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SUMMARY

We easily recognize objects and faces across a
myriad of retinal images produced by each object.
One hypothesis is that this tolerance (a.k.a. “invari-
ance”) is learned by relying on the fact that object
identities are temporally stable. While we previously
found neuronal evidence supporting this idea at the
top of the nonhuman primate ventral visual stream
(inferior temporal cortex, or IT), we here test if this
is a general tolerance learning mechanism. First, we
found that the same type of unsupervised experience
that reshaped IT position tolerance also predictably
reshaped IT size tolerance, and the magnitude of
reshaping was quantitatively similar. Second, this
tolerance reshaping can be induced under naturally
occurring dynamic visual experience, even without
eye movements. Third, unsupervised temporal con-
tiguous experience can build new neuronal toler-
ance. These results suggest that the ventral visual
stream uses a general unsupervised tolerance
learning algorithm to build its invariant object repre-
sentation.

INTRODUCTION

Our ability to recognize objects and faces is remarkably tolerant
to variation in the retinal images produced by each object. That
is, we can easily recognize each object even though it can
appear in different positions, sizes, poses, etc. In the primate
brain, the solution to this “invariance” problem is thought to be
achieved through a series of transformations along the ventral
visual stream. At the highest stage of this stream, the inferior
temporal cortex (IT), a tolerant object representation is obtained
in which individual IT neurons have a preference for some
objects (“selectivity”) over others, and this rank-order prefer-
ence is largely maintained across identity-preserving image
transformations (Ito et al., 1995; Logothetis and Sheinberg,
1996; Tanaka, 1996; Vogels and Orban, 1996). Though most IT
neurons are not strictly “invariant” (DiCarlo and Maunsell,
2003; Ito et al., 1995; Logothetis and Sheinberg, 1996; Vogels

and Orban, 1996), reasonably sized populations of these so-
called “tolerant” neurons can support object recognition tasks
(Afraz et al., 2006; Hung et al., 2005; Li et al., 2009). However,
we do not yet understand how IT neurons construct this tolerant
response phenomenology.

One potentially powerful idea is that time can act as an implicit
teacher, in that the temporal contiguity of object features during
natural visual experience can instruct the learning of tolerance,
potentially in an unsupervised manner (Foldiak, 1991; Masque-
lier et al., 2007; Masquelier and Thorpe, 2007; Sprekeler et al.,
2007; Stryker, 1991; Wiskott and Sejnowski, 2002; Wyss et al.,
2006). The overarching logic is as follows: during natural visual
experience, objects tend to remain present for seconds or
more, while object motion or viewer motion (e.g., eye move-
ments) tend to cause rapid changes in the retinal image cast
by each object over shorter time intervals (hundreds of ms). In
theory, the ventral stream could construct a tolerant object
representation by taking advantage of this natural tendency for
temporally contiguous retinal images to belong to the same
object, thus yielding tolerant object selectivity in IT cortex. A
recent experimental result in adult nonhuman primate IT has
provided some neuronal support for this temporal contiguity
hypothesis (Li and DiCarlo, 2008). Specifically, we found that
alterations of unsupervised experience of temporally contiguous
object image changes across saccadic eye movements can
induce rapid reshaping (within hours) of IT neuronal position
tolerance (i.e., a reshaping of each IT neuron’s ability to respond
with consistent object selectivity across the retina). This IT
neuronal learning likely has perceptual consequences because
similar temporal contiguity manipulations of eye-movement-
driven position experience can produce qualitatively similar
changes in the position tolerance of human object perception
(Cox et al., 2005).

However, these previous studies have two key limitations.
First, they only uncovered evidence for temporal contiguity
learning under a very restricted set of conditions: they showed
learning effects only in the context of eye movements, and
they only tested one type of tolerance—position tolerance.
Because eye movements drive a great deal of the image statis-
tics relevant only to position tolerance (temporally contiguous
image translations), the previous results could reflect only a
special case of tolerance learning. Second, the previous studies
did not directly show that temporally contiguous image statistics
can build new tolerance, but only showed that alterations of
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Figure 1. Experimental Design and Prediction

(A) IT selectivity was tested in the Test Phases whereas animals received experience in the altered visual world in the Exposure Phases.

(B) The chart shows the full exposure design for a single IT site in Experiment I. Arrows show the temporal contiguity experience of retinal images (arrow heads
point to the retinal images occurring later in time, e.g., A). Each arrow shows a particular exposure event type (i.e., temporally linked images shown to the animal),
and all eight exposure event types were shown equally often (randomly interleaved) in each Exposure Phase.

(C) Prediction for IT responses collected in the Test Phase: if the visual system builds size tolerance using temporal contiguity, the swap exposure should cause
incorrect grouping of two different object images (P and N). The qualitative prediction is a decrease in object selectivity at the swap size (images and data points
outlined in red) that grows stronger with increasing exposure (in the limit, reversing object preference as illustrated schematically here), and little or no change in
object selectivity at the non-swap size. The experiment makes no quantitative prediction for the selectivity at the medium size (gray oval, see text).

those statistics can disrupt normal tolerance. Because of these
limitations, we do not know if the naive ventral stream uses
a general, temporal contiguity-driven learning mechanism to
construct its tolerance to all types of image variation.

Here, we set out to test the temporal contiguity hypothesis in
three ways. First, we reasoned that, if the ventral stream is using
temporal contiguity to drive a general tolerance-building mecha-
nism, alterations in that temporal contiguity should reshape other
types of tolerance (e.g., size tolerance, pose tolerance, illumina-
tion tolerance), and the magnitude of that reshaping should be
similar to that found for position tolerance. We decided to test
size tolerance, because normal size tolerance in IT is much better
described (Brincat and Connor, 2004; Ito et al., 1995; Logothetis
and Sheinberg, 1996; Vogels and Orban, 1996) than pose or
illumination tolerance. Our experimental logic follows our
previous work on position tolerance (Cox et al., 2005; Li and Di-
Carlo, 2008). Specifically, when an adult animal with a mature
(e.g., size-tolerant) object representation is exposed to an
altered visual world in which object identity is consistently swap-
ped across object size change, its visual system should learn
from those image statistics such that it predictably “breaks”
the size tolerance of that mature object representation.
Assuming IT conveys this object representation (Afraz et al.,
2006; Hung et al., 2005; Logothetis and Sheinberg, 1996;
Tanaka, 1996), that learning should result in a specific change
in the size tolerance of mature IT neurons (Figure 1).

Second, many types of identity-preserving image transforma-
tions in natural vision do not involve intervening eye movements
(e.g., object motion producing a change in object image size). If

Neuron 67, 1062-1075, September 23, 2010 ©2010 Elsevier Inc.

the ventral stream is using a general tolerance-building mecha-
nism, we should be able to find size tolerance reshaping even
without intervening eye movements, and we should also be
able to find size tolerance reshaping when the dynamics of the
image statistics mimic naturally occurring image dynamics.

Third, our previous studies (Cox et al., 2005; Li and DiCarlo,
2008) and our first two aims above use the breaking of naturally
occurring image statistics to try to break the normal tolerance
observed in IT (i.e., to weaken existing IT object selectivity in a
position- or size-specific manner; Figure 1). Such results support
the inference that naturally occurring image statistics instruct the
“building” of that tolerance in the naive ventral stream. However,
we also sought to test that inference more directly by looking for
evidence that temporally contiguous image statistics can build
new tolerance in IT neurons with immature tolerance (i.e., can
produce an increase in existing IT object selectivity in a position-
or size-specific manner).

Our results showed that targeted alterations in the temporal
contiguity of visual experience robustly and predictably re-
shaped IT neuronal size tolerance over a period of hours. This
change in size tolerance grew gradually stronger with increasing
visual experience, and the rate of reshaping was very similar to
previously reported position tolerance reshaping (Li and DiCarlo,
2008). Second, we found that the size tolerance reshaping
occurred without eye movements, and it occurred when the
dynamics of the image statistics mimicked naturally occurring
dynamics. Third, we found that exposure to “broken” temporal
contiguity image statistics could weaken and even reverse the
previously normal IT object selectivity at a specific position or
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size (i.e., exposure could break old correct tolerance and build
new “incorrect” tolerance), and that naturally occurring temporal
contiguity image statistics could build new, correct position or
size tolerance. Taken together with previous work, these results
argue that the ventral stream uses unsupervised, natural visual
experience and a common learning mechanism (a.k.a. unsuper-
vised temporal tolerance learning, or UTL) to build and maintain
its tolerant (invariant) object representation.

RESULTS

In three separate experiments (Experiments I, I, lll), two
unsupervised nonhuman primates (Rhesus monkeys, Macaca
mulatta) were exposed to altered visual worlds in which we
manipulated the temporal contiguity statistics of the animals’
visual experience with object size (Figure 1A, Exposure Phases).
In each experiment, we recorded multiunit activity (MUA) in an
unbiased sample of recording sites in the anterior region of IT
to monitor any experience-induced change (Figure 1A, Test
Phases). Specifically, for each IT site, a preferred object (P)
and a less-preferred object (N) were chosen based on testing
of a set of 96 objects (Figure 1B). We then measured the baseline
IT neuronal selectivity for P and N at three retinal sizes (1.5°, 4.5°,
and 9°) in a Test Phase (~10 min) by presenting the object
images in a rapid but naturally paced sequence (5 images/s)
on the animals’ center of gaze. For all the results below, we
report selectivity values determined from these Test Phases,
which we conducted both before and after experience manipu-
lations. Thus, all response data shown in the results below
were collected during orthogonal behavioral tasks in which
object identity and size were irrelevant (Supplemental Experi-
mental Procedures available online).

Consistent with previous reports (Kreiman et al., 2006), the
initial Test Phase data showed that each IT site tended to main-
tain its preference for object P over object N at each size tested
here (Figures 3 and S3 available online). That is, most IT sites
showed good, baseline size tolerance. Following the logic out-
lined in the Introduction, the goal of Experiments I-lll was to
determine if consistently applied, unsupervised experience
manipulations would predictably reshape that baseline size
tolerance of each IT site (see Figure 1 for the basic prediction).
In particular, we monitored changes in each IT site’s preference
for object P over N at each of the three objects sizes, and any
change in that selectivity following experience that was not
seen in control conditions was taken as evidence for an experi-
ence-induced reshaping of IT size tolerance.

In each experiment, the key experience manipulation was
deployed in one or more Exposure Phases that were all under
precise, automated computer-display control to implement
spatiotemporally reliable experience manipulations (see Experi-
mental Procedures). Specifically, during each Exposure Phase
the animals freely viewed a gray display monitor on which
images of object P or N intermittently appeared at randomly
chosen retinal positions away from the center of gaze (object
size: 1.5°, 4.5°, or 9°). The animals almost always looked to
foveate each object (>95% of object appearances) within
~124 ms (mean; median, 109 ms), placing the object image on
the center of gaze. Following that object acquisition saccade,
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we reliably manipulated the visual experience of the animals
over the next 200-300 ms. The details of the experience manip-
ulation (i.e., which object sizes where shown and the timing of
those object images) were different in the three experiments,
but all three experiments used the same basic logic outlined in
the Introduction and in Figure 1.

