural scenes. Given the fundamental impor-
tance of contour grouping for useful vision, it is
possible that the human local grouping function is
near this optimum.



W.S. Geisler et al. / Vision Research 41 (2001) 711–724716

4. Contour grouping experiment

4.1. Methods

In the psychophysical experiments, we measured detec-
tion accuracy for line segment contours embedded in
backgrounds consisting of randomly oriented line seg-
ments (Beck, Rosenfeld, & Ivry, 1989; Field et al., 1993;
McIlhagga & Mullen, 1996; Dakin & Hess, 1998).6 On
each trial, the subject viewed one image containing only
background elements and another image containing an
embedded contour (see Fig. 5A). The two images were
presented separately in a random temporal order, and the
subject indicated which of the two images contained the
contour. After the subject responded, he/she was in-
formed about the correctness of the response and shown
the actual locations of the contour elements.

The display had a diameter of 12° (400 pixels at a

Fig. 5. Stimuli and procedure for the contour grouping experiment.
(A) Time line for a single trial of the two-interval, two-alternative
forced choice experiment. (B) Examples of target contours for the
four stimulus dimensions that were varied factorially in the experi-
ment. These stimulus dimensions were selected to be representative of
wide range of contour shapes.

Fig. 4. Comparison of the likelihood ratio functions for observers
WSG and CAF. Each point represents a pair of log likelihood-ratio
values, one from WSG and one from CAF, for a given bin of the 3D
log likelihood-ratio function. The horizontal axis plots the log likeli-
hood-ratio values for WSG and the vertical axis for CAF. If the
likelihood ratio functions are the same for both observers then the
data points should fall along the diagonal.

viewing distance of 112 cm), and a uniform green
(x=0.29, y=0.61) luminance of 64 cd m−2, except when
a fixation, test, or feedback field was present. The fixation
field contained a small dark central cross. The test fields
contained dark line segments, 0.3×0.03° (note that the
elements have been widened in Fig. 5). The target
contours were generated by summing sine wave compo-
nents that modulated about a randomly oriented axis
through the center of the display. The spatial frequencies
of the components were harmonics of 0.5 cycles per
display diameter. A different contour shape was gener-
ated on each trial by randomly selecting the amplitudes
and phases of the components, and then filtering (i.e.
multiplying the amplitudes by a transfer function). Line
elements were placed randomly along the contour and
then in the background, with the constraints that they
could not be closer than half the line element length, and
that the density of line elements was the same along the
contour and in the background. The contour shapes were
made ‘naturalistic’ by using transfer functions of the
form 1/f n where n is the ‘1/f exponent’ (Burton &
Moorehead, 1987; Field, 1987). Further details of the
display generation method are given in Section A.3.

6 The contour elements were line segments rather than the more
popular Gabor patch. This choice was dictated by several factors.
First, we used line segments in order to maximize the speed of
generating the stimuli, so that we could keep the inter-trial interval
short in this large (216 condition) survey experiment. Second, most
edges in the real world are broadband like line segments, not narrow-
band like Gabor patches. Third, the appropriate choice would seem
to depend on how the elements are represented at the level where the
grouping across the elements takes place. It is quite possible that, at
the level where grouping occurs, Gabor patches have the more
complex representation (i.e. a complicated 3 bar structure).
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Detection accuracy was measured factorially as a func-
tion of four variables: (i) the 1/f exponent (1, 1.5, 2, and
3); (ii) the RMS amplitude of the contour (6.5, 12.5, 25,
and 50% of the display diameter); (iii) the contour axis
length (20, 40, 60 and 80% of the display radius); and (iv)
the range of orientation jitter of the elements (0, 9
27, 945, and 963°). Altogether, 216 different classes of
random contour shape were tested. Some examples of
these contour shapes are shown in Fig. 5B.

The subjects were first practiced in the task until near
asymptotic performance was reached. Then, two 30 trial
blocks were run for each of the 216 classes of contour
shape, for each subject. The order of the conditions was
designed to minimize the effects of practice on the overall
trends. In addition, the two blocks for each condition
were obtained using an ‘ABBA’ procedure; all 216
conditions were run in one order and then run again in
the reverse order.

