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Brain areas are highly interconnected yet perform different functions. 
At the heart of many fundamental questions in neuroscience is the 
question of how different brain circuits effectively modulate their 
connections on and off to allow selective communication1,2. In this 
study, we ask one such question about how selective communication 
operates: how can we plan a course of action, while still waiting for 
the right moment to act3–6?

We employed the monkey motor system to test a new candidate 
mechanism for controlling output from one set of neural circuits to 
another. When a monkey is cued regarding the path of an upcoming 
reach but required to withhold the movement until a go cue, pre-
paratory activity is present before the go cue in both dorsal premotor 
cortex (PMd) and primary motor cortex (M1)7–9 (Fig. 1). Preparatory 
activity is relevant to the upcoming movement: it is tuned for a variety 
of movement parameters7,10–13, predicts reaction time14,15, predicts 
movement variability16 and if disrupted delays the movement17. 
Preparatory activity is prevalent in PMd, somewhat less prevalent in 
M1, present but modest in the spinal cord18,19 and essentially absent 
in the muscles. This pathway therefore provides an ideal testing 
ground because the central mystery is readily apparent: each area 
drives movement9,20–22, yet PMd and even M1 are also active in the 
absence of movement23. Given this pathway of PMd to M1 to the spi-
nal cord, and PMd’s direct projection to the spinal cord as well, how 
is preparatory activity attenuated at each of these stages?

It is often assumed that ‘gating’ of preparatory activity is performed 
at the target site. For example, preparatory activity might simply lie 
below some spinal activation threshold, or await a boost in spinal 
gain24. Yet this would not explain the empirical observation that  

preparatory activity is not a weaker (and thus potentially subthresh-
old) version of movement activity25–28. A related hypothesis has been 
that preparatory activity is held at bay by a switch29,30, such as an 
inhibitory gate31, as is the case in the brainstem oculomotor system32. 
However, we have recently shown that there are no clear signs of a 
simple inhibitory gating mechanism in PMd or M1 (refs. 28,33). Thus, 
it has remained unclear how neural activity during preparation can 
be kept local, even though activity in those same neurons can drive 
movement moments later5. Here we test a new candidate mechanism 
for controlling when circuits communicate and when they function-
ally decouple. We find that a population-level mechanism operating 
in PMd can largely account for how preparatory activity is prevented 
from reaching M1, and that the same mechanism operating in both 
areas can largely account for how preparatory activity is prevented 
from reaching the muscles.

RESULTS
The activity of the muscles is some function of neural activity. 
Whatever this function is, it must accommodate M1 and PMd chang-
ing their firing rates during motor preparation without movement 
occurring prematurely. Here we consider a simple possibility. The 
simplest type of relationship between the neural activity of a brain 
area, A, and its target is a linear one. That is, each target muscle would 
be driven by a linear combination of neural firing rates34: 
		            M WN= � (1)

where M, W and N are matrices. Each row of M contains the activity 
of one muscle, and each row of N contains the activity of one neuron. 
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Neural circuits must perform computations and then selectively output the results to other circuits. Yet synapses do not change 
radically at millisecond timescales. A key question then is: how is communication between neural circuits controlled? In motor 
control, brain areas directly involved in driving movement are active well before movement begins. Muscle activity is some readout 
of neural activity, yet it remains largely unchanged during preparation. Here we find that during preparation, while the monkey 
holds still, changes in motor cortical activity cancel out at the level of these population readouts. Motor cortex can thereby prepare 
the movement without prematurely causing it. Further, we found evidence that this mechanism also operates in dorsal premotor 
cortex, largely accounting for how preparatory activity is attenuated in primary motor cortex. Selective use of ‘output-null’ vs. 
‘output-potent’ patterns of activity may thus help control communication to the muscles and between these brain areas.
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Columns correspond to the activities at different times and for differ-
ent movements. W contains the weights for the linear mapping from 
neurons to muscles. That is, W specifies the weighted sum of neurons’ 
firing rates that drives each muscle.

To build intuition about this model, consider the following extreme, 
unphysiologically simplified situation. Imagine that just two excitatory 
neurons synapsed directly on a muscle, and this muscle produced force 
proportional to the sum of its two inputs. As long as the sum of the 
two inputs remained constant, the muscle would produce a constant 
amount of force: no ‘gate’ or ‘switch’ is required. The activity of these 
two neurons can be represented as a point in a two-dimensional firing 
rate space. Their pattern of activity over time is a trajectory through 
this space35–37. In the state space, the constant-sum line forms an  
‘output-null’ dimension (Fig. 2). The muscle’s force output will change 
only if there is a change in the sum of the neurons’ firing rates; we term 
the direction in which that sum changes the ‘output-potent’ dimension 
(Fig. 2). This idea also generalizes to more complex cases: if one of 
these hypothetical neurons had a net inhibitory effect, the dimensions 
would be switched. With many neurons, we would expect multiple 
output-null dimensions. If there were multiple independent muscles, 
we would need multiple output-potent dimensions. This is all to say 
that activity in the output-potent dimensions would be read out by the 
target muscle or brain area, whereas activity in output-null dimensions 
would not be visible to the target. Formally, any activity changes in 
output-null dimensions fall in the null space of W. Conversely, activity 
changes in output-potent dimensions fall in the row space of W.

The existence of output-potent and output-null dimensions is likely 
inevitable, as there are more neurons than muscles. The key question 
is whether the brain exploits these dimensions to control when cir-
cuits communicate (as opposed to relying on nonlinear thresholds or 
a time-varying gain). The hypothesis that output-null dimensions are 
used to control communication leads to two predictions. First, if this 
mechanism operates between cortex and muscles, then during motor 
preparation changes in neural firing rates should occur in combina-
tions that produce changes in output-null dimensions but do not pro-
duce changes in dimensions that are output-potent with respect to the 
muscles (Fig. 2). Second, if this same mechanism operates between 
cortical areas, we would expect PMd preparatory activity to prefer-
entially occupy dimensions that are output-null with respect to M1. 

If this latter prediction is correct, this could help produce the well-
known reduction in preparatory activity between PMd and M1.