Experiment I: Does Unsupervised Visual Experience
Reshape IT Size Tolerance?

In Experiment |, following the object acquisition saccade, we left
the newly foveated object image unchanged for 100 ms, and
then we changed the size of the object image (while its retinal
position remained on the animal’s center of gaze) for the next
100 ms (Figure 1A). We reasoned that this creates a temporal
experience linkage (“exposure event”) between one obiject
image at one size and another object image at another size.
Importantly, on half of the exposure events, one object was
swapped out for the other object: for example, a medium-sized
(4.5°) object P would become a big (9°) object N (Figure 1A,
“swap exposure event”). As one key control, we also exposed
the animal to more normal exposure events in which object
identity did not change during the size change (Figure 1A,
“non-swap exposure event”). The full exposure design for one
IT site is shown in Figure 1B; the animal received 800-1600
swap exposures within the time period of 2-3 hr. Each day, we
made continuous recordings from a single IT site, and we always
deployed the swap exposure at a particular object size (either
1.5°0r9°,i.e., swap size) while keeping the other size as a control
(i.e., non-swap size). Across different IT sites (i.e., different
recording days), we strictly alternated the object size at which
swap manipulation took place so that object size was counter-
balanced across our recorded IT population (n = 27).

UTL theory makes the qualitative prediction that the altered
experience will induce a size-specific confusion of object identity
in the IT response as the ventral stream learns to associate the
temporally linked images. In particular, our exposure design
should cause the IT site to reduce its original selectivity for
images of object P and N at the swap size (perhaps even
reversing that selectivity in the limit of large amounts of experi-
ence; Figure 1C, red). UTL is not currently specific enough to
make a quantitative prediction of what this altered experience
should do for selectivity among the medium object size images
because those images were temporally paired in two ways:
with images at the swap size (altered visual experience) and
with the images at the non-swap size (normal visual experience).
Thus, our key experimental prediction and planned comparison
is between the selectivity (P versus N) at the swap and non-swap
size: we predict a selectivity decrease at the swap size that
should be much larger than any selectivity change at the non-
swap object size (Figure 1C, blue).

This key prediction was born out by the data: as the animals
received experience in the altered visual world, IT selectivity
among objects P and N began to decrease at the swap size,
but not at the control size. This change in selectivity grew
stronger with increasing experience over the time course of
2-3 hr (Figure 2A). To quantify the selectivity change, for each
IT site, we took the difference between the selectivity (P — N,
response difference in units of spikes/s, see Experimental
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Phase, excluding any middle Test Phase data. Hence, not all
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**p < 0.01; n.s. p > 0.05.

(C) For each IT site (n = 27), we fit aline (linear regression) to the
(P — N) data as a function of the number of exposure events
(insert). We used the slope of the line fit, As(P — N), to quantify
the selectivity change. The As(P — N) is a measure that lever-
ages all our data while normalizing out the variable of exposure
amount [for sites with only two Test Phases, As(P — N) equals
A(P — N)]. As(P — N) was normalized to show selectivity
change per 800 exposure events. Error bars indicate the
standard error of the procedure to compute selectivity
(Supplemental Experimental Procedures). M1, monkey 1;
M2, monkey 2.
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Procedures) in the first (pre-exposure) and last Test Phase. This
A(P — N) sought to quantify the total amount of selectivity change
for each IT site induced by our experience manipulation. On
average, there was a significant decrease in selectivity at the
swap size (Figure 2B, p < 0.0001, two-tailed t test against 0)
and no significant change at the non-swap control size
(Figure 2B, p = 0.89). Incidentally, we also observed a significant
decrease in selectivity at the medium size (p = 0.002). This is not
surprising given that the images at the medium object size were
exposed to the altered statistics half of the time when they were
temporally paired with the images at the swap size. Because no
prediction was made about the selectivity change at the medium
size, we concentrate below on the planned comparison between
the swap and non-swap size. We statistically confirmed the size
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100 ms

swap size (p < 0.001, two-tailed), and (2) a signifi-
cant interaction of “exposure X object size” on
the raw selectivity measurements (P — N)—that is,
IT selectivity was decreased by exposure only at
the swap size (p = 0.0018, repeated-measures
ANOVA; p = 0.006, bootstrap, see Supplemental
Experimental Procedures).

To ask if the experience-induced selectivity
change was specific to the manipulated objects
or the features contained in those objects, we
also tested each IT site’s responses to a second
pair of objects (P’ and N’, control objects; see
Experimental Procedures). Images of these control
objects at three sizes were tested together with the swap objects
during all Test Phases (randomly interleaved), but they were not
shown during the Exposure Phase. On average, we observed no
change in IT selectivity among these unexposed control objects
(Figure S4). This shows that that the experience-induced reshap-
ing of IT size tolerance has at least some specificity for the expe-
rienced objects or the features contained in those objects.

We next set out to quantify the amount of IT size tolerance
reshaping induced by the altered visual experience. Because
each IT site was tested for different amounts of exposure time
(due to experimental time constraints), we wanted to control
for this and still leverage all the data for each site to gain maximal
power. To do so, we fit linear regressions to the (P — N) selectivity
of individual sites at each object size (Figure 2C, insert). The
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slope of the line fit, which we will refer to as As(P — N), provided
us with a sensitive, unbiased measure of the amount of selec-
tivity change that normalizes the amount of exposure experi-
ence. The As(P — N) for the swap size and non-swap size is
shown in Figures 2C and 2D, which qualitatively confirmed
the result obtained in Figure 2B (using the simple measure of
selectivity change), and showed a mean selectivity change of
—9.2 spikes/s for every 800 swap exposure events.

Importantly, we note that this reshaping of IT tolerance was
induced by unsupervised exposure to temporally linked images
that did not include a saccadic eye movement to make that link
(Figure 1A). We also considered the possibility that small inter-
vening microsaccades might still have been present, but found
that they cannot account for the reshaping (Figure S7). The
size specificity of the selectivity change also rules out alternative
explanations such as adaptation, which would not predict this
specificity (because our exposure design equated the amount
of exposure for both the swap and non-swap size). We also
found the same amount of tolerance reshaping when the sites
were grouped by the physical object size at which we deployed
the swap (1.5° versus 9°, p = 0.26, t test). Thus the learning is
independent of low-level factors like the total luminance of the
swapped objects. In sum, we found that unsupervised, tempo-
rally linked experience with object images across object size
change can reshape IT size tolerance.

Experiment ll: Does Size Tolerance Learning Generalize
to the “Natural” Visual World?

In the natural world, objects tend to undergo size change
smoothly on our retinas as a result of object motion or viewer
motion, but, in Experiment | (above), the object size changes
we deployed were discontinuous: one image of an object was
immediately replaced by an image of another object with no
smooth transition (Figure 2, top). Therefore, although those
results show that unsupervised experience with object images
at different sizes linked in time could induce the predicted IT
selectivity change, we wanted to know if that learning was also
found during exposure to more natural (i.e., temporally smooth)
image dynamics.

To answer this question, we carried out a second experiment
(Experiment 1l) in which we deployed essentially the same
manipulation as Experiment | (object identity changes during
object size changes, no intervening eye movement), but with
natural (i.e., smooth-varying) stimulus sequences. The dynamics
in these movie stimuli were closely modeled after the kind of
dynamics that our visual system encounters daily in the natural
environment (Figure S2). To create smooth-varying object
identity changes over object size changes, we created morph
lines between pairs of objects we swapped in Experiment | (P
and N). This allowed us to parametrically transform the shape
of the objects (Figure 2, bottom). All other experimental proce-
dures were identical to Experiment | except, in the Exposure
Phases, objects underwent size change smoothly while
changing identity (swap exposure) or preserving identity (non-
swap exposure, Figure S2).

When we carried out this temporally smooth experience
manipulation on a new population of IT sites (n = 15), we repli-
cated the Experiment | results (Figures 2E and 2F): there was a
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predicted decrease in IT selectivity at the swap size and not at
the non-swap control size. This size specificity of the effect
was, again, confirmed statistically by (1) direct t test on the total
selectivity change, A(P — N), between the swap and non-swap
size [A(P — N) = —10.3 spikes/s at swap size, +2.8 at non-
swap size; p < 0.0001, two-tailed t test]; and (2) a significant
interaction of “exposure X object size” on the raw selectivity
measurements (P — N) (p < 0.001, repeated-measures ANOVA,;
p = 0.001, bootstrap). This result suggests that image linking
across time is sufficient to induce tolerance learning in IT and
is robust to the temporal details of that image linking (at least
over the ~200 ms time windows of linking used here). More
importantly, Experiment |l shows that unsupervised size
tolerance learning occurs in a spatiotemporal image regime
encountered in real-world vision.

Size Tolerance Learning: Observations and Effect Size
Comparison

Despite a wide diversity in the initial tuning of the recorded IT
multiunit sites, our experience manipulation induced a predict-
able selectivity change that was large enough to be observed
in individual IT sites: 40% (17/42 sites, Experiment | and Il data
combined) of the individual IT sites showed a significant selec-
tivity decrease at the swap size within a single recording session
(only 7% of sites showed significant selectivity decrease at the
non-swap size, which is essentially the fraction expected by
chance; 3/42 sites, p < 0.05, permutation test, see Supplemental
Experimental Procedures). Eight example sites are shown in
Figure 3.

We found that the magnitude of size-tolerance reshaping
depended on the initial selectivity at the medium object size,
4.5° (Pearson correlation, r = 0.54, p < 0.01). That is, on average,
IT sites that we initially encountered with greater object selec-
tivity at the medium size underwent greater exposure-induced
selectivity change at the swap size. This correlation is not simply
explained by the hypothesis that it is easier to break highly
selective neurons (e.g., due to factors that might have nothing
to do with neuronal learning, such as loss of isolation), because
the correlation was not seen for changes in selectivity at the
non-swapped size (r = —0.16, p = 0.35) and we found no
average change in selectivity at the non-swapped size (Figure 2
and statistics above). Instead, this observation is consistent
with the overarching hypothesis of this study: the initial image
selectivity at the medium object size provides (at least part of)
the driving force for selectivity learning because those images
are temporally linked with the swapped images at the swap
size.