4.2. Results

The solid symbols in Fig. 6A–D show the psychophys-
ical results for the two subjects. In agreement with
previous studies (Field et al., 1993; McIlhagga & Mullen,
1996; Dakin & Hess, 1998), the data show that humans
are quite good at detecting contours embedded in noise
even when there is great randomness in the location,
orientation, and shape of the target contour. For exam-
ple, contours like that in the middle picture of Fig. 5A
are detected with better than 90% accuracy. As can be
seen, performance generally improves with increases in
the 1/f exponent and contour length, and generally
declines with increases in RMS amplitude and jitter.
These experimental results provide a detailed parametric
measurement of human ability to detect naturalistic
contours in noisy backgrounds.

Fig. 6. Results and predictions for the contour grouping experiment. The figure plots detection accuracy in percent correct as a function of the
contour shape (1/f exponent and RMS amplitude), contour length, and the range of orientation jitter of the contour elements. The panels with
only two points indicate conditions where the highest levels of jitter were not tested because pilot experiments showed that performance was poor
even with 0% jitter. The solid triangles show the data for subject WSG and the solid circles for subject JSP. The open circles show the predictions
obtained by applying a local grouping function (based directly upon the edge co-occurrence statistics) followed by a simple transitivity rule: if
(edge element) a binds to b, and b binds to c, then a binds to c.
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Fig. 7. Predicted contour groups. (A) An example stimulus that contains a target contour. (B) The connected line segments show the groups
obtained by applying a local grouping function (based directly upon the edge co-occurrence statistics) followed by a simple transitivity rule: if
(edge element) a binds to b, and b binds to c, then a becomes bound to c.

5. Predictions

Is the local grouping function that the visual system
uses for contour grouping consistent with the co-occur-
rence statistics of natural images? To address this ques-
tion, we generated predictions for the psychophysical
experiment.

Consider first the absolute co-occurrence statistics.
To generate predictions using the edge co-occurrence
data in Fig. 3C, it is necessary to introduce two
parameters. The first is a ‘tolerance’ parameter, s,
which assigns a relative probability to orientation dif-
ferences around the maximum probabilities shown in
Fig. 3C. This parameter produces a small family of
local grouping functions, all of which are consistent
with the data in Fig. 3C. The second parameter is a
binding criterion, b, which is a threshold on the local
grouping function: any pair of edge elements whose
co-occurrence probability exceeds this criterion get
bound together, otherwise they do not. An example of
a thresholded local grouping function is shown in Fig.
3E. The line segments drawn in this diagram show all
the specific combinations of distance, orientation differ-
ence, and direction that result in grouping to the refer-
ence element. Predictions for the contour detection task
were obtained by combining a thresholded local group-
ing function with the simplest possible integration
mechanism — a transitivity rule: if (edge element) a
binds to b, and b binds to c, then a becomes bound to
c (Geisler & Super, 2000).

A predicted response (‘first’or ‘second’ interval) was
computed for each of the specific stimuli presented in
each trial of the experiment, for each subject. The
predictions for a given trial were generated as follows.
First, we retrieved the specific list of line segments
presented in the first and second intervals of the trial.
Second, each line segment was compared with every

other line segment, and a pair of line segments was
bound together if they satisfied one of the geometrical
relationships specified in the thresholded local grouping
function (i.e. Fig. 3E). Third, the final groups were
obtained by applying the transitivity rule over all the
two-element groups formed in the second step. Fourth,
and finally, we assumed that, in our two-interval forced
choice task, observers selected the interval containing
the longest group that was consistent with the possible
contour locations. The result of this processing is
demonstrated in Fig. 7B, where the connected elements
show the final groups that are formed for the image in
Fig. 7A. As can be seen, the longest group corresponds
to the target contour.

The open circles in Fig. 6A–D show the predictions
for all the data using the thresholded local grouping
function in Fig. 3E, which was obtained from Fig. 3C
by setting s=20° and b=0.05. As can be seen, the
predictions are remarkably good (given only two free
parameters). The value of the Pearson correlation co-
efficient for the predicted accuracy versus the observed
accuracy is 0.87.