Exploitation of output-null dimensions is unlikely to leave any par-
ticular signature at the level of single neurons. Changing state along 
the output-null dimensions corresponds to activity changes in most 
of the relevant neurons (Fig. 2). Such activity cancels out only at the 
level of the population output. Intriguingly, though, this model tends 
to produce neurons with mismatches in tuning between the prepara-
tory and movement periods, as has been observed previously25–28. 
Thus, if one averages over neurons based on their preferred reach 
condition during movement, their preparatory tuning largely aver-
ages away (Supplementary Fig. 1). This mismatch is suggestive, but 
it forms only an indirect test and is neither necessary nor sufficient to 
demonstrate that such a model is correct (Online Methods). Testing 
this hypothesis requires both knowing the population response and 
estimating the output-null and output-potent dimensions.

To test our hypothesis, we used a variant of a standard delayed-
reaching task with two monkeys, J and N (Fig. 1 and Online Methods). 
We recorded the population response using both single- and multiunit 
neural activity (using single moveable electrodes for data sets J and 
N, and silicon electrode arrays for data sets JA and NA) and muscle 
activity (using percutaneous electrodes). Trial-averaged data were 
used except where noted: the primary goal of these analyses was to 
explain how there can be preparatory tuning without movement, not 
to explain trial-by-trial variability. Thus, all repeats of the same con-
dition were averaged to produce a single rate versus time. The same 
reaches were required every day and monkeys were highly practiced. 
Repeated reaches to the same targets were thus extremely similar to 
one another over the course of months (Supplementary Fig. 2). Data 
from different days were therefore combined.

As a basic test for the plausibility of exploiting output-null dimen-
sions, we can search for neuron pairs whose preparatory activity 
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Figure 1  Task and typical data. (a) Layout of maze task. One typical 
trial shown. The same mazes were repeated many times; each maze is 
hereafter called a ‘condition’. (b) Top, task timeline. The monkey initially 
touched a central spot with a cursor projected slightly above his fingertip; 
then a target and (typically) barriers appeared. On some trials, two 
inaccessible distractor ‘targets’ also appeared. After the Go cue (cessation 
of slight target jitter, extinguishing of central spot), the monkey made a 
curved reach around the barriers to touch the accessible target, leaving 
a white trail on the screen. If no barriers were present, reaches were 
straight. Middle, trial-averaged deltoid EMG; a.u., arbitrary units. Bottom, 
firing rate of one PMd neuron. Target, target onset; Go, go cue; Move, 
movement onset. Flanking traces show s.e.m. Maze identifier 100, neuron 
J-PM48, EMG recording J-PD10.
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Figure 2  Simplified output-null model. For illustration, assume a muscle 
receives input from two neurons and produces a response that is the linear 
sum of the inputs. If the sum is constant (output-null dimension), the 
muscle cannot distinguish between input 1 being high and 2 low, and vice 
versa. When the sum changes (output-potent dimension), muscle output 
will change. If preparatory neural activity changes only within the output-
null dimension (two different reaches illustrated in darker and lighter 
shades), then the muscle’s activity remains constant; when neural activity 
changes in the output-potent dimension also, movement ensues. Insets: 
PSTHs for the neurons and PSTH-like views of output-potent and output-
null dimensions. T, target onset; G, go cue; FR, firing rate.

np
g

©
 2

01
4 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



442	 VOLUME 17 | NUMBER 3 | MARCH 2014  nature NEUROSCIENCE

a r t ic  l e s

might cancel out. Activity for one such pair of neurons illustrates 
a partial canceling out (Fig. 3a). When the two neurons’ activity is 
added together, the sum has less preparatory tuning than either but 
retains the movement activity. In this example, the canceling out is 
quite incomplete because only two neurons were used; the effect 
might be much greater with more neurons.

Similarly, we can take linear combinations (weighted sums) of many 
neurons’ activity. These linear combinations represent possible linear 
readouts of the population. Some readouts revealed structure in the 
data that strongly resembles the hypothesized (Fig. 2) structure. One 
such pair of readouts is shown for each of two monkeys (Fig. 3b).  
Each trace represents one trial-averaged reach condition—for  
example, the average response for many leftwards reaches. In these 
examples, preparatory activity for the various conditions is spread 
out in one dimension but confined in the other. Movement activity, 
in contrast, sweeps through both dimensions. These projections illus-
trate that the hypothesis (Fig. 2) is plausible. Preparatory activity is 
strongly present in the population, yet a downstream target could be 
largely insensitive to this preparatory activity if it received inputs in a 
particular combination: the linear combination described by the sum 
of the two dimensions shown (the short axis of the red ellipse). Note 
that this does not mean that preparatory activity is functionless. To 
the contrary, in this case preparatory activity appears to set the initial 
direction and amplitude of the subsequent movement activity25,38.

Two caveats are worth stressing. First, a two-dimensional view may 
be insufficient to fully test the hypothesis. Second, to properly inter-
pret these results, one would wish to have some independent means 
for identifying which dimensions are output-null versus output-
potent. We therefore designed a mathematical method for estimating 
output-potent and output-null dimensions. We then tested the degree 
to which preparatory activity avoids the output-potent dimensions. 
We first seek this structure in PMd/M1 (considered together) with 
respect to the muscles. We then turn to the question of communica-
tion between PMd and M1.

Analysis of PMd/M1 to muscles
The core logic of this analysis is to use electromyography (EMG) 
data to help identify which neural dimensions (linear readouts) are 
most likely to be output-potent and which dimensions are most likely 

to be output-null. We can then test our central prediction: prepara-
tory activity should avoid leaking into the output-potent dimensions 
and should mainly be present in output-null dimensions. To avoid 
circularity, putative output-null and output-potent dimensions are 
identified using only movement activity, by finding neural dimen-
sions in which activity resembles the EMG recordings. Only then is 
preparatory activity examined.

Figure 4 shows the results of this analysis. An explanation of the 
analysis follows, with the full derivation in Online Methods. Output-
null and output-potent readouts can be plotted as peri-stimulus time 
histograms (PSTHs) (as in Fig. 2), as they are made by simply adding 
and subtracting neurons’ responses (see Fig. 3a). Each trace corre-
sponds to a different condition and is a readout of the trial-averaged 
responses of individual neurons. Two such readouts are shown: one 
readout of a putative output-null dimension (Fig. 4a) and one readout 
of a putative output-potent dimension (Fig. 4b). Both reveal strong 
movement-related activity. However, by construction, only for the 
output-potent dimension did movement activity resemble muscle 
activity (Fig. 4a,b, “regression epoch”). The output-null dimension 
also contained strong movement-epoch activity but, owing to the par-
ticular pattern of tuning and the temporal structure of the response, 
it correlated only weakly with muscle activity.

