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SUMMARY

Gaze fixation is an active process, with the incessant
occurrence of tiny eye movements, including micro-
saccades. While the retinal consequences of micro-
saccades may be presumed minimal because of
their minute size, a significant perceptual conse-
quence of these movements can also stem from
active extraretinal mechanisms associated with
corollaries of their motor generation. Here I show
that prior to microsaccade onset, spatial perception
is altered in a very specific manner: foveal stimuli
are erroneously perceived as more eccentric,
whereas peripheral stimuli are rendered more foveal.
The mechanism for this perceptual ‘‘compression of
space’’ is consistent with a spatially specific gain
modulation of visual representations caused by the
upcoming eye movements, as is hypothesized to
happen for much larger saccades. I then demon-
strate that this perimicrosaccadic perceptual alter-
ation has at least one important functional conse-
quence: it mediates visual-performance alterations
similar to ones classically attributed to the cognitive
process of covert visual attention.

INTRODUCTION

Visual and cognitive neuroscience experiments rely almost

exclusively on gaze fixation to avoid several ambiguities caused

by eye movements. First, eye movements alter retinal images.

Second, eye movements are not independent of behavioral

state, which makes it impossible to average out their retinal

consequences in experiments. Third, eye movements are asso-

ciated with active, extraretinal mechanisms, such as ‘‘saccadic

suppression’’ (Zuber and Stark, 1966) and ‘‘saccadic compres-

sion’’ of space (Ross et al., 1997), that dramatically alter percep-

tion even well before movement onset.

The requirement of ‘‘gaze fixation’’ per se does not necessarily

eliminate these sources of ambiguity, because tiny eye move-

ments continue to occur (Barlow, 1952). ‘‘Microsaccades’’

constitute one component of these movements, and they are

called such because they are scaled-down versions of larger

saccades (Zuber et al., 1965). Microsaccades not only alter

retinal images (Verheijen, 1961), but they are also not random
and instead are biased by stimulus presentations routinely

used in experiments (Engbert and Kliegl, 2003; Hafed and Clark,

2002; Hafed et al., 2011). The results I describe below show that

microsaccades are also associated with active extraretinal

mechanisms that significantly alter spatial perception even

before they occur. This perceptual alteration can influence visual

locations much farther away from the movements’ endpoints.

Thus, even if the movements themselves cause small retinal-

image changes, the active mechanisms associated with them

can still significantly alter vision.

In the experiments described below, I also tested for a func-

tional consequence of perimicrosaccadic changes in percep-

tion. Consider, for example, the cognitive process of ‘‘covert

visual attention’’ (Carrasco et al., 2002; Yeshurun and Carrasco,

1998). Covert attention is believed to change spatial perception,

altering visual acuity (Carrasco, 2011; Carrasco et al.,

2002), resolution (Carrasco, 2011; Carrasco and Frieder, 1997;

Carrasco et al., 2002; Yeshurun and Carrasco, 1999), and even

‘‘appearance’’ (Carrasco, 2011; Carrasco et al., 2004). Such

alteration is classically uncovered during ‘‘spatial cueing’’

paradigms, in which a spatial location is first cued with a brief

visual stimulus and then perceptual performance is probed

shortly afterward (Carrasco et al., 2000, 2002, 2004; Nakayama

and Mackeben, 1989; Posner, 1980; Yeshurun and Carrasco,

1998). Even though it is assumed that eye movements do not

occur in these paradigms (Carrasco, 2011), microsaccades still

take place, and they do so in a remarkably reflexive, machine-

like manner (Hafed et al., 2011). Thus, if microsaccades are

preceded by altered percepts, as I show in this paper, thenmight

it be the case that changes in perception attributed to covert

attention are simply mediated by microsaccades? In the second

half of this paper, I provide evidence that supports this notion

and potentially explains a recent paradoxical observation that

covert attention did not shift when microsaccades did not occur

(i.e., in most trials; see Figure 9 in Hafed and Clark, 2002).

RESULTS

Foveal Stimuli Are Mislocalized in the Direction
of Upcoming Microsaccades
I first asked whether spatial perception is altered around the time

of microsaccades. I performed an experiment conceptually

similar to those used to study perception around large saccades

(Ross et al., 1997). The rationale behind these experiments is to

present a brief probe stimulus around the time of eye movement

and to ask the subjects to localize this probe. If perception is
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Figure 1. Studying Perception around the

Time of Microsaccades

(A) Subjects fixated a central spot for a random

time, after which a brief probe was presented.

Subjects reported the perceived horizontal posi-

tion of the probe (right or left of the spot).

(B) Distribution of probe times relative to micro-

saccade onset across trials. The task design re-

sulted in a relatively uniform distribution of probes

near microsaccades, which allowed me to analyze

percepts at different times relative to the move-

ments.

(C) Sample individual trials showing the relative

timing between probe and microsaccade onset.

Each panel shows horizontal (blue) and vertical

(red) eye positions. Portions of eye position high-

lighted in green are individual microsaccades.

The probe (black vertical line) could appear at

different times before (top row) or after (bottom

row) microsaccades. Upward deflections in the

plots denote rightward or upward eyemovements.

See also Figure S6.
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momentarily altered near eye movements, the subjects will mis-

localize the stimulus. In this case, I simply asked the subjects to

fixate a central spot and I presented the probe at a completely

random time, regardless of whether a microsaccade occurred

or not (Figure 1A). After probe onset, the subjects reported

whether its horizontal position was displaced to the right or left

of the central fixation spot. Extreme randomization in the timing

of the probe (Figure 1A) helped prevent the subjects from antic-

ipating its onset, which would have reduced microsaccade rate

(Hafed et al., 2011; Pastukhov and Braun, 2010).

Unbeknownst to the subjects, they generatedmicrosaccades,

and across trials my task resulted in a uniform distribution of

probe times relative to microsaccade onset (Figure 1B). Thus,

in post hoc analyses, I could identify trials in which the probe

appeared during a specific time window relative to the move-

ment, and I could then ask how spatial localization was altered

during this time window. Examples of such trials can be seen

in Figure 1C, which plots horizontal and vertical eye positions

from a sample subject. In each sample trial shown, a microsac-

cade smaller than �120 occurred near probe onset, and across

trials this microsaccade could occur either before or after the

probe. Thus, after collecting many trials, I was able to analyze

perceptual localization during perimicrosaccadic intervals.