To generate predictions using the Bayesian co-occur-
rence statistics only one free parameter is required —
the likelihood-ratio criterion b. Recall that the rational
decision rule is to group a given pair of edge elements
together if the likelihood ratio exceeds this criterion.
Thus, the optimal local grouping function is obtained
by thresholding the likelihood ratio histogram shown in
Fig. 3D. The resulting function for the best fitting value
of b (0.38) is shown in Fig. 3F. The psychophysical
predictions are not shown here, but they are slightly
better than those obtained using the absolute co-occur-
rence statistics. The value of the Pearson correlation
coefficient for the predicted accuracy versus the ob-
served accuracy is 0.89.
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For both the absolute and Bayesian predictions, an
inspection of individual displays indicates that there is
generally good agreement between the contours one
‘sees’ and the contours found with the local grouping
function and transitivity rule (e.g. see Fig. 7). Fur-
ther, the parameter values that give the best fit to the
human data are also the values that maximize the
overall detection accuracy of the model. Finally, we
have tested some other forms for the local grouping
function and have been unable to find one that pro-
duces significantly higher accuracy than the ones
based upon the natural-image statistics.

6. Discussion

In this study, we measured the absolute and
Bayesian (conditional) co-occurrence statistics of edge
elements extracted from a representative collection of
natural images, and we measured the detectability of
naturalistic contours in complex backgrounds for a
wide range of contour shapes. The absolute edge co-
occurrence statistics of natural images were found to
have two fundamental properties, one corresponding
to the Gestalt principle of ‘good continuation’ (Fig.
3C), and one corresponding to the parallel structure
of the visual world (Fig. 3B). Further, the Bayesian
co-occurrence statistics were found to have a struc-
ture similar to the good-continuation property of the
absolute statistics (c.f. Fig. 3C and Fig. 3D). Also, we
found that the absolute and Bayesian statistics imply
similar local grouping functions (c.f. Fig. 3E and Fig.
3F). Finally, and most remarkably, we found that
human performance for detecting naturalistic contour
shapes in the complex backgrounds is predicted fairly
accurately by these local grouping functions, in con-
junction with a simple transitivity rule.

6.1. Image statistics

The fundamental importance of measuring the
statistical properties of images that are relevant to the
performance of visual tasks has long been recognized.
For example, Brunswick (Brunswick & Kamiya, 1953)
and Gibson (1966) make a strong case for conducting
ecological analyses of the images arising from the en-
vironment. They clearly recognized that it is the law-
ful structure and statistical correlations of the visual
world that allow the visual system to function so
amazingly well in interpreting the images formed on
the retinas. A related argument has been made for
the importance of measuring the information relevant
to a visual task using Bayesian ideal-observer theory
(e.g. Geisler, 1989; Knill & Richards, 1996), and obvi-
ously, it is not possible to develop ideal observers for
natural visual tasks without measuring the statistical

properties of the natural images that are relevant for
those tasks.

Most recent efforts to measure the statistics of nat-
ural images have focused on measuring one-dimen-
sional statistics, such as the spatial frequency spectra
of natural images (Burton & Moorehead, 1987; Field,
1987), the orientation spectra of natural images
(Switkes, Mayer, & Sloan, 1978; Coppola, Purves,
McCoy, & Purves, 1998), the wavelength spectra of
natural illuminants (Judd et al., 1964; Dixon, 1978),
and the reflectance spectra of natural materials
(Buchsbaum & Gottschalk, 1984; Maloney, 1986).
From these studies, we now know that natural spa-
tial-frequency spectra fall off as 1/f n, that the orienta-
tion spectra peak in the vertical and horizontal
orientations, and that the spectra of natural illum-
mants and materials can be described with just a few
parameters each. These results have proven to be
highly useful for understanding the initial encoding of
spatial and chromatic information in the visual sys-
tem, as well as for understanding color constancy.

However, for understanding perceptual grouping, it
is necessary to measure multidimensional statistics,
such as the absolute and Bayesian co-occurrence
statistics reported here. Recently, within the context
of image compression, image restoration, and texture
synthesis, there have been efforts to examine the ab-
solute co-occurrence statistics of image features (such
as the co-occurrence statistics of wavelet coefficients);
for a brief summary, see Simoncelli (1997). These
statistics have not been measured for a wide range of
natural images, or with the aim of measuring the in-
formation relevant for contour grouping, and hence
are not directly comparable to the current results.