With the dimensions identified, we predicted that prepara-
tory activity would be weaker in the output-potent dimensions, 
to avoid prematurely causing muscle contractions. This is indeed 
what we observed (compare Fig. 4a,b): preparatory activity in the 
output-null dimension was more strongly tuned and more differ-
ent from baseline (the sign of this change is arbitrary). We found  
a similar effect in all data sets tested. Preparatory tuning—the  
spread of the mean firing rates across different conditions (Fig. 4a,b, 
“test epoch”)—was always weaker in the output-potent dimensions 
(Fig. 4c; see below).

The analysis in Figure 4 was performed as follows. We first  
found the putative ‘muscle readouts’ (W from equation (1)) using 
neural and EMG activity from the movement epoch. As described 
above, if the output-null hypothesis is correct, then when we apply 
these same muscle readouts to preparatory activity the result should 
have little tuning and should hold steady at baseline (as in Fig. 4a). If 
the output-null hypothesis is incorrect, and movement is prevented 
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Figure 3  Examples suggesting potential  
output-null structure. (a) When the weighted 
activity of the neuron graphed at left is added  
to the activity of the neuron graphed at center,  
the result (right) has less preparatory activity 
than either input. This pair thus illustrate the 
output-null idea, though with more neurons  
a more complete cancellation occurs. Constant 
c was set to 0.37. Conditions colored according 
to preparatory activity of left neuron. Targ, target 
onset; Move, movement onset. (b) Example 
readouts of real data. Each panel shows a 
linear, two-dimensional readout of real data, 
exhibiting the predicted structure (compare 
with Fig. 2). Each trace corresponds to a single, 
trial-averaged condition. Preparatory activity, 
blue; movement activity, green; state at Go 
cue, gray circles. Red ellipse shows 2 s.d. 
of the preparatory activity. As in the model, 
preparatory activity for different conditions 
is mostly spread out in one dimension, while 
movement-epoch activity travels through both 
dimensions. Dimensions found using the jPCA 
algorithm from ref. 38.
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via a threshold nonlinearity or time-varying gain, then the muscle 
readouts will contain preparatory tuning at the same strength as  
other output-null readouts. This latter expectation also holds if  
equation (1) is an inappropriate simplification that fails to capture 
the key relationship.

In principle, W can be found using linear regression. However, 
because different neurons have correlated activity patterns (mathe
matically, N is nearly rank deficient), W cannot be found directly.  
One standard solution to this problem is to use dimensionality reduc-
tion first; this solution is sometimes called principal component 
regression. The low-dimensional version of the model is 

		               M WN= � (2)

where M  and N  are the low-dimensional versions of the data  
matrices M and N, found via principal component analysis (PCA).  
W   captures the relationship between them. Unlike N, N  has orthog-

onal (uncorrelated) rows, and so regression is viable and W can be 
found. We can choose the number of rows for N  and M ; we chose six 
and three, respectively (three dimensions for M captured 77–92% of 
the variance). This produces three muscle readouts (putative output-
potent dimensions) and three putative output-null dimensions. To 
find W , we considered only the activity during the movement and 
used linear regression. The result of all of the above is to identify a 
reasonable estimate for how the muscles could read out a weighted 
sum of neurons’ firing rates.

Our overarching goal was to test whether one must propose that 
preparatory activity is reduced by a nonlinearity (threshold or low 
gain) or whether substantial reduction occurs as a result of the struc-
ture of W. That is, we ask whether the preparatory activity in N falls 
mainly in the null space of W and is therefore not read out by the 
muscles. To test this, we compared the activity in the muscle read-
outs (output-potent dimensions) with the activity in the output-null 
dimensions, which cannot pass through W . Mathematically, the space 
of muscle readouts is the row space of W , and the output-null dimen-
sions form the null space of W .

As our test, we measured whether more preparatory activity  
survived in the putative output-null dimensions or in the putative  
output-potent dimensions. To avoid circularity, we identified these 
spaces using movement activity; only then did we test prepara-
tory activity. Our measure was a ‘tuning ratio’ (Online Methods),  
computed by taking the strength of preparatory tuning in the  
output-null dimensions divided by the strength of preparatory tuning 
in the output-potent dimensions (Fig. 4c).

Consider the data in Figure 3b. The tuning ratio asks how  
elongated the ellipse is and whether it is in fact aligned with the  
output-null dimensions. If our hypothesis is correct, then the tuning 

ratio should be considerably greater than 1. We found that the tuning 
ratio ranged from 2.8 to 8.2 (Fig. 4c).

We employed extensive simulations to verify that this analysis 
detects exploitation of output-null dimensions during preparation 
when appropriate but does not do so when such structure is absent. 
We created simulated data sets, varying how strongly the preparatory 
activity was confined to the output-null dimensions. The simulated 
neural and muscle activity (Fig. 5b,d) qualitatively resembled our 
recorded neural and muscle activity (Fig. 5a,c). We analyzed this sim-
ulated data using the method described above. Our method correctly  
detected how strongly the preparatory activity was confined to  
output-null dimensions and rarely produced false positives (Fig. 5e–h;  
the results lie nearly along the line y = x, or below). This was true 
even when we introduced nonlinearities to simulate firing rate satu-
ration and floor effects (i.e., when firing rates were always positive 
and median firing rates were low; see Fig. 5b,d). As a technical note, 
this nonlinearity changes the relationship between neural and mus-
cle activity to M = f(WN), with f a non-time-varying nonlinearity 
that is not responsible for gating. The method was also robust when 
‘errors’ were made in applying the analysis with the wrong dimen-
sionality (Fig. 5g,h) or when unequal numbers of output-null and 
output-potent dimensions were present in the data (Supplementary 
Fig. 3). When results differed substantially from the true underlying 
value, the results were nearly always underestimates, meaning that the 
results reported in Figure 4 are most likely conservative.

Returning to the real data, the tuning ratio was greater than unity 
in all four data sets obtained from two monkeys (Fig. 4c). This indi-
cates that preparatory tuning remained mostly within the output-null 
dimensions, avoiding the output-potent dimensions. This dimensional 
preference was large: on average (geometric mean), the tuning ratio 
was 4.5. Using conservative Monte Carlo simulation–derived statistics  
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(Online Methods), all four data sets were statistically significant  
(J, P = 0.006; N, P = 0.030; JA, P = 0.011, NA: P = 0.021). To gain a 
sense of how the effect evolves over the course of a trial, we also mea
sured the tuning depth separately at each time point for output-null 
and output-potent dimensions (data set J shown in Fig. 4d, all data 
sets shown in Supplementary Fig. 4).