The change in selectivity produced by the experience manip-
ulation was found throughout the entire time period of the IT
response, including the earliest part of that period where IT
neurons are just beginning to respond above baseline
(~100 ms from stimulus onset, Figure S5). This shows that the
experience-induced change in IT selectivity cannot be explained
by changes in long lag feedback alone (>100 ms; also see
Discussion). On average, the selectivity change at the swap
size resulted from both a decrease in the response to the image
of the preferred object (P) and an increase in the response to the
less preferred object (N). Consistent with this, we found that the

1066 Neuron 67, 1062-1075, September 23, 2010 ©2010 Elsevier Inc.



Neuron

Natural Experience Reshapes IT Size Tolerance

A Before After B Before After Figure 3. Example Single IT Sites
150- exposure  exposure 200 exposure exposure Mean + SEM. IT response to P (solid square) and N (open
} circle) as a function of object size for eight example IT sites
from both Experiment | and Il). The data shown are from the
Site 1 100 //. M 5 160 +\+_'+ WN iirst (“before pexposure”) am; last (“after exposure”) Test
o__¢/ H/“:’ Phase. (A) Swap size, 1.5°; (B) swap size, 9° (highlighted by
50 120 red boxes and arrows). Gray dotted lines show the baseline
Swap | Swap " Swap Swap  response to a blank image (interleaved with the test images).
601 4001
o S, \\:
2 401 6 200 sampled units were the same neurons. The predic-
¢\¢/¢ o—0—o O—ypy tion is that IT single units sampled after exposure
20 i o (i.e., at the last Test Phase of each day) would be
less size tolerant at the swap size than at the non-
200+ 120- swap size. This prediction was clearly observed in
| our single-unit data (Figure 4C, after exposure,
v H\+ b><i p < 0.05; for reference, the size tolerance before
3 160 90 :
¢\¢_¢ the exposure is also shown and we observed no
difference between the swap and non-swap size).
120- 60-

3001 1401

b=

100- 80-

SN

200

f

The result was robust to the choice of the criteria
to define “single units” (Figure S6). Similarly, we
found that each single-unit population sampled
after successively more exposure showed a
successively larger change in size tolerance
(Figure 4D).

We next aimed to quantify the absolute magni-
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experience manipulation produced no average change in the IT
sites’ mean response rate (Figure S5).

In this study, we concentrated on multiunit response data
because it had a clear advantage as a direct test of our hypoth-
esis—it allowed us to longitudinally track IT selectivity during
altered visual experience across the entirety of each experi-
mental session. We also examined the underlying single-unit
data and found results that were consistent with the multiunit
data. Figure 4A shows an example of a rare single-unit IT
neuronal recording that we were able to track across an entire
recording session (~3 hr). The confidence that we were
recording from the same unit comes from the consistency of
the unit’s waveform and its consistent pattern of response
among the nonexposed control object images (Figure 4B).
During this stable recording, the (P — N) selectivity at the swap
size gradually decreased while the selectivity at the non-swap
size remained stable, perfectly mirroring the multiunit results
described above. However these ~3 hr single-unit recordings
were very rare because single units have limited hold-time in
the awake primate physiology preparation. Thus we took a
more standard population approach to analyze the single-unit
data (Baker et al., 2002; Kobatake et al., 1998; Sakai and Miya-
shita, 1991; Sigala et al., 2002). Specifically, we performed
spike-sorting analyses to obtain clear single units from each
Test Phase (Experimental Procedures). We considered each
single unit obtained from each Test Phase as a sample of
the IT population, taken either before or after the experience in
the altered visual world. This analysis does not require that the
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tude of this size tolerance learning effect across
the different experience manipulations deployed
here, and to compare that magnitude with our
previous results on position-tolerance learning (Li
and DiCarlo, 2008). To do this, we plotted the mean selectivity
change at the swap size from each experiment as a function of
number of swap exposures (Figure 5). We found that Experi-
ments | and Il produced a very similar magnitude of learning:
~5 spikes/s per 400 swap exposures (also see Discussion for
comparison to previous work). This effect grew larger at this
approximately constant rate for as long as we could run each
experiment, and the magnitude of the size tolerance learning
was remarkably similar to that seen in our previous study of posi-
tion tolerance (Li and DiCarlo, 2008).

Size and Position Tolerance Learning: Reversing Old IT

Object Selectivity and Building New IT Object Selectivity

The results on size tolerance presented above and our previous
study of position tolerance (Li and DiCarlo, 2008) both used the
breaking of naturally occurring temporal contiguity experience
to discover that we can break normal position tolerance and
size tolerance (i.e., we can cause a decrease in adult IT object
selectivity in a size- or position-specific manner). While these
results are consistent with the inference that naturally occurring
image statistics instruct the original building of that normal toler-
ance (see Introduction), we next sought to test that inference
more directly. Specifically, we asked if the temporal contiguity
statistics of visual experience can instruct the creation of new
IT tolerance (i.e., if they can cause an increase in IT object selec-
tivity in a size- or position-specific manner). Our experimental
data offered two ways to test this idea (below), and both ways
revealed that unsupervised temporal contiguity learning could
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Figure 4. Single-Unit Results
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(A) P versus N selectivity of a rare single-unit IT neuron that was isolated across an entire recording session (~3 hr).

(B) The example single-unit’s response to the six control object images during each Test Phase and its waveforms (gray: all traces from a Test Phase; red: mean).
(C) Mean + SEM size tolerance at the swap (red) and non-swap (blue) size for single units obtained before and after exposure. Size tolerance for the control objects
is also shown at these two sizes (black). Each neuron’s size tolerance was computed as (P — N)/(P — N)medium, Where (P — N) is the selectivity at the tested size and
(P — N)medium is the selectivity at the medium object size. Only units that showed selectivity at the medium size were included [(P — N)medium > 1 Spikes/s]. The top
and bottom panels include neurons that had selectivity for the swap objects, the control objects, or both. Thus they show different but overlapping populations of
neurons. The result is unchanged if we only examine populations for which each neuron has selectivity for both the swap and control objects (i.e., the intersections

of the neuronal populations in top and bottom panels; Figure S6).

(D) Mean + SEM size tolerance at the swap size further broken out by the amount of exposure to the altered visual statistics. To quantify the change in IT size
tolerance, we performed linear regression of the size tolerance as a function of the amount of experience. Consistent with the multiunit results, we found a signif-
icant negative slope (A size tolerance = —0.84 per 800 exposure; p = 0.002, bootstrap; c.f. —0.42 for multiunit, Figure S6). No decrease in size tolerance was
observed at the non-swap control size (A size tolerance = 0.30; c.f. 0.12 for multiunit).

indeed build new IT tolerance. To do these analyses, we took
advantage of the fact that we found very similar effects for
both size tolerance and position tolerance (Li and DiCarlo,
2008), and we maximized our power by pooling the data across
this experiment (Figure 5: size experiment |, Il; n = 42 MUA sites)
and our previous position experiment (n = 10 MUA sites). This
pooling did not qualitatively change the result—the effects
shown in Figures 5 and 6 below were seen in the size tolerance
data alone (Figure S9).

First, as outlined in Figure 1C, a strong form of the UTL hypoth-
esis predicts that our experience manipulation should not only
degrade existing IT selectivity for P over N at the swap size/posi-
tion, but should eventually reverse that selectivity and then build
new incorrect selectivity for N over P (Figure 1C; note that we
refer to this as incorrect selectivity because the full IT response
pattern is inappropriate for the veridical world in which objects
maintain their identity across changes in position and size).
Though the plasticity we discovered is remarkably strong
(~5 spikes/s per hour), it did not produce a selectivity reversal
for the “mean” IT site within the 2 hr recording session
(Figure S5D). Instead, it only produced a ~50% decrease in
selectivity for that mean site, which is entirely consistent with

the fact that our mean IT site had reasonably strong initial selec-
tivity for P over N (mean P — N = ~20 spikes/s). To look more
deeply at this issue, we made use of the well-known observation
that not all adult IT neurons are identical— some have a large
amount of size or position tolerance, whereas others show
a small amount of tolerance (DiCarlo and Maunsell, 2003; Ito
et al.,, 1995; Logothetis and Sheinberg, 1996; Op De Beeck
and Vogels, 2000). Specifically, some IT sites strongly prefer
object P to N at some sizes/positions, but show only weak
(P — N) selectivity at the swap sizes/positions (this neuronal
response pattern is illustrated schematically at the top of
Figure 6). We reasoned that examination of these sites should
reveal whether our experience manipulation is capable of
causing a reversal in selectivity and building of new selectivity.
Thus, we used independent data to select neuronal subpopula-
tions from our data pool with varying amounts of initial selectivity
at the swap size/position (Supplemental Experimental Proce-
dures). Note that all of these neuronal sites had robust selectivity
for P over N at the medium sizes/positions (as schematically
illustrated in Figure 6A). This analysis revealed that our manipu-
lation caused neuronal sites with weak initial selectivity at the
swap size/position to reverse their selectivity, and to build new
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Figure 5. Effect Size Comparisons across Different Experience
Manipulations

Mean object selectivity change as a function of the number of swap
exposure events for different experiments. For comparison, the data from
a position tolerance learning experiment (Li and DiCarlo, 2008) are also shown.
Plot format is the same as Figure 2A without the error bars. Mean + SEM A
(P — N) at the non-swap size/position is shown in blue (all experiments pooled).
SUA, single-unit activity; MUA, multiunit activity.

selectivity (building incorrect selectivity for N over P), exactly as
predicted by the UTL hypothesis (Figure 6).

A second way in which our data might reveal whether UTL can
build tolerance is to carefully look for any changes in selectivity
at the non-swap (control) size/position. Our experiment was
designed to present a large number of normal temporal conti-
guity exposures at that control size/position so that we would
perfectly equate its amount of retinal exposure with that
provided at the swap size/position. Although some forms of
unsupervised temporal contiguity theory might predict that
these normal temporal contiguity exposures should increase
the (P — N) selectivity at the control size/position, we did not
initially make that prediction (Figure 1C, blue) because we
reasoned that most IT sites would already have strong, adult-
like selectivity for object P versus N at that size/position, such
that further supporting statistics would have little to teach those
IT sites (Figure 7A, top right). Consistent with this, we found little
mean change in (P — N) selectivity for the control condition in
either our position tolerance experiment (Li and DiCarlo, 2008)
or our size tolerance experiment (Figure 2, blue). However,
examination of all of our IT sites revealed that some sites
happened to have initially weak (P — N) selectivity at the control
size/position while still having strong selectivity at the medium
size/position (Figure 7A, top left). This suggested that these sites
might be in a more naive state with respect to the particular
objects being tested such that our temporal contiguity statistics
might expand their tolerance for these objects (i.e., increase their
P — N selectivity at the control size/position). Indeed, examina-
tion of these sites reveals that our exposure experiment caused
a clear, significant building of new, correct selectivity among
these sites (Figure 7B), again directly demonstrating that unsu-
pervised temporal contiguity experience can build IT tolerance.

Experiment lll: Does the Learning Depend

on the Temporal Direction of the Experience?

