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The concept of face space (Valentine, 1991) has been 
seminal in the study of human face recognition, provid-
ing a theoretical framework for extensive empirical work 
and connecting this work with the computational study 
of face recognition (O’Toole, 2011). In essence, psycho-
logical face space refers to an internal multidimensional 
space in which individual faces can be represented as 
single points. This space enables the description of indi-
vidual faces with respect to a limited number of percep-
tual dimensions and with respect to each other in terms 
of space-based distances.

Much research has focused on characterizing the struc-
ture and the dimensionality of a representational space, 
given their role in efficient encoding and recognition. By 
far the most popular tool in such research has been prin-
cipal component analysis (PCA) because of its relative 
simplicity and because of its early success as a method for 
automatic face recognition (Sirovich & Meytlis, 2009; Turk 
& Pentland, 1991). Briefly, PCA achieves dimensionality 
reduction by projecting stimuli from their original domain 
(i.e., pixel-based coordinates) onto a markedly smaller 
space of uncorrelated dimensions or features—to be clear, 

“features” refer here to global whole-face image structures 
corresponding to the dimensions of face space (e.g., 
“eigenfaces,” in the case of PCA). Extensive work has 
shown that PCA can capture some important aspects of 
psychological face space, as reflected in a range of per-
ceptual tasks, including similarity rating and identification 
(Dailey & Cottrell, 1999; Hancock, Bruce, & Burton, 1998; 
Lacroix, Murre, Postma, & van den Herik, 2006; O’Toole, 
Phillips, Cheng, Ross, & Wild, 2000), as well as expression 
recognition (Calder, Burton, Miller, Young, & Akamatsu, 
2001; Dailey, Cottrell, Padgett, & Adolphs, 2002), race rec-
ognition (Furl, Phillips, & O’Toole, 2002), and gender rec-
ognition (Graf, Wichmann, Bülthoff, & Schölkopf, 2006).

However, PCA is but one of a larger family of methods 
that can be used to convert high-dimensional representa-
tions into lower-dimensional ones (Zhao, Chellappa, 
Phillips, & Rosenfeld, 2003). A comparison of alternative 
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Abstract
The concept of psychological face space lies at the core of many theories of face recognition and representation. To 
date, much of the understanding of face space has been based on principal component analysis (PCA); the structure 
of the psychological space is thought to reflect some important aspects of a physical face space characterized by PCA 
applications to face images. In the present experiments, we investigated alternative accounts of face space and found 
that independent component analysis provided the best fit to human judgments of face similarity and identification. 
Thus, our results challenge an influential approach to the study of human face space and provide evidence for the role 
of statistically independent features in face encoding. In addition, our findings support the use of color information 
in the representation of facial identity, and we thus argue for the inclusion of such information in theoretical and 
computational constructs of face space.
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architectures based on these methods can be highly 
informative and desirable for a number of reasons. First, 
some of these methods promote encoding principles 
valuable for recognition, such as the statistical indepen-
dence of the features enforced through independent com-
ponent analysis (ICA) or the discriminatory power of  
the features for face identification enforced through linear 
discriminant analysis (LDA). Second, several projection 
methods, including ICA (Bartlett, Movellan, & Sejnowski, 
2002) and LDA (Belhumeur, Hespanha, & Kriegman, 
1997), are able to outperform PCA in automatic face rec-
ognition, at least in certain conditions (but see Delac, 
Grgic, & Grgic, 2005). Last, PCA applications to face  
perception have certain limitations, such as oversensitivity 
to low-level pictorial properties (Hancock et al., 1998), 
and these limitations may be overcome by alternative 
approaches.

Of particular relevance is the comparison between 
PCA and ICA (for early work on this comparison in face 
perception, see Hancock, 2002). In the study of early 
vision, ICA has become widely successful by accounting 
for basic processes, such as edge filtering and color 
opponency (Bell & Sejnowski, 1997; Lee, Wachtler, & 
Sejnowski, 2002). Assuming that low-level visual repre-
sentations can be approximated by ICA encoding, it may 
seem surprising that higher-level visual representations, 
such as face representations, would revert to a less con-
straining encoding schema approximated by PCA—fea-
ture decorrelation implemented by PCA does not achieve 
the full statistical independence targeted by ICA (Bartlett, 
2007).