Moreover, this effect was present on a trial-by-trial basis. We per-
formed a trial-by-trial analysis, which was conceptually similar to 
our main analysis, but instead of using trial-averaged data (averaging 
over all repeats of the same condition), we preserved the data for each 
trial. The observed trial-by-trial tuning ratios were greater than unity 
for both data sets for which we had simultaneous recordings: 2.1 for 
monkey J (P = 0.027), and 2.7 for monkey N (P = 0.002). These ratios 
were smaller than those found using trial-averaged data, likely in part 
because trial-by-trial state estimation is noisier; this tends to reduce 
effect sizes. Nonetheless, these results confirm that preparatory activ-
ity is preferentially confined to the output-null dimensions even when 
trial-by-trial variability is taken into account.

Analysis of PMd to M1
Our second prediction was that this same principle might operate as 
a more general mechanism to modulate communication between one 
cortical area and another. A natural place where such a mechanism 
might operate is between PMd and M1. M1 is more tightly coupled 
to the spinal cord than is PMd, contributing approximately twice the 
number of spinal projections39. M1 exhibits preparatory activity, but 
considerably less than does PMd. We tested whether PMd might avoid 
driving M1 during preparation by confining its preparatory activity 
to the dimensions that are output-null with respect to M1.

We performed the same analysis as above, except with PMd as the 
source area (N) and M1 as the target (M). As predicted, we found that 
PMd preparatory activity lay preferentially in output-null dimensions 
with respect to M1 (Fig. 6; two data sets had sufficient recordings 
from both areas for this analysis). This was the case in both monkeys, 
with an average tuning ratio of 2.3 (JA, P = 0.017; NA, P = 0.029; 
see also Supplementary Fig. 5). Thus, these cortical areas appear to 
exploit the output-null versus output-potent distinction. However, 
this effect was not as large as that seen for PMd and M1 with respect 
to the muscles. This is consistent with the observation that M1 is 
active during movement preparation, just less so than PMd. Also in 

accordance with that observation, we found that both PMd and M1 
independently exhibited the output-null effect with respect to mus-
cles when analyzed separately (Supplementary Table 1). However, 
as analyzing PMd or M1 alone halves the data set, the results were 
less reliable.

Thus, it appears that an output-null space effect can account for 
much of the loss of preparatory activity between PMd and M1, and 
also between each area and the periphery. Moreover, this control of 
communication was specific, as expected given that PMd has stronger 
preparatory activity than M1. When the same analysis was performed 
with source and target reversed, M1 preparatory activity did not pref-
erentially lie in output-null dimensions with respect to PMd (Fig. 7a;  
mean tuning ratio 1.1; P > 0.2 for both monkeys). Along with the 
simulation results, this confirms that the analysis does not intrinsi-
cally produce tuning ratios greater than 1; in cases where no effect is 
expected, the method reports the correct value of ~1.

Basic controls
In addition to the simulations, we tested directly whether the main 
analyses were sensitive to the precise dimensionality used. For the 
cortex-to-muscles analysis, we verified that results were similar using 
a dimensionality of 2 or 4 for M   (always using twice as many dimen-
sions for N ). In 10 of 12 cases (4 data sets × 3 dimensionalities),  
we observed the expected-direction effect. In the two remaining cases, 
we obtained very small and statistically insignificant opposite-direction  
effects; we found no statistically significant opposite-direction  
effects. For the PMd-to-M1 analysis, the relevant dimensionality  
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Figure 5  Testing analysis method on simulated data. Simulations 
produced artificial neural and EMG ‘recordings’ with the desired strength 
of output-null structure (Online Methods). We ran our analysis on this 
artificial data to quantify accuracy. (a) Example real neural recording. 
Each trace shows trial-averaged response for one condition. Conditions 
color-coded according to preparatory activity level. (b) Example simulated 
neuron. Qualitatively, it exhibits similar response complexity to that of 
the real neuron. (c) Example real EMG recording; a.u., arbitrary units. 
(d) Example simulated EMG recording. Qualitatively, it exhibits similar 
response complexity to that of real muscle. (e) Analysis of data produced 
without distorting nonlinearities. Dot indicates median measured effect 
size for set of 50 simulations. Error bars encompass 68% of simulations 
(equivalent to 1 s.d.). Gray line shows unity. (f) Analysis of data distorted 
with floor effects and saturating nonlinearities. (g) Analysis of same 
data as in f, but with underlying dimensionality underestimated during 
analysis: two output-null and two output-potent dimensions instead of 
three and three. (h) Same as g, but dimensionality overestimated as 
four output-null and four output-potent dimensions. In essentially all 
cases, adding nonlinearities to the data or misestimating dimensionality 
(including unequal numbers of output-null and output-potent dimensions; 
Supplementary Fig. 3) resulted in underestimates, not overestimates, of 
true effect size. Our results are thus likely conservative. Targ, target onset; 
Move, movement onset.
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was higher: PMd and M1 both had dimensionalities of ~7–15, as 
in other data sets25,35,40. We therefore retained 14 dimensions for 
PMd in our main PMd-to-M1 analysis (this captured 64–67% of the 
variance, approximately where the variance captured per dimension 
leveled off) and 7 for M1. We verified that effects were similar with a 

PMd dimensionality of 10, 12, 16 and 18. In all 20 cases (4 data sets × 
5 dimensionalities), we observed the expected-direction effect.

Notably, the behavior in our data sets included both curved and 
straight reaches. This provided a wider variety of movements, but 
curved reaches might conceivably differ from straight reaches in some 
important way. We therefore repeated our analyses on the one-third 
of our data consisting of straight reaches (with no virtual barriers 
presented). Our effect sizes were reduced, as expected when ana-
lyzing smaller amounts of data, but the same effect direction was 
always observed. For the cortex-to-muscles analysis, the tuning ratios 
were 1.9, 2.8, 2.8* and 1.3 (data set J, N, JA, NA; *P = 0.025). For the 
PMd-to-M1 analysis, the tuning ratios were 1.5 and 2.0* (JA, NA;  
*P = 0.049). Since these effect sizes were smaller than when using the 
full range of conditions, replications of this work using only straight 
reaches would likely require a larger number of neurons to reliably 
obtain statistical significance.

