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Experiments and computational models have provided
evidence that Deep Brain Stimulation of the Subthalamic
Nucleus can control the brain rhythms of populations of
neurons in the motor cortex [1,2,3]. It has also been shown
that stimulation of M1 Layer 5 projection neurons is more
affective at improving akinesia in hemi-parkinsonian rats
than excitation or inhibition of STN neurons [1].
Inspired by these papers, I used Hodgkin-Huxley
conductance-based neural networks of excitatory and
inhibitory neurons to model DBS-like stimulation of a small
cortical network.
I found that high frequency DBS can disrupt beta rhythms
in the network. However, all-to-all HH single compartment
networks will too easily follow the frequency of the DBS
stimulus without considering axonal heterogeneities.

The equations for all the Hodgkin-Huxley excitatory and 
inhibitory neurons which I use to model the cortical network are:
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The equation for the axon compartments is:

𝑉௔଴
ᇱ = 𝐼 − 𝐼௜௢௡௜௖ 𝑉௔଴, 𝑛௔଴, 𝑚௔଴, ℎ௔଴ + 𝑑௔௦ 𝑉௘ − 𝑉௔଴ + 𝑖𝑛𝑝𝑢𝑡(𝑡)

where:

 𝐼௜௢௡௜௖ 𝑉, 𝑛, 𝑚, ℎ = 𝑔ே௔ 𝑉 − 𝐸ே௔ + 𝑔௄ 𝑉 − 𝐸௄ + 𝑔௅(𝑉 − 𝐸௅)

is the sum of the transient sodium, rectifying potassium, and 
leak ionic channels.
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are the synaptic currents between neurons, where the first letter 
denotes the pre- and the second letter denotes the post-
synaptic neuron (excitatory and inhibitory).

𝐼஼௔ is the calcium current.

𝐼஺ு௉ is the After Hyper-Potential current .

𝑖𝑛𝑝𝑢𝑡(𝑡) is the DBS-like stimulus.

The work shown in the Results section is from simulations
where the stimulus was guaranteed to propagate into the
excitatory cell (the probability of success = 100%).
I also simulated the network when there was a probability
of failure. This addition was inspired by the observation [2]
that antidromic spikes traveling from the STN to the motor
cortex have a probability of canceling with an orthodromic

spike.

It was hypothesized [1] that this stochastic stimulation of
the motor cortex was disrupting the beta rhythm. For our
simple model, I computed the average power in the beta
range (12-30 Hz) and found a decrease in the average beta
power as the probability of successful stimulus propagation
decreased (from an average power of 1.0 ∗ 10ିଷ when the
probability of success = 100% to 6.73 ∗ 10−4 when the
probability of success = 25%).
To verify this result, however, I would need to use a much
larger, multicompartment model network.
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Indirectly Disrupting Excitatory Cell Firing
Using a small network of excitatory and inhibitory cells as shown in Fig 1, I 
coupled a 10-compartment axon to the excitatory cell E1. I applied a 100 Hz 
square wave stimulus to the other end of the axon. With this, I managed to 
prevent excitatory cell E3 from firing Action Potentials.

Increasing the Power of High Frequencies in Local Field Potential
In a network with 20 excitatory cells and 1 inhibitory cell, I applied a 130 Hz stimulus to the end of each excitatory 
cell’s axon. The Local Field Potential of the network showed a max in the Power Spectrum around 65 Hz, in the 
Gamma Range. Raster and LFP Power Spec Without 

Stimulus

Raster and LFP Power Spec With 130 Hz 
Stimulus

Fig. 1

An issue we had with our simulation was that the power 
spectrum of the Local Field Potential of our network 
followed the stimulus frequency as the stimulus amplitude 
increased.

Currently, I am adding randomly distributed 
stimulus signal delays to model axonal 
heterogeneities with the hope of significantly 
decreasing the power of the DBS stimulus 
frequency in the LFP.
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Modeling Electrical Stimulation of Cortical Networks

Future Work
In future work, I would use small networks to model the 
STN-Gpe-Gpi network and connect it to my current cortical 
network to verify the effects of STN DBS on the Motor 
Cortex [2].