Our results show that targeted alteration of unsupervised natural
visual experience rapidly reshapes IT size tolerance—as pre-
dicted by the hypothesis that the ventral stream uses a temporal
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contiguity learning strategy to build that tolerance in the first
place. Several instantiated computational models show how
this conceptual strategy can build tolerance (Foldiak, 1991; Mas-
quelier et al., 2007; Masquelier and Thorpe, 2007; Wallis and
Rolls, 1997; Wiskott and Sejnowski, 2002; Wyss et al., 2006),
and such models can be implemented using variants of Heb-
bian-like learning rules that are dependent on the timing of spikes
(Gerstner et al., 1996; Sprekeler et al., 2007; Wallis and Rolls,
1997; Morrison et al., 2008; Sprekeler and Gerstner, 2009). The
time course and task independence of the observed learning
are consistent with synaptic plasticity (Markram et al., 1997; Me-
liza and Dan, 2006), but our data do not constrain the underlying
mechanism. One can imagine ventral stream neurons using
almost temporally coincident activity to learn which sets of its
afferents correspond to features of the same object across
size changes. If tolerance learning is spike timing dependent,
any experience-induced change in IT selectivity might reflect
any temporal asymmetries at the level of the underlying synaptic
learning mechanism. For example, one hypothesis is that
lingering postsynaptic activity caused by temporally leading
images drives synaptic plasticity in afferents activated by tempo-
rally lagging images. Alternatively, afferents activated by tempo-
rally leading images might be modified by the later arrival of post-
synaptic activity caused by temporally lagging images. Or
a combination of both hypotheses might be the case. To look
for reflections of any such underlying temporal asymmetry, we
carried out a third experiment (Experiment Ill) centered on the
question, “Do temporally leading images teach temporally
lagging ones, or vice-versa?”

We deployed the same experience manipulation as before
(linking of different object images across size changes, the
same as Experiment ), but this time only in one direction
(compare single-headed arrows in Figure 8A with double-
headed arrows in Figure 1B). For example, during the recording
of a particular IT site, the animal only received experience seeing
objects temporally transition from a small size (arrow “tail” in Fig-
ure 8A) to a large size (arrow “head” in Figure 8A) while swapping
identity. We strictly alternated the temporal direction of the expe-
rience across different IT sites. That is, for the next IT site we re-
corded, the animal experienced objects transitioning from a large
size to a small size while swapping identity. Thus, object size was
counterbalanced across our recorded population, so that we
could isolate changes in selectivity among the temporally
leading stimuli (i.e., arrow tail stimuli) from changes in selectivity
among the temporally lagging stimuli (i.e., arrow head stimuli). As
in Experiments | and Il, we measured the expression of any expe-
rience-induced learning by looking for any change in (P — N)
selectivity at each object size measured in a neutral task with
all images randomly interleaved (Test Phase). We replicated
the results in Experiments | and Il in that a decrease in (P — N)
selectivity was found following swapped experience (red bars
are negative in Figure 8B). When we sorted our data based on
the temporal direction of the animals’ experience, we found
greater selectivity change (i.e., learning) for the temporally
lagging images (Figure 8B). This difference was statistically
significant (p = 0.038, n = 31, two-tailed t test) and cannot be ex-
plained by any differences in the IT sites’ initial selectivity
(Figure S4C; also see Figure S4B for results with all sites
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included). This result is consistent with an underlying learning
mechanism that favors experience-induced plasticity of the
afferents corresponding to temporally lagging images.

To test if the tolerance learning spread beyond the specifically
experienced images, here, we also tested object images at an
intermediate size (3°) between the two exposed sizes (Figure 8).
Unlike as in Experiments | and I, this medium size was not
exposed to the animals during the Exposure Phase (it was also
at a different physical size from the medium size in Experiments

N
/p :

Group 6

neuron will acquire fully altered tolerance (right).
Bottom, at the swap position/size (red), the selec-
tivity for P over N is predicted to reverse in the limit
(prefer N over P). Because we could only record
longitudinally from a multiunit site for less than
3 hr, we do not expect our experience manipula-
tion within a session to produce the full
selectivity reversal (pre versus post) among
neuronal sites with strong initial selectivity.
However, because different IT sites differ in their
degrees of initial selectivity, they start at different
distances from selectivity reversal. Thus, our
manipulation should produce selectivity reversal
among the initially weakly selective sites and build
new (“incorrect”) selectivity.

(B) Mean + SEM normalized response to object P
and N at the swap position/size among subpopu-
lations of IT multiunit sites. Sites are grouped by
their initial selectivity at the swap position/size
using independent data. Data from the size and
position tolerance experiments (Li and DiCarlo,
2008) were combined to gain maximal power
(size experiment |, Il; position experiment, see
Supplemental Experimental Procedures). These
sites show strong selectivity at the non-swap
(control) position/size, and no negative change in
that selectivity was observed (not shown). “*p <
0.01; *p < 0.05, one-tailed t test against no change.
(Size experiment data only, group 1-6: p < 0.01;
p <0.01; p<0.01; p=0.02; p =0.07; n.s.).

n=4

Building
new (incorrect)
selectivity

| and Il). We observed significant selec-
tivity change for the medium size image
pairs (Figure 8B, middle bar; p = 0.01,
two-tailed t test against zero), which
suggests that the tolerance learning has
some degree of spread (but not to very
different objects; Figure S4). Finally, the
effect size observed in Experiment Il
was consistent with, and can explain the
effect sizes observed in Experiments |
and Il. That is, based on the Experiment
Il effect sizes for the temporally lagging
and leading images, a first-order predic-
tion of the net effect in Experiments |
and Il is the average of these two effects
(because Experiments | and Il employed a 50-50 mix of the expe-
rience manipulations considered separately in Experiment lll).
That prediction is very close to what we found (Figure 5).

DISCUSSION
The overarching goal of this work is to ask whether the

primate ventral visual stream uses a general, temporal contiguity
driven learning mechanism to construct its tolerance to
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object-identity-preserving image transformations. Our strategy
was to use experience manipulations of temporally contiguous
image statistics to look for changes in IT neuronal tolerance
that are predicted by this hypothetical learning mechanism.
Here we tested three key predictions that were not answered
by previous work (Li and DiCarlo, 2008). First, we asked if these
experience manipulations predictably reshaped the size toler-
ance of IT neurons. Our results strongly confirmed this predic-
tion: we found that the change in size tolerance was large (~5
spikes/s, ~25% IT selectivity change per hour of exposure)
and grew gradually stronger with increasing visual experience.
Second, we asked if this tolerance reshaping was induced under
visual experience that mimics the common size-tolerance-
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selectivity

Figure 7. Normal (“Correct”) Statistics in
Visual Experience Builds Tolerant Selec-
tivity

(A) Prediction follows the same logic as in
Figure 6A, but here for the control conditions in
which normal temporal contiguity statistics were
provided (Figure 1). Top, temporal contiguity
learning predicts that neurons will be taught to
build new “correct” selectivity (i.e., normal toler-

ance), and neurons starting with initially weak

position/size tolerant selectivity (left) have the
highest potential to reveal that effect. Bottom, at
the non-swap position/size (blue), our manipula-
tion should build new correct selectivity for P
over N among IT sites with weak initial selectivity.
(B) Mean + SEM normalized response to object P
and N at the non-swap position/size among
subpopulations of IT multiunit sites. Sites are
grouped by their initial selectivity at the non-
swap position/size using independent data. Other
details are the same as those in Figure 6B. (Size
experiment data only, group 1-5: p = 0.06; p <
0.01; p=0.05; n.s.; n.s.).

Already
tolerant

selectivit
Y building statistics in the natural world:

temporally contiguous image changes
without intervening eye movements, and
temporally smooth dynamics. Our results
confirmed this prediction: we found that
size tolerance was robustly reshaped in
both of these conditions (Figure 2), and
the magnitude of reshaping was similar
to that seen with eye-movement-contin-
gent reshaping of IT position tolerance
(Li and DiCarlo, 2008, Figure 5). Third,
we asked if experience with temporal
contiguous image statistics could not
only break existing IT tolerance, but could
also build new tolerance. Again, our
results confirmed this prediction: we
found that experience with incorrect
statistics can build incorrect tolerance
(Figure 6) and that experience with
correct statistics can build correct toler-
ance (Figure 7). Finally, we found that
this tolerance learning is temporally
asymmetric and spreads beyond the specifically experienced
images (Figure 8, medium size), results that have implications
for underlying mechanisms (see below).

Given these results, it is now highly likely that our previously
reported results on eye-movement-contingent tolerance
learning (Li and DiCarlo, 2008) were only one instance of
a general tolerance learning mechanism. Taken together, our
two studies show that unsupervised, temporally contiguous
experience can reshape and build at least two types of IT toler-
ance, and that they can do so under a wide range of spatiotem-
poral regimes encountered during natural visual exploration. In
sum, we speculate that these studies are both pointing to the
same general learning mechanism that builds adult IT tolerance,
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(A) Exposure Phase design (top, same format as in Figure 1B) and example
object images used (bottom).

(B) Mean + SEM selectivity change, As(P — N), among the temporally leading
images, the nonexposed images at the medium object size (3°), and the
temporally lagging images. As(P — N) was normalized to show selectivity
change per 800 exposure events. *p = 0.038, two-tailed t test.

and we have previously termed this mechanism “unsupervised
temporal slowness learning” (Li and DiCarlo, 2008).

Our suggestion that UTL is a general tolerance learning mech-
anism is supported by a number of empirical commonalities
between the size tolerance learning here and our previously
reported position tolerance learning (Li and DiCarlo, 2008). (1)
Object specificity: the experience-induced changes in IT size
tolerance and position tolerance have at least some specificity
for the exposed object. (2) Learning induction (driving force): in
both studies, the magnitude of learning depended on the initial
selectivity of the temporally adjacent images (medium object
size here, foveal position in the position tolerance study), which
is consistent with the idea that the initial selectivity may provide
at least part of the driving force for the learning. (3) Time course
of learning expression: learning increased with increasing amount
of experience and changed the initial part of IT response (100 ms
after stimulus onset). (4) Response change of learning expression:
in both studies, the IT selectivity change arose from a response
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decrease to the preferred object (P) and a response increase to
the less preferred object (N). (5) Effect size: our different experi-
ence manipulations here as well as our previous position manip-
ulation revealed a similar effect magnitude (~5 spikes/s per 400
swap exposures). More specifically, when measured as learning
magnitude per exposure event, size tolerance learning was
slightly smaller than that found for position tolerance learning
(Figure 5), and when considered as learning magnitude per unit
time, the results of all three experiments were nearly identical
(Figure S8). However, we note that our data cannot cleanly decon-
found exposure amount from exposure time.

Relation to Previous Literature
Previous psychophysical studies have shown that human object
perception depends on the statistics of visual experience (e.qg.,
Brady and Oliva, 2008; Fiser and Aslin, 2001; Turk-Browne
et al., 2005). Several studies have also shown that manipulating
the spatiotemporal contiguity statistics of visual experience can
alter the tolerance of human object perception (Cox et al., 2005;
Wallis et al., 2009; Wallis and Bulthoff, 2001). In particular, an
earlier study (Cox et al., 2005) showed that the same type of
experience manipulation deployed here (experience of different
object images across position change) produces increased
confusion of object identities across position—a result that
qualitatively mirrors the neuronal results reported here and in
our previous neuronal study (Li and DiCarlo, 2008). Thus, the
available psychophysical data suggest that UTL has perceptual
consequences. However, this remains an open empirical ques-
tion (see “Limitations and Future Direction” subsection).

