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Conclusions
• This method can identify when new units 
appear or existing units disappear when testing
• However, it is not as robust for small shifts in 
waveform shape, which are common 
• This requires an algorithm that can allow for 
these shifts

• How could we tell if he neurons we recorded on day 1 stay the same 
across multiple days of experiments?

Introduction Tiny waveform shifts require re-fitting model
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Objective: In order to improve the performance of BCI devices 
and to better answer neuroscience questions, we seek to quantita-
tively assess the stability of neurons recorded on subsequent days 
from the chronically implanted electrodes

Toy channel method for testing 
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Look at the spike unit in re-�t models across the whole 
6-day period.
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Although waveforms are similar, models’ means are drifting 
in the PC space between days. 

vsKeep the MoG model 
for consecutive days

Re-fit new MoG 
model on each day

Use pre-sorted clusters from manually selected data and assemble 
them into extreme cases to assess algorithm’s performance

Measuring neuronal drift across days
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Using the same model results in the 
misclassification of some waveforms

1. Principal components analysis (PCA) used for dimensionality reduction
 - Keep the same low-dimensional projection across days
 - First 5 components were used

2. K-means clustering for initializing cluster centroids
 - Equal covariance and prior probabilities were also used to initialize sorting

3. Fit parameters of a Mixture of Gaussians (MoG) model using Expectation Maximi-
zation (EM) 
 3a. Evaluate log-likelihood of the data and check for convergence
 3b. Cluster determination using likelihood

4. If prior model existed, classify data using log-likelihood with prior parameters

Processing workflow

Given a set of data, on day 
1, we can either use that 
same sort on day 2-n, or 
re-sort on each day. Here 
is an example session.

Re-sort captures 
waveform changes 
but time-consuming
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