In the present work, we investigated the psychological 
plausibility of three candidate architectures of facial- 
identity representation based on PCA, LDA, and ICA, 
respectively. Identifying the method that accounts best 
for behavioral data can provide key insights into the 
architecture of face space. To this end, we used well-
established behavioral paradigms to collect a compre-
hensive data set of similarity and identification judgments 
for pairs of carefully selected face images. Human data 
were then compared with objective face differences as 
quantified by PCA, LDA, and ICA. Critically, we imple-
mented a method of feature selection that allowed us (a) 
to obtain a more principled estimate of the fit of each 
method with the behavioral data, (b) to compare the rela-
tive dimensionality of different face-space architectures, 
and (c) to rank features based on their explanatory power 
with regard to human performance.

Last, we considered the importance of color informa-
tion for face representations by constructing color-based 
and luminance-based face spaces and assessing the dif-
ference between them. Because faces can display com-
plex color patterns that are part of people’s common 
experience with faces as a category, it is important to 

determine whether and how color information contrib-
utes to representations of facial identity. Thus, we aimed 
to clarify fundamental properties of face space with 
regard to its featural makeup, its statistical structure, and 
its informational content.

Method

Participants

Forty-four Caucasian adults (23 females, 21 males; age 
range: 19–34 years) with normal or corrected-to-normal 
vision participated in the experiments in exchange for 
payment or course credit. Informed consent was obtained 
prior to participation.

Stimuli

The stimulus set consisted of 480 color images (240 facial 
identities × two expressions: neutral and happy) extracted 
from multiple face databases (Fig. 1). Particular care was 
taken in the selection and processing of the stimuli to 
ensure their homogeneity (see Supplemental Method and 
Results in the Supplemental Material available online). 
Both the homogeneity and the size of the stimulus set 
were intended to prevent face comparisons based on 
gross image dissimilarity or idiosyncratic differences. A 
quarter of the stimuli were used for behavioral testing, 
whereas the entire stimulus set was used for constructing 
candidate face spaces.

Fig. 1.  Examples of neutral (top row) and happy (bottom row) face 
stimuli used in the two experiments. The original, unaltered versions  
of the images shown here were selected from the Radboud Faces  
Database (Langner et al., 2010).
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Procedure

On each trial, participants were presented with pairs of 
faces and asked either to rate their similarity on a 5-point 
scale (Experiment 1) or to decide whether the faces 
belonged to the same or to a different individual 
(Experiment 2). An equal number of participants (n = 22) 
took part in each experiment. The two tasks offer com-
plementary advantages in that the former provides direct 
estimates of similarity, whereas the latter is a simpler, 
more natural task.

In Experiment 1, stimuli were presented side by side 
until the participant pressed a key; in Experiment 2, stim-
uli were presented sequentially, each for 400 ms, and 
then the participant made a response. In all other 
respects, the two experiments followed the same design. 
Each trial started with a 100-ms fixation cross, and each 
stimulus subtended approximately 3.1° × 4.6°. On any 
given trial, each pair of faces consisted of a neutral ver-
sion of an individual and the happy expression of the 
same or another individual. The use of different expres-
sions was intended to preclude equating the task to sin-
gle-image matching and, thus, to minimize reliance on 
low-level cues uncharacteristic of everyday recognition. 
Each participant viewed at least one version of each pair 
of facial identities and completed 2,000 trials across two 
1-hr sessions, each split into five experimental blocks 
(with short breaks between blocks). Behavioral responses 
(similarity ratings from Experiment 1 and accuracy from 
Experiment 2) were encoded into confusability matrices 
recording the relationship between all identity pairs.

Facial-feature computation

All images were converted to Commission Internationale 
de l’Éclairage (CIE) 1976 L*a*b* color space, which best 
approximates the color-opponent properties of human 
vision (Brainard, 2003). Briefly, the L* component of the 
space encodes lightness, whereas the a* and b* compo-
nents encode red:green and yellow:blue ratios, 
respectively.

