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Separating Value from Choice: Delay Discounting Activity
in the Lateral Intraparietal Area

Kenway Louie and Paul W. Glimcher
Center for Neural Science, New York University, New York, New York 10003

The mathematical formulations used to study the neurophysiological signals governing choice behavior fall under one of two major theoretical
frameworks: “choice probability” or “subjective value.” These two formulations represent behavioral quantities closely tied to the decision
process, but it is unknown whether one of these variables, or both, dominates the neural mechanisms that mediate choice. Value and
choice probability are difficult to distinguish in practice, because higher-valued options are chosen more frequently in free-choice tasks.
This distinction is particularly relevant for sensorimotor areas such as parietal cortex, where both value information and motor signals
related to choice have been observed. We recorded the activity of neurons in the lateral intraparietal area while monkeys performed an
intertemporal choice task for rewards differing in delay to reinforcement. Here we show that the activity of parietal neurons is precisely
correlated with the individual-specific discounted value of delayed rewards, with peak subjective value modulation occurring early in task
trials. In contrast, late in the decision process these same neurons transition to encode the selected action. When directly compared, the
strong delay-related modulation early during decision making is driven by subjective value rather than the monkey’s probability of
choice. These findings show that in addition to information about gains, parietal cortex also incorporates information about delay into a

precise physiological correlate of economic value functions, independent of the probability of choice.

Introduction
Decision making involves the transformation of information into
a behavioral choice. In perceptual decision tasks, this flow of
information links sensory processing to the selection of an action.
Lateral intraparietal area (LIP) neurons are hypothesized to me-
diate direct sensorimotor transformations, responding to stimuli
in a selective region of visual space and firing before a saccadic eye
movement to the same location (Gnadt and Andersen, 1988;
Andersen and Buneo, 2002). In addition to spatially congruent
sensorimotor activity, LIP neurons also represent sensory infor-
mation that can be used to specify saccade metrics even when the
stimulus is not colocalized with the reinforced movement. For
example, in different experimental paradigms, LIP activity has
been shown to reflect accumulated motion evidence, target
color, temporal information, and probabilistic cues (Shadlen
and Newsome, 2001; Roitman and Shadlen, 2002; Toth and
Assad, 2002; Leon and Shadlen, 2003; Yang and Shadlen, 2007).
Typically, decision-related activity in these experiments has been
taken to represent the probability of choice: increased activation
correlates with a higher likelihood of a correct decision, and thus
a higher probability of behavioral selection (Sugrue et al., 2005;
Gold and Shadlen, 2007).

While the choice probability framework has proven powerful,
decision processes can also incorporate nonsensory, internally
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derived information such as value, strategic planning, and atten-
tion. In particular, recent experiments suggest that LIP activity
reflects value information such as the probability or magnitude of
reinforcement, reward history, and strategic game valuation
(Platt and Glimcher, 1999; Dorris and Glimcher, 2004; Sugrue et
al., 2004) even though these properties are not instantiated as
sensory signals at the level of single trials. These findings have led
to the proposal that decision-related activity may represent the
subjective value of a specific action (Glimcher et al., 2005). In this
framework, LIP activity combines all relevant reward informa-
tion and sensory evidence into a single decision variable that
reflects the overall subjective value of the saccade (or attentional
target) encoded by the neuron under study. Like choice proba-
bility coding, subjective value is presumed to act via modulation
of the spatially tuned response fields widely observed in parietal
cortex.

Thus LIP neurons could be modulated by the behavioral
probability that a response field movement would be chosen for
execution or by the underlying subjective value of the action.
Additionally, it has been suggested that both subjective value and
choice probability may be represented, in sequential stages, dur-
ing the decision process (Sugrue et al., 2005). Importantly, al-
though subjective value and choice probability are separable
quantities in principle, value and choice can be difficult to disam-
biguate: higher-valued options are chosen more frequently. For
example, in experiments using matching law behavior, choice
behavior is by definition directly proportional to the relative
values of the options, and LIP activity correlates with both
signals (Platt and Glimcher, 1999; Sugrue et al., 2004). In
general, this correlation between choice probability and value
confounds many free-choice paradigms, particularly those in
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which the differences in (or ratios between) the option values
under consideration span only a narrow experimental range.
The result is that existing studies cannot distinguish between
these two representations, and it is unclear whether parietal
cortex carries a value signal distinguishable from the proba-
bility of choice.

To investigate these issues, we recorded the activity of LIP
neurons while monkeys performed an oculomotor intertemporal
choice task between a small immediately available reward and a
larger delayed reward. Using a traditional psychophysical ap-
proach, we measured the choice probabilities of two monkeys as
they made these decisions, and using an experimental economics
approach, we quantified the individual subjective value of re-
wards as a function of delay, enabling us to examine how each
variable controls LIP activity.

Materials and Methods

Subjects and task. Two male rhesus monkeys (Macaca mulatta; monkey
D, ~8.6 kg; monkey W, ~6.0 kg) were used as subjects. All experimental
procedures were performed in accordance with the Public Health Ser-
vice’s Guide for the Care and Use of Laboratory Animals and approved by
the New York University Institutional Use and Care Committee.

Experiments were conducted in a dimly lit sound-attenuated room.
The monkeys were head-restrained and seated in a Plexiglas enclosure
that permitted arm and leg movements. Visual stimuli were generated
using an array of tristate light-emitting diodes (LEDs) situated on a tan-
gent screen 145 cm from the eyes of the monkey. The LEDs formed a grid
with points spaced at 2° intervals, spanning 40° horizontally and 40°
vertically. Eye movements were monitored using the scleral search coil
technique (Fuchs and Robinson, 1966) with horizontal and vertical eye
position sampled at 500 Hz using a quadrature phase detector (River-
bend Electronics). Presentation of visual stimuli and water reinforce-
ment delivery were controlled with an integrated software and hardware
system (Gramalkn; Ryklin Software).

Each trial began with the monkey fixating a central fixation target. Two
peripheral targets were then presented, a red target associated with a
small immediate reward and a green target associated with a larger de-
layed reward. After 800 ms, the fixation target was dimmed for 200 ms,
followed by the presentation of a central instruction cue for 500 ms. In
forced-choice trials, the color of the central cue specified the saccade
target; in free-choice trials, a yellow cue indicated that a saccade to either
target would be rewarded. At 1500 ms, the central fixation cue was extin-
guished, indicating that the monkey was permitted to initiate a saccade;
peripheral target cues were extinguished after the monkey completed a
saccade to one of the presented targets. Rewards were delivered either
immediately or after the designated delay; monkeys were not required to
maintain fixation over the delay interval. In immediate reward trials, an
additional interval was imposed after the immediate reward was deliv-
ered, thus equalizing the duration of immediate and delayed reward
trials. Each session was conducted in blocks of 40 forced-choice followed
by 20 free-choice trials. Delay and reward magnitudes were held constant
across a block. Delays were varied between blocks and chosen to span
choice threshold in behavior-only sessions. In electrophysiology ses-
sions, delays were 0, 1, 2, 4, 8, and 12 s, presented in randomized order
(3—6 blocks). The immediate reward was 0.130 ml of water; the delayed
reward was constant in a session and either 0.143, 0.163, 0.196, or 0.260
ml of water.

Electrophysiological recording. Monkeys were implanted with a Ci-
lux recording chamber (Crist Instruments) targeting the lateral bank
of the intraparietal sulcus, centered 3 mm caudal and 12 mm lateral to
the intersection of the midsagittal and interaural planes in either the
left hemisphere (monkey D) or the right hemisphere (monkey W).
Chamber location was verified using anatomical magnetic resonance
imaging (3 T; Siemens). At the start of each recording session, a 23
gauge guide tube was positioned in a support grid (I mm spacing;
Crist Instruments) and inserted through intact dura. A tungsten steel
electrode (810 M{); FHC) was lowered through the guide tube using
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a computer-controlled micropositioner (EPS; Alpha-Omega). Elec-
trophysiological signals were amplified, bandpass filtered, and digi-
tized, and individual neurons were isolated based on waveform
characteristics (MAP; Plexon).

