
Order of Synaptic Connection Strength
(N = population size)

Wilson-Cowan Balanced

Short term synaptic depression on the E-I connection within a balanced network creates bistability

The status quo
Classical models of balanced networks are only capable of producing one fixed 
firing regime. These models cannot accurately model certain networks in the 
brain that are capable of transitioning from one steady state firing regime to 
another. Thus, it is necessary to develop a biophysically-principled model that 
has multiple steady state solutions. 

Balanced networks
A balanced network has stronger synaptic strength parameters than a 
traditional Wilson-Cowan network. The stronger synapses allow for internally 
generated variability as population size approaches infinity. A balanced network 
is also an inhibition-stabilized network, a common biophysical feature in many 
areas of the cortex.

Conductance statistics from simulations of stochastic and deterministic 
synapses match theoretical values
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Transitions are possible between steady state firing regimes in a balanced 
network with stochastic synapses on the E-I connection

Short Term Synaptic 
Depression
In our model, the activation of 
vesicles in the pre-synaptic 
neuron increases the 
conductance of the post-
synaptic neuron. When vesicles 
are activated the number of 
available vesicles at a synapse 
decreases. This process of 
depression and consequent 

Adapted from Figure 2 A-D, Rosenbaum et al. 2012
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Depletion of available vesicles due to stimulus
When the stimulus arrives it causes all neurons to fire at very high rates 
(excitatory avg. 85kHz, inhibitory avg. 2.4kHz). This severely depletes the 
synaptic resources of the E-I connection. When the stimulus ends, the neurons 
are held in this high firing steady state.

Conclusions
The theoretical firing rates calculated with the self consistency relationship 
nearly approximate the simulated firing rates of a network with deterministic 
synaptic depression.

The addition of synapses with stochastic depletion onto the E-I connection of a 
balanced network creates multiple fixed point solutions for excitatory and 
inhibitory population firing rates. However, the observed firing rates were 
physiologically unreasonable.

Future Directions
To find parameters for which the network can transition from one realistic firing 
rate to another we can test various parameter sets in the self-consistency 
equation used to find theoretical firing rates. Alternatively, we could incorporate 
a refractory period, which would force the neuron to fire below a certain rate.

Introduction

Synapses

Stochastic vs. Deterministic Synaptic Transmission
Synaptic transmission is inherently stochastic. However, when trial averaging, a 
deterministic model suffices as a mean field approximation of a stochastic 
synapse. Each vesicle in a stochastic synapse has an independent probability 
𝑝" of being activated when a spike comes in. In a deterministic synapse, a spike 
removes a fraction 𝑝" of the available vesicles. Recovery of synaptic resources 
also differs. In a stochastic model, recovery events (black dots) are independent 
for each vesicle and are determined by a Poisson process with parameter 𝜆 =
	
  1/𝜏). In a deterministic model, synaptic resources increase with an asymptote 
at the maximum number of available vesicles.

recovery of vesicles takes place on a timescale of a few hundred milliseconds, 
therefore we set our time constant of vesicle recovery 𝜏) accordingly.

Figure 1 A-D, Rosenbaum et al. 2012

Single Depressing Synapse Bistability

Network Model
Network Schematic
Synaptic depression is added to the EàI connection. All other synapses are not 
plastic.

Self Consistent Firing Rate Solution
To find the theoretical firing rates of the excitatory and inhibitory populations we 
use the following self consistency relationship:

Excitatory Inhibitory

Depressing synapses
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Theoretical firing rates are similar to simulated firing rates for network 
with deterministic synapses without depression

The mean conductance is the same for both stochastic and deterministic 
models, but at high pre-synaptic firing rates the variance in conductance of the 
deterministic model approaches zero.

Discussion
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Name Definition

r

↵

firing rate of population ↵

⌧

m

membrane time constant

V

t

firing threshold

V

r

reset potential

µ

↵

mean input to population ↵

�

↵

standard deviation of input to population ↵

j

↵�

strength of connection from a neuron in population

� to a neuron in population ↵

K

↵

expected number of connections from population ↵

I

↵x

external input to population ↵

p

r

probability of vesicle release

M maximum number of possible available vesicles

⌧

u

time constant of vesicle recovery

�

b↵ background noise to population ↵

1

Pre-­‐Synaptic	
  Spike	
  Train

Stochastic	
  Synapse

Deterministic	
  Synapse

Time (s) 1
m(t) – Available vesicles/synaptic resources
g(t) – Conductance of post-synaptic cell