Previous neurophysiological investigations in the monkey
ventral visual stream showed that IT and perirhinal neurons could
learn to give similar responses to temporally nearby stimuli when
instructed by reward (i.e., so-called “paired associate” learning;
Messinger et al., 2001; Miyashita, 1988; Sakai and Miyashita,
1991), or sometimes, even in the absence of reward (Erickson
and Desimone, 1999). Though these studies were motivated in
the context of visual memory (Miyashita, 1993) and used visual
presentation rates of seconds or more, it was recognized that
the same associational learning across time might also be
used to learn invariant visual features for object recognition
(e.g., Foldiak, 1991; Stryker, 1991; Wallis, 1998; Wiskott and Sej-
nowski, 2002). Our studies provide a direct test of these ideas by
showing that temporally contiguous experience with object
images can specifically reshape the size and position tolerance
of IT neurons’ selectivity among visual objects. This is consistent
with the hypothesis that the ventral visual stream relies on
a temporal contiguity strategy to learn its tolerant object repre-
sentations in the first place. Our results also demonstrate that
UTL is somewhat specific to the experienced objects’ images
(i.e., object, size, position specificity) and operates over natural,
very fast time scales (hundreds of ms, faster than those previ-
ously reported) in a largely unsupervised manner. This suggests
that, during natural visual exploration, the visual system can
leverage an enormous amount of visual experience to construct
its object invariance.

Computational models of the ventral visual stream have put
forms of the temporal contiguity hypothesis to test, and have
shown that learning to extract slowly varying features across
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time can produce tolerant feature representations with units that
mimic the basic response properties of ventral stream neurons
(Masquelier et al., 2007; Masquelier and Thorpe, 2007; Sprekeler
etal., 2007; Wallis and Rolls, 1997; Wiskott and Sejnowski, 2002;
Wyss et al., 2006). These models can be implemented using vari-
ants of Hebbian-like learning rules (Masquelier and Thorpe, 2007;
Sprekeler and Gerstner, 2009; Sprekeler et al., 2007; Wallis and
Rolls, 1997). The time course and task independence of UTL re-
ported here is consistent with synaptic plasticity (Markram
et al., 1997; Rolls et al., 1989), and the temporal asymmetry in
learning magnitude (Figure 8) constrains the possible underlying
mechanisms. While the experimental approach used here may
seem to imply that experience with all possible images of each
object is necessary for UTL to build an invariant IT object repre-
sentation, this is not believed to be true in a full computational
model of the ventral stream. For example, V1 complex cells that
encode edges may learn position tolerance that ultimately
supports the invariant encoding of many objects. Our observation
of partial spread of tolerance learning to nonexperienced images
(Figure 8) is consistent with this idea. In particular, at each level of
the ventral stream, afferent input likely reflects tolerance already
constructed for simpler features at the previous level (e.g., in the
context of this study, some IT afferents may respond to an
object’s image at both the medium size and the swap size).
Thus any modification of the swap-size-image-afferents would
result in a partial generalization of the learning beyond the specif-
ically experienced images.

Limitations and Future Direction
Because the change in object selectivity was expressed in the
earliest part of the IT response after learning (Figure S5A), even
while the animal was performing tasks unrelated to the object
identity, this rules out any simple attentional account of the
effect. However, our data do not rule out the possibility that
attention or other top down signals may be required to mediate
the learning during the Exposure Phase. These potential top-
down signals could include nonspecific reward, attentional,
and arousal signals. Indeed, psychophysical evidence (Seitz
et al., 2009; Shibata et al., 2009) and physiological evidence
(Baker et al., 2002; Freedman and Assad, 2006; Froemke
et al., 2007; Goard and Dan, 2009; Law and Gold, 2008) both
suggest that reward is an important factor that can modulate
or gate learning. We also cannot rule out the possibility that the
attentional or the arousal system may be required for the learning
to occur. In our work, we sought to engage the subjects in natural
exploration during the Exposure Phases under the assumption
that visual arousal may be important for ongoing learning, even
though we deployed the manipulation during the brief periods
of fixation during that exploration. Future experiments in which
we systematically control these variables will shed light on these
questions, and will help expose the circuits that underlie UTL.
Although the UTL phenomenology induced by our experi-
ments was a very specific change in IT neuronal selectivity, the
magnitude of this learning effect was quite large when expressed
in units of spikes per second (Figure 5: ~5 spikes/s, ~25%
change in IT selectivity per hour of exposure). This is comparable
to or larger than other important neuronal phenomenology (e.g.,
attention, Maunsell and Cook, 2002). However, because this
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effect size was evaluated from the multiunit signal, without
knowledge of how many neurons we are recording from, this
effect size should be interpreted with caution. Furthermore, con-
necting this neuronal phenomenology (i.e., change in IT image
selectivity) to the larger problem of size or position tolerance at
the level of the IT population or the animal’s behavior is not
straightforward. Quantitatively linking a neuronal effect size to
behavioral effect size requires a more complete understanding
of how that neuronal representation is read out to support
behavior, and large effects in confusion of object identities in
individual IT neurons may or may not correspond to large confu-
sions of object identities in perception. Such questions are the
target of our ongoing and future monkey studies in which one
has simultaneous measures of the neuronal learning and the
animal’s behaviors (modeled after those such as Britten et al.,
1992; Cook and Maunsell, 2002).

The rapid and unsupervised nature of UTL gives us new exper-
imental access to understand how cortical object representa-
tions are actively maintained by the sensory environment.
However, it also calls for further characterization of the time
course of this learning to inform our understanding of the stability
of ventral stream object representations in the face of constantly
available, natural visual experience. This sets the stage for future
studies on how the ventral visual stream assembles its neuronal
representations at multiple cortical processing levels, particu-
larly during early postnatal visual development, so as to achieve
remarkably powerful adult object representation.

EXPERIMENTAL PROCEDURES

Animals and Surgery

Aseptic surgery was performed on two male Rhesus monkeys (8 and 6 kg)
to implant a head post and a scleral search coil. After brief behavioral training
(1-8 months), a second surgery was performed to place a recording chamber
to reach the anterior half of the temporal lobe. All animal procedures were
performed in accordance with National Institute of Health guidelines and the
Massachusetts Institute of Technology Committee on Animal Care.

General Design

On each experimental day, we recorded from a single IT multiunit site for
2-3 hr. During that time, the animal was provided with altered visual experi-
ence in Exposure Phases and we made repeated measurements of the IT site’s
selectivity during Test Phases (Figure 1). The study consisted of three separate
experiments (Experiments I, Il, and Ill), which differed from each other only in
the Exposure Phase design (described below). We focused on one pair of
objects (swap objects) that the IT site was selective for (preferred object P,
and nonpreferred object N, chosen using a prescreening procedure; see
Supplemental Experimental Procedures).

Experiment |

Objects (P and N at 1.5°, 4.5°, or 9°) appeared at random positions on a gray
computer screen and animals naturally looked to the objects. The image of the
just-foveated object was replaced by an image of the other object at a different
size (swap exposure event, Figure 1A) or an image of the same object at a
different size (non-swap exposure event, Figure 1A). The image change was
initiated 100 ms after foveation and was instantaneous (Figure 2, top). We
used a fully symmetric design illustrated graphically in Figure 1B. This experi-
ence manipulation temporally linked pairs of object images (Figure 1A shows
one such link) and each link could go in both directions (Figure 1B shows full
design example). For each IT site, we always deployed the swap manipulation
at one particular size (referred to as the swap size: 1.5° or 9°, prechosen,
strictly alternated between sites), keeping the other size as the exposure-
equalized control (referred to as the non-swap size).
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Experiment Il
All design parameters were identical to Experiment | except that the image
changes were smooth across time (Figure 2, bottom). The image change
sequence started immediately after the animal had foveated the image and
the entire sequence lasted for 200 ms (Figure S2). Identity-changing morph
lines were only achievable on the silhouette shapes. Only Monkey 2 was tested
in Experiment Il (given the stimulus class assignment).
Experiment llI
We used an asymmetric design that is illustrated graphically in Figure 8A: for
each IT site, we only gave the animals experience of image changes in one
direction (1.5°—4.5° or vice versa, prechosen, strictly alternated between
sites). The timing of the image change was identical to that in Experiment I.
Another pair of control objects (P’ and N, not shown in the Exposure Phase)
was also used to probe the IT site’s responses in the Test Phase. The selec-
tivity among the control objects served as a measure of recording stability
(below). In each Test Phase, the swap and control objects were tested at three
sizes (Experiments | and II: 1.5°, 4.5°, 9°; Experiment IlIl: 1.5°, 3°, 4.5°) by
presenting them briefly (100 ms) on the animals’ center of gaze (50-60 repeti-
tions, randomized) during orthogonal behavioral tasks in which object identity
and size were irrelevant. See Supplemental Experimental Procedures for
details of the task design and behavioral monitoring.

Neuronal Assays

We recorded MUA from the anterior region of IT using standard single micro-
electrode methods. Our previous study on IT position tolerance learning
showed that we could uncover the same learning in both single-unit activity
and MUA with comparable effect size (Li and DiCarlo, 2008), so here, we
only recorded MUA to maximize recording time. Over a series of recording
days, we sampled across IT and sites selected for all our primary analyses
were required to be selective among object P and N (ANOVA, object X sizes,
p < 0.05 for “object” main effect or interaction) and pass a stability criterion
(n =27 for Experiment |; 15 for Experiment II; 31 for Experiment Ill). We verified
that the key result is robust to the choice of the stability criteria (Figure S4).
See Supplemental Experimental Procedures for details of the recording
procedures and site selections.

Data Analyses

All the analyses and statistical tests were done in MATLAB (Mathworks,
Natick, MA) with either custom-written scripts or standard statistical pack-
ages. The IT response to each image was computed from the spike count in
a 150 ms time window (100-250 ms poststimulus onset, data from Test Phases
only). Neuronal selectivity was computed as the response difference in units of
spikes/s between images of object P and N at different object sizes. To avoid
any bias in this estimate of selectivity, for each IT site we define the labels P
(preferred) and N by using a portion of the pre-exposure data to determine
these labels, and the remaining data to compute the selectivity values reported
in the text (Supplemental Experimental Procedures). In cases where neuronal
response data was normalized and combined (Figures 6 and 7), each site’s
response from each Test Phase was normalized to its mean response to all
object images in that Test Phase. The key results were evaluated statistically
using a combination of t tests and interaction tests (Supplemental Experi-
mental Procedures). For analyses presented in Figure 4, we extracted clear
single units from the waveform data of each Test Phase using a PCA-based
spike sorting algorithm (Supplemental Experimental Procedures).

SUPPLEMENTAL INFORMATION

Supplemental Information for this article includes nine figures and Supple-
mental Experimental Procedures and can be found with this article online at
doi:10.1016/j.neuron.2010.08.029.
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Figure S1. Stimuli and Image Analyses

(A) We selected object pairs from two different stimulus classes (48 cutout natural shapes; 48
silhouette shapes). The swap object pair (P and N used for the key experience manipulation) was
always picked from one class for each animal (Monkey 1: natural; Monkey 2: silhouette). The control
object pair (P’ and N’) was always picked from the other stimulus class.