Within a given session, recording was initiated once stable electro-
physiological signals were obtained from a depth corresponding to LIP
according to the magnetic resonance images. Single intraparietal neurons
were identified and response fields were characterized as previously de-
scribed (Platt and Glimcher, 1999). Once a stable response field was
estimated, the intertemporal choice task was run with the delayed reward
target location placed within the estimated response field, and the imme-
diate reward target placed outside the response field, typically in the
opposite hemifield and at an equivalent distance from fixation. Neurons
were recorded while monkeys performed 3—6 blocks of the intertemporal
choice task, with randomized selection of delays between blocks. For
neural analyses, the first two forced trials in a block to each target were
excluded to minimize block transition effects, while all free-choice trials
were included.

Behavioral analyses. The intertemporal choice task was conducted un-
der four different conditions of delayed reward magnitude (0.143, 0.163,
0.196, and 0.260 ml), randomized across sessions, to quantify the dis-
count function (or more precisely, the discounted “utility” function).
Four choice curves and a discount function were fit to the complete
binary choice dataset using a two-parameter binary logit model, with a
separate fit for each monkey. The choice function:

1
Pr = exp(B(SV, — SVy))’

where p; is the probability of choosing the delayed reward as a function of
the difference between the subjective values of the two options (SV;, SVy)
and a noise parameter (3, and the discount function:

A

V=17

where the decline in subjective value SV is a function of delay D, amount
A, and a discount parameter k, were simultaneously fit by maximum
likelihood estimation. Bootstrap distributions were obtained for each
discount factor k by resampling the sample distribution of behavioral
data, treating individual blocks of free-choice data as samples. A boot-
strap sample k was produced for each resample procedure and repeated
for a total of 2000 iterations, and 95% percentile confidence intervals
were quantified for significance testing.

Neural analyses. Individual LIP neurons were run under a single de-
layed reward magnitude condition, with neurons from monkey W col-
lected under two conditions (0.143, 0.260 ml) and from monkey D under
three conditions (0.143, 0.163, 0.260 ml). Because discounting data, nor-
malized to the zero delay condition for that magnitude condition (see
below), were not significantly different between different magnitude
conditions, normalized neural data recorded under the magnitude con-
ditions were combined together for each monkey.

For population neural analyses, each neuron was normalized by its
mean neural firing rate across the zero delay condition trial. To construct
the neural discount function, the mean normalized population activity
(0-200 ms) was quantified for each delay condition and normalized to
the population zero delay condition mean. This procedure produces a
delay-dependent activity function, relative to the zero delay condi-
tion; this function allows comparison to the behavioral discount
function, which describes relative subjective value as a function of
delay. For forced-choice trial data, the first two trials to each target
after a block transition were excluded from analysis so as to examine
data only after the animal had already sampled the new reward con-
tingencies. In free-choice trial blocks, the number of trials with sac-
cades into the response field was delay dependent and therefore varied
by block, resulting in some blocks with few or no trials where the
monkey chose the delayed reward target (i.e., at long delays). For the
neural discount function analyses, free-choice neural data were in-
cluded only from blocks with a minimum of eight trials with a saccade
into the response field.
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To examine the relative contribution of subjective value and choice to
LIP activity, univariate and multiple regression analyses were performed
in non-overlapping 100 ms windows across the duration of free-choice
trials. For each block of free-choice data, neural activity was quantified as
mean firing rate across the block; because individual neurons were not
recorded under all delay conditions, single-neuron firing rates were nor-
malized by the average activity of the neuron in the zero delay condition
to allow comparison across delays and neurons. Each block of free-choice
data was associated with a subjective value, calculated from the delay to
the delayed reward implemented in that block and the individual mon-
key discount function, and a choice probability, quantified as the average
probability of delayed reward target choice during that particular block.
Regression analyses were conducted on the population of block data
points, combining across monkeys (n = 279 blocks). In each temporal
window, univariate linear regression was performed with either subjec-
tive value or observed choice probability as predictors, and multiple
linear regression was performed including both subjective value and
choice probability. Neural data from all free-choice trials were included
in this analysis.

Results

We trained two monkeys (Macaca mulatta) to perform an ocu-
lomotor version of an intertemporal choice task (Fig. 1a). In each
trial the monkey viewed two targets, one associated with a small
immediate reward and the other with a larger delayed reward. In
forced-choice trials, a change in the color of the central fixation
cue instructed the monkey to make a saccade to either the target
that yielded the smaller immediate reward or the target that
yielded the larger delayed reward; in free-choice trials, the mon-
key could select either reward. Each block of trials began with
forced-choice trials, in which both targets had an equal probabil-
ity of instruction, followed by a series of free-choice trials. Re-
ward contingencies (delay and magnitude) were fixed during a
block, so that for any given block monkeys first learned the values
of the two alternatives and subsequently expressed their prefer-
ence between the two options. The total trial duration was also
fixed, regardless of the choices of the monkey, to ensure that
selecting the smaller immediate reward could not lead to higher
overall reward rates. To examine the effect of delay on subjective
value, we varied between blocks the delay required to receive the
larger reward, holding both reward magnitudes constant over the
course of any single session.

Delay discounting behavior

Intertemporal choice behavior is governed by the delay to reward
in a wide array of species (Mazur, 1987; Rachlin et al., 1991;
Myerson and Green, 1995; Laibson, 1997; Kim et al., 2008). In the
present task, monkeys chose the saccade yielding the larger re-
ward when both rewards were offered immediately, but as the
delay to the larger reward increased they eventually preferred the
smaller but more immediate option (Fig. 1b). Because trial dura-
tion within a block was identical regardless of the monkey’s
choice, preference for the smaller but more immediately available
option reflects a true subjective preference rather than an under-
lying rate-maximization strategy.

Logistic choice functions fit to these data quantify an indiffer-
ence point (a point of subjective equality) for each magnitude
condition: the delay at which the monkey showed equal prefer-
ence for the small immediate and larger delayed rewards. Figure
1c shows delay-dependent choice behavior for four different
magnitudes of delayed reward. Changing the size of the delayed
reward across days correspondingly shifted the position of the
indifference point; monkeys would wait longer for larger re-
wards. Together, these temporally defined indifference points
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Figure 1.  Temporal discounting behavior in the intertemporal choice task. a, Trial structure

in forced and free-choice variants of the task. Visual targets were associated with either a
smaller reward delivered immediately (red) or a larger reward delivered after a delay (green).
Trials with immediate rewards were followed by an additional wait interval so that overall trial
duration was identical for both immediate and delayed reward trials in a given block. b, Exam-
ple single session free-choice data (left) and preference curve (right). Position—reward contin-
gencies were fixed in a block of trials (40 forced followed by 20 free), and delay to the larger
reward was varied between blocks (green numbers, in seconds). Preference curves are gener-
ated from average block choice data (example, blue line). In the preference curve, the indiffer-
ence point (choice probability = 0.5) represents the delay at which the subjective value of the
delayed reward is equivalent to that of the immediate reward. ¢, Monkey choice behavior,
analyzed separately for individual animals. Choice data were collected for four different mag-
nitudes of delayed reward. The preference curves and discount function were simultaneously fit
to the choice data using a binary logit model (see Materials and Methods). d, Behavioral dis-
count functions. The best fit hyperbolic discount function for each monkey is shown in red.
Symbols indicate the four preference curve indifference points, which by construction lie on the
discount function. Each discount function is characterized by its discount factor k, which quan-
tifies how steeply subjective value declines as a function of delay.

for different magnitudes of reward describe a function, closely
related to the discounted utility function of neoclassical eco-
nomic theory, which we term the behavioral discount function
(Fig. 1d). Consistent with previous behavioral studies (Mazur,
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carry gaze into the response field. To ex-
amine the effect of delay on neural activ-
ity, we placed the target yielding the larger
delayed reward in the response field of
each recorded neuron and placed the tar-
get yielding the small immediate reward
outside the response field. We then mon-
itored neuronal activity as the delay to re-
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Figure 2 shows example activity from
single LIP neurons during forced-choice
trials in which the monkey was instructed
to make a saccade to the delayed reward
target. In all such trials, the monkey views
the same visual stimuli and performs the
same saccadic movement; only the delay
to reinforcement after the saccade is com-
plete varies between blocks of trials. As pre-
viously reported (Gnadt and Andersen,
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Figure 2.

to the neural data.