Even before microsaccades occurred, spatial localization was

altered, suggesting an active extraretinal mechanism that

modifies perception beforeminiscule eyemovements. Consider,

for example, Figure 2A. In this analysis, I plotted the proportion of

‘‘right’’ responses given by subjects when the probe appeared at
776 Neuron 77, 775–786, February 20, 2013 ª2013 Elsevier Inc.
a horizontal displacement of 00 or 4.50 to
the right or left of the fixation spot.

When I measured the subjects’ percept

on trials with no microsaccades

within ±175 ms from probe onset (Fig-

ure 2A, black), I observed the expected

veridical percept: the subjects easily

discriminated between rightward and
leftward probe displacements, and they were guessing for no

displacements (Figure 2A, black curve). However, when the

probe appeared within 50 ms before a rightward microsaccade

(Figure 2A, blue curve), even the leftward probe location was

more often perceived as displaced rightward (i.e., there were

more ‘‘right’’ reports than without the upcoming movement;

p < 0.05, c2 test). When the microsaccade was leftward instead

(Figure 2B, red curve), the rightward probe location was more

often perceived as displaced leftward (i.e., there were less

‘‘right’’ reports than without the movement; p < 0.05, c2 test).

Thus, within 50 ms before microsaccade onset, brief foveal

probes were mislocalized in the direction of the upcoming minis-

cule eye movement.

This perceptual mislocalization was consistent for nearby

foveal locations. I repeated the above analysis, but now for all

locations tested, by constructing full psychometric curves of

perceptual reports as a function of probe location. The black

curve in Figure 2C shows data from trials with nomicrosaccades

within ±175ms from probe onset, and the blue curve shows data

from trials in which the probe appeared within 50 ms before

microsaccade onset. Note that in this analysis, I remapped the

probe locations and perceptual reports to a coordinate system

relative tomicrosaccade direction, in order to combine rightward

and leftward movements (see Experimental Procedures). As can

be seen, the point of subjective equality (PSE) in the blue curve

was shifted such that probes were more often perceived as

being displaced in the direction of the upcoming microsaccade

than when no movements occurred (p < 0.05 for the difference
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Figure 2. Mislocalization of Foveal Stimuli in the Direction of

Upcoming Microsaccades

(A) Proportion of ‘‘right’’ responses as a function of probe location. When the

probe appeared without microsaccades (black curve), a veridical percept was

observed. The subjects had no difficulty in correctly discriminating between

right and left probes; they were guessing for zero probe eccentricity. However,

when the probe appeared <50 ms before a rightward microsaccade (blue

curve), there was an increase in ‘‘right’’ responses even for leftward probes.

(B) The same analysis before a leftward microsaccade (red curve) shows

a decrease in ‘‘right’’ reports even for rightward probes. Thus, (A) and (B) show

a mislocalization in the direction of an upcoming movement.

(C) Psychometric curves of perceptual localization with (blue curve) and

without (black curve) upcoming microsaccades. The blue curve was obtained

from trials in which the probe appeared <50 ms before microsaccade onset. A

mislocalization in the direction of the upcoming movement occurred, as

evidenced by the shift in the blue psychometric curve. Note that I remapped

the physical probe locations (x axis) and subjective reports (y axis) from

absolute coordinates (left/right) to ones relative to microsaccade direction to

clarify the result (see Experimental Procedures).

(D) Points of subjective equality from psychometric curves as in (C) but

collected at different times relative to microsaccades. Black shows the

no-microsaccade case (black curve in C). The effect in (C) was time-locked to

microsaccade onset. All error bars indicate 95% CIs.

See also Figure S1.
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between blue and black PSEs, bootstrapping test; Wichmann

and Hill, 2001a, 2001b). Thus, the foveal space I tested was dis-

torted in a very specific manner within 50 ms before microsac-

cades occurred.

When I next probed perceptual localization during other time

windows, I found that this effect was time-locked to microsac-

cades. In Figure 2D, I plot the PSE from psychometric curves

similar to those in Figure 2C but collected during different time

windows (Figure 2D, blue). I also plot the PSE from the baseline

condition without microsaccades (Figure 2D, black). As can be

seen, mislocalization was strongest in the 50-ms period before
microsaccade onset (p < 0.05, bootstrapping test) and it disap-

peared during other times. This time course was similar to that

observed in classic saccadic compression experiments (Ross

et al., 1997) in which probes were also mislocalized before

saccades, except that it now happened for miniscule move-

ments. Moreover, this effect was robust across individual

subjects (Figure S1A available online), and it was also not due

to subjects becoming momentarily blind to the probe, possibly

through microsaccadic suppression (Zuber and Stark, 1966),

because I used bright probes, and also because I tested the

subjects’ ability to see the probes in a separate control experi-

ment (Figures S1B and S1C).

Thus, microsaccade generation was associated with a

concomitant mislocalization of foveal visual stimuli immediately

before movement onset.

Peripheral Stimuli Are Mislocalized Opposite
the Direction of Upcoming Microsaccades
I hypothesized that the pattern of mislocalization described

above is a correlate of saccadic compression (Ross et al.,

1997), in which probes are mislocalized as if space is

compressed toward the saccade endpoint. In the case of micro-

saccades, compression would be toward an imaginary, virtual

goal associated with the tiny movements. If this is the case,

then repeating the same perceptual localization experiment

above, but now in the periphery, should reveal qualitatively

different results, i.e., it should reveal mislocalization in the oppo-

site direction from a microsaccade because compression

toward the movement’s virtual goal would now be back toward

the fovea. I thus tested localization at 5� (Figure 3A), an eccen-

tricity that is much larger than the actual microsaccade

endpoints (median: 120). In this experiment, subjects fixated

the same central spot and the probe was presented near a refer-

ence spot located at 5�. The subjects reported whether the

probewas displaced to the right or left of the eccentric reference.

Again, the subjects consistently mislocalized probes relative

to the no-microsaccade baseline if these probes appeared

immediately before the onset of amicrosaccade directed toward

their location (Figure 3B; black and blue curves have different

PSEs; p < 0.05, bootstrapping test). This time, however, the mis-

localization was opposite the movement direction, consistent

with a foveally shifted representation of space right before the

tiny eye movement. That is, physically more eccentric probe

locations were reported more often as being ‘‘more foveal than

the reference spot’’ when these locations were tested within

50 ms before microsaccades than when they were probed

without them. This also occurred during an earlier time window

centered on 85 ms before microsaccade onset (Figure 3C,

p < 0.05, bootstrapping test), and my time-course analysis of

Figure 3D showed that this phenomenon, again just like in Fig-

ure 2D, was time-locked to the movement.