(B) Stimuli from the two classes are quite different from each other in their pixel-wise similarity. This is
illustrated when the stimulus images are plotted by scores of the first three principle components (PC)
in the pixel space. Principle components were computed from all 96 images. Images were pre-
processed to have equal mean and unit variance before image analyses. Solid symbols: natural; open

symbols: silhouette.
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Figure S2. Stimuli from Experiment Il and Comparisons to Natural Visual World Example.

(A) Cutout silhouette shapes were rendered using non-uniform rational B-spline. Each shape was
rendered from a set of 24 control points. Matching and interpolating between the control points allowed
us to parametrically morph between different shapes. Morph-lines were only achievable on a subset of
all possible shape pairs in the silhouette class (Figure S1). The figure shows all the morph-line pairs
used in Experiment Il. Only Monkey 2 was tested in Experiment Il given the stimulus class assignment.
The example pair in (B) is highlighted.

(B) Top, a real world example of natural visual experience when lifting a cup to drink. Bottom, example
exposure events we used in Experiment Il (top, non-swap exposure event; bottom, swap exposure
event). During each exposure event, the object size change was played out smoothly over a time
period of 200 ms (frame rate: 40 frames/sec). We used the same dynamic (i.e. same size change
profile but scaled in amplitude) for the two different types of size increase exposure events (1.5°—4.5°,
4.5°-9° Figure 1B). For the object size decrease exposure events (4.5°—1.5°, 9°—-4.5° Figure 1B),
the reverse sequence was played, which also mimicked the natural visual experience of putting down a
cup (not shown).

(C) We quantified the statistics of the visual world example and our movie stimuli by a number of
different image measures. Black lines show the visual world example (mean computed from videos of
multiple repeats of the same action); blue lines show our movie stimuli (mean computed from all
exposure events); shaded areas show SEMs. Object size was measured by the radius of the smallest
bounding square around the shape (reported in units of octave, normalized to the initial size). Object
size change speed was computed by taking the derivative of the object size measurements. Optical
flow was computed using standard computer vision algorithm (Horn, 1986). Brightness patterns in the
image move as the objects that give rise to them move. Optical flow quantifies the apparent motion of
the brightness pattern. Here, mean optical flow magnitude over the entire image was computed. Pixel
change was computed by taking the pixel intensity differences between adjacent video frames and the
Euclidean norm of the pixel difference over the entire image was computed. All video frames were pre-
processed to have unit variance before image analyses.



Supplemental Figure S3

A Natural class Silhouette class B
Natural
- - A -
80 60 3 ! —— Silhouette
0 2
o O !
>0 604 l I I I T X — |
£ 2% i
E & 40 30 = S
T2 I s 2
a O =
?= 20- c I
w .S
®
0 T T T 0 T T T g 0 T T T
1.5° 45 9 1.6 4.5 9 15° 45 9
Object size Object size
C Sites that prefer Sites that prefer Sites that prefer
o small size medium size big size
o =19 1.5 19 n=7 79 n=37
2]
5 o 4.5 T
&N o ]
2
T @
CRESE 1 1
N3
@ i ] |
S
> 05 — 0.5 —— 0.5 —
0.5 1 0.5 1 0.5 1
Normalized response to
best size

Figure S3. IT Multi-unit Activity Exhibits Size Tolerant Object Selectivity.

(A) IT neurons have object rank order selectivity that is largely unaffected by object size changes
(Brincat and Connor, 2004; Ito et al., 1995; Logothetis and Sheinberg, 1996; Vogels and Orban, 1996),
and that size tolerance is reflected in the IT multi-unit activity (Hung et al., 2005; Kreiman et al., 2006).
Consistent with previous reports, most of the IT sites we recorded maintained their object rank order
preference across the range of object size tested here (1.5°~9°). To quantify the degree of IT size
tolerance for the swap and control object pairs, for each IT site we determined its preferred (P) and less
preferred (N) object within an object pair using a portion of the response data at the medium object size
(4.5°). We then used those “P” “N” labels to compute the object selectivity (P-N) from the remaining
response data and for other object size. The plots show the mean + SEM selectivity of all object
selective sites from Experiment | and Il (n=63). Positive selectivity indicates that IT sites, on average,
maintained their object preference across size changes.

(B) Most of the individual IT sites (~80%, n=63) maintained their object rank order preference. The plot



shows the fraction of the IT sites in (A) that maintained their object rank order preference at each object
size. Errorbars show SEMs.

(C) To summarize the average effect of object size changes on IT object selectivity across all four
objects (swap and control object pairs combined), we split the 63 object selective IT sites into three
groups based on their size preference. Preferred size for an IT site was defined as the size at which
any object evoked the maximum response from the site. We then ranked the object preference based
on the response at the preferred size (from best to worst). The abscissa represents the normalized
response to the best object at each particular size. The ordinate represents the normalized response to
the best object at the preferred size. Each data point shows the mean £ SEM. On average, IT sites
maintained their object rank order preference. We found more sites preferring the extremity object
sizes (1.5° and 9°) than the medium object size (4.5°), with more sites preferring the big object size
(9°).
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Figure S4. IT Results with All Object Selective Sites before and after Stability Screen.

(A) We deployed the key experience manipulation with a pair of swap objects (P and N) in the
Exposure Phase. We also measured the IT response to a second pair of control objects (P’ and N’)
along with the swap objects in the Test Phase (see Supplemental Experimental Procedures). We were
interested in specific selectivity change in IT induced by our experience manipulation. However, there
were potential non-specific changes in selectivity (e.g. from electrode drifts in tissue or tissue death)
that could contaminate our effect of interest. Unlike traditional single-unit recording where one could
judge the stability of long-term recording based on spike waveform, we did not have such measure in
multi-unit recording. Thus we sought another independent measure of long-term recording stability (2-3
hours). To do this, we relied on IT selectivity among the images of the control objects (P' and N'). We
picked these control objects to be sufficiently different from the swap objects in their pixel-wise similarity
(Figure S1). Our analyses (panel B left column) and our previous investigation (Li and DiCarlo, 2008)
have revealed that any experience-induced change in selectivity was specific to the swap objects.
Leveraging this, we made the assumption that the control objects were far apart from the swap objects
in IT shape space, thus they should be little affected by our experience manipulation. For each IT site,
we computed Pearson’s correlation between its response vectors to these control object images (6
dimensional vector, 2 objects x 3 sizes) measured from the first and last Test Phase (right panel: mean
+ SEM; data from Experiment | only). A fraction of the sites showed low correlations, meaning their
responses to the control object images had deviated from those measured in the first Test Phase. Note
that a site could also have low correlation from having no tuning among the control object images to
begin with, in those cases, we had no power to judge recording stability. In practice, we deemed a site
stable if it had a correlation value higher than 0.7.

(B) All the main text results concentrated on the stable IT sites. Here, we present the main IT results
from all object selective sites. Left column panels show mean + SEM selectivity change, As(P-N), of
the swap objects (red, swap size; blue, non-swap size) and control objects (black, same size as the
swap objects). We found the change in IT selectivity was specific to the swap objects at the swap size.
Statistically, object specificity of the selectivity change at the swap size was confirmed by a significant
"object x exposure" interaction (p=0.009, repeated measures ANOVA). Next, we applied the stability
screen outlined in (A) using the IT responses to the control object images (not used for the main
analyses), we then looked to the change in selectivity, As(P-N), among the swap objects at the swap
and non-swap size. The stability screen revealed non-specific changes in selectivity of the non-stable
IT sites (middle column panels). Among the sites we deemed stable (right column panels), our
experience manipulation induced very specific change in selectivity only at the swap size. As(P-N) was
normalized to show IT selectivity change per 800 exposure events. * p<0.05 by t-test; ** p<0.01; n.s.
p>0.05

(C) We also tested more strict forms of stability criteria that included baseline response (change <10,
<5, and <2 spikes/s, before vs. after exposure) in addition to the standard stability screen. The plot
shows As(P-N) at the swap (red) and non-swap size (blue). Data from Experiment | and Il are
combined (left to right: n=63; n=42; n=18; n=11; n=5). * p<0.05; ** p<0.01, t-test, swap vs. non-swap
size.

(D) Mean + SEM initial selectivity, (P-N), measured from the first Test Phase.
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Figure S5. IT Response Changes Induced by Visual Experience.

(A) Mean = SEM IT selectivity time course at the swap (left) and non-swap size (right) measured in the
first (light colored) and last Test Phase (dark colored). Data from Experiment | and Il are combined
(n=42 IT sites). Gray region shows the standard spike count time window we used for all other
analyses in the main text.

(B) IT firing rate was not altered by visual experience. For each IT site, we computed its mean evoked
firing rate to all object images from the first and last Test Phase. All object selective sites were
combined from Experiment | and Il (n=63). We observed no net change in the mean evoked firing rate
before and after our experience manipulation (left panel; p=0.24, two tailed t-test, before versus after).
We also observed no net change in IT background firing rate (right panel; p=0.17, two tailed t-test).
Background firing was measured from randomly interleaved blank stimulus presentations during the
Test Phases. A few sites showed large change in their background firing rate even though they were
classified as “stable sites” by their selectivity for the control object images (Figure S4). We thus tested
more strict forms of stability criteria that included background firing rate with key results unchanged
(Figure S4).

(C) We fit standard linear regression to each IT site’s responses to object P and N at each object size
as a function of the number of exposure events. The slope of the line fits (As) provided a measure of
the response changes to P and N for each IT site. The histograms show the slope values of all the
stable sites from Experiment | and Il (n=42). AsP and AsN were normalized to show response changes
per 800 exposure events.

(D) Mean £ SEM normalized responses to object P and N as a function of the number of exposure
events. For each IT site, response of each Test Phase was normalized to the mean response to all
object images in that Test Phase.
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Figure S6. IT Single-Unit result is Robust to Unit Selection Criteria.

(A) We performed PCA-based spike sorting on the waveforms collected during each Test Phase,
treating each unit as an independent sample from the IT population either before or after the altered
visual experience. Each unit obtained from the spike sorting was further evaluated by its signal-to-
noise ratio (SNR: ratio of peak-to-peak mean waveform amplitude to standard deviation of the noise).
The histogram shows the distribution of SNR for all the units obtained. For all the single-unit analyses
in the main text (Figure 4), we set a SNR threshold (dash-line: SNR=5.0) above which we will term a
unit “single-unit”.