Controls for interpretation
There are two possible interpretations of the above results. First, the 
activity of different neurons may appropriately co-vary (for example, 
one neuron’s rate increases while the other’s decreases, as in Fig. 2) to 
avoid prematurely causing movement. This would make the output- 
null dimensions a true population-level phenomenon, one that could 
not be observed directly by examining one neuron at a time41–43. 
Alternatively, the output-null and output-potent dimensions might 
correspond to segregated populations of neurons. That is, output-
potent dimensions might include only neurons that are quiet during 
preparation. We reiterate that our dimension identification did not use 
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preparatory activity; it used only time points when EMG activity was 
already strong (Fig. 7b; only the regression epoch was used for dimen-
sion identification). However, it remains possible that some other 
response feature of the strongly preparatory-tuned neurons excluded 
them from output-potent dimensions. If true, use of the null space 
might not be a true ‘population level’ effect; it is already well known 
that some neurons have stronger preparatory tuning than others.

To distinguish these possibilities, we measured whether strongly 
preparatory-tuned neurons mainly contributed to output-null dimen-
sions. To obtain this measurement, we multiplied each neuron’s 
contribution to the output-null dimensions by the strength of its pre-
paratory tuning, then added these values across neurons. This yields 
a measure of the total amount of preparatory tuning feeding into the 
output-null dimensions, before any canceling out. A similar number 
was produced for the output-potent dimensions. If our results were 
merely due to preparatory-tuned neurons mainly contributing to the 
output-null dimensions, we would expect the above tuning-strength 
value to be much greater for the output-null dimensions than for the 
output-potent dimensions. This was not the case. The ratio of these 
two values can be compared with our measured effect sizes (Fig. 7c). 
Across the six data sets, only ~4% of the measured effect was due to 
this kind of neuron segregation. The remaining 96% of the observed 
effect was due to the responses of different neurons canceling out 
in output-potent dimensions (as in Fig. 2). This indicates a funda-
mentally population-level effect, involving coordination across many 
neurons such that a change in the activity of one neuron is countered 
by a change in the activity of another.

The above control tells us that neurons with strong preparatory 
tuning contribute almost equally to output-null and output-potent 
dimensions. However, we still do not know the following: do separate 
sets of neurons (perhaps projection versus local neurons, or inhibitory 
versus excitatory neurons) contribute to the output-null and output-
potent dimensions? Or is the situation as in Figure 2, where the same 
neurons contribute to the output-null and output-potent dimensions, 
just with different weights? To test for segregated populations, we 
computed for each unit a space preference index, defined as how 
strongly that neuron contributed to the output-potent dimensions 
minus how strongly it contributed to the output-null dimensions, 
normalized by the sum of the two contributions. This index will be 1 
if the neuron is solely involved in output-potent dimensions, −1 if it 
is solely involved in output-null dimensions and intermediate if the 
neuron contributes to both sets of dimensions. If two distinct sets 
of neurons made up the output-null and output-potent dimensions, 
many neurons would have space preference indices near +1 or −1. In 
our data, however, the distribution of space preference indices over 
neurons (Fig. 7d and Supplementary Fig. 6) was unimodal, peaked 
at approximately zero and looked nearly identical to the distribution 
expected by chance. Individual neurons that happened to contrib-
ute more to output-null or output-potent dimensions did not show 
any systematic qualitative differences in their responses (Fig. 7e–g). 
This indicates that output-null and output-potent dimensions are not 
composed of segregated groups of neurons. Instead, they are different 
linear combinations of the same neurons.

DISCUSSION
While it was previously known that preparatory activity is in fact 
attenuated along the PMd-M1-spinal cord pathway, it was not known 
how it is attenuated5. We tested a new model, the output-null hypoth-
esis. This model posits that, even if cortical activity is related straight-
forwardly to the activity of that area’s target, it is still relatively simple 
to control communication without resorting to strong nonlinearities 

or gates: activity that should not be read out by the target can be 
structured to change only in the source area’s output-null dimen-
sions, avoiding the output-potent dimensions. While this may not 
be the only control mechanism at work, the following is clear: the 
structure of preparatory activity is such that it largely cancels out in 
the dimensions most likely to be relevant to the downstream target. 
Thus, exploitation of output-null dimensions appears to be at least 
part of the mechanism that helps to prevent premature contraction  
of the muscles during movement preparation and to modulate  
communication between motor cortical areas.

The magnitude of the effect we measured cannot account fully  
for the observed reduction of preparatory activity between cortex 
and the muscles; EMG typically shows very little preparatory activity, 
whereas the output-potent dimensions still show some. If the relation-
ship between cortex and the muscles were perfectly linear, and if we 
identified the output-null and output-potent dimensions perfectly, 
then it would be mathematically necessary that cortical preparatory 
activity only occupy output-null dimensions. In the real data, effects 
were not this strong, yet the output-null mechanism accounted for 
more than 75% of the reduction. This is consistent with a relationship 
between cortex and muscles that is not too far from linear in our task. 
While other mechanisms, such as target gating, may be important, 
use of output-null dimensions greatly reduces the burden on other 
possible mechanisms.

M1 also receives many inputs from areas other than PMd. Some  
of these other inputs are likely rich in preparatory activity, too, but 
others may not be. It therefore might have been that preparatory  
signals from PMd were simply diluted out in M1. However, given the 
strong PMd-to-M1 projection, it made sense to ask whether there is 
an output-null effect. Our data suggest that there is. It is thus likely 
that this is one of the reasons that M1 has less preparatory activity 
than PMd.

The idea of output-potent dimensions helps make sense of several 
previously puzzling facts. For example, individual neurons44, even 
corticomotor neurons45–47, exhibit heterogeneous patterns of activity 
that often do not resemble muscle responses. Instead, the net input 
that the lower motor neurons and muscles receive is likely a weighted 
sum of these neurons’ responses34,47,48. This diverse group of neu-
rons could thus contribute to movement generation even though the 
individual responses do not resemble muscle activity. While indi-
vidual neurons may exhibit confusing responses, the population-level, 
dynamical systems view may provide insight about how a circuit  
performs its key computations37,38,43.