Taken together, Figures 1, 2, and 3 therefore suggest that

microsaccades are associated with a compression of visual

space similar to the well-known saccadic compression associ-

ated with much larger saccades (Ross et al., 1997). In the case

ofmicrosaccades, this phenomenon amounts to foveal locations

being misperceived as displaced in the direction of an upcoming

movement and peripheral ones as shifted back toward the fovea.
Neuron 77, 775–786, February 20, 2013 ª2013 Elsevier Inc. 777
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Figure 3. Mislocalization of Peripheral Stimuli in the Opposite Direc-

tion of Upcoming Microsaccades

(A) The same localization task as in Figure 1, but now testing perception in the

periphery. Subjects fixated the central spot, and there was a second reference

spot at 5�. After a random time, a probe appeared near the eccentric spot and

the subjects reported its horizontal displacement relative to the spot.

(B and C) Similar to Figure 2C, but for localization at 5� and at two 50-ms

windows centered on �25 (B) and �85 (C) ms from microsaccade onset.

Subjects consistently perceived probes as being more foveal relative to the

no-microsaccade case (black curve).

(D) Similarly to Figure 2D, the effect was time-locked to microsaccades. Error

bars indicate 95% CIs.

See also Figure S4.
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In the following section, I test whether this similarity is plausible

by implementing a neurally based model of saccadic compres-

sion and applying it to microsaccades. In the section following

that, I test the generality of this phenomenon during other visual

conditions in which microsaccades occur but are assumed to be

inconsequential.

A Model of Saccadic Compression Can Describe
Microsaccadic Compression
Hamker and colleagues (2008) hypothesized that spatial

compression for large saccades (Ross et al., 1997) may be

thought of as reflecting the influence of saccade motor genera-

tion on visual sensitivity. The concept of their model is simple:

movement-related neural activity (say, an efference copy from

the superior colliculus [SC]; Sommer andWurtz, 2002) increases

the gain of visual neurons responding to the flashed probe in

a spatially specific manner (Hamker et al., 2008). For example,

for a 20� saccade, visual neurons representing 20� retinal eccen-
tricities are gainmodulated by the oculomotor activity generating

the 20� eye movement. Such gain modulation is sufficient to
778 Neuron 77, 775–786, February 20, 2013 ª2013 Elsevier Inc.
explain perisaccadic compression effects for large saccades,

and the model is also attractive because the same modulation

additionally explains the relationship between saccades and

attention (Hamker et al., 2008), as I also test later in this work

for microsaccades. Moreover, the model is strongly supported

by neuronal evidence of changes occurring in visual receptive

fields (RFs) around the time of large saccades (Tolias et al.,

2001; Zirnsak et al., 2011). Given the conceptual similarity of

my results to saccadic compression, I asked whether a similar

idea is sufficient to explain microsaccadic compression, espe-

cially sincemicrosaccade generation in the SC is similar to larger

saccades (Hafed, 2011; Hafed et al., 2009; Hafed and Krauzlis,

2012).

I implemented a simplified, one-dimensional (1D) version of

the Hamker et al. (2008) model at a snapshot of time in which

the oculomotor system (specifically the SC) is preparing for an

upcoming microsaccade. My goal was to test whether the

concepts hypothesized for saccadic compression can qualita-

tively explain microsaccadic compression.

The details of the model are described in Experimental

Procedures. Briefly, microsaccade-related activity from the SC

implements a gain increase on neurons representing the probe

location. I simulated this gain signal according to the published

literature on microsaccade generation in the SC (Goffart et al.,

2012; Hafed, 2011; Hafed et al., 2009; Hafed and Krauzlis,

2012). In particular, according to this literature, SC neurons

involved in microsaccade generation are tonically active during

fixation, and they exhibit a spatially specific premicrosaccadic

increase that is almost identical to presaccadic increases (Hafed

et al., 2009; Hafed and Krauzlis, 2012). Thus, any microsaccade-

related gain signal derived from these neurons must reflect the

neurons’ changes from baseline. I thus assumed in my model

that the microsaccade-related gain signal that affects visual

representations is derived based on the change in SC activity

that is specific to microsaccades (Figure 4C, equal to the differ-

ence between panels A and B). Moreover, I used the published

literature on the spatial profile of population activity in the

foveal/parafoveal SC during the presence of a foveal goal to

estimate the spatial extent of Figures 4A–4C (Goffart et al.,

2012; Hafed, 2011; Hafed et al., 2008, 2009; Hafed and Krauzlis,

2008, 2012). Therefore, in my implementation of the model,

before microsaccade onset, visual neurons responding to the

flashed probe are gain modulated by the oculomotor feedback

signal shown in Figure 4C. The strength of this gain modulation

at a given eccentricity depends on the strength of the oculo-

motor feedback signal at the same location.

My neurally inspired implementation of the model can explain

mislocalization of foveal stimuli in the direction of an upcoming

microsaccade (Figure 2). Consider, for example, the scenario

in Figure 4D, corresponding to the experiment of Figure 1. A

foveal probe would normally activate visual neurons with foveal

RFs (Figure 4D, blue activity profile). The center of mass of this

retinotopic population activity may be read out as identifying

the probe location. When a microsaccade is about to be gener-

ated, foveal and parafoveal SC neurons exhibit increases in firing

rate that modulate the tonic activity in this structure during fixa-

tion (Hafed, 2011; Hafed et al., 2009; Hafed and Krauzlis, 2012;

compare Figures 4A and 4B). This creates a spatially extended
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Implementation of a 1D version of a model of saccadic compression (Hamker

et al., 2008), explaining the results of Figures 2 and 3.

(A and B) Microsaccade-related SC activity (A) modifies tonic activity during

fixation (B, repeated in gray in A; Hafed et al., 2009).

(C–E) The difference between the two (C) provides oculomotor feedback,

implementing a gain modulation on visual neurons representing the probes (D

and E; blue, representations without microsaccades; red, after oculomotor

feedback). The red arrows above (D) and (E) indicate the resulting shift in

percept. Themodel predicts the opposing directional effects in Figures 2 and 3

(compare red arrows). The x and y axis labels in (A) apply to all panels.
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oculomotor feedback signal (Figure 4C) that when applied to the

visual representation of the probe deviates it more eccentrically

(red activity profile in Figure 4D). This means that individual visual

neurons appear to be recruited slightly more eccentrically by the

upcoming microsaccade (also see Figure 6). Thus, the center of

mass of the resulting gain-modulated probe representation is

now shifted (compare the blue and red population profiles).