(B) To ask if the result was robust to our choice of the single-unit SNR threshold, we systematically
varied the threshold and re-performed the same analyses. The plot shows the experience-induced
change in size tolerance (A size tolerance, same as in Figure 4D) at the swap (red) and non-swap
(blue) size. We found that the result was highly robust to the single-unit selection criteria, and the
experience induced effect at the swap size only grew stronger when we increased the strictness of the
single-units criteria. ** p<0.001, bootstrap; arrow head shows the single-unit threshold used in Figure
4.
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(C) Mean + SEM size tolerance for the swap and control objects measured in the same population of
neurons. Same as Figure 4B.
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Figure S7. Eye Movement Pattern during Exposure Events.
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(A) Our previous study on IT position tolerance learning (Li and DiCarlo, 2008) showed that
unsupervised experience of temporally contiguous images coupled by an intervening saccade can
reshape IT position tolerance. Here, we showed that unsupervised experience of temporally
contiguous images presented on animals' center of gaze is sufficient to induce IT size tolerance
learning. The animals freely viewed a gray computer screen on which objects intermittently appeared
at random position. We deployed the experience manipulation (i.e. image pairing across time) during
brief periods of the animals' fixation. The exposure events were meant to mimic regimes of natural
vision where object change size on the retinal due to object motion (de-coupled from intervening eye
movements). However, it was possible that the discontinuous image changes we employed always
induced small saccades from the animals during the exposure events, hence the observed IT size
tolerance learning is simply the same piece of phenomenology as the IT position tolerance learning
reported before. Here we examine this possibility by analyzing the Exposure Phase eye movement
data around the time of image change (x100ms). The plots show the stimulus presentation time
sequence (top) and aligned eye position data (bottom) during a few exposure events from one example
Exposure Phase. The animals were able to maintain their gaze position throughout the periods of
image change in most cases, though there were minor drifts (typically <1°). Occasionally, the animals
made small saccades (red eye traces), however, these only constituted a small fraction of all exposure
events, see (C).

(B) All the eye movement data from the example Exposure Phase was plotted in their relationship
between the total eye displacement and peak velocity around the time of image change (x100ms).
Each data point represents data from one exposure event (i.e. one trace in (A)). For saccades (red
dots), there was a systematic relationship between the peak velocity and eye displacement (i.e. main
sequence), which distinguished itself from the pattern of fixation eye movement (black dots). There
was always good separation between the two types of eye movement pattern, thus we used a peak
velocity threshold to define saccades (Monkey 1: ~60°s; Monkey 2: ~40°/s).

(C) Histograms of eye movement peak velocity during all exposure events (Experiment | population
data: all Exposure Phases across all recording sessions were combined). Exposure events that
contained saccades are shown in red bins and exposure events without saccades are in black bins.
The animals made saccades only on a small fraction of all exposure events (Monkey 2 was slightly
worse). Given the small occurrence of saccades in comparison to our previous study on position
tolerance where saccades accompanied every exposure event (Li and DiCarlo, 2008), we concluded
that the possibility of intervening saccades cannot account for the observed IT selectivity change.
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Supplemental Figure S8
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Figure S8. Effect Size Comparisons across Different Experience Manipulations as a Function of
Exposure Time.

Mean change in IT object selectivity, A(P-N), as a function of swap exposure time for different
experience manipulations (i.e. Experiments I, Il, lll; position experiments: Li and DiCarlo, 2008).
Exposure time was determined based on the time Test Phase data files were saved. For each data
points, we computed the average exposure time across all the neurons/sites (grouped by their Test
Phase numbers). Plot format is the same as main text Figure 5. Mean + SEM selectivity change at the
non-swap size (or position) is shown in blue (pooled across all experiments). SUA: single-unit activity;
MUA: multi-unit activity.
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Supplemental Figure S9
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Figure S9. Breaking and Building Tolerant selectivity, Size Experiment Data.

Mean + SEM normalized response to object P and N at the swap size (A) and non-swap size (B)

among sub-populations of IT multi-unit sites. Other details same as Figure 6 and 7. Size experiment
data only (Experiment | and II).
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Supplemental Experimental Procedures

Visual Stimuli

Stimuli were presented on a 21” CRT monitor (85 Hz refresh rate, ~48 cm away, background
gray luminance: 22 Cd/m2, max white: 46 Cd/m?). We used 96 achromatic images from two
classes of visual stimuli: 48 cutout natural objects and 48 silhouette shapes, both presented on
gray background (Figure S1). We chose these two classes of stimuli to be sufficiently different
from each other in their pixel-wise similarity (Figure S1), so that neuronal plasticity induced
among one object class would be unlikely “spill-over” to the other class (our results and
previous work confirmed this assumption, see Figure S4 and Li and DiCarlo, 2008). All stimuli
were presented on the animal's center of gaze during IT selectivity testing. In all experiments,
we always used three object sizes (1.5°, 4.5°, 9°, in Experiment | and 11; 1.5°, 3°, 4.5° in
Experiment Ill). Object size was defined as the width of the smallest bounding square to
contain the object. The medium object sizes were used to pick preferred (P) and non-
preferred (N) objects for an IT site in an initial screening (see Neuronal Assays below), but we
designed our manipulations and analyses to focus on the two extremity sizes (Figures 1B, 1C,
8A).

In Experiment Il, to create the smoothly-varying identity-changing movie stimuli, we created
morph lines between a subset of the silhouette shapes. Seven intermediate morphs were
created in-between each object pairs. The movie stimuli were created to match the dynamics
of object size changes that could be encountered in the natural world (see Figure S2).

Behavioral Assay

Custom software controlled the stimulus presentation and behavioral monitoring. Eye position
was monitored in nearly real-time (lag of ~3 ms) using standard sclera coil technique
(Robinson, 1963) and in-house software, and saccades >0.2° were reliably detected (DiCarlo
and Maunsell, 2000).

Test Phase: During each Test Phase (~10 minutes), IT neuronal selectivity was probed in two
different tasks. Monkey 1 freely searched an array of eight small dots (size 0.2°) vertically
arranged 3° apart. The dots never changed in appearance, but on each “trial”, one dot would
be randomly baited in that a juice reward was given when the animal foveated that dot, and the
next “trial” continued uninterrupted. Typically, the monkey saccaded from one dot to another
(not always the closest dot) looking for the hidden reward. During this task, object images
were presented (100 ms duration) on the animal’s center of gaze, (onset time was the detected
end of a saccade; approximately one such presentation every other saccade, never back-to-
back saccades). Thus, the monkey’s task was unrelated to these test stimuli. To limit
unwanted experience with the visual stimuli, each such presented object was immediately
removed upon detection of any saccade and these aborted presentations were not included in
the offline analyses. Monkey 2 performed a more standard fixation task in which it foveated a
single, central dot (size 0.2°, £1.5° fixation window) while object images were presented at a
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natural, rapid rate (5 images/s; 100 ms duration, 100 ms blank intervals). Reward was given at
the end of the trial (5-8 images presented per trial). Upon any break in fixation, any currently
present object image was immediately removed (and not included in the analyses), and the
trial aborted. The animal could typically maintain fixation successfully in >75% of the trials.
Aside from the task differences (free-viewing search vs. fixation), retinal stimulation in the two
tasks was essentially identical. ~60 (x2) repetitions of each image were collected in the first
Test Phase and ~50 (£2) repetitions in all the later Test Phases.

Exposure Phase: During each Exposure Phase (~1.5 hr), the animal freely viewed the
monitor while object images (pseudo-randomly chosen) intermittently appeared at random
positions on the screen. Because foveating a suddenly appearing object is a natural,
automatic behavior, essentially no training was required, and the monkey almost always
looked directly to the object (>90% of the time). 100 ms after the animal had foveated the
object (defined by a saccade offset criteria of eye velocity<10°s and a £1.5° window centered
on the object), the object underwent a size change on the animal’s center of gaze.
Importantly, some of the object size changes were accompanied by identity changes (i.e. our
key manipulation, see details of specific experiments in the main text Experimental
Procedures). The free viewing was meant to keep the monkey engaged in natural visual
exploration, but the manipulation of object size statistics was always deployed during the brief
intervals of fixation during natural exploration (see eye movement analyses in Figure S7). The
animal was only rewarded for looking to the object to encourage exploration, thus no explicit
supervision was involved. There were a total of 8 different exposure event types in the full
design (illustrated by the eight arrows in Figure 1B). One Exposure Phase consisted of 1600
exposure events: 200 exposure events per arrow exactly.

Neuronal Assay

Muti-unit activity (MUA) was gathered from 154 IT sites (n=44 for Experiment I; 19 for
Experiment II; 91 for Experiment 1ll) by randomly sampling over a ~4x4 mm area of the ventral
STS and ventral surface lateral to the AMTS (Horsey-Clark coordinates: AP 13-17 mm; ML 18-
22 mm at recording depth) from the left hemispheres of two monkeys. MUA was defined as all
the signal waveforms in the spiking band (300 Hz — 7 kHz) that crossed a threshold set to ~2
s.d. of the background activity. That threshold was held constant for the entire session. A
snippet of waveform data sampled at 0.07 ms intervals was recorded for 8 ms around each
threshold-triggering event and saved for offline spike sorting (see Data Analyses below).

Each day, a glass shielded platinum-iridium microelectrode wire was introduced into the brain
via a guide-tube and advanced to the ventral surface of the temporal lobe by a hydraulic
microdrive (guided by anatomical MRI). We then advanced the microelectrode while the 96
object images (Figure S1) were pseudo-randomly presented on the animals’ center of gaze
(animal tasks identical to those in the Test Phases). Once a visually driven recording site was
found (based on online inspection), we stopped advancing and left the electrode in the brain to
allow for tissue settling (up to 2 hours) before the recording session started. Each recording
session began with an initial screening in which the IT sites were probed with the same object
set (96 objects, ~10 repetitions per object, all presented on the center of gaze) for object pair
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selection:

Main Test Objects (Swap Objects): Among the objects that drove the site significantly
above its background response (t-test against randomly interleaved blank presentation,
p<0.05, not corrected for multiple tests), the most preferred (P) and least preferred (N) objects
were chosen as a pair. Thus, both objects tended to drive the neuronal recording site, and
most sites had selectivity for one (P) over the other (N). These two objects were chosen
subject to the condition that both objects were from the natural object class (Monkey 1) or both
were from the silhouette object class (Monkey 2; see Figure S1).

Control Objects: For each recorded IT site, we also used the same initial screening
(above) to choose a second pair of control objects (P' and N'). Our goal was to choose two
objects the IT site was selective for but were very distant from the swap objects in IT shape
space. Because we do not know the dimensions of IT shape space, we cannot strictly enforce
this. In practice, we simply ensured that the control objects were always chosen from the
object class that was not used for the swap objects (i.e. the silhouette object class for Monkey
1, and the natural object class for Monkey 2, see Figure S1). Within this constraint, the control
objects were chosen using the exact same responsivity and selectivity criteria as the swap
objects (described above).

Once the initial screening and object selection was completed, we then carried out the Test
and Exposure Phases in alternation while making continuous recording from the IT site for the
entire recording session (~3 hours). The swap objects and control objects were each tested at
all three sizes in each Test Phase but only the swap objects were shown and manipulated
during the Exposure Phases.