1987; Rachlin et al., 1991; Myerson and Green, 1995; Laibson, 1997),
this decline in subjective reinforcer value (SV) as a function of delay
is well described by a simple hyperbolic equation:

A

V=1%o

where A is the reward magnitude, D the delay to reinforcement,
and k the discount factor quantifying how steeply the discount
function declines. For each animal, the four preference curves
and the discount function were fit simultaneously using a binary
logit model, which assumes a minimal number of free parameters
(two). Importantly, while these discount functions were stable
for each individual animal (see supplemental Fig. S1, available at
www.jneurosci.org as supplemental material), there is a significant
difference in the rates of discounting between the two monkeys we
studied (monkey D: k = 0.040 s ~'; monkey W: k = 0.158 s ~'; p <
104, permutation test).

Delay modulation of neural activity

Given these choice and behavioral discount functions, is the ac-
tivity of neurons in LIP better correlated with the objective value
(magnitude) of the offered reward, the subjective value of the
offered reward, or the subsequent choice behavior? To answer
this question, we recorded the activity of 71 LIP neurons while
monkeys performed the intertemporal choice task described
above. Neurons in LIP are spatially tuned, increasing their firing
rate when a visual stimulus appears in a circumscribed region of
space termed the response field. Consistent with a decision-
related visuomotor transformation, many of these neurons also
show presaccadic activity specifically for eye movements that

0
0 5 10 0.8

Subjective
value

Activity of single LIP neurons during the intertemporal choice task. a, Activity of two example single neurons from
different monkeys in forced trials with saccades into the response field. Firing rate histograms and rasters are color-coded by delay
to the delayed reward, and shown aligned to both the time of visual target onset (v) and the time of saccade (s). Instruction to
saccade was always presented 1500 ms after visual target onset. b, Firing rate as a function of delay and subjective value. Average
firing rates (==SEM) are shown for the 200 ms epoch immediately following visual target presentation. The activity of these
neurons is strongly modulated by delay, as evident when neural activity is plotted as a function of delay (left) and delay-dependent
subjective value (right) derived from the behavioral discount function. Red lines represent the best fit hyperbolic discount function

1988), the spiking activity of these neurons
evolves throughout the trial, with activation
typically highest immediately after target
onset, then maintained above baseline
throughout the trial, and finally rising be-
fore a saccade into the response field (Fig.
2a). We found that under longer delay con-
ditions, LIP neurons showed lower firing
rates throughout much of the trial despite
the presence of identical reward magni-
tudes. These neurons were thus sensitive to
delay to reward, a variable that influences
both subjective value and choice but not ob-
jective value in our task (Fig. 2b). The ma-
jority of sampled LIP neurons (47/71, 66.2%) showed significant
modulation by delay (regression analysis, activity in the epoch 0-200
ms after target onset), and delay strongly modulates the population
response of these neurons (Fig. 3a).

1

Neural representation of subjective value

Does this effect of delay represent the monkeys’ subjective valu-
ation of delayed reward? To answer this question, we computed
for each animal a neural discount function, defined—analo-
gously to the traditional behavioral discount function described
above—as the best hyperbolic fit to the population firing rate as a
function of delay. We examined activity in the epoch immedi-
ately after target onset (0-200 ms), pooling data for all of the
neurons studied in each animal, at all magnitudes, normalized by
average response to the zero delay condition. Thus activity is
represented as a fraction of the neuronal response to a given
immediate reward magnitude. Importantly, because the behav-
ioral discount functions differed significantly between monkeys,
we analyzed the individual monkey neural data separately. Be-
cause the behavioral (red line) and neural (black line) discount
functions are defined in the same units (discounted value as a
function of delay), we can directly compare delay-discounted
subjective value and LIP activity (Fig. 3b). We found that for each
monkey the neural discount function matches the behavioral dis-
count function with surprising precision (monkey W: k, ;a1 =
0.157 s, kyepay = 0.158 s~ '; monkey D: k,opra = 0.038 57,
Kpenay = 0.040 s ~'; 95% bootstrap confidence intervals shaded in
Fig. 3b). Furthermore, each neural discount function differs sig-
nificantly from both the behavioral and neural discount func-
tions of the other monkey (see supplemental material, available at
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Figure3. Population analyses: neural and behavioral discount functions. a, Average forced-

choice activity, segregated by delay. Firing rate histograms are shown for trials with saccades
into the neural response field, color-coded by delay and aligned to visual target onset (v) and
saccade initiation (s) as in Figure 2. Firing rate activity is presented separately for the two
monkeys (monkey W, n = 23 neurons, monkey D, n = 48 neurons). b, Forced-choice neural
and behavioral discount functions. Mean (== SEM) normalized LIP activity is shown as a function
of delay, relative to activity at zero delay. The neural discount function is the best fit hyperbolic
curve to the neural activity as a function of delay (black line); 95% bootstrap confidence inter-
vals are plotted as shaded gray regions. Each neural discount function matches the respective
monkey’s behavioral discount function (red lines). ¢, Average free-choice activity, segregated
by delay. Data are presented identically to forced-choice trials, for all trials in which the monkey
chose to saccade into the neuron’s response field. d, Free-choice neural and behavioral discount
functions.

www.jneurosci.org), suggesting a specific psychometric—neuro-
metric match between perceived value and neuronal activity in
each individual.

The preceding data, however, only reflect neural activity dur-
ing forced-choice trials. If these representations drive decision-
making processes, then subjective value should modulate LIP
neurons during free-choice trials as well. We therefore examined
neural activity during free-choice trials, restricting our analysis to
the subset of trials in which the monkey chose the target in the
neuron’s response field (RF). Despite a smaller number of sam-
pled trials imposed by the subject’s preferences, it is clear that LIP
population activity during free choice is strongly modulated by
delay (Fig. 3¢, displayed for trials with saccades into the RF), and
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Figure 4.  LIP modulation reflects delay-discounted subjective value. a, Linear regression

slopes quantifying LIP modulation by either delay or subjective value. Each data point repre-
sentsan individual LIP neuron from monkey W (blue) or monkey D (black). Cumulative marginal
distributions are plotted for delay (above) and subjective value (right); arrows indicate mean
slope values. Subjective value slopes are similar ( p = 0.70), but delay slopes differ significantly
between monkeys ( p = 0.0008), suggesting that subjective value drives LIP modulation in
both animals. b, Normalized population activity as a function of delay (left) and subjective value
(right). The combined data are much better characterized by subjective value (R = 0.95) than
delay (R> = 0.58).

the free-choice neural discount functions also match the behav-
ioral discount functions (Fig. 3d, monkey W: k, o,y = 0.140s 7',
Kpenay = 0.158 s s monkey D: ka1 = 0.048 5, ky ppay = 0.040
s "5 95% bootstrap confidence intervals shaded).

Comparison of neural activity across both monkeys confirms
that subjective value is a more parsimonious explanation of LIP
activity than delay. For each neuron, we quantified the influence
of either delay or subjective value using separate linear regression
models. Figure 4 plots the regression slopes relating delay to firing
rate versus the regression slopes relating subjective value to firing
rate for all neurons, separated by monkey, as well as the cumula-
tive marginal regression weight distributions. This figure indi-
cates that while LIP neurons in both monkeys show similar
regression slopes for subjective value ( p = 0.70, Wilcoxon rank-
sum test), delay regression slopes differ significantly between
monkeys (p = 0.0008, Wilcoxon rank-sum test). Thus, while
subjective value controls LIP activity in the same manner in both
monkeys, delay to reward more strongly modulates neural firing
rates in monkey W than monkey D. Importantly, these neural
results are consistent with the behavioral data, in which subjec-
tive value also declines more quickly as a function of delay in
monkey W (k = 0.158) than in monkey D (k = 0.040)—when
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subjective value is a steeper function of delay, neural firing rates
are also more strongly delay modulated.

This encoding of subjective value is evident in the strong cor-
respondence between the behavioral and neural discount func-
tions seen in Figure 3. To examine this directly, we plot in Figure
4b the normalized population neural activity of both monkeys as
a function of delay (left) and subjective value (right). Note that
the computation of subjective value relies solely on choice behav-
ior in the discounting task, and does not rely on neuronal data.
Nevertheless, compared to delay, subjective value explains more
of the variance in the population data in both monkey W (R} =
0.87, R3y = 0.96) and monkey D (R} = 0.87, R&, = 0.93). Fur-
thermore, combining all data, population LIP activity is much
better characterized as a function of subjective value (R* = 0.95)
than delay (R* = 0.58).