The model can also explain the opposite, foveally shifted mis-

localization of peripheral space beforemicrosaccades (Figure 3).

In this case (Figure 4E), the visual neurons responding to the

peripheral probe have peripheral RFs (blue activity profile).

Before an impending microsaccade, the oculomotor feedback

signal is spatially more foveal than the center of mass represent-

ing the peripheral probe. Therefore, this feedback signal more

effectively modulates the neurons on the foveal end of the pop-

ulation activity, resulting in a more foveal bias of the overall

center of mass of the population (Figure 4E, red population

activity profile).

Thus, an interaction between a spatially specific visual repre-

sentation of the probe with a second spatially specific oculo-

motor feedback signal can account for the patterns of mislocal-

ization I observed in Figures 1, 2, and 3. However, this result
raises an important unanswered question: Where does percep-

tual mislocalization flip from being in the direction of a given

microsaccade (Figure 4D) to being opposite it (Figure 4E)?

According to my model, this flip can occur at an eccentricity

significantly larger than the microsaccade amplitude itself,

because of the spatial shape of the oculomotor feedback signal

associated with microsaccade generation (Goffart et al., 2012;

Hafed, 2011; Hafed et al., 2009; Hafed and Krauzlis, 2012; Fig-

ure 4C). For example, consider the scenario in which the same

model is run, but now for a probe presented at the intermediate

eccentricity of 2.5�. In this case, I found that mislocalization can

potentially still be in the direction of a microsaccade, as in the

0� case, and not opposite it, as in the 5� experiment (Figure 5A).

This is exactly what I also found experimentally when I repeated

the same task of Figure 3A but now at the intermediate eccen-

tricity of 2.5� (see Figures 5B and 5C, which plot the results in

a format identical to that used in Figures 3B–3D).

Thus, the results so far show that not only is perception altered

before microsaccades, but this alteration is also very specific:

foveal locations (0� and 2.5�) are perceived as more eccentric,

whereas more peripheral locations (5�) are foveally shifted. The

mechanism for this effect is consistent with the previously

proposed mechanism for larger saccadic compression (Hamker

et al., 2008). Given that microsaccades occur in most, if not all,

experiments requiring fixation, the implication of these results

is that active perceptual alterations associated with microsac-

cades likely appear in such experiments even if the experiments

themselves are not designed to investigate microsaccades. In

the following section, I illustrate this by testing the generality of

premicrosaccadic changes in perception to a seemingly unre-

lated behavioral task.

Microsaccades Alter Performance in Cueing
Experiments
The finding that foveal locations are rendered more eccentric

before microsaccades and that peripheral locations are

rendered more foveal is reminiscent of observations that

covert attention alters spatial perception (Carrasco et al., 2002;

Yeshurun and Carrasco, 1998). Since cue onsets reflexively

trigger microsaccades, I wondered whether premicrosaccadic

changes in perception could be part of the mechanism by which

visual performance is changed after cueing in classic attention

studies, i.e., could microsaccadic compression contribute to

cueing effects?

The motivation behind this question is simple. Before large

saccades occur, RFs in visual areas such as V4 and FEF are

compressed toward the saccade goal (Tolias et al., 2001;

Zirnsak et al., 2011), a predicted consequence of the gain modu-

lation in Hamker et al. (2008) (see also Zirnsak et al., 2010;

Richard et al., 2009). Besides providing a possible substrate

for saccadic compression, such modulation also explains pre-

saccadic attention shifts because more neurons are now effec-

tively dedicated to processing locations near the saccade target

(Hamker et al., 2008; Tolias et al., 2001). In the case of microsac-

cades, my results are consistent with the model of Hamker et al.

(2008) (Figure 4) and thus with the idea that visual representa-

tions may also be altered before microsaccades occur, as sche-

matized in Figure 6. This figure shows the putative individual
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direction

Figure 6. Schematic Demonstrating a Potential Consequence of

Microsaccadic Compression

For near eccentricities (dashed ellipse on the left), RFs would shift in the

direction of an upcoming microsaccade (compare red and black RFs), leaving

ever so slightly less neural resources at these eccentricities than without

microsaccades. In the periphery (dashed ellipse on the right), foveal shifts

would recruit resources from the many neurons that are normally more

peripheral than the target location. Thus, consistent with Hamker et al. (2008)

and Figure 4, perceptual mislocalization (Figures 1, 2, 3, 4, and 5) can be

correlated with visual performance changes in other tasks beyond just local-

ization because of altered neural recruitment (Figures 7 and 8).
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Figure 5. Mislocalization at 2.5�: Model and Experiments

(A) Result of simulating the model of Figure 4 for a 2.5� probe location. For the

same microsaccade as in Figure 4, mislocalization in this case is toward

a more eccentric shift, similar to probes at 0� and opposite to probes at 5�.
(B and C) The experiment of Figure 3A, but now repeated with the eccentric

reference spot placed at 2.5�. Consistent with the model (A), microsaccades

are now associated with a more eccentric mislocalization: physically foveal

locations are perceived more frequently as less foveal before a microsaccade

than with nomicrosaccades, and the effect is time-locked to movement onset.

Error bars indicate 95% CIs (other conventions similar to those in Figures 2C,

2D, and 3B–3D).

See also Figure S5.
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neuron perspective of the population-level changes in Figure 4.

As can be seen, at a given peripheral location (right dashed

ellipse), a premicrosaccadic foveal shift would recruit the many

neurons that would normally be tuned more peripherally to

help process the location. This would endow the location with

slightly more neuronal resources and alter visual performance.

On the other hand, at foveal eccentricities (left dashed ellipse),

foveal neurons would be recruited to process ever so slightly

more eccentric locations, leaving the original locations with

less neuronal resources. Interestingly, small shifts in visual RFs

during spatial attention were indeed observed in previous

studies (Womelsdorf et al., 2006; Connor et al., 1997), although

an explicit link to microsaccades was not explored. If this puta-

tive link between premicrosaccadic alteration of perception and

attentional performance is true, then one would expect to see

premicrosaccadic alteration of performance in classic covert

attention tasks, and with specific predictions depending on the

cued eccentricity.

To test this, I replicated a classic cueing task used as a work-

horse of covert attention (Carrasco et al., 2002). Subjects fixated

a central spot and a cue was presented at 5� or 2.5�. After
a random time from cue onset, a brief spatial-acuity target (Land-

olt square) appeared at the previously cued location (Carrasco

et al., 2002) and subjects discriminated this stimulus (Figure 7A).