Brunswick and Kamiya (1953) hypothesized that
environmental image statistics may underlie the
Gestalt principles of perceptual grouping, and indeed
they provided some evidence that nearby parallel con-
tours are more likely to arise from the same physical
object than are distant parallel contours. They took
this result as support for the ‘ecological validity’ of
grouping on the basis of ‘proximity’. Without the
availability of high speed computers, their analysis
was necessarily very limited, but conceptually it is
closely related to what we refer to as the measure-
ment of the Bayesian co-occurrence statistics: mea-
surement of the probability distributions needed to
determine the likelihood ratios and prior probabilities
that particular image features arise from the same
physical source. The measurements reported here, and
some related measurements made independently by
Elder and Goldberg (1998), appear to be the only
attempts since Brunswick and Kamiya (1953) to mea-
sure the Bayesian (conditional) co-occurrence statistics
that are relevant for perceptual grouping.
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6.2. Absolute 6ersus Bayesian statistics

The present finding, that the local grouping functions
derived from the absolute and Bayesian statistics are
very similar, may have important implications for un-
derstanding the evolution and development of the con-
tour grouping mechanisms, because local grouping
functions based upon Bayesian statistics are relatively
optimal. While one might expect the slow process of
evolution to eventually incorporate the optimal
Bayesian co-occurrence statistics into a local grouping
function, it would be much more difficult for learning
or developmental processes to do so because learning of
the Bayesian statistics requires knowing whether or not
pairs of edge elements arise from the same physical
contour. An advantage of the absolute co-occurrence
statistics is that they can be learned directly from the
images without reference to the physical world. Simula-
tions have shown that self-organizing networks can
respond to, and hence incorporate, co-occurrence statis-
tics (Kohonen, 1989; Miller, Keller, & Stryker, 1989;
Sirosh & Miikkulainen, 1994). Thus, the existence of
the statistical properties shown in Fig. 3C, and their
success in predicting human performance, support the
possibility that self-organizing neural mechanisms play
an important role in the learning, maintenance and/or
shaping of the local grouping functions that underlie
contour grouping.

6.3. Models of contour grouping

As mentioned earlier, the general framework underly-
ing existing models of contour grouping consists of
three processing stages: (1) extraction of local contour
elements using spatial filtering like that observed in
primary visual cortex; (2) formation of binding
strengths between local contour elements according to
some form of local grouping function; and (3) integra-
tion of local elements into global contours based upon
the local binding strengths.

In most models, the extraction of local contour ele-
ments is obtained by filtering with spatially oriented
‘receptive fields’ consisting of the second derivative of a
Gaussian (or a difference of Gaussians) in one direc-
tion, multiplied by a Gaussian in the orthogonal direc-
tion (Sha’ashua & Ullman, 1988; Parent & Zucker,
1989; Gigus & Malik, 1991; Dakin, 1997; Yen &
Finkel, 1998; Hess & Dakin, 1999). The specific form of
the filtering and orientation estimation is not very
important for the qualitative behavior of the models,
but can have some quantitative effect. We chose the
‘parameter-free’ approach of using filter shapes based
directly upon the measured average tuning characteris-
tics of neurons in monkey primary visual cortex (e.g.
see Geisler & Albrecht, 1997). Another parameter-free
approach is to use filter shapes derived from psycho-

physical spatial masking studies (e.g. see Hess & Dakin,
1999). The filter shapes in these two parameter-free
approaches are quite similar.

The local grouping functions in most models of
contour grouping are based upon three principles: co-
circularity, smoothness, and proximity (Sha’ashua &
Ullman, 1988; Parent & Zucker, 1989; Gigus & Malik,
1991; Kellman & Shipley, 1991; Dakin, 1997; Pettet,
McKee & Grzywacz, 1998; Yen & Finkel, 1998; Hess &
Dakin, 1999; Geisler, Thornton Gallogly, & Perry,
2000). The greater is the proximity, co-circularity, and
smoothness, the stronger is the local binding strength.
(Note that two contour elements are co-circular if they
are both tangent to a circle of some radius, and are
smooth if the radius of the circle is large.) However, the
specific shape of the local grouping function and the
way it is implemented differ. Dakin (1997) and Hess
and Dakin (1999) do not incorporate the co-circularity
constraint. Sha’ashua and Ullman (1988), Parent and
Zucker (1989), Yen and Finkel (1998), and Pettet,
McKee, and Grzywacz (1998) implement a local group-
ing function via an iterative feedback process, whereas
Gigus and Malik (1991), Dakin (1997), Hess and Dakin
(1999) and Geisler et al. (2000) implement a simpler
one-step process (although the underlying neural mech-
anisms may still involve some local feedback). Here, we
also use a simple one-step process. However, unlike
previous models, the local grouping function proposed
here is based directly upon the statistics of natural
images, which we find are approximately consistent
with the principles of co-circularity, smoothness and
proximity.