Distinct representations of value and choice

The preceding data show that immediately after target onset, LIP
activity precisely covaries with delay-discounted subjective value.
Decision areas such as LIP are also known to ultimately signal the
chosen action (Gnadt and Andersen, 1988; Andersen and Buneo,
2002), which is a function of subjective value—subjectively
higher-valued targets are by definition chosen over lower-valued
ones (Platt and Glimcher, 1999; Sugrue et al., 2004). Thus LIP
activity appears to represent both input and output variables nec-
essary in decision making: value and selected action. It has, how-
ever, been proposed that option values are transformed into
choice probability functions as an intermediate step in generating
stochastic choice behavior, and that LIP activity may actually
reflect these underlying choice probabilities (Sugrue et al., 2005).
Could the modulation we observe simply reflect the animals’
upcoming probability of choice rather than a distinct represen-
tation of subjective value per se?

To examine the relative influence of subjective value and
choice probability on LIP activity, we quantified single-neuron
firing rates for individual blocks of free-choice trials (n = 279
blocks); each block was associated with a subjective value (deter-
mined by the specified delay to reward and the individual-specific
discount function) and a mean choice probability (averaged over
the monkey’s choices in that block). Though subjective value is
directly calculated from overall choice behavior, two properties
of this dataset allow us to effectively disassociate subjective value
and choice probability. First, choice behavior at the block level
exhibits variability between blocks for identical subjective value
conditions. Second, the subjective value of the delayed target
continues to diminish even after choice probabilities have
reached asymptotically high levels (Fig. 1). As evident in Figure 5,
there is considerable variation between these two parameters,
particularly when data are grouped across magnitude conditions
(variance inflation factor = 1.26). Utilizing this relative indepen-
dence, we used regression analyses to determine whether neural
activity is better correlated with choice probability or subjective
value, and how this encoding changes during decision making.

We performed a sliding window analysis across the duration
of all free-choice trials to examine modulation of LIP activity over
the decision process. In each non-overlapping 100 ms bin, we
quantified the influence of subjective value or choice probability
on normalized block-averaged firing rates by univariate linear
regression (individual neuronal firing rates normalized by mean
zero delay activity; see Materials and Methods). As shown in
Figure 64, subjective value (blue line) explains a significant pro-
portion of LIP population variability across the length of free-
choice trials, with a peak in the coefficient of determination (R?)
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Figure 5.  Dissociation of subjective value and choice probability. Shown is a scatter plot of

block-averaged choice probability and subjective value. Each point represents a single block of
free-choice trials during neural recording sessions; all blocks with neural data are displayed
(n = 279 blocks). Subjective value was determined by the delay to reward of the response field
target and the individual monkey discount function. Choice probability was quantified as the
mean probability that the monkey chose the delayed reward target in that particular block. For
clarity, data collected under different magnitude conditions are colored as indicated. The
grouped data show considerable dissociation between subjective value and choice probability
(variance inflation factor = 1.26).

immediately after target presentation. The small but significant
value modulation during fixation likely reflects the task design, in
which target locations and rewards are fixed within blocks, mak-
ing information about the value of saccades available to the ani-
mals before target onset. In contrast to strong value modulation,
neural activity early in the trial is minimally explained by choice
probability (red line). R* values from multiple regression analysis
(black line) confirm that including choice probability as a factor
provides little additional explanatory power beyond that of sub-
jective value alone.

To examine these results more directly, we plot in Figure 6b
population average firing rates as a function of either subjective
value or choice probability for the 0-1000 ms period following
target presentation. Consistent with the sliding window analysis,
firing rate is significantly dependent on subjective value (R, =
0.151,p < 10—, Ftest) but not choice probability (Rgp = 0.005,
p = 0.23, F test). Furthermore, when data are restricted to blocks
where choice probability was equal to 1 (i.e., the monkey chose
the delayed option exclusively), LIP activity is still a significant
function of subjective value (Rg, = 0.163, p < 0.00001, F test;
data not shown). We note that the use of local, block-average
choice probability represents a conservative approach to estimat-
ing the influence of subjective value: under the alternative hy-
pothesis that firing rates are driven by choice probability and not
subjective value, using block-level probabilities more closely tied
to daily variations in behavior and global subjective values would
make it more difficult to detect subjective value-related modula-
tions. To ensure that our results did not depend on the particular
definition of choice probability we used, we repeated the univar-
iate regression analysis with global, experiment-averaged choice
probabilities. Using this formulation of choice probability sub-
jective value (R3, = 0.151, p < 10~ "', F test) is still a stronger
predictor of LIP activity than choice probability (R&p = 0.035,
p = 0.002, F test). The higher coefficient of determination for
global versus local choice probability likely arises from the rela-
tionship between global choice probability and subjective value
(in our analysis, average choice probability is a function of sub-
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Figure 6. Value representation independent of choice probability. a, Relationship between

LIP neural activity and either subjective value (blue) or choice probability (red) during free-
choice trials, plotted as the coefficient of determination (R?). Neural activity was aligned to
target onset (v) for the beginning of the trial and saccade initiation (s) for the end of the trial.
Regression analyses were performed in contiguous non-overlapping 100 ms windows across
the duration of the trial using either subjective value or choice probability as the independent
factor. R? values for multiple regression analyses using both subjective value and choice prob-
ability as independent factors are also shown (black). Asterisks indicate time windows when
subjective value or choice explained a significant proportion of population activity ( p < 0.05, F
test). b, Mean LIP activity as a function of subjective value (left) or choice probability (right)
during the interval 0 —1000 ms after target presentation. Regression lines (red) indicate that LIP
population activity is significantly dependent on subjective value (R%, = 0.151,p <10 "', F
test) but not choice probability (R2, = 0.005, p = 0.23, F test).

jective value); when both global choice probability and subjective
value are included in a multiple regression analysis, LIP activity is
only dependent on subjective value (SV regression slope = 0.96,
95% C.I. [0.65 1.24], global CP regression slope = 0.13,95% C.L.
[—0.28 0.03]). Thus, LIP neurons are dependent on subjective
value and not choice probability, defined either locally or glo-
bally, early in the decision process.

LIP activity does not show peak modulation by choice prob-
ability in this task until late in trials, in the interval immediately
preceding saccadic eye movement (Fig. 64, red). Thus, there is
a shift in the population response: at the onset of each trial,
activity reflects the subjective value of the option in the re-
sponse field, regardless of the subsequent choice behavior; as the
trial progresses, activation associated with the monkey’s choice
grows, peaking immediately before movement onset. These re-
sults were not driven by either magnitude or individual animal
effects; additional regression analyses on data segregated by either
reward magnitude or individual subject (see supplemental mate-
rial, available at www.jneurosci.org) demonstrated equivalent re-
sults in both animals: LIP activity reflects subjective value and not
choice probability.
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Discussion

We examined the relationship between parietal neuron activity
and subjective values for actions during value-guided decision
making. Monkeys were trained to choose between rewards differing
in magnitude and delay to reinforcement in a delay-discounting
task, enabling a precise behavioral quantification of the subjective
values of saccadic targets. We found that LIP activity is tightly
correlated to the delay-discounted value of a saccade, indepen-
dent of the underlying probability of choice. While previous
studies have demonstrated subjective value-related activity in LIP
(Platt and Glimcher, 1999; Dorris and Glimcher, 2004; Sugrue et
al., 2004), our results extend these findings in three significant
ways. First, the sensitivity of parietal activity to delay indicates
that this value representation extends beyond manipulations of
expected reward like probability of reinforcement and magnitude
to include exclusively subjective components of value such as
delay. Neural signals related to reinforcement delay have been
observed in other brain regions, notably the frontal cortices (Roesch
and Olson, 2005; Kim et al., 2008), but typically only modulate a
minority of neurons. The present discounting modulation was
observed to strongly influence a majority of parietal neurons,
suggesting the importance of subjective value (action value) cod-
ing at this stage of visuomotor processing (Glimcher et al., 2005).
Second, precise quantification of delay-discounted subjective
value demonstrates a surprisingly accurate match between the
behavioral and neural value representations. This relationship is
similar to the psychometric—neurometric correspondence of sen-
sory signals (Newsome et al., 1989), now extended to parietal
cortex and the domain of value representation. This precise neu-
ral representation of subjective value suggests that parietal activ-
ity is not simply modulated by reward-related variables, but
instead may reflect the underlying neural value signal guiding
choice, a neural correlate of the economic discounted utility
function. Finally, our comparison of choice and value signals
demonstrates for the first time that LIP neurons carry a subjective
value signal that can be separated from signals encoding the prob-
ability of choosing an option. We find that value and choice
signals are temporally dissociated, with subjective value represen-
tation early in the decision process giving way to representation
of the chosen action near the time of saccade; this value-to-choice
transformation in neural activity may represent the critical input
and output stages hypothesized in standard models of the value-
guided decision process.