Data Analyses

Neuronal data recorded from the 154 IT sites was first tested for their object selectivity. Offline
analyses revealed that a fraction of the sites were not significantly selective among the swap
object pairs (two-way ANOVA, 2 object x 3 sizes, p>0.05 for both “object” main effect and
“object x size” interaction), probably because only a limited number of response repetitions
were collected during the initial screening and we selected the objects to both produce a
statistically significant response (as described above). We excluded those sites and only
concentrated on the remaining object-selective sites (n=43 for Experiment |; 19 for Experiment
II; 36 for Experiment Ill, many sites from Experiment 11l showed significant selectivity only for
the swap object pair or only for the control object pair, but we concentrated on the sites that
showed significant selectivity for both the swap and control object pairs). These sites were
subject to one more screening for recording stability (see below) and all the results presented
in the main text were from the object-selective and stable sites (n=27 for Experiment I; 15 for
Experiment Il; 31 for Experiment Ill).

Recording Stability Screen: \We were interested in specific selectivity changes induced by
our experience manipulation. However, we were concerned that non-specific selectivity
changes (e.g. resulting from electrode drifts in tissue or neuronal injury) could potentially
contaminate our effect of interest. Our controls were designed to make sure that we would not
interpret any such effects as evidence of learning, but we still wanted to do our best to insure
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that any non-specific effects would not mask the size of our effect of interest. Unlike single-
unit recording where one can judge the stability of recording based on spike waveform
isolation, we do not have such measures in multi-unit recording. Thus we sought another
independent measure of recording stability. To do this, we relied on the selectivity among the
control object images (see above). We proceeded under the assumption that these control
object images were far apart from the swap object pairs in the IT shape space, there should be
little change in the selectivity among these control object images induced by our experience
manipulation (our results and previous work confirmed this assumption; see Supplemental
Figure S4 and Li and DiCarlo, 2008). That is, the response to these objects provides a gauge
of any non-specific changes in IT selectivity. To quantify that gauge, we computed Pearson’s
correlation between the control image response vectors (6 dimensional vector, 2 objects x 3
sizes) measured from the first and last Test Phases. We deemed an IT site “stable” if it had a
correlation value higher than 0.7 (Figure S4). In the main text, we only present results from
these stable sites because they provide the cleanest look at our data and the best quantitative
measure of learning magnitude. Ciritically, this site selection procedure relies only on data that
is fully independent of our key exposure condition and key control condition (e.g. Figure 1B),
so there is no selection bias. Nevertheless, we also repeated the same analyses on all of the
recorded IT sites and found that the main results were qualitatively unchanged (see Figure
S4). We also tested more strict forms of stability criteria that included background activity
change (<10, <5, and <2 spikes/s). With these stability criteria, all the key results also
remained the same (Figure S4C).

Computing (P-N) neuronal selectivity: To avoid any bias in this estimate of selectivity, for
each IT site, we set aside an independent set of response data from the first Test Phase (10
response repetitions to each object in each size) and used those data only to define the labels
"P"and "N" ("P" was taken as the object that elicited a bigger overall response pooled across
object size). We recorded 10 extra response repetitions in the first Test Phase in anticipation
of this need for independent data (60 repetitions in the first Test Phase, 50 repetitions in the
later Test Phases). The label "P" and "N" for the site was then held fixed across object size
and later Test Phases, and all remaining data was used to compute the selectivity (P-N) using
these labels. This procedure ensured that any observed response difference between object P
and N reflected true selectivity, not selection bias. Because different splitting of screen and
remaining data may not result in consistent "P" "N" label, for each IT site this procedure was
performed 100 times (different splitting of screen and remaining data in the first Test Phase) to
obtain an averaged selectivity estimate (P-N). Variability arising from this procedure is
reflected in the error bars of Figure 2C and 3B for each IT site.

Statistical Tests for the "Size x Exposure” Interaction: The key part of our experimental
prediction is that any change in object selectivity should be found predominantly at the swap
size (Figure 1C). To directly test for such an interaction between object size and our
independent variable (exposure), we performed two different statistical tests on the neuronal
selectivity measurements (P-N, in units of spikes/s). This main prediction and statistical results
are from pooling across neurons (i.e. pooled “subjects” design with counterbalance).

First, we applied a two-factor repeated measures ANOVA. To design the test, we treated each
IT site as one repeated measurement (i.e. one subject) with two within-group factors
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(“exposure” and “size”). Repeated measures ANOVA expects that all subjects are measured
across the same number of conditions, however, our data was such that each IT site was
tested for differential amount of time: some IT sites had three Test Phases while others only
had two (due to different rates of experimental progress on each day and normal variation in
the animal’s daily work ethic). To get around this problem, for each IT site, we simply used the
data only from the first and last Test Phase, omitting the data from the intermediate Test
Phases for some IT sites. Thus in our ANOVA design, the “exposure” factor had two levels,
and the “size" factor also had two levels: swap and non-swap. Our main focus was on the
significant interactions between “exposure” and “size” (see main text). Our data also revealed
significant main effects of “exposure” (Experiment I: p=0.0004; Experiment Il: p=0.014) and no
significant main effect of “size” (p = 0.72; p = 0.32). Given our experience manipulation and
counterbalanced experience design across object size, this pattern of main effects is expected
under the temporal contiguity hypothesis (see Figure 1C).

We also carried out a second, more non-parametric statistical test for the interaction of
“exposure” and “size” by applying a general linear model. The formulation is similar to
ANOVA. However, it is not subject to assumptions about the form of the trial-by-trial response
variability. We have previously used the same method in our study on IT position tolerance
learning (Li and DiCarlo, 2008) and simulations with Poisson spiking neurons have confirmed
the correctness of our analysis code (~5% significant occurrence at p<0.05 with null effects).
The model had the following form:

(P _N)neuron:n,size:s,exposure:e = an + bl R b2 e+ b3 : (S : e)
The three independent variables of the model were: "size" (s), "exposure" (e), and their
interaction (i.e. their product, s-e). The "size" factor had two levels (i.e. s = 1 for swap size, -1
for non-swap size) the "exposure" factor had up to three levels depending how long a site was
tested, (i.e. e = 0 for pre-exposure, and could be up to 1600 exposures in increments of
800's). Each a, was the selectivity offset specific to each IT site; b,, b,, and b, were slope
parameters that were shared among all the sites (i.e. within subject factors). Thus, the
complete model for our population of n sites (n=27, Experiment |; n=15, Experiment Il)
contained a total of n+3 parameters that were fit simultaneously to our entire data set. The a,’s
absorbed the site-by-site selectivity differences that were not of interest here, and the
remaining three parameters described the main effects in the population, with b, of primary
interest (interaction).

We fit the linear model to the data (standard least squares), and then asked if the observed
value of the interaction parameter (b,) was statistically different from 0. To do this, we obtained
the variation of the b, estimate via bootstrap over both IT sites and repetitions of each site’s
response data. The exact procedure was done as follows: for each round of bootstrap over IT
sites, we randomly selected (with replacement) n sites from our recorded n sites, so a site
could potentially enter one round of bootstrap multiple times. Once the sites were selected, we
then randomly selected (with replacement) the response repetitions included for each site (our
unit of data here was a scalar spike rate in response to a single repetition of one object image
in one size). Importantly, the selection of the response repetitions was done after we have
excluded 10 response repetitions reserved for determining object labels (“P” and “N”). This
absolute independence of the data allowed us to obtain unbiased selectivity estimates. Each
site’s (P-N) was computed from its selected response repetitions. The linear model was then
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fit to the data at the end of these two random samples to obtain a new b, estimate. This
procedure was repeated 1000 times yielding a distribution of b, estimates, and the final p-value
was computed as the fraction of that distribution that was less than 0. This p-value was
interpreted as: if we were to repeat this experiment, with both the variability observed in the
neuronal responses as well as the variability in which IT sites were sampled, what is the
chance that we would not see the interaction observed here? In effect, this bootstrap
procedure allowed us to derive a confidence interval on the model parameter estimate (b,), and
the duality of confidence intervals and hypotheses testing allowed us to report that confidence
interval as a p-value (Efron and Tibshirani, 2003).

Statistical Tests for the Response Change in Single Sites: We evaluated each IT multi-
unit site's selectivity (P-N) change by fitting linear regression as a function of the number of
exposure events to obtain a slope, As(P-N). The statistical significance of the response
change for each IT site was evaluated by permutation test. Specifically, for each site, we
randomly permuted the Test Phase label of the response data (i.e. which Test Phase each
sample of P and N response data belonged to, our unit of data here was a scalar spike rate in
response to a single repetition of one object image in one size). We then re-computed the (P-
N) selectivity on the permuted data and fit the linear regression. The permutation procedure
was performed 1000 times to yield a distribution of slopes (empirical “null distribution” of As(P-
N)). The p-value was determined by counting the fraction of the null distribution that exceeded
the linear regression slope obtained from the data. All sites with p < 0.05 were deemed
significant (see main text).

Combining the Position and Size Tolerance Learning Data: In main text Figures 6 and 7,
we pooled the data from size experiment I, Il, (=42 MUA sites), and our previous position
tolerance experiment (n=10 MUA sites collected using the same method described above, see
Li and DiCarlo, 2008) because the two experiments used similar experience manipulations and
the effect magnitude was comparable (Figure 5). To enter this analysis, we required that the
sites had (P-N) selectivity at the medium object size/position (>5 spikes/s and <50 spikes/s,
n=34). This was done under the logic that such selectivity is needed to provide a driving force
for learning. We then used independent data to divide the sites into different groups based on
the selectivity at the swap position/size in Figure 6 (Group 1: all sites; Group 2: <40; Group 3:
<20; Group 4: <10; Group 5: <5; Group 6: <0) or at the non-swap position/size in Figure 7
(Group 1: <0; Group 2: <5; Group 3: <10; Group 4: <20; Group 5: all sites). We used
independent data to select these sub-populations so that any stochastic fluctuations in site-by-
site selectivity would produce no average selectivity change.

Single-unit Sorting and Analyses: We performed principle component analyses (PCA)
based spike sorting on the waveform data collected during each Test Phase. K-mean
clustering was performed in the PCA feature space to yield multiple units. The number of
clusters was determined automatically by maximizing the distances between points of different
clusters. Each unit obtained from the clustering was further evaluated by its signal-to-noise
ratio (SNR: ratio of peak-to-peak mean waveform amplitude to standard deviation of the
noise). For the analyses presented in Figure 4, we set a SNR threshold of 5.0, above which
we will term a unit “single-unit”. We verified that the key result is robust to the choice of this
threshold (Figure S6).
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Because there was a great amount of cell-to-cell variability in IT neurons’ selectivity, we
computed a normalized selectivity measure for each neuron (Figure 4). Each neuron’s size
tolerance was computed as (P-N)/(P-N)medium, Where (P-N) is the selectivity among the two
objects at the tested size and (P-N) negium is the selectivity at the medium object size. A size
tolerance of 1.0 means that a neuron perfectly maintained its selectivity across the size
variations spanned here. Because not all the single-units had object selectivity, only units that
showed selectivity at the medium size were included ((P-N) megium™>1 spikes/s).
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