In a minority of trials (see Experimental Procedures), the cue



Spatial cueing
A B

C

Until response

Microsaccade
directions

Perceptual
performance

~12-47 ms

Random

47 ms

0 200 400 600 800

0.64

0.68

0.72

Pr
op

or
tio

n 
co

rr
ec

t

0 200 400 600 800

0.6

0.7

0.8

Pr
op

or
tio

n 
ta

rg
et

-c
on

gr
ue

nt

0.5

0.4

Time from cue onset (ms)

Time from cue onset (ms)

5 degrees

Perceptual
performance

0 200 400 600 800
0.5

0.75

0.95

Pr
op

or
tio

n 
co

rr
ec

t

Time from cue onset (ms)

No
microsacc.
Target <50 ms
before
microsacc.

D

Fixation
spot

Cue

Ti
m

e

0.76
Valid cue
Neutral cue

Error bars: std. err.

Figure 7. Interaction between Perceptual Performance and Micro-

saccades in Spatial Cueing

(A) Classic cueing task.

(B) At 5�, subjects had high performance immediately after cue onset and their

performance oscillated dynamically, first decreasing and then increasing

again. The magenta data points show performance in the minority of neutral

cue trials and demonstrate that the main effects (blue) replicated previous

reports regarding attention (e.g., Carrasco et al., 2002).

(C) Microsaccade directions, analyzed as in Pastukhov and Braun (2010), also

oscillated after valid cue onset. Note how perceptual performance in (B) was

high whenever microsaccades were biased toward the target.

(D) Whenever the target appeared immediately before microsaccades, the

performance oscillations in (B) were very strongly magnified (red) compared

with when it appeared without movements (black). Figure 8 provides

a possible explanation. Error bars indicate SE.

See also Figure S2.
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consisted of two identical spots, one at the upcoming target

location and another at the opposite one. This spread-neutral

cue (Carrasco et al., 2002) was noninformative and allowed me

to assess whether I could indeed replicate previous modulations

in perceptual performance after valid cue onset.

As expected, cueing altered performance. Figure 7B shows

the time course of perceptual performance when the cue

appeared at 5� (blue curve). The magenta points show perfor-

mance when the cue was noninformative about the target loca-

tion. Shortly after cue onset (�75ms), performance was higher in

cued trials than otherwise (p < 0.05, c2 test; Carrasco et al., 2002;

Nakayama and Mackeben, 1989). When the target appeared

later (�600ms), performance declined, and the subjects showed

aworse performance than in the neutral cueing condition (middle

magenta point; p < 0.05, c2 test). Both early enhancement
(Nakayama and Mackeben, 1989) and late reduction (related to

a so-called inhibition of return; Klein, 2000) have previously

been observed, confirming that my cueing paradigm was

effective in reproducing previous reports. Perhaps most surpris-

ingly, I also observed that performance increased again even

longer after cue onset: subjects performed better than they did

in the neutral cueing condition (rightmost magenta point; p <

0.05, c2 test). This oscillation in performance did not happen

for neutral cues (p > 0.05, c2 test comparing the three neutral

cue times to each other), and it was repeatable across individual

subjects (Figure S2). Thus, my cueing task replicated previous

modulations in perceptual performance and also demonstrated

an oscillation in performance, with a late rise long after the

cue. Similar cue-induced oscillations were recently observed

(Koenig-Robert and Vanrullen, 2011; Landau and Fries, 2012),

although, to date, no mediating mechanism for them has been

revealed.

I hypothesized that this mechanism could be related to premi-

crosaccadic alteration of visual perception (Figures 1, 2, 3, 4, 5,

and 6). I thus analyzed microsaccade directions after cue onset

in the same task and found similar oscillations (Figure 7C), such

that performance (Figure 7B) was always high whenever the

target appeared at a time of more frequent microsaccades

toward its location (Figure 7C). Importantly, whenever the acuity

target appeared immediately before amicrosaccade (Figure 7D),

the performance oscillations were hugely magnified (red curve)

compared with when the same target appeared without any

movements (black curve), suggesting a possible causal interac-

tion with the upcoming movement.

To investigate this interaction further, I again plotted percep-

tual performance but now as a function of target time relative

to microsaccade onset and compared this performance with

that observed when the target appeared without any move-

ments. Perceptual performance consistently increased immedi-

ately before a microsaccade toward the peripheral target (Fig-

ure 8A, blue) compared with the no-microsaccade baseline

(Figure 8A, black), aswell aswith the neutral-cue trials (Figure 8A,

magenta). For example, whenever the acuity target appeared

within �34 ± 25 ms before microsaccades, performance was

significantly higher than without microsaccades (p < 0.05, c2

test). The time course of this effect was similar to the time course

of foveal perceptual shifts observed earlier (Figure 3D) using

a different behavioral task. Thus, impending microsaccades

effectively rendered spatial perception momentarily higher in

acuity, an effect previously attributed to covert attention (Carra-

sco et al., 2002). This analysis also explains the oscillation in

perceptual performance seen in Figures 7B and 7D, since it

shows that during late-target epochs after cue onset, the

increase in performance (Figure 7B) resulted from the microsac-

cades being predominantly directed toward the cued location

(Figure 7C; i.e., the acuity target was likely to appear within the

critical premicrosaccadic interval that is expected to alter perfor-

mance). In fact, when I repeated the analysis of Figure 8A but

only for trials with target onsets >500 ms after cue onset, I found

an identical result (Figure S3B). Thus, oscillations in attentional

performance (Landau and Fries, 2012) may simply reflect the

temporal dynamics of microsaccades triggered by the cues

and their influence on perception.
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Figure 8. Premicrosaccadic Alteration of Performance during

Spatial Cueing

(A) Proportion of correct responses in the cueing task as a function of time of

acuity-target onset from microsaccade onset. The black line shows perfor-

mance when the target appeared without microsaccades within ±150 ms, and

the magenta point (± SE) shows performance in the neutral cueing trials (both

serve as a comparison baseline). With a similar time course as in Figure 3D,

performance increased before a microsaccade toward the target, as if space

was rendered higher in acuity (consistent with the foveally directed perceptual

shift in Figure 3).

(B) At 2.5�, again with timing similar to that in Figure 5C, performance

decreased, as if space was rendered lower in acuity (consistent with the

eccentric shift in Figure 5). Thus, the same microsaccade caused higher

performance at 5� but lower performance at 2.5�, as predicted by Figures 3

and 5. Error bars indicate SE.