Choice probability and subjective value

In studies of perceptual decision making rooted in signal detec-
tion theory, choice probabilities are typically constructed by pre-
senting a perceptually ambiguous stimulus that varies from trial
to trial and measuring the aggregate probability that a subject will
make one of two evaluative responses. In the classic paradigm of
this type, monkeys view a random-dot stimulus that contains net
image motion in one of two possible directions and choose one of
two responses; if the monkey selects the response associated with
the correct motion signal, it receives a reward (Newsome et al.,
1989; Britten et al., 1992). The goal is to demonstrate that neural
activity (the neurometric function) is correlated with measured
response probabilities (the psychometric function) across differ-
ent stimulus conditions, and evidence for such neurometric—psy-
chometric matches exists in multiple cortical areas.

Neoclassical economists developed an alternative approach to
the behavioral study of choice, hypothesizing that subjects choos-
ing between two gains behave as if those gains were represented
on an internal scale (Von Neumann and Morgenstern, 1944;
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Samuelson, 1947; Savage, 1954). For this reason, a number of
neurobiological studies have proposed that the brain must con-
tain neural signals representing the subjective values of options in
a way that is at least partially independent of observed choice
probabilities (Dorris and Glimcher, 2004; Glimcher et al., 2005;
Padoa-Schioppa and Assad, 2006, 2008). Employing economic
theory, these studies argue that the largely transitive nature of
monkey choices necessitates an underlying representation of sub-
jective value that is distinct from choice (or choice probabilities).
The correlation between neural activity and external reward
value is taken as evidence that these signals encode subjective
value, with an implied physiological mapping rule from external
to mean internal value.

In practice, however, distinguishing these two frameworks is
difficult because choice probability and subjective value are often
tightly correlated. Consider for instance the recent neurophysio-
logical decision-making studies using the matching law (Sugrue
etal., 2004; Lau and Glimcher, 2008), in which reward magnitude
was systematically manipulated while choices were observed. Un-
der the specified experimental conditions, the animals distrib-
uted their choices according to Herrnstein’s matching law:

R 1 Cl

R, "¢/
where R,/R, is the ratio of reward magnitudes, C,/C, is the ob-
served ratio of choices, and « is a fixed constant. When behavior
follows the matching law, choice probabilities and relative reward
values are directly related. Thus, while there is increasing evi-
dence for decision-related neurophysiological signals, these stud-
ies cannot discriminate between the choice probability and value
frameworks.

In this experiment, we took advantage of two characteristics of
choice behavior to effectively dissociate subjective value and
choice probability. First, stochastic choice behavior is a function
of the values of both options in a decision. Critically, this means
that the subjective value of a single option (the RF target) can vary
widely without a change in the associated choice probability, if
the value of the other option remains much lower (or higher).
Second, choice behavior at the block level exhibits considerable
variability between blocks for identical subjective value condi-
tions, suggesting a role for additional, value-independent sources
of variance in choice. Together, these characteristics produced an
effective experimental dissociation of value and choice probabil-
ity, enabling a comparison of their relative influences on LIP
activity.

Subjective value and decision making
We examined temporal discounting behavior, which displays a
clear, well established behavioral subjective value signal: the dis-
count function. Detailed quantification of the hyperbolic form of
the discount function showed that parietal activity encodes a pre-
cise neural correlate of subjective value. Furthermore, compari-
son of neural activity to both the discount function and observed
choice probabilities revealed that subjective value is the primary
influence on early LIP activity, independent of the ultimate
choice behavior. The striking correspondence between LIP activ-
ity and the discount function across animals suggests that neural
activity is linearly related to the internal, subjective experience of
value.

Classically, neurons in LIP respond to a spatially restricted
subset of visual stimuli and saccadic eye movements, suggesting
that these neurons mediate the visuomotor transformations un-

J. Neurosci., April 21,2010 - 30(16):5498 5507 * 5505

derlying saccade selection and attentional allocation (Andersen
and Buneo, 2002; Goldberg et al., 2002). However, LIP activity
has also been shown to be modulated by additional classes of
information, including more abstract, nonspatial task variables
ranging from color or shape, to elapsed time, to reward probabil-
ities, to the accumulation of sensory signals (Platt and Glimcher,
1999; Shadlen and Newsome, 2001; Roitman and Shadlen, 2002;
Toth and Assad, 2002; Leon and Shadlen, 2003; Sugrue et al.,
2004; Janssen and Shadlen, 2005; Yang and Shadlen, 2007). While
each of these responses can be characterized with a task-specific
model, one is led to wonder whether a unifying framework exists
that could relate these various findings.

We show here that the initial activity of a given LIP neuron
during intertemporal choice is tightly correlated with the delay-
dependent subjective value of the associated saccade. This repre-
sentation of subjective value may allow a reinterpretation of
many previous LIP studies within a broader common framework.
For example, early studies showed that LIP activity in a motion
discrimination task reflects the integral of the motion signal, a
quantity encoding the accumulated evidence for motion in a par-
ticular direction (Shadlen and Newsome, 2001; Roitman and
Shadlen, 2002). Because reward was contingent on the monkey
correctly indicating the true motion direction with a saccade, the
integral of the motion signal was very closely related to the prob-
ability of reward—the more evidence for a particular direction of
motion, the higher the subjective value of the associated saccade.
Similarly, LIP activity in tasks involving the perception of elapsed
time could also be seen as reflecting not time per se, but rather
how such temporal information affects the instantaneous subjec-
tive value the subject places on a particular eye movement (Leon
and Shadlen, 2003; Janssen and Shadlen, 2005). More generally,
LIP neurons have been shown to encode stimulus attributes such
as color only when such features are behaviorally relevant for
obtaining rewards (Toth and Assad, 2002); such activity may not
reflect color, but rather the information color carries about the
value of making a particular saccade. Given the relative specificity
of LIP for eye movements compared to other actions such as
reaches (Snyder et al., 1997; Andersen and Buneo, 2002), the
representation of saccadic subjective value we observe in LIP may
be paralleled by similar subjective value coding for different types
of actions in adjacent regions of parietal cortex (e.g., the parietal
reach region).

Information about the subjective values of actions is certainly
not unique to the parietal cortex, but present in a larger brain
network that processes rewards, updates stored value informa-
tion, and guides behavior (Schultz, 2004). One would expect the
nature of such value information to vary from region to region in
the brain, in a way that corresponds to the specific role of a given
region in learning values and guiding behavior. For example,
activity in dopaminergic nuclei, postulated to guide the learning
of stimulus and action values, has been hypothesized to encode
the difference between predicted and received rewards (Schultz et
al., 1997). In decision-related areas, value information would be
expected to closely approximate subjective valuations because
such valuations are quantified directly from choice behavior.
This representation of subjective value should thus combine all
relevant information guiding choice, ranging from reward char-
acteristics like magnitude to cost information such as required
delay or effort.

We thus propose that subjective value representation in LIP
operates within the existing parietal spatial framework: the sub-
jective value associated with a given visuospatial location modu-
lates the corresponding response field activity. It should be noted
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that while most LIP activity is spatially tuned, consistent with
intentional or attentional activity, recent studies have also dem-
onstrated nonspatial modulation by information such as learned
categorical membership, effector limb usage, stimulus shape
characteristics, and cognitive task rules (Sereno and Maunsell,
1998; Stoet and Snyder, 2004; Freedman and Assad, 2006; Orista-
glio et al., 2006). The value framework may be difficult to recon-
cile with these nonspatial functions of LIP, and such nonspatial
processing may represent an additional role for parietal cortex in
visuomotor processing.