Two versions of the stimuli, one using only L* infor-
mation and the other using complete L*a*b* color infor-
mation, were subjected to PCA, LDA, and ICA—see 
Supplemental Method and Results in the Supplemental 
Material for more information. The three methods deliv-
ered different sets of features (Fig. 2) associated with dif-
ferent candidate face spaces. In each space, a given 
stimulus can be represented as a vector of coefficients 
associated with each of these features, and the similarity 
between stimuli in a pair can be quantified based on 
these coefficients (here, we quantified similarity using a 
city-block metric). Such differences were computed across 
all pairs of stimuli.

Computation of fits to empirical data

To estimate model fits with empirical data, we separately 
averaged pairwise similarity ratings (Experiment 1) and 
accuracy-based identification scores (Experiment 2) 
across participants and correlated these results with 
model-based face distances. Because only certain subsets 
of features are likely to reflect perceptual features of 
human recognition, we implemented a recursive method 
for feature selection.

First, features were left out one by one, and the out-
come of each feature’s elimination was assessed by 
recomputing face distances with the aid of the remaining 
features and by correlating these distances with the 
behavioral data. Second, we discarded the feature that 
produced the best fit among the remaining features, and 
third, we repeated this process until all features were dis-
carded. Over the course of this process, we initially 
noticed an increase in the size of the fits (presumably 
because uninformative features were eliminated first) fol-
lowed by a decrease (due to the elimination of informa-
tive features).

This method yielded a ranking of the explanatory 
power of the features as well as an approximation of the 
optimal subset of features (i.e., the one that maximized 
the correlation with behavioral data). These computa-
tions were performed using only half of the experimental 
stimuli, whereas the second half was used to compute 
unbiased estimates of fit based on optimal feature sub-
sets. Cross-validation was repeated 20 times using ran-
dom split halves.

Results

Model fits to behavioral data in Experiment 1 (Fig. 3a) 
showed main effects of architecture (PCA, LDA, ICA), F(2, 
38) = 160.78, p < .001, η2 = .54, and color (L*, L*a*b*), F(1, 
19) = 234.85, p < .001, η2 = .20, as well as an interaction 
between these two factors, F(2, 38) = 33.36, p < .001,  
η2 = .05. Additional pairwise comparisons showed that 
ICA outperformed both PCA, t(19) = 10.75, p < .001, and 
LDA, t(19) = 21.63, p < .001, whereas PCA outperformed 
LDA, t(19) = 6.66, p < .001. Also, the use of color led to 
an advantage for all architectures (ps < .001), although 
this advantage was markedly larger for PCA and LDA 
than for ICA.

Model fits were next compared with estimates of the 
average consistency of single subjects’ similarity ratings 
and accuracy with the behavioral group data. These esti-
mates were computed by correlating the data of each par-
ticipant with an average based on the combined  
data of the other participants. This procedure was repeated 
for each of the 20 stimulus sets used during cross-valida-
tion. The comparison between model and participant 
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Fig. 2.  Examples of color-based face features derived through principal component analysis (i.e., eigenfaces), (b) linear discriminant analysis (i.e., 
Fisherfaces), and (c) independent component analysis. The three color components, Commission Internationale de l’Éclairage (CIE) 1976 L*, a*, 
and b*, are separately presented for each feature; the components correspond to the three channels of human vision—lightness, red:green, and 
yellow:blue. Features are ordered on the basis of their explanatory performance (most to least from left to right) with respect to behavioral data 
from Experiment 1.
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consistency showed that ICA but not other architectures 
surpassed participant consistency, t(19) = 4.15, p < .001; 
that is, the ICA model approximated the group data better 
than the data from actual single subjects did.

The advantage of ICA over other architectures and the 
advantage of color over lightness alone were replicated 
in Experiment 2 (Fig. 3d) although, this time, both PCA 
and ICA architectures surpassed participant consistency 
(ps < .001). The advantages noted for optimal subsets of 
features were also replicated using entire sets of features, 
further attesting to the robustness of our results. However, 
in these cases, model fits were markedly smaller (Figs. 3b 
and 3e).

Next, a comparison of space dimensionality showed 
that both ICA and LDA required smaller feature sets than 
PCA (Figs. 3c and 3f). The reduction in dimensionality 
relative to the original size of the feature set was particu-
larly notable for ICA (about six times smaller). Finally, an 
examination of ICA features showed that, as expected, 
they were sparser than PCA or LDA features (Fig. 2). That 
is, few pixels had large positive or negative values, 
whereas the remaining ones were close to zero as a result 
of ICA’s reliance on a sparse source model (Bartlett et al., 
2002). However, we note that ICA features were not lim-
ited to local information—for instance, many encoded 
symmetrical facial structures corresponding to the eyes or 

the nostrils. Thus, despite their sparsity, ICA features can, 
in principle, encode configural information.