See also Figure S3.
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I then analyzed perceptual performance after spatial cueing

but at 2.5�. In this case, when the acuity target appeared before

a microsaccade toward its location, a very different result

emerged: performance decreased (i.e., the subjects performed

worse than they did with no microsaccades or during neutral

cueing for targets 25 ± 25 ms before the movement, p < 0.05,

c2 test; Figure 8B). Thus, perception was rendered lower in

acuity, which again is consistent with the more-eccentric

perceptual shifts I observed earlier using a different paradigm

(Figures 5B and 5C) and also consistent with Figures 4 and 6.

And again, this effect was previously attributed to covert atten-

tion (Yeshurun and Carrasco, 1998). Thus, the same microsac-

cade was associated with either increased (at 5�; Figure 8A) or

decreased (at 2.5�; Figure 8B) performance, exactly consistent

with the spatial pattern of microsaccadic compression I
782 Neuron 77, 775–786, February 20, 2013 ª2013 Elsevier Inc.
observed earlier (Figures 1, 2, 3, 4, 5, and 6). Moreover, the simi-

larity between localization performance and cueing performance

persisted evenwhenmicrosaccades opposite the target location

were considered (Figures S4 and S5).

Thus, perimicrosaccadic changes in perception (Figures 1, 2,

3, 4, and 5) can be observed in cueing tasks, suggesting that

these alterations can account for at least part of the performance

changes that classically have been attributed to covert attention

(Figures 6, 7, and 8). In fact, I also found that microsaccades alter

performance even in monkeys and with other perceptual tasks.

To show this, I reanalyzed data from a recent cueing study

(Hafed et al., 2011) in which a monkey reported the direction of

a brief motion pulse rather than the orientation of a Landolt

square (Figure S3C). Upcoming microsaccades toward the

peripheral pulse were associated with increased perceptual

performance as in my human subjects using very different

perceptual stimuli, further demonstrating the generality of premi-

crosaccadic alteration of visual perception.

To summarize, attentional performance in cueing tasks was

altered during the time period preceding microsaccades, and

this alteration was manifested in a manner consistent with the

premicrosaccadic changes in perception I observed earlier using

very different behavioral tasks. The observation of performance

changes during attentional cueing paradigms had never before

been considered to be related to the microsaccades that occur

during these paradigms.

DISCUSSION

In this work, I have shown that microsaccades are associated

with an altered spatial percept before movement onset, and

demonstrated that this alteration also occurs in different experi-

mental conditions, including ones, such as cueing, that are

routinely used to study cognitive and perceptual phenomena.

Taken together, my results allow two main conclusions: first,

microsaccades are associated with the same active mecha-

nisms for saccadic compression as are much larger saccades

(Ross et al., 1997). Second, the existence of these mechanisms

nullifies the very same reasons that we traditionally cite when

enforcing gaze fixation in experiments. My results thus call for

a careful evaluation of any phenomenon in which visual perfor-

mance is altered, but under the assumption that fixational eye

movements are inconsequential (also see Kuang et al., 2012,

for a similar sentiment).

Implications for Experiments Requiring Fixation
The observation of altered percepts before microsaccades

extends previous investigations of the relationship between

saccade amplitude and perceptual mislocalization (Kaiser and

Lappe, 2004; Lavergne et al., 2010) down to the smallest

possible movements. These results thus support the recently

emerging picture of fundamental similarity between microsac-

cades and saccades (Hafed, 2011): the neural mechanisms

for microsaccade generation seem to be the same as those

for larger saccades, at least at the level of the brainstem

(Hafed et al., 2009; Hafed and Krauzlis, 2012; Van Gisbergen

et al., 1981). Moreover, microsaccades are associated with sup-

pressed visual responses in the SC (Hafed and Krauzlis, 2010),
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as happens for larger saccades (Goldberg and Wurtz, 1972).

Finally, the present results show that microsaccades momen-

tarily alter spatial perception, again just like larger saccades

(Ross et al., 1997).

These results are significant particularly given my observation

that microsaccade-related changes in perception also appear in

cueing experiments and thus have real functional conse-

quences. Previous analyses demonstrated behavioral and

neural modulations around microsaccades that were generally

consistent with microsaccadic suppression (Bosman et al.,

2009; Hafed and Krauzlis, 2010; Hafed et al., 2011; Herrington

et al., 2009). However, my present results show a much more

fine-grained influence, and also demonstrate that microsac-

cades in seemingly unrelated tasks (such as spatial cueing)

can account for a significant fraction of performance changes.

In fact, when J.J. Clark and I first studied the effects of cues

on microsaccades 10 years ago (Hafed and Clark, 2002), we

found that attentional performance at a cued location or away

from it was not different except in (the minority of) trials in which

microsaccades occurred (see Figure 9 in Hafed and Clark, 2002).

While these early resultsmay have suggested that attention does

not shift in most trials after cue onset, the present results clarify

a potential reason for why this could be the case: in the trials with

microsaccades, the perceptual target likely appeared in the crit-

ical premicrosaccadic interval in which visual perception is

altered.

The fact that attentional cueing effects may reflect premicro-

saccadic changes in perception is significant given the relatively

small magnitude of these effects in the first place. For example,

in spatial cueing paradigms, the influence of cues on perfor-

mance is typically small (<5%–10% changes in perceptual

performance; Koenig-Robert and Vanrullen, 2011). Thus, even

if microsaccades do not occur in every single trial, all it takes

for microsaccades to account for the majority of cueing effects

is a fewmovements occurring at the right time. Thus, the compo-

nent of performance changes attributed to premicrosaccadic

changes in perception can be a huge fraction of the overall atten-

tional performance changes seen in cueing tasks.

Implications for Our Understanding of Attention
It may be argued that an alternative interpretation of my results

could be that attention influenced both visual performance and

microsaccades, and that it did so even in spatial localization.

That is, it may be argued that perceptual mislocalizations

(Figures 1, 2, 3, 4, and 5) simply reflected the influence of rapid

covert attention shifts exogenously driven to the probes. Such

probes could attract attention, and this could somehow both

alter spatial perception and trigger a microsaccade in <50 ms.