The final stage, where local elements are integrated
into global contours, is only incorporated into some of
the models (Sha’ashua & Ullman, 1988; Pettet, McKee
& Grzywacz, 1998; Yen & Finkel, 1998; Geisler et al.
2000), and again, the implementations are different.
Sha’ashua and Ullman (1988), Yen and Finkel (1998),
and Pettet, McKee and Grzywacz (1998) find extended
contours by thresholding a ‘saliency map,’ which is the
output from the iterative feed-back second stage;
whereas, Geisler et al. (2000), like the present study,
apply a parameter-free transitive grouping rule: if (ele-
ment) a binds to b and b binds to c, then a binds to c.

Geisler and Super (2000) argue that transitive group-
ing is a general principle that is likely to play a funda-
mental role in many aspects of perceptual organization,
not just contour integration. They note that the effects
of perspective projection, natural lighting, and growth
and erosion generally result in smooth variations in the
local spatial properties of the retinal images of surfaces
and surface boundaries, and therefore, transitive group-
ing mechanisms are essential in order to correctly group
image features that belong to the same surface or
surface boundary. The specific form of transitive group-
ing that they propose (the above rule) is very simple,
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testable, and has been successful in accounting for
grouping data. However, the rule will probably be
found to be too simple. Nonetheless, it seems likely that
some form of transitive grouping is implemented in the
visual system.

A limitation of the present model is that it is deter-
ministic. Contour elements are directly linked only if
they satisfy one of the geometric relationships given by
the local grouping function (see Fig. 3E and Fig. 3F),
and are then indirectly linked by the fixed transitive
grouping rule. However, the model can be made proba-
bilistic, with little effect on the fits, by assuming some
local or global variance in the value of the binding
criterion b.

It is interesting to note that the present model pre-
dicts superior performance when the target contours
form ‘closed’ as opposed to ‘open’ contours (Kovacs &
Julesz, 1993; Pettet, McKee, & Grzywacz, 1998), even
though the model does not include an iterative feed-
back mechanism (reverberating loop). The reason is
simply that breaking a closed contour decreases the
mean length of the longest group (i.e. long groups that
would have crossed the break do not get formed). It
remains to be seen whether this predicted effect of
closure is large enough to account for the psychophysi-
cally measured effect of closure.

6.4. Neural basis of the local grouping function

Presumably, the success of the psychophysical predic-
tions reported here (with almost no free parameters) is
not an accident, but reflects the existence of simple
neural mechanisms corresponding to the local grouping
function and the transitive grouping mechanism. The
obvious hypothesis for the local grouping function is a
neural population with a receptive field structure
matched to the edge co-occurrence statistics. Although
the most appropriate experiments have yet to be done,
the current evidence suggests that this neural popula-
tion does not reside in primary visual cortex (for exam-
ple, see Walker, Ohzawa, & Freeman, 1999), and hence
is more likely to be found in later cortical areas. There
is even less physiological evidence relevant to the transi-
tive grouping mechanism. However, this mechanism is
probably crucial for all forms of perceptual grouping
(Geisler & Super, 2000), and hence may be wide spread
within the cortex.

6.5. Top-down factors

The model of contour grouping proposed here is
relatively simple and ‘bottom-up,’ except for the final
decision stage where the ‘observer’ is assumed to select
the stimulus interval (in the forced choice task) based
upon a high-level rule (the longest group consistent
with the possible contour locations; see Fig. 7). The

success of our simple model in predicting contour
grouping performance is a bit surprising because the
human perceptual systems are widely regarded, in both
the psychophysical and computational literature, as
having an exceptional ability to find structure and
regularity under conditions of high stimulus uncer-
tainty. On the other hand, there must be ‘top-down’
effects of memory, attention and learning in contour
grouping, at least under some circumstances. For exam-
ple, it is presumably the influences of memory, atten-
tion and learning that are responsible for the
appropriate grouping of impoverished images such as
R.C. James’ ‘Dalmatian dog’.

One way that memory, attention and learning could
influence contour grouping, within the present model,
would be via modulation of the binding criterion b

(Geisler & Super, 2000). In particular, the visual system
could modulate (locally or globally) the binding crite-
rion, and hence create many different patterns of
grouping. The different groups formed during this pro-
cess could be continuously matched against memory,
and presumably, the visual system could select (or, with
experience, could learn) those values of the binding
criterion that produce strong matches with memory. Of
course, this hypothesis is highly speculative, but it
would be a relatively simple and powerful way for
memory, attention and learning mechanisms to interact
with low-level perceptual grouping mechanisms.