For additional analyses of the behavioral data, aimed 
at quantifying their robustness and consistency, see 
Supplemental Method and Results, Figure S1, and Figure 
S2 in the Supplemental Material.

Discussion

What type of perceptual code underlies human face rep-
resentations, and what general principles govern its orga-
nization? To address these issues, we compared the ability 
of three face-space architectures based on PCA, LDA, and 
ICA, respectively, to account for behavioral data. These 
architectures involve considerable differences in the sta-
tistical properties of face-space structure and in the fea-
tural makeup of internal representations. Our results 
point to the superior explanatory power of ICA-based 
features by showing that an ICA architecture accounts for 
the properties of human face space to a larger extent and 
with a more parsimonious feature base than its alterna-
tives. These results are significant in two main respects.

First, they provide evidence for statistically indepen-
dent features in face encoding and, implicitly, for the role 
of information maximization as implemented by ICA 
(Bartlett, 2007)—here, the maximization of the amount of 

Fig. 3.  Results of Experiment 1 (top row) and Experiment 2 (bottom row). The graphs in (a) and (d) show model fits based on optimal sets of 
features, separately for principal component analysis (PCA), linear discriminant analysis (LDA), and independent component analysis (ICA), both for 
models including only the L* component and for models including the L*, a*, and b* components. The graphs in (b) and (e) show fits of PCA, LDA, 
and ICA models that included all features, both for models including only the L* component and for models including the L*, a*, and b* components. 
The graphs in (c) and (f) show the average number of features required by each type of model (for optimal feature subsets) as well as the total 
(initial) number of features. Dotted lines mark estimates of intersubject consistency. Error bars show ±1 SE.
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information that representations carry about objective 
stimulus properties. Previously, these ideas have been 
explored theoretically in relation to perceptual phenom-
ena such as the other-race effect and face adaptation 
(Tanaka, Kantner, & Bartlett, 2012; Webster & MacLeod, 
2011). Our results yielded empirical support for the valid-
ity of this theoretical framework in the study of face per-
ception—for instance, if statistical independence can 
account for fine-grained individual recognition, then its 
extension to more general effects (e.g., the other-race 
effect) becomes all the more plausible.

Second, the present findings may help to bridge the 
study of high-level visual recognition and that of low-
level perception. Because early visual processes such as 
edge filtering and color opponency (Bell & Sejnowski, 
1997; Lee et al., 2002) are relatively well explained by 
ICA, our results lend credence to the hypothesis that sta-
tistical independence describes a general property of 
visual representations rather than a domain-specific or 
stage-specific one.

A further issue examined here concerns the role of 
color in face perception. Whereas representations of 
facial identity are largely thought to discard color infor-
mation (Kemp, Pike, White, & Musselman, 1996; Yip & 
Sinha, 2002), recent results point to the use of color in 
face detection (Bindemann & Burton, 2009) and gender 
categorization (Nestor & Tarr, 2008). The present findings 
suggest that the use of color extends to facial identity, as 
we noted a systematic color advantage for all architec-
tures and experimental manipulations.

Face encoding and recognition are highly flexible pro-
cesses (Griffin, McOwan, & Johnston, 2011; Miellet, 
Caldara, & Schyns, 2011) that require a robust represen-
tational base. The present results suggest that color-based 
independent features can serve this function. As an 
important caveat, though, we note that our data were 
acquired in tightly controlled experimental settings both 
with respect to the nature of the tasks and of the stimuli 
tested. Thus, future research is necessary to establish the 
generality of our findings by exploring a variety of tasks 
as well as more naturalistic stimuli exhibiting other types 
of variability (e.g., due to lighting or viewpoint).

In conclusion, our work yields support for an ICA-
based account of face space and for the role of color in 
the representation of facial identity. These results prompt 
a reconsideration of fundamental aspects of the structure 
and informational content of face space. More generally, 
they provide new evidence for efficient information 
encoding grounded in the structure of the visual input in 
the domain of face perception.
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