Parietal representations of value and attention

In addition to its role in oculomotor decision making, the parietal
cortex is also modulated by both top-down and bottom-up at-
tentional processing (Gottlieb et al., 1998; Goldberg et al., 2002),
raising the question of whether the signals we observed in area
LIP reflect the allocation of attention independent of any
movement-related phenomena. It is often difficult to separate the
effects of value and attention, since these concepts are closely
coupled in the real world: attention is naturally directed toward
more valuable objects or locations (Maunsell, 2004). Several de-
tails tentatively suggest, however, that the subjective value model
may account for LIP activity in a way that is dissociable from
general models of attentional allocation in this particular exper-
iment. First, LIP firing rates are strongly correlated with subjec-
tive value even during the cue presentation period of forced trials,
when the monkeys might be expected to direct their attention
toward the central instruction cue. This finding is analogous to
data from motion discrimination experiments, where the activity
of LIP neurons reflects the accumulated motion information for
or against a particular saccade, even though the monkeys are
presumed to be attending the central motion stimulus (Shadlen
and Newsome, 2001; Roitman and Shadlen, 2002). Together
these findings suggest that the locus of spatial attention does not
uniquely specify LIP activity. Second, we observed reaction times
that were nonmonotonic functions of delay (supplemental Fig.
S8, available at www.jneurosci.org as supplemental material).
Given the general relationship between attention and reaction
times (Posner, 1980), these data also tentatively suggest that in
this task attention may not be strongly correlated with delay to
reward or subjective value. However, without direct behavioral
measures of attentional allocation, we cannot exclude the possi-
bility that our data reflect a delay- and reward-dependent alloca-
tion of spatial attention; this could be explicitly addressed in
future work by using a nonspatial choice mechanism, such as a
lever release. Given the strong one-to-one correspondence be-
tween LIP single unit activity and delay-discounted value we ob-
served, if attention mediates this parietal modulation then these
findings would imply the novel conclusion that subjective value
serves as a primary and precise determinant of attentional alloca-
tion in this task.

Conclusions

We find that neural activity in the posterior parietal cortex is
linearly related to the private, idiosyncratic experience of subjec-
tive value. We inferred this from a novel type of psychometric—
neurometric match, one that specifically relates a subjective
internal percept of value to a neural activation; such a physiolog-
ical variable provides an empirical link between brain function
and existing theoretical models of value, such as utility. Over the
course of the decision process, this close match between LIP ac-
tivity and subjective value evolves into a correlation between ac-
tivity and choice in these same neurons. Both the unexpectedly
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linear mapping between activity of LIP neurons and subjective
preference and the transition these neurons undergo during
choice are precisely the kind of signals expected in decision-
making circuits, and may provide avenues for future studies at
the intersection of valuation and decision making.
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SUPPLEMENTAL DATA

Stability of intertemporal choice behavior and discount functions

In the main text, we quantified individual monkey temporal discounting behavior by examining
intertemporal choice behavior averaged across the entire experiment, deriving a discount factor & for each
monkey. Though previous experiments in animals and humans suggest that the discount function within
an individual is generally stable (Richards et al., 1997; Simpson and Vuchinich, 2000), discounting
behavior in our animals could in theory have been nonstationary (Schuck-Paim et al., 2004), either on a
short time-scale (e.g. satiation over a day’s session) or a long time-scale (e.g. behavioral changes over the
course of the entire experiment).

To examine the short time-scale stability of discounting behavior, we divided behavioral choice data
according to whether the experimental blocks occurred in the first half (Session-early) or second half
(Session-late) of a given session. If the monkeys’ valuation of delayed rewards changed substantially over
the course of a session, one would expect differences in the observed choice behavior for the two groups
of data. Figure Sla shows, individually by monkey, choice data and the best fit preference curves and
discount functions for Session-early and Session-late data. As seen in the lower panels, the discount
functions for early and late data do not significantly differ (Monkey W: k.., = 0.174 s'l, kige = 0.151 s'l, p
=0.31; Monkey D: kg, = 0.042 s'l, kige = 0.039 s'l,p = (0.46; permutation test, n = 2000).

To examine long time-scale stability, we divided behavioral choice data for each monkey according to
whether they were recorded early (Experiment-early) or late (Experiment-late) in the overall course of the
experiment. As seen in Figure S1b, discounting behavior did not change significantly between early and
late sessions in the experiment (Monkey W: k.o, = 0.164 s'l, kige = 0.146 s'l, p =0.42; Monkey D: keapy =
0.037 5™, ke = 0.044 s, p = 0.06; permutation test, n = 2000). These results suggest that, for each
monkey, the average discount function derived from all behavioral data was an accurate estimate of
delayed reward value for any given trial.

Characterization of the behavioral discount function

Different functional forms have been used to characterize the delay-dependent decline in subjective value
observed during intertemporal choice behavior, notably the normative exponential function and the
hyperbolic function initially described by Mazur. In the main text, both behavioral and neural discount
functions were modeled as hyperbolic; we examine here how accurately these alternative functions
characterize monkey intertemporal choice data. We fit each monkey’s choice data to the single parameter
equations describing exponential (1) or hyperbolic (2) discount functions:

SV = Ae™* (S.1)
__A (S.2)
1+ kD

where 4 is the amount, D is the delay to reinforcement, and £ is a parameter governing the rate of
decrease in subjective value. The four preference curves and the discount function were simultaneously
fit with a two-parameter binary logit model by maximum likelihood, with one parameter describing the
discount function and one describing the logit function (Hosmer et al., 2000). To determine which
discount function better describes the choice data, we compared the two models using Akaike’s
Information Criteria (AIC; Akaike, 1974). The AIC estimates the goodness of fit of a statistical model



while accounting for model complexity; lower AIC values indicate a better model approximation to the
underlying process. The AIC measures here show that the hyperbolic model is a better description than
the exponential model in both monkeys (Monkey D: AICyy, = 6688, AIC., = 6738; Monkey W: AICy,, =
4721, AIC,, = 4811); because both models have the same number of parameters, the lower hyperbolic
AIC values strictly indicate a higher likelihood and a better characterization of the data. These results are
consistent with the large majority of behavioral studies that report a better fit to discounting data using the
hyperbolic function.

Fitting the behavioral discount function and four preference curves simultaneously with a two-parameter
binary logit model provides two primary advantages: first, fitting the discount function to the choice data
directly via MLE allows a direct comparison of different theoretical discount models (exponential versus
hyperbolic) via the likelihood quantities, and second, the use of a single noise parameter § as opposed to
four individual noise parameters represents a more parsimonious underlying choice model. However, an
alternative stepwise method to fit the behavioral data exists, where the individual preference curves are
first fit separately to identify indifference points, and the discount curve is subsequently fit to the
identified indifference points. To ensure that the exact method of fitting the behavioral data does not
affect our results, we also examined the behavioral choice data with this stepwise fit. Fit in this manner,
the indifference points in both monkeys are well-described by hyperbolic discount functions (Monkey D:
k=0.039 s, R” =0.98; Monkey W: k£ =0.120 s, R* = 0.99). The discount rate parameter is statistically
indistinguishable from that fit with the simultaneous binary logit model in one monkey (Monkey D:
Ksimuttancous = 0.040 s'l, kstepwise = 0.039 s'l) and slightly smaller in the other animal (Monkey W: kgmuancous =
0.158 s'l, kstepwise = 0.120 s'l). Importantly, the temporal discount functions fit with this alternative method
remain significantly different between the two animals (p < 1.10x10™'°, permutation test) and still match
the respective neural discount functions, falling well within the neural 95% confidence intervals (Monkey
D: kyeuras = 0.038 5™, 95% C.1. [0.010, 0.069]; Monkey W: keurar = 0.157 s, 95% C.I. [0.100, 0.236]).
Furthermore, using the stepwise discounting fits does not change the primary conclusion of the paper:
LIP firing rates are significantly modulated by subjective value (R’sy = 0.146, p < 10™'°, F-test) and not
choice probability (R°cp = 0.005, p = 0.23, F-test).

Specificity of neurometric-psychometric match

Neural discount functions were obtained by fitting the hyperbolic discount model (S.2) to mean
normalized firing rate data across the LIP population. As reported in the main text, the neural discount
functions in both monkeys did not significantly differ from the corresponding behavioral discount
functions during forced and free choice trials, suggesting a match between the behavioral and neural
representations of subjective value. Here we examine the specificity of the neural discount functions to
the individual monkeys. To compare the neural discount functions, we performed a permutation test using
the combined neural data of both monkeys as a reference dataset. Two datasets corresponding to the size
of the original datasets (n = 48, n = 23) were created by sampling without replacement and neural
discount factors were calculated. This process was repeated 2000 times to generate a distribution of the
differences in k& values under the null hypothesis that the neural data from the two monkeys were
generated by a single process. Compared to the distribution under the null hypothesis, the experimentally
observed difference in neural discount functions is significant for both forced choice (p = 0.0005) and free
choice trials (p = 0.047), suggesting that LIP activity represents individual-specific (in other words,
idiosyncratic) delay-discounted value.