6.6. Image tracing

We have shown that it is possible to measure some of
the complex statistical regularities of the visual environ-
ment that form the basis for higher-order perceptual
processes such as contour grouping. Of particular
promise for future research is the image tracing
method, which should enable investigators to measure
the statistical regularities underlying other forms of
perceptual grouping such those involving motion,
binocular disparity, shading, and color. These statistical
regularities should provide further fundamental insights
into the brain mechanisms underlying perceptual
grouping.

Another potential application of the image tracing
methods (as well as the more direct methods) would be
to analyze specific classes of visual environment. This
might be particularly valuable for gaining insight into
the visual systems of organisms that live in restricted
environments. Although we found strong similarities in
the statistics across the different visual images we ana-
lyzed, there were differences. Such differences may not
be particularly important for understanding the design
of visual systems that must cope with a wide range of
environments, but they could be important for under-
standing visual systems that evolved within more con-
strained environments.
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Appendix A

A.1. Edge extraction

The transfer function used for finding the zero
crossings was

H(u,6)=exp
�

−a
�0.5 log(u2+62)− log( fc)

B0

�2�
,

(A1)

where u and 6 are horizontal and vertical spatial fre-
quency, fc is the peak spatial frequency of the filter,
B0 is the octave bandwidth of the filter, and a is the
constant −5.770780164. Each image was Fourier
transformed, multiplied by this transfer function, and
then inverse transformed. Pixels were examined one at
a time, in a raster order. A pixel was regarded as a
zero-crossing pixel if either the next pixel within the
row, or the pixel immediately above the pixel in the
next row, had a different sign.

The transfer function of the oriented filters was

H(u,6)

=exp
�

−a
�log (�u %�)− log( fc)

B0

�2

+ if sign (u %)

− log(2)
� 6%

fctan (0.5bu)
�2�

, (A2)

where u %=u cosu+6 sinu, 6%=6 cosu−u sinu, u is
the peak orientation, f is the spatial phase, and bu is
the orientation bandwidth. (Note that the ‘sign’ func-
tion has a value of +1 for positive arguments and a
value of −1 for negative arguments.) For each orien-
tation, two filtered images were obtained, Iu and I. u,
one for the filter in cosine phase (f=0) and one for
the filter in sine phase (f=p/2). These two filtered
images were each squared and then summed to ob-
tain the contrast energy, at that orientation, for each
image pixel (x, y):

Eu(x, y)=Iu(x, y)2+I. u(x, y)2. (A3)

Finally, the normalized energy response for each
orientation, at each pixel, was obtained by dividing
the contrast energy by the sum of the contrast ener-
gies for all orientations:

Ru(x,y)=
Eu(x,y)

E50+ %
u

Eu(x, y)
. (A4)

The value of E50 was set so that the half saturation
contrast, for a sine wave grating with the optimal
frequency ( fc), equaled the average half saturation
contrast for neurons in primary visual cortex of mon-
key (40%). Similarly, the spatial frequency bandwidth
and orientation bandwidth of the filters in Eq. (A2)
were set so that the spatial frequency bandwidth and
the orientation bandwidth of the response Eq. (A4)
equaled the average values in visual cortex of monkey
(1.5 octaves and 40°, respectively). A zero crossing
pixel was considered ‘significant’ if the maximum re-
sponse across orientation exceeded a criterion value
of 10% of the maximum response to the optimal fre-
quency fc. The orientation at a significant edge pixel,
u. , was obtained by finding the best fitting line to the
response distribution across orientation, plotted on
the unit circle:

u. = tan−1(S9
1+S2), (A5)

where,

S=
%
u

(Ru sin u)2−%
u

(Ru cos u)2

%
u

Ru
2 sin u cos u

. (A6)

A.2. Histogram correction

To accurately estimate the co-occurrence probabili-
ties, it is necessary to correct for the variations in bin
size and for the effect of the finite circular aperture
of the image. Specifically, the polar bin size increases
with distance from the reference line. Further, the
boundaries of the polar bins to not fall neatly on the
square lattice of image pixels, producing some addi-
tional variation in bin size. Finally, the circular aper-
ture of the image has an effect because when the
distance between elements is greater than the distance
from the element to the edge of the aperture, then
the range of possible directions between the elements
is restricted. Fortunately, it is possible to correct for
all of these effects with the following simple proce-
dure, which yields a correction factor that only de-
pends upon the distance between elements. The
procedure involves comparing every pixel (within the
circular image aperture) with every other pixel (within
the circular image aperture). Each of these compari-
sons consists of computing the Euclidean distance be-
tween the pixels, determining the distance bin, d,
within which the distance falls, and then incrementing
the counter for that bin, C(d)=C(d)+1. The final
counts for each distance bin serve as the correction
factor. Thus, the absolute co-occurrence probability
density function is given by
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p(d, u, f)=
N(d, u, f)1/C(d)