It has also been known for some time that preparatory activity 
in neurons does not correlate strongly with movement-epoch activ-
ity25–28. This is inconsistent with the view of preparatory activity as a 
subthreshold version of movement activity. However, in light of the 
output-null hypothesis, this finding makes sense: movement activity 
should be largely orthogonal to preparatory activity, and thus this 
poor correlation should be expected. Notably, though, this orthogo-
nality does not imply that preparatory activity is unrelated to the 
upcoming movement activity. As recently shown25,38, and as seen 
here (Fig. 3b), the preparatory state is correlated with the phase and 
amplitude of the subsequent neural trajectory during movement. This 
relationship is clear at the population level, even though it is hidden 
at the single-neuron level. This may allow M1 and PMd to ‘set up’  
the neural trajectory that will be needed to produce the correct  
movement25,35,37,38.

In the dynamical systems view37, this setting up unfolds as follows. 
When preparation begins, neural activity goes from a relatively less con-
trolled baseline state to a relatively more controlled state14, remaining  
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within the output-null dimensions throughout. This preparatory pro
cess appears to be necessary, even if the preparatory trajectory can 
differ under different circumstances49: when preparation is absent14,49, 
disrupted17 (O’Shea, D.J.  et al., Soc. Neurosci. Abstr. 750.13, 2013) 
or incorrect49, reaction time is slowed relative to that of a ‘correctly’ 
prepared reach. Moreover, trial-by-trial differences in hand speed16 
and movement timing50 depend on details of the preparatory state. 
After preparation, a presently unidentified mechanism enables active 
dynamics. These dynamics are simple and strongly rotational, and 
produce the movement-epoch neural trajectory38. This portion of the 
neural trajectory travels through both output-null and output-potent 
dimensions, but the present results suggest that only output-potent 
dimensions drive the spinal cord and muscles.

Why, though, should neural activity change in output-null dimen-
sions during movement? We speculate that, to achieve the required 
neural trajectory in output-potent dimensions, it may be necessary 
to exploit output-null dimensions as well. For example, to describe 
the pendulum in a grandfather clock, it is not enough to know the 
position; when the pendulum is centered, it could be swinging either 
left or right. The oscillation of a second variable (velocity), out of 
phase with the position, is needed. If position forms an output-
potent dimension (because it drives the clock), then velocity forms 
an output-null dimension: it is needed to produce the sine wave in 
position but does not drive the clock directly. In the motor cortices,  
having output-null dimensions available might make it possible  
to have simpler, smoother, less nonlinear dynamics, which would 
be consistent with the smooth tuning curves exhibited by neurons 
in these areas25,38. Somehow the cortex must learn how to attain 
preparatory activity patterns that initialize the dynamics while 
remaining in the output-null dimensions; how it does so is a topic 
for future research.

The present results do not rule out contributions by other mecha-
nisms, such as nonlinearities in the spinal cord, in preventing pre-
paratory activity from causing movement. However, the magnitudes 
of the effects shown here do imply that the output-null mechanism 
likely forms a major component in producing this functionality. 
Nonlinearities are almost certainly present in the system, but, given 
the present results, they need not be the primary mechanism for con-
trolling functional connectivity in the motor system. Even without 
relying on nonlinearities, it appears that these brain areas ‘know’ how 
to communicate or keep to themselves.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Subjects. Animal protocols were approved by the Stanford University Institutional 
Animal Care and Use Committee. Subjects were two adult male macaque monkeys  
(Macaca mulatta), J and N, trained to perform a delayed reach task on a fronto-
parallel screen for juice reward. Use of two monkeys is standard practice in the 
field. In a sterile surgery, the monkeys were implanted with a head restraint and 
standard recording cylinder located over M1 and caudal PMd. After single- 
electrode recordings were completed, EMG data were recorded, then two  
96-electrode silicon arrays (Blackrock Microsystems, Salt Lake City, UT) were 
implanted in M1 and caudal PMd (estimated from local anatomical landmarks) 
of each monkey (Supplementary Fig. 7).

Task apparatus and design. Our basic methods have been described previ-
ously14,28. Both monkeys performed a variant of the center-out delayed-reach 
task, called the ‘maze’ task. This task required both straight reaches and reaches 
that curved around virtual barriers. Here the maze task simply provides a way 
of evoking a variety of reaches (27 or 108 conditions, depending on data set), 
providing a large set of patterns of neural and muscle activity. Each monkey saw 
the same mazes every day and performed highly consistent movements during 
the entire data collection period (4–9.5 months; Supplementary Fig. 2).

For monkey J, each 108-condition data set consisted of four sub-datasets of 
different mazes (27 conditions per sub-dataset). These sub-datasets were analyzed 
separately and the results averaged to obtain the reported values.

Neural recordings and EMG. Neural and EMG recordings were performed using 
previously described techniques14,28. Neural recordings were made in the range 
of medio-lateral locations that best produced shoulder or upper arm movements 
when microstimulation was delivered. Data sets J25,33,38 and N33,38 have appeared 
in previous work, as have subsets of JA25,38 and NA38. For the four data sets  
(J, N, JA, NA), 197, 107, 192 or 118 units passed tuning criteria for the cortex-to-
muscles analyses: 3 spikes/s during preparation and 5 spikes/s during movement, 
assessed as firing rate range across conditions. For the PMd-to-M1 analyses, 95 
(120) neurons [JA (NA)] for PMd and 97 (103) neurons for M1 passed tuning 
criteria. Results were similar when no preparatory tuning criterion was used. All 
single-electrode recordings were from well-isolated single units, and the number 
of recordings was set before these analyses were formulated. For array recordings, 
spike sorting was performed offline using a custom software package (now avail-
able online as MKsort; https://github.com/ripple-neuro/mksort/); both single 
units (JA, 47; NA, 22) and stable multi-unit isolations were included. The median 
number of trials per condition was 13, 11, 18 or 48 (J, N, JA, NA), dictated by how 
long stable recordings could be maintained. When array data sets were combined, 
data from the single best recording day were used for any given electrode.

For monkey J, percutaneous EMG recordings were made from trapezius, latis-
simus dorsi, pectoralis, triceps brachii, medial and lateral aspects of the biceps 
brachii and from anterior, medial and posterior aspects of the deltoid. For monkey 
N, EMG recordings were made from proximal, middle and distal aspects of the 
trapezius, latissimus dorsi, pectoralis, triceps brachii, medial and lateral aspects 
of the biceps and from anterior, medial and posterior aspects of the deltoid. 
Recordings from the triceps (both monkeys) and latissimus dorsi (monkey N) 
were modulated very weakly during the task and were therefore excluded from 
subsequent analyses.