Temporal dependence of the neural discount function



In the main text, initial analysis of LIP activity focused on the interval 0-200 ms after peripheral target
onset, as this corresponds to the peak transient visual response in the LIP population. The sliding window
regression analysis in the main text (Fig. 6) indicates that LIP activity in later time periods is also
dependent on subjective value, and thus should display similar neural activity (i.e. a corresponding neural
discount function). To examine the robustness of the neurometric-psychometric correspondence seen in
the main text (Fig. 3 and 4), we repeated the neural discount function analysis at multiple time intervals.
Figure S2a and S2b displays the results of analyses on data from the window 150-350 ms after target
onset (these are the same analyses shown in Figures 3 and 4 for 0-200 ms). This analysis reveals that there
is nothing privileged about the 0-200 ms interval, as both forced choice and free choice neural discount
functions in the 150-350 ms period also match their respective behavioral discount functions (Monkey D:
Kehav=0.040 5™, Kneurat forcea = 0.040 s, 95% C.1. [0.017, 0.075, Knewrarfice = 0.054 57, 95% C.1. [0.023,
0.120]; Monkey W: kpear = 0.158 5™, Kneuratforcea = 0.125 5™, 95% C.1. [0.090, 0.201], kneuratfice = 0.151 5™,
95% C.1. [0.077, 0.449]). We also analyzed the 150-350 ms data as in Figure 4 and find that, as for the 0-
200 ms window, LIP activity is a much better explained by subjective value (R’ = 0.88) rather than delay
(R’ =0.59, Fig. S2b). Additionally, we repeated the neural discount function analysis for multiple non-
overlapping 200 ms wide windows during early and middle target presentation (0-1000 ms). Plotted in
Figure S2c are the free choice neural discount factors (k), separated by monkey, as a function of trial time.
These data show that neural discount rates are generally robust to the exact temporal window used for
analysis. Note that the time when both neural discount rates are closest to the respective behavioral
discount rates (between 300-400 ms) corresponds to the peak of subjective value influence as determined
by regression analysis in Figure 6.

Modulation of LIP activity by subjective value versus choice probability

To compare the relative influence of subjective value or choice probability on LIP activity, we employed
univariate and multivariate linear regression to analyze block-averaged firing rate data. As reported in the
main text, we found that LIP activity over much of the trial and particularly after target presentation was
explained by delay-dependent subjective value. Importantly, when we compared the effect of subjective
value and choice probability, this early-trial LIP modulation was independent of varying choice
probability.

The results in the main text suggest that subjective value modulation is a general effect across the
recorded LIP population. One potential concern is that the effects are driven by a subset of the data; the
two individual monkeys demonstrated different behavioral discount functions (Monkey D: k=0.040s™';
Monkey W: k= 0.158 s), raising the possibility that the observed subjective value effects were driven by
data from one monkey. To examine the effects by individual animal, we segregated the neuronal data by
monkey and repeated the regression analyses reported in the main text. As shown in Figure S3,
subjective value and not choice probability explains a significant portion of LIP modulation over much of
the duration of intertemporal choice trials in both Monkey D and Monkey W, as indicated by R’ values
for univariate regressions on subjective value or choice probability performed in 100 ms windows across
the duration of the trial. As in the main text, we examined activity in the 0-1000 ms interval following
target presentation in further depth (Fig. S3, bottom panels). Univariate regression slopes were significant
for subjective value in both monkeys (Monkey D: bgy = 0.657, p = 0.003; Monkey W: bgy=0.808, p =
1.9x107") and significant for choice probability in neither monkey (Monkey D: bcp = -0.019 , p = 0.768;
Monkey W: bcp = 0.209 , p = 0.074). These results were confirmed with multiple regression analysis
including both subjective value and choice probability as regressors (regression coefficients; Monkey D:
bsy=10.859,95% C.1. [0.399-1.320], bcp =-0.117, 95% C.I. [-0.251-0.018]; Monkey W: bgy = 1.038, 95%
C.1.[0.680-1.396], bcp =-0.228, 95% C.1. [-0.478-0.022]). Together, these results suggest that subjective
value and not choice probability drives LIP modulation early in decision-making, regardless of the
individual delay discounting functions.



In the main text, we analyzed LIP data grouped across all delayed reward magnitude conditions under
which neural data was collected (0.143, 0.163, 0.260 ml). Here we examine subjective value modulation
of LIP activity when the different magnitude conditions are examined separately. Figure S4 shows block-
averaged normalized firing rates in the 0-1000 ms period after target onset, as a function of either
subjective value (left) or choice probability (right). As demonstrated by the univariate regression lines
(red), subjective value modulates firing rate to a much greater extent than choice probability. Subjective
value explains a higher proportion of the variance across the population in all three magnitude conditions
(mag. 0.143 ml: R’sy=0.202, R’cp=0.035; mag. 0.163 ml: R”g;y=0.054, R’cp=0.0002; mag. 0.260 ml:
R’sy=0.136, R°cp=0.021), and two of the three subjective value regression models are significant (F-test,
p <0.05), compared to none of the choice probability models.

Finally, because the primary analyses relied on linear regression analyses, we tested the validity of these
models by residuals analysis, emphasizing the early visual period (0-1000 ms after target onset). Figure
S5 shows residual data from the subjective value and choice probability univariate regressions. As
indicated by the histogram of residuals (top) and normal probability plots (bottom), the residuals follow
an approximately normal distribution. Both the residual distributions indicated are not significantly
different from a normal distribution (SV: p = 0.338; CP: p = 0.205; Lilliefors test). Additional analyses
indicate that the distributions of residuals are homoscedastic and unrelated to either the independent
variables (subjective value, choice probability) or the dependent variable (normalized firing rate).

Together, these results indicate that LIP activity — in the early and middle stages of the decision process -
represents subjective value and not choice probability. While it might be expected that choice probability
and value would be strongly correlated, these findings suggest that the stochastic choice behavior
responsible for the observed choice probability can be quite independent of value (for example, at the
extremes of the preference curves). A key reason for this independence is that choice behavior is
necessarily a function of the values of all options under consideration in a decision: in a given block, a
monkey’s choice probability depends on the values of both the delayed and immediate choices. Thus the
subjective value of a single option (the RF target) can vary widely without a (significant) change in the
associated choice probability (because it is at a maximum or a minimum), if the value of the other option
remains much lower (or higher). This relationship is explicitly defined in the logit function (see Materials
and Methods), where choice probability is acknowledged to be a joint function of both option values.
Thus, in the context of a decision process, values are inputs and choice (and thus on average, choice
probability) represents an output; the nonlinear nature of this relationship, as well as its dependence on
multiple option values, allows for a perhaps surprising degree of separation between subjective value and
choice probability under these conditions.

Effect of saccadic tuning strength on subjective value and choice probability coding

We selected LIP neurons for neurophysiological recording based solely on spatially selective responses to
visual stimulus presentation. However, LIP neurons are known to exhibit varying degrees of spatially
modulated peri-saccadic activity, which could affect the level of choice probability modulation
observable early in the trial. In particular, the predominance of value and not choice-related modulation
observed in the main text could be explained if the population of recorded LIP neurons lack strong spatial
selectivity during choice.

To quantify saccadic spatial selectivity for each neuron, we compared peri-saccadic activity (from 200 ms
before to 200 ms after saccade initiation) between trials with saccades into the RF (FR;,) to those with
saccades away from the RF (FR,,;), using a spatial selectivity index (SI):
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Possible SI values range from -1 to 1, with positive values indicating higher activity for saccades into the
response field and values near zero indicating no directional difference in firing rates and thus no spatial
selectivity. As shown in Figure S6a, we found significantly positive saccadic spatial tuning in both
animals (Monkey D: mean S7=0.14, p =2.97x10”; Monkey W: mean S/ =0.17, p =4.14x10°®; t-test),
with the large majority of neurons showing positive SI values (59/71 neurons, 83.1%); there was no
difference in the saccadic tuning index between animals (p = 0.52, t-test). Thus, LIP neurons in this task
were in fact spatially selective at the time of saccade, suggesting that a lack of spatially-selective
intentional coding does not explain the failure to observe choice probability signals early in the decision
process.