%
d

%
u

%
f

N(d, u, f)1/C(d)
, (A7)

where N(d, u, f) is the number of edge element pairs
falling in the 3D histogram bin (d, u, f). Equivalent
formulas hold for the conditional probability density
functions.

A.3. Random element display generation

Our method of generating contours and background
regions is different from what is common in the litera-
ture, but it is more flexible. Here, the method is de-
scribed in detail.

First, we pick a radius R for the whole display
region, and an exclusion radius r, of arbitrary size,
which defines a circular region centered on the element.
Display elements are not allowed to be closer than a
distance of 2r. (Note that it is possible to allow element
overlap by making r less than the element size, al-
though this was not done in the present experiments.)

Second, the contour shape is specified mathematically
in parametric form [x(s), y(s)], a5s5b. For example,
the shapes of the filtered noise contours used here were
first defined as modulations about the horizontal axis,

x0(s)=s, (A8)

y0(s)= %
R

i=1

TiAi sin
�

2p
i

2R
s+Fi

�
, (A9)

and then rotated by a random angle,

x(s)=s cos U+sin U %
R

i=1

TiAisin
�

2p
i

2R
s+Fi

�
,

(A10)

y(s)= −s sin U+cos U %
R

i=1

TiAi sin
�

2p
i

2R
s+Fi

�
,

(A11)

where Ai and Fi are the random amplitude and phase
for the ith sine wave component, Ti is the value of the
transfer function (used to filter the contour shape) at
the spatial frequency i/2R, and U is the random orien-
tation of the contour. In these equations, the units of s,
R, x and y are pixels.

Third, a set of potential contour element locations
(s1, …, sk), with a spacing of one pixel, is obtained
between the starting and ending points (a and b), using
the following algorithm:

k=1

sk=a

while sk5b

sk+1=sk+
1


x %(sk)2+y %(sk)2
,

k=k+1

end while

K=k−1

where K is the number of potential contour element
locations, and the functions x %(s) and y %(s) are the
derivatives of the functions in Eq. (A10) and Eq. (A11):

x %(s)

=cos U+sin U %
R

i=1

TiAi2p
i

2R
cos

�
2p

i
2R

s+Fi

�
,

(A12)

y %(s)

= −sin U+cos U %
R

i=1

TiAi2p
i

2R
cos

�
2p

i
2R

s+Fi
�

.

(A13)

Note that the ratio of these derivatives gives the slope
of the contour at s, making it easy to manipulate the
orientation of the elements with respect to the local
orientation of the contour.

Fourth, we compute the approximate length of the
contour Lc, the approximate area of the contour region
Ac, and the approximate area of the background region
Ab:

Lc=K+1−
(x(b)−x(sK+1))2+ (y(b)−y(sK+1))2

(A14)

Ac=Lc · 2r+pr2 (A15)

Ab=pR2−Ac (A16)

Finally, elements are sampled along the contour and
then in the background such that the density (samples
per unit area) is the same. Specifically, candidate con-
tour element locations are randomly sampled with re-
placement from the set (s1, …, sK), until the desired
element density is obtained. Candidate background ele-
ment locations are then randomly sampled with re-
placement from the whole display region until the
desired element density is obtained. In either case, if a
candidate element location overlaps with (is within 2r
of) any previously selected contour or background ele-
ment location then it is not used, and another sample is
taken. This procedure produces contours that are invis-
ible unless the contour elements differ in some way
from the background elements. The quality of the
sampling in the display is checked subjectively either by
making all the elements circles or all the elements dots.
Also, to eliminate any possible residual information due
to the sampling procedure, a ‘contour’ is generated in
both temporal intervals of the forced choice display
sequence, but in the target-absent interval the ‘contour’
and background elements are statistically identical.
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With this display generation procedure it is possible to
measure contour grouping performance for arbitrary
contour shapes and element types.
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