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Background & Motivation

» Artificial learning agents aspire to match and exceed the human brain
In challenging contexts

« Since benchmarks selected favor accuracy (e.g. beating the current
grandmaster) over transfer-learning (e.g. how do | get good at a lot of
chess-variants simultaneously), trained networks are inflexible to
changes in inputs and goals.

The Brain

Figure 1. Learning tasks
under the brain as the
information-processor
framework. A learning
algorithm attempts to fill in for

the brain given the context of % t%t
a game. The context of the

task chosen shapes how the —

learning algorithm is

designed; DeepMind and =l
AlphaGo are very distinct in Stimulus Behaviour Reward

their architecture since they
tackle different problems, yet
neither concerns itself with
efficiency across multiple
tasks.

Learning Algorithm

Impartial combinatorial games

offer numerous advantages when :EI

potential learning agent that

strives to achieve transfer- &

impartial Combinatorial Games
taken as a benchmark for a
learning:

« |mpartial games are simple to
analyze, and often have
mathematical structure that is
“easy to discover”.

Figure 2. Wythoff's Game visualized.
Coordinates in the grid where the origin is
the upper-left corner are the game
positions. A valid move for P1 or P2 is a
horizontal, vertical, or a diagonal move
towards the origin. The winner is the
player who makes the move to the origin.

« The rules of impartial games
immediately generalize to bigger
board sizes.

 Numerous ways to manipulate the
rules of the game while preserving

general strategies - =
If the game is in a red position, player 1

can win under optimal play.

Biological/Artificial Networks
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Abstractions In

» ltis proposed that corticostraital
loops are organized along a
gradient of abstractions, and this
framework allows humans to relate
similar tasks to transfer experience.
(Frank & Badre)
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Figure 3. Schematic of hierarchical corticostraital
unit. (Frank & Badre)

* Networks have been designed with
similar structures in visual recognition
learning tasks (Huang et. al.)

Figure 4. Convolutional neural network with
hierarchical layers (Huang et. al.)
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Deep Model Network (DML)

A hybrid network architecture that prioritizes model-building through navigating the possible
model space using exploratory Q-network as a performance measure

 The Model Network is trained using a noisy random sample from the Q-Network featuring expected values of

the game positions from the Q-Network
« The Q-Network continues exploration given strategy recommendations from the Model Network until an optimal
model that vastly outperforms the Q-Network on varying board sized is obtained
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activation function, standard
backpropagation, cross-entropy-cost
function

Action selection through
Boltzmann distribution:
P(a | S) = eQls, al'B / Za eQls.al'B

Training samples

Training with randomised
network architecture
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Evaluation against Q-agent

Explorative training
through gameplay
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Strategy recommendations

Entirely unsupervised testing against the Q-
Network across multiple game-play on a
bigger board size (model might be noisier

s 51t e e on smaller boards) to yield an expected

Q-Network will test out moves suggested by the best ',A‘ HEFER R value of the model, E[M]
performing model so far with probability = | - @-<EM) | imia s e
where “I" is the limit of trust in the model, “k” is the isiinini
confidence constant, and “E[M]” is the expected

value of the best performing model
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training periods. The Naive-Q is trained on a 50 by 50 board on 5000 gameplay
simulations per time-step, whereas the DQN is trained on a 12 by 12 board with
1000 simulations each. The DML learns better models in discrete jumps whereas the
Naive-Q has a steady but diminishing learning rate. DQN (single-layer, standard
backpropagation, fully-connected, sigmoid activation function, sum-squared-error
cost function, Ir=0.01) and Naive Q-Net (y=1, Ir=0.1, B =0.6) compared. Time-steps
calculated on a 2.7 GHZ Intel i5 2-core processor (2015 MacBook Pro).

Figure 5. The DML in various stages of training. The early models
(Discovery) will be largely unsuccessful, while certain inaccurate
generalizations (Experimentation) will supply reasonable strategies
to the Q-Network, allowing the provision of useful datasets into the
model network that translate into accurate and general models
(Convergence)
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Performance across board sizes

1.0

o o o
I o o™

Percentage of Correct Actions

o
N

0.0

N

Performance of a DML agent trained on 13 by 13 board

100

150
Size of the board

200

250

Figure 6.
Performance of a
Model Network that
the DML agent
converged to through
datasets received
from a Q-Network
trained ona 13 by 13
board. Single layer
feedforward network
with cross-entropy
cost function, trained
for 2000 epochs.
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* The DML not only outperforms the existing learning agents in terms of
efficiency, but also is able to generalize experience on to bigger board

sizes.

Performance across Wythoftf-Variants
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Figure 6. Performance of a
DML across 3 different
impartial combinatorial games.
When the DML converges on
a model with performance
exceeding a certain threshold,
the rules of the game are
changed. The DML discovers
this, and adapts and reuses
old models if they apply to the
new set of rules. Performance
decreases become less
drastic as DML learns all three
games simultaneously.

 The DML is able to converge to near-optimal performance even when the
rules of the game are being changed, by training different models for
different games, and reusing old models when they are applicable.

Conclusion / Future Directions

« The flexible nature of the context of impartial combinatorial games allowed us to devise
DML, which greatly outperforms standard machine learning approaches in the field.

« The DML could generalize experience to bigger board sizes, and it could adapt to various
modifications to the rules of the game, however, it does not transfer-learn across games
that have similar shape and structure, indicating that an extension of DML featuring a
Symbolic layer to relate the abstractions of games with similar rules can be useful
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