To further ensure that the absence of significant choice probability coding in our primary results (main
text and Figure 6) was not a result of low spatial selectivity, we repeated the subjective value versus
choice probability analyses on a subset of LIP neurons with strong saccadic spatial tuning. We identified
LIP neurons with SI values larger than the median SI value (0.125), and examined the modulation of this
subpopulation of tuned neurons using simple linear regression. As in Figure 6 of the main text, Figure
S6b plots average firing rate in the 0-1000 ms interval immediately following target presentation as a
function of subjective value (left) or choice probability (right). Even in this subpopulation of LIP neurons
with high spatially selective saccade activity, firing rates are still modulated by subjective value and not
choice probability (R%sy=0.175, p = 3.8x107; R°cp=0.001, p = 0.68; F-test).

As an additional measure of saccadic spatial selectivity, we conducted a univariate regression across all
neural data at the level of individual trials to examine the influence of saccade direction on LIP firing rate
(normalized). This regression was conducted separately for nonoverlapping 100 ms intervals across the
duration of the trial. Figure S7 plots the coefficient of determination (R”) values of these regressions for
saccade choice (black), as well as those for univariate regressions of LIP activity on either subjective
value (blue) or choice probability (red); because the primary purpose of the supplemental analysis was to
examine the relative effect of choice versus choice probability in LIP activity, significance levels were not
included in the supplemental figure. There is a strong influence of saccade choice on LIP activity that
peaks at the time of saccade initiation, confirming significant spatial selectivity in the activity of the
recorded LIP population. Note that the addition of trial-to-trial variability in firing rate to the regression,
while subjective value and choice probability remain constant across all trials in a block, necessarily
reduces the R’ values compared to the block-wise regression in Figure 6. Presumably, time-varying
differences in this additional variance in firing rate leads to the shift in the peak of the subjective value
effect, relative to the block-wise regression; for example, lower trial-to-trial variability early in the trial
would decrease the early R’ values to a lesser extent, shifting the peak to earlier in the trial. Subjective
value remains the primary determinant of LIP activity early in the trial. Additionally, note that at no time
in the trial does choice probability provide more explanatory power than the actual saccade choice.
Together, these data suggest that LIP transitions from a coding of subjective value into a coding of
saccade direction, without an intervening, separate representation of average choice probability.

Intertemporal choice reaction times

In the main text, we quantified behavioral discount functions which demonstrate that subjective value is a
consistent, predictable function of delay. However, it is possible that other processes — such as motivation
or attention — also vary with delay, and that it is these processes that directly modulate LIP activity
(Goldberg et al., 2002; Bisley and Goldberg, 2003). To address this possibility, we examined reaction



times in the intertemporal choice task (Posner, 1980). We quantified reaction time in each trial as the
duration between the offset of the central fixation target, which signaled the earliest time the monkey was
permitted to initiate a saccade, and the actual initiation of saccade. In particular, we examined forced
choice trials requiring a saccade towards the delayed reward target; in forced choice trials, the randomized
presentation of instruction cues prevents the monkey from deciding a saccade direction early in the trial,
increasing the ability to detect any potential reaction time effect. We focus on trials with instructed
saccades towards the RF target to determine if there is a delay-dependent allocation of attention. If
diminishing attentional allocation to the delayed reward target with increasing delay were responsible for
the observed LIP neural activity, reaction times should increase consistently as a function of delay. As
shown in Figure S8, reaction times in both monkeys are non-monotonic (inverted U-shaped) functions of
delay, with the longest values generally occurring at intermediate delays.
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Figure S1. Stability of intertemporal choice and behavioral discount functions. (a) Choice data and best
fit choice curves (top) and discount functions (bottom), segregated by time of occurence in a session (solid
symbols and lines, early; open symbols and dashed lines, late). Color and symbols as used in main text and
Figure 1. Early and late discount curves did not significantly differ in both monkeys (p = 0.31, p = 0.46,
permutation test), suggesting stationary discounting behavior within recording sessions. (b) Choice data,
choice curves, and discount functions segregated by time of occurrence across the duration of the experiment.
Early and late discount curves did not significantly differ (p = 0.42, p = 0.06, permutation test), suggesting that
the discount function was also stable between sessions and across the experiment.
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Figure S2. Temporal dependence of neural discount function. (a) Forced choice (top) and free choice
(bottom) neural discount functions for the interval 150-350 ms after peripheral target onset. Mean (£s.e.m.)
normalized LIP activity is shown as a function of delay, relative to activity at zero delay. As in Figure 3,
behavioral discount functions are shown in red and neural discount functions in black, with 95% bootstrap
confidence intervals in gray. (b) Normalized population activity in the interval 150-350 ms after target onset, as
a function of delay (left) and subjective value (right). (c) Free choice discount factors as a function of time in trial,
in non-overlapping 200 ms windows. Behavioral discount rates shown in red. These data show that the
correspondence between LIP ativity and the behavioral discount function is not limited to the 0-200 ms window
used in the main text.
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Figure S3. Subjective value versus choice probability in individual animals. Top panels, coefficient of
variation (R2) values for univariate regressions of block neural activity on subjective value (blue) or choice
probability (red), separated by individual monkey. For comparision, R? values for multiple regression analyses
including both subjective value and choice probability as covariates are also shown (black). Regressions were
performed in nonoverlapping 100 ms windows across the length of the trial, with activity either aligned to target
onset (v) or initiation of saccade (s). Asterisks indicate significant R? values for the corresponding univariate
regressions (p < 0.05, F test). Bottom panels, neural activity during target presentation (0-1000 ms after target
onset) as a function of either subjective value or choice probability, separated by individual monkey. LIP activity
is significantly related to subjective and not choice probability, as evaluated by univariate regression slopes
(red; Monkey D: bg,, = 0.657, p = 0.003; bop =-0.019, p = 0.768; Monkey W: bg, = 0.808, p = 1.9x107;
bcp=0.209, p=0.074). Regression analyses were performed on all relevant block data points and binned for
illustration purposes.
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Figure S4. Subjective value effects segregated by reward magnitude condition. LIP activity plotted as a
function of either subjective value (left) or choice probability (right) for three different delayed reward

magnitudes (0.143 ml, 0.163 ml, 0.260 ml). Neural data corresponds to the 0-1000 ms window after target onset,
averaged over each block of neural data. Regression slopes (red) and p-values for univariate linear regressions
are indicated for each magnitude condition. Regression analyses were performed on all relevant block data
points and only binned for illustration purposes.
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Figure S5. Residuals analysis: validity of subjective value and choice probability regression analyses.
Univariate regression residuals for subjective value (left) and choice probability (right). Top row plots the histogram
of observed residuals in the individual regressions. Bottom row plots residuals as normal probability plots.

The distribution of residuals in both cases is not signficantly different from a normal distribution (subjective

value: p = 0.338; choice probability, p = 0.205; Lilliefors test).
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Figure S6. Effect of saccadic spatial selectivity on value and choice probability coding. (a) Distribution
of saccadic spatial selectivity indices (Sl) across the LIP population. The index is a measure of peri-saccadic
spatial tuning, quantified as the difference in firing rate between saccades into and away from the response
field, divided by the sum of the firing rates. Positive values of the index indicate activity at the time of saccade
that is higher in response to an eye movement towards the visual-stimulus mapped response field; index values
near zero indicate no spatial selectivity. Sl values are significantly positive for each monkey individually as well
as the entire population of neurons. (b) Spatially selective neurons are modulated by value and not choice
probability. Mean LIP activity as a function of subjective value (left) or choice probability (right) for neurons with
Sl values greater than the median index value (0.125). Analyses are analogous to those in Figure 6 of the main
text. Regression lines (red) are significant for subjective value (R2 = 0.175, p = 3.8x10-/, F-test) but not choice
probability (R2 = 0.001, p = 0.68, F-test).
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Figure S7. Relative strength of subjective value, choice probability and selected choice coding. Lines
plot coefficient of variation (R?) for individual univariate regressions of LIP activity on either subjective value
(blue), choice probability (red), or the selected saccade (black) in free choice trials. Normalized firing rate data
from every individual trial was included in the regression analyses, which were performed in nonoverlapping
100 ms windows across the length of the trial and aligned to either target onset (v) or saccade (s). Note that
choice probability provides no additional explanatory power beyond that provided by the saccadic choice.
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Figure S8. Reaction time is not a monotonic function of delay. Mean + s.e.m. reaction time as a
function of delay to reward for each individual monkey. Data shown corresponds to forced choice trials
where the monkey was instructed to complete a saccade towards the delayed reward target. Individual

lines correspond to different delayed reward magnitudes.
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