Working hypothesis. We begin with three conditions that must hold for our  
analysis to produce a positive result. Condition 1: activity of neurons in M1 and 
PMd causally affects muscle activity via indirect and/or direct connections, and 
the descending command signals include some spatiotemporal details of the 
muscle activity. Condition 2: before or within the spinal cord, descending signals 
converge and produce a net motor command that is approximately (perhaps very 
approximately) a linear combination of the individual-neuron signals. Condition 3:  
the relationship between neural and muscle activity is similar during movement 
preparation and actual movement (for example, there is no dramatic gating in 
the impact of descending signals between these two epochs).

If these conditions hold, the below predictions follow; the final prediction 
is tested directly. First, we should be able to identify the linear combinations of 
neurons that influence the muscles (output-potent dimensions) via linear regres-
sion between neural data and EMG (because the relationship is quasi-linear). 
Second, not all changes in neural activity should influence the muscles because 

most linear combinations of neurons do not affect the output-potent dimensions. 
Finally, in the absence of nonlinearities or time-varying gating mechanisms, any 
preparatory activity in M1 and PMd must remain in the output-null dimensions 
to avoid causing movement.

If any of the three conditions above were substantially violated, the analysis 
would have returned a negative result. If condition 1 were violated (if neural 
activity did not contain details of muscle activity), we would identify random 
dimensions as output-null and output-potent and would see similar levels of 
preparatory activity in both sets of dimensions. If conditions 2 or 3 were violated  
(nonlinearity or nonstationarity), there would be no reason for preparatory  
activity to avoid output-potent dimensions.

PCA and preprocessing of data. To compare neural activity with EMG, we con-
structed two data matrices: N and M. N contained neural data and was of size 
n by ctpv, with n the number of neurons, c the number of conditions and tpv the 
number of time points per condition during preparation (−100 to 400 ms from 
target onset) and movement (−50 to 600 ms from movement onset; Fig. 7b and 
Supplementary Fig. 8). Time points were spaced 10 ms apart. M contained EMG 
data and was of size m by ctv, with m the number of muscle recordings and tv 
the number of time points during movement. Following standard procedures 
to prepare for principal component analysis (PCA), each row of N and M was 
normalized by its range (maximum minus minimum across all times and condi-
tions) and the row means were subtracted off. To accommodate the known lag 
between motor cortical activity and muscle activity, M was advanced by 50 ms 
relative to N (refs. 34,46); the movement period for the muscle data therefore 
began at movement onset.

To obtain the low-dimensional model (equation (2)), we performed PCA on 
N and M. PCA produces a new matrix, with (fewer) rows that are linear combi-
nations of the original rows and that capture the maximum variance possible. 
That is, 

	  	           N PN M QM≈ ≈, � (3)

where P and Q are coefficients matrices resulting from PCA performed on N and 
M. Because PCA is linear, the low-dimensional model still satisfies the original 
goal: muscle activity is specified as a linear combination of neurons’ activities. 
To demonstrate this formally, substituting and rearranging equations (2) and (3)  
yields M Q WPN≈ *  , where Q* is the pseudoinverse of Q. Since Q WP*    
simplifies to a matrix, M and N are related linearly in the low-dimensional model 
(modulo the residuals lost in PCA), as intended.

For a later step, M must have half as many rows as N . Therefore, the first 
k rows of P and k/2 rows of Q were retained. This value k was chosen as 6, dis-
cussed below.

Intuitively, PCA identifies natural patterns of covariation in the neural or EMG 
data. For EMG recordings, these patterns are traditionally referred to as “muscle 
synergies”51. The final result of preprocessing is well-behaved matrices M  and N  
that can be used to identify putative output-null and output-potent dimensions.

When performing the output-null analysis from PMd to M1, the procedure 
differed in three ways from the above description. First, N contained only the 
PMd data and M contained the M1 data. Second, k, the dimensionality of N , 
was set to 14. Finally, no lag was used between the data in N and M (the epoch 
used was −50 to 600 ms for both).

Output-null analysis. In the computations below, we first identified the weighted 
sums of neurons (neural dimensions) that appear most likely to activate the 
muscles; that is, output-potent dimensions. This was accomplished by finding 
dimensions in which neural activity during the movement period resembles EMG 
activity. We then determined whether, as predicted, neural activity during the 
delay period avoids these output-potent neural dimensions.

A formal explanation follows. We assumed the linear model from  
equation (1): M = WN. Since N is nearly rank-deficient, we reduced the dimen-
sionality of the data as described above; we obtain equation (2):   M WN= . 
Because all data is trial-averaged, no noise term is necessary. M  and N  are 
data matrices, so W  can be found directly (see next section). W  is our estimate 
of the mapping from neural to muscle activity. Critically, W  is found using move-
ment data only.

The output-potent dimensions are then the row space of W, denoted Wpotent .  
The output-null dimensions are the null space of W , denoted Wnull . The row 
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space and null space were found using singular value decomposition. We then 
found the projections into the output-null and output-potent spaces 

	   N W Nnull null preparatory= � (4) 
 	

  N W Npotent potent preparatory=
�

(5) 

Finally, we assessed how strongly ‘tuned’ neural activity was (how strongly it 
varied across time and condition) in the output-null and output-potent dimen-
sions. This measure was 

	
tuningratio null

potent
= ⋅1 2

2g
|| ||
|| ||




N
N

F

F
� (6)

in which || ||⋅ F
2  indicates the squared Frobenius norm of a matrix (that is, each 

element of the matrix is squared, then all these values are summed). To make 
the Frobenius norm equivalent to variance, we subtracted off each row’s mean 
from Nnull  and Npotent  before taking the norm. As a technical point, for the 
ratio to be meaningful the norms should be taken on matrices with the same 
number of elements; this is why the dimensionality of M  was chosen as k/2 
during preprocessing.

A normalization term (1/γ), derived from the data, helped ensure that the 
initial dimensionality reduction step could not “build in” a result. The term  
was found to be important in case there were unequal numbers of (real,  
underlying) output-null and output-potent dimensions (Supplementary Fig. 3).  
γ was defined as 

	
g = || ||

|| ||

 

 
W N
W N

F

F

null movement

potent movement

2

2

That is, γ  was the main measure taken on the movement epoch data. This defines 
the ‘natural’ scaling of the row space and null space in the data. 1/γ ranged 
from 1.17 to 1.74, and all results were in the same direction without this term 
(Supplementary Figs. 9 and 10).