However, if this were the case, then it would mean that attention

shifts only in a very small minority of trials. For example, only

�10%of the trials shown in Figure 2C contained amicrosaccade

<50 ms after probe onset, which is the critical period during

which the percept was altered. If attention was really the cause

of the altered percept in these trials, that would mean that atten-

tion did not shift in �90% of the trials. Moreover, this interpreta-

tion would also mean that probe onset can both attract attention

and then trigger a microsaccade in <50 ms, which is faster than

even the fastest saccadic reaction times (Edelman and Keller,
1996). Finally, I did not see any evidence that microsaccades

that occurred within 50 ms after probe onset were biased by

probe location or eccentricity. Thus, it is unlikely that my misloc-

alization results reflected the influence of rapid attention shifts to

the probes. Alternatively, a more parsimonious explanation,

which is commonly invoked for large saccades (Hamker et al.,

2008; Ross et al., 1997), is that spatial perception was altered

actively by the oculomotor signals associated with movement

generation.

If that is the case, then why does cueing alter microsaccades?

That is, why are spatial cues so effective in inducing microsac-

cades? One likely possibility is that cueing triggers a reflexive,

default orienting response that is actively suppressed by the

instruction to fixate. Several lines of evidence support this possi-

bility. First, SC activity is highly sensitive to cue onsets (Boehnke

andMunoz, 2008), and the close proximity of the SC to themotor

output (Gandhi and Katnani, 2011) creates an efficient path for

rapid orienting reflexes. Second, neck muscles that are part of

the body’s ‘‘head-turning synergy’’ are subliminally recruited

during covert attentional cues (Corneil et al., 2008), as if the

system wants to orient toward these cues by default. Third,

reversible inactivation of the SC was recently shown to disrupt

the influence of peripheral cues on microsaccades (Hafed

et al., 2013). Finally, in my neutral-cue trials with two alternative

orienting locations, the microsaccades were equally likely to go

to either side, which explains why performance in these trials

differed from that in the valid-cue trials. Thus, it appears that

microsaccades simply reflect the influence of suppressed

orienting reflexes to the presented spatial cues. Such reflexes

can also explain the rebound of microsaccade directions toward

the cued location long after cue onset (Figure 7C), because

subjects could anticipate that the target was about to appear

in these long trials.

This raises the potential for an alternative (albeit less neurally

inspired) model of the oculomotor feedback signal compared

with the one I used in Figure 4C. In particular, it could be argued

that the oculomotor feedback signal really at play in my data is

nothing more than a pure saccade signal (say to 5�), and that

a separate fixation command suppresses the actual saccade

without inhibiting its feedback signal from affecting perception.

While such amodel can be functional, it is not in line with existing

literature on the function of the foveal portion of the SC in fixation

and microsaccade generation. In particular, at the level of the

SC, the neurons that presumably would implement the fixation

command are exactly those that are involved in microsaccade

generation (Hafed, 2011; Hafed and Krauzlis, 2012). Second,

even if there was a separate area implementing the fixation

command, this alternative model would not predict the opposite

results I observed between the 2.5� and 5� locations. This is so

because there is no reason to expect that the pure saccade

signal (à la Hamker et al., 2008) would be conceptually different

for a 2.5� saccade relative to a 5� one. Additional assumptions

and/or parameters would be needed to predict the opposing

effects I observed at these two eccentricities, whereas these

effects are an emergent property of my implementation of the

model.

Finally, the idea that cueing activates a default orienting reflex

can reconcile a variety of converging evidence on the almost
Neuron 77, 775–786, February 20, 2013 ª2013 Elsevier Inc. 783
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identity relationship between saccade generation and visual

attention. The classic premotor theory of attention (Berlucchi

and Rizzolatti, 1987; Rizzolatti et al., 1994) predicted that atten-

tion may be a manifestation of eye movement generation. Later

behavioral and neural results demonstrated that visual perfor-

mance is indeed altered prior to eye movements. For example,

in addition to saccadic compression effects (Ross et al., 1997),

neural data in visual area V4 show presaccadic enhancement

of activity (Moore, 1999; Moore et al., 1998; Tolias et al., 2001),

and SC neurons have enhanced contrast sensitivity before

saccades (Li and Basso, 2008). According to the models of

Hamker and colleagues (2008), these phenomena may all be

linked through the influence of corollaries of motor generation

on visual representations (Figure 6), and the apparent obligatory

link between attention and saccade targets (Deubel and

Schneider, 1996) is an emergent property of the gain modulation

of visual activity by corollary discharge. My results show that the

exact same mechanism remarkably also links attention and

microsaccades.
EXPERIMENTAL PROCEDURES

Experiments in this work were approved by the ethics commission of

Tuebingen University.

Behavioral Tasks

Subjects sat in a dark room 57 cm in front of a CRT monitor (85 Hz, 41 pixels/

degree). For foveal localization (Figure 1A), a white central fixation spot

appeared for 0.25–5 s over a uniform gray background. The spot was

�7.30 3 7.30 and its luminance was 97.3 cd/m2. Background luminance was

20.5 cd/m2. When the spot disappeared, a brief white probe appeared

simultaneously and lasted for 11.8 ms. The probe consisted of a vertical line

(150 3 1.50) centered 370 above/below the fixation spot; its horizontal position

varied across trials. Subjects fixated and reported whether the probe was dis-

placed to the right or left of the central spot. The eccentric localization tasks

(at 5� or 2.5�; Figures 3A, 5B, and 5C) were similar except that the probe

appeared at a location centered on 5� or 2.5� horizontally (right or left of fixa-

tion). The fixation spot always remained on, and there was a second reference

spot at 5� or 2.5� that disappeared with probe onset. Subjects reported

whether the probe was displaced to the right or left of this spot.

The cueing task (Figure 7A) involved a cue spot at either 5� or 2.5� (right or
left of fixation) for 47 ms. A Landolt square (Carrasco et al., 2002) appeared

58–1,000 ms after cue onset, and the subjects reported the direction of the

square’s opening. The Landolt square was 310 3 310, with a gap size of 2.90

at 2.5� and 4.40 at 5�. In one-fourth to one-third of the trials, I used a spread-

neutral cue (Carrasco et al., 2002), i.e., both the target location and an identical

location on the opposite side were cued simultaneously. In these trials, the

square appeared 71 ms, 600 ms, or 788 ms after spread-neutral cue onset.

Subjects initially did a practice session in which the Landolt square appeared

400 ms after cue onset and lasted for a variable duration. I then picked for

each subject the duration of the Landolt square that resulted in �70%–75%

correct identification of the gap location at 5�. I then ran the main experiment

shown in Figures 7 and 8. Similar to previous studies, the target duration

was �12–47 ms, being �12, 24, or 35 ms for two-thirds of the subjects

(�12 ms for two of them). Thus, the duration of the Landolt square was one

in which perisaccadic changes in perception were still expected to occur

(Van Wetter and Van Opstal, 2008).