Importantly, the tuning ratio is expected to be greater than 1 if the central 
hypothesis, including its basic assumption of approximate linearity, is roughly 
correct. If the central hypothesis is not roughly correct, there is no expectation 
that the tuning ratio should be greater than 1. This is underscored by a variety 
of simulations (see below).

Finding W . To avoid overfitting, we used regularized regression (ridge 
regression) on the low-dimensional data (equation (2)) to find W . Again, only  
peri-movement data were used in this regression. The regularization parameter 
was chosen via cross-validation. The regressions accounted for an average of 
65% of the variance of M using  WN . The three output-null dimensions corre-
lated, as expected, less well with EMG activity (mean R2 = 0.18 for output-null 
versus R2 = 0.60 for output-potent). These values were modest both because 
the regression was performed on low-dimensional data and because regulariza-
tion was used.

Note that W contains both positive and negative coefficients. Some of the 
negative coefficients likely reflect real net inhibition on the muscles, either 
because the neurons themselves are inhibitory or because of intervening 
inhibitory interneurons. However, since the mean is subtracted off from each 
neuron’s firing rate before PCA, negative coefficients can simply mean that 
a neuron is modulated below its baseline. In addition, if a neuron a tends to 
anti-vary with a neuron p that has a net positive effect on the muscles, a will 
receive a negative coefficient—even though it does not itself have a direct 
effect on the muscles.

Statistics. For our main statistical measure, a Monte Carlo simulation was  
performed in which dimensions in the low-dimensional neural space were  
chosen randomly as output-null or output-potent and then the tuning ratio  
for this random partitioning was measured. This was repeated 10,000 times to 
generate a distribution of random effect sizes. This process estimates the like
lihood that a given effect size (that is, an apparent avoidance of output-potent 
dimensions during the preparatory period) would occur by chance. The distri-
bution of random effect sizes was then compared with the size of the measured 
effect. This class of statistical method generates a ‘null hypothesis’ distribution but 
not error bars, which is why error bars are not shown in Figures 4c or 6c.

For display purposes only (Figs. 4d and 6d), a separate bootstrap statistic was 
used. We asked whether a small number of outlier conditions could somehow 
be driving our effects. We therefore resampled conditions at the final step (after 
PCA and space identification) and recomputed our measure.

Trial-by-trial output-null analysis. For this analysis, instead of using  
trial-averaged data, we preserved the data for each trial. Thus N and M were 
wider than in the main analysis, by a factor equal to the number of trials  
per condition. We used factor analysis instead of PCA to reduce the neural 
dimensionality, as PCA is inappropriate for single-trial data52. Larger bins of 
60 ms were required; the time points used were −120 to 360 ms from target 
onset and 0 to 660 ms from movement onset. Because simultaneous EMG 
data were not available and movements were highly consistent, we repeated 
the mean EMG as a proxy for trial-by-trial EMG in the regression step. This 
analysis required large-scale simultaneous neural recordings, and therefore 
only the array data sets (JA, NA) were used. Because factor analysis requires 
a large amount of data per dimension estimated, this analysis could only be 
performed for the cortex-to-muscle case.

Simulation details. We created simulated neural and EMG data containing  
varying, known levels of output-null structure. We first produced random  
vectors with the desired structure in low-dimensional space. One set of  
vectors was chosen for preparation (one per condition) and then another set  
of vectors was chosen for movement (three vectors per condition, to use as  
waypoints for the time-varying movement activity). All dimensions of these  
data were randomly projected out as simulated ‘neurons’; output-potent dimen-
sions (only) were randomly projected out as simulated ‘muscles’. Both neurons  
and muscles then received a baseline offset, and the resulting firing rates  
were cubic spline interpolated and rectified to form a PSTH-like time course 
resembling the real data.

To match the real data’s noise level after smoothing, noise was added from 
a second-order Γ function with 11 trials per neuron per condition, or fourth-
order Γ function with 11 trials per muscle per condition. As in the real data,  
27 conditions were simulated. Simulated muscle recordings were delayed by 50 ms  
relative to simulated neurons. When nonlinearities were required (Fig. 5f–h and 
Supplementary Fig. 3) the mean firing rates for neurons and muscles were cho-
sen to be near zero, causing floor effects, and a weakly saturating nonlinearity 
was simulated by raising neural firing rates and muscle responses to the power 
of 0.8. Simulations were run 50 times for each parameter set.

The simulated data also allowed us to assess the impact of the 1/γ term. 
This normalization made the analysis both more precise and more accurate 
(Supplementary Fig. 3), especially when simulating unequal numbers of  
output-null and output-potent dimensions.

In addition, we asked whether standard models of motor cortex might 
incidentally yield results similar to what we found in the data. We therefore 
performed the output-null analysis on data generated from a ‘velocity-tuned’ 
model. This model produced simulated neurons that were tuned for hand 
velocity and speed during movement53–55 and endpoint during preparation 
(this model has been used previously25,38). This model implicitly assumes a 
gating mechanism, as there is an unexplained transition between preparatory 
and movement activity. Activity was structured to have preparatory and move-
ment tuning with a low correlation, as in the real data. Firing rate distributions 
for the simulated neurons were based on real data sets. When the output-null 
analysis was performed on this model, it did not produce consistent positive 
results. This confirms that our effects are not simply an incidental consequence 
of velocity tuning.

Brief proof that changes in tuning between preparation and movement are 
likely, but neither necessary nor sufficient, to demonstrate use of output-null 
dimensions. Confining preparatory activity to output-null dimensions tends to 
produce neurons with ‘mismatched’ tuning between preparation and movement 
(see Fig. 2). However, mismatched tuning is neither necessary nor sufficient to 
indicate that an output-null mechanism is at work; this is why our main analysis 
was needed.

A counterexample to necessity follows. Imagine that output-null dimensions 
had ‘matched’ tuning and contained most of the total variance. Most neurons 
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would be dominated by the high-variance output-null activity. The correlation 
between preparatory and movement tuning would therefore remain large.

Regarding sufficiency, consider Figure 3b. Imagine that the neural data 
spanned only these two dimensions and that the variance ellipse for prepara-
tion was a circle. The rotational structure during movement indicates that there 
is still mismatched tuning, as after 180° of rotation the tuning has inverted. 
But, if preparatory activity equally spans both dimensions (and there are only  
two dimensions), then an output-null mechanism cannot be at work. Thus, 
mismatched tuning is insufficient to indicate an output-null mechanism.
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