I collected thousands of trials in each condition (8,116 in the foveal localiza-

tion experiment, 14,524 at 2.5�, 11,212 at 5�, and 10,154 in the cueing task).

Such large numbers of trials were necessary to compile full psychometric

curves and time courses of perimicrosaccadic effects. Eight subjects partici-

pated in the foveal localization experiment, 16 at 2.5�, 18 at 5�, and 21 for

spatial cueing. Each subject participated in one to three sessions, with some
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subjects completing more than one experiment. In my analyses, I pooled

data across subjects to increase statistical confidence, after first confirming

the robustness of the effects for individual subjects (see Figures S1A, S2,

and S3C).

I tracked eye movements using a high-speed camera (EyeLink 1000, 1 KHz

sampling). In order to stabilize the head and maximize eye-tracking perfor-

mance, I fixed the subjects’ heads at five different points using a custom-

made device.

Behavioral Analysis

For the behavioral analysis, I fitted psychometric data with sigmoids. To obtain

psychometric curve confidence intervals (CIs; e.g., Figure 2C), I used boot-

strapping (1000 iterations;Wichmann andHill, 2001a, 2001b). I assessed shifts

in psychometric curves by assigning significance to those cases in which the

95% CIs for the no-microsaccade PSE did not overlap with the 95% CIs with

microsaccades. I remapped the right/left responses to label them as either ‘‘in

the direction of a microsaccade’’ (Figure 2C) or ‘‘more foveal’’ (e.g., Figure 3B)

to clarify the influence of the microsaccades on spatial perception. For

example, for the analysis shown in Figure 2C, if the microsaccade was right-

ward and the subject indicated ‘‘right,’’ then the percept was that of a probe

appearing displaced in the direction of the microsaccade. For Figures 2C

and 2D, I also remapped the physical right/left locations of the probe accord-

ing to microsaccade direction, such that positive locations on the x axis in Fig-

ure 2C are locations displaced in the direction of the movement. This allowed

me to combine rightward and leftward microsaccades to simplify the data

presentation. In this case, the no-microsaccade curve was plotted as the frac-

tion of ‘‘right’’ responses (y axis) as a function of physical probe location.

In the cueing task, I obtained the time course of perceptual performance

after valid cue onset (Figure 7) by binning trials according to target onset

time. I slid the bin (130 ms width) by 10-ms steps. For Figure 8, I used a finer

resolution (50-ms bins stepped by 1 ms). I also performed the analysis of Fig-

ure 8 for the minority neutral cue trials and still found premicrosaccadic

changes, consistent with the idea that microsaccades alter visual performance

in general. I used the c2 test to compare binomial proportions (Figures 7 and 8).

Microsaccade Analysis

I detected microsaccades using velocity/acceleration criteria (Hafed et al.,

2009) and manually inspected all trials to correct for misdetections. I checked

the characteristics of the detected movements by plotting movement peak

velocity against amplitude (Zuber et al., 1965), as well as by plotting amplitude

distributions (Hafed et al., 2009; Figure S6). I detected�37,000–47,000 micro-

saccades per experiment.

I only included predominantly horizontal movements (directions within 45�

from horizontal) in the analyses because of the spatial arrangement of

the stimuli in the tasks. Preliminary analyses revealed that, as in larger

saccades, the perimovement changes I observed depended on themovement

direction.

Model of Spatial Mislocalization

I sought to investigate whether premicrosaccadic changes in perception are

mediated by a mechanism similar to that hypothesized for presaccadic

changes. Thus, I implemented a simplified model (shown in Figure 4) based

on one previously described for larger movements (Hamker et al., 2008) but

maintaining the same conceptual components, and staying in line with pub-

lished results regarding microsaccade generation in the SC.

My model contains a 1Dmap of visual space, including foveal magnification

(Hamker et al., 2008). I used the following equation to represent visual space:

X= 1:4 � ln
�
sqrt

ðr2 + 2 � 3 � r+ 32Þ
3

�
(Equation 1)

where X is the transformed space (millimeters of tissue) and r is the original

visual eccentricity. This is a model of visual mapping in the SC (Ottes et al.,

1986), and I only used it to simplify the model. Visual space in cortical areas

has a similar foveal magnification (Hamker et al., 2008). In this visual space,

brief luminance probes induce a population response centered at the probe

location (see Figure 4, rightmost column, blue curves). Localization is assumed

to depend on readout of this population (Hamker et al., 2008), and I
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implemented readout in my model by a center of mass computation. For 0�,
2.5�, and 5�, I assumed that the probe activates populations in visual space

based on RF sizes in different areas, including the SC (Hamker et al., 2008;

Krauzlis, 2004). I thus modeled the visual responses to 0�, 2.5�, and 5� probes
as gaussians in model space with SDs equivalent to �1�, 3�, and 3� (Krauzlis,
2004). The exact numerical choices do not necessarily alter the conceptual

results of the model.

To investigate the role of microsaccades on visual representation, I imple-

mented a snapshot of the model when an oculomotor signal is present to

modify this representation (Hamker et al., 2008). I assumed that oculomotor

feedback acts as a gain on visual representation such that the output of a visual

neuron, i, is modified as follows:

Yi = ð1+gainÞ � yi (Equation 2)

where gain is the oculomotor feedback at a given time relative to movement

onset. Because the neurons involved in microsaccade generation in the SC

are tonically active without microsaccades, the oculomotor feedback signal

that is specific to microsaccades is the difference between the activity for

a microsaccade and the tonic activity during fixation (Figure 4, panel C = panel

A minus panel B). I modeled the latter activity as a Gaussian in SC space, with

the SD based on previously collected neural recordings (0.75 mm) and

centered on the 0� retinotopic position (Hafed and Krauzlis, 2008). Activity

before a microsaccade would involve increases in neurons preferring the

microsaccade endpoint, thus causing a shift in the whole population activity

profile in the direction of the microsaccade (Figure 4A). Thus, the center of

mass of premicrosaccadic activity reflects the endpoint of the upcoming

movement, consistent with previous results from SC experiments (Goffart

et al., 2012; Hafed et al., 2008; Hafed and Krauzlis, 2008; Lee et al., 1988)

and explaining Figure 4A (also see Hafed, 2011). All model outputs were

normalized to one.
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