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SUMMARY

Humans and other primates rely on eye movements
to explore visual scenes and to track moving ob-
jects. As a result, the image that is projected onto
the retina—and propagated throughout the visual
cortical hierarchy—is almost constantly changing
and makes little sense without taking into account
the momentary direction of gaze. How is this
achieved in the visual system? Here, we show that
in primary visual cortex (V1), the earliest stage of
cortical vision, neural representations carry an
embedded ‘‘eye tracker’’ that signals the direction
of gaze associated with each image. Using chroni-
cally implanted multi-electrode arrays, we recorded
the activity of neurons in area V1 of macaque mon-
keys during tasks requiring fast (exploratory) and
slow (pursuit) eye movements. Neurons were stimu-
lated with flickering, full-field luminance noise at all
times. As in previous studies, we observed neurons
that were sensitive to gaze direction during fixation,
despite comparable stimulation of their receptive
fields. We trained a decoder to translate neural ac-
tivity into metric estimates of gaze direction. This
decoded signal tracked the eye accurately not
only during fixation but also during fast and slow
eye movements. After a fast eye movement, the
eye-position signal arrived in V1 at approximately
the same time at which the new visual information
arrived from the retina. Using simulations, we
show that this V1 eye-position signal could be
used to take into account the sensory conse-
quences of eye movements and map the fleeting
positions of objects on the retina onto their stable
position in the world.

INTRODUCTION

During everyday vision, fast eye movements known as ‘‘sac-

cades’’ shift the line of sight to place the high-resolution fovea

onto objects of interest. These movements are complemented

by slower, smooth eye rotations used to track moving objects
(e.g., a bird in flight) or to lock gaze on an object during locomo-

tion [1]. Though essential, eye movements have stark conse-

quences for the retina’s view of the world: objects that are

stationary appear to jump or move, and objects that are in mo-

tion travel along grossly distorted trajectories (Figure 1). These

phenomena reflect the fact that visual input arrives to the ner-

vous system in an eye-centered (or retinal) coordinate system,

in which objects evoke activity within a local patch of photore-

ceptors and ganglion cells (i.e., as a place code). Our experience

of the world, however, is entirely different: objects do not appear

to change positions every time we move our eyes, and we have

no trouble planning actions toward them. This suggests that the

visual system uses internal knowledge of eye position (and head

position in the case of combined eye-head gaze shifts) to

compute the true locations of objects from their fleeting retinal

projections (i.e., their positions in head- and/or body-centered

coordinates). Where, and how, this transformation take place

in the brain remains unclear.

At first glance, it would seem that a stable representation of vi-

sual space is not achieved until late in the cortical hierarchy. For

example, in the first stage of cortical vision—the primary visual

cortex (V1)—neurons have receptive fields (RFs) that are fixed

on the retina [2], and so they move across a visual scene with

the eye. Patterns of activity within the V1 retinotopic map thus

reflect what is happening on the retina, not in the world itself.

Perhaps surprisingly, this remains true throughout the cortex

beyond V1, where most visually sensitive neurons have RFs

that are anchored to the retina [3–6]. Similarly, neurons that are

sensitive to image motion tend to prefer the same direction on

the retina regardless of whether it was caused by a moving ob-

ject or a moving eye [7, 8].

In parietal and temporal areas, however, some of these repre-

sentations retain information across eyemovements by updating

patterns of activity, thereby maintaining spatial alignment with

the outside world—so-called ‘‘remapping’’ [9, 10]. In addition,

the spatial selectivity of some neurons is anchored in head or

world coordinates [8, 11–14]. That is, an object at a fixed location

in space evokes activity in the same set of neurons irrespective

of eye position. Both phenomena—remapping and head-fixed

RFs—are rare or absent in earlier visual areas [2, 15], consistent

with the idea that stability emerges late in the hierarchy for vision,

and even then, only within the dorsal ‘‘where’’ pathway that sup-

ports the planning of actions (see [16] for a review). In this view,

the ventral ‘‘what’’ pathway that supports object recognition

must rely on its dorsal stream counterpart to provide the spatial
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Figure 1. Our Sense of a Stable Visual World Arises from Retinal

Images That Change with Every Eye Movement

In the cartoon, a fixed state of the world (i.e., a ball in motion at 5�/s; black
arrow) generates three patterns of retinal stimulation (lower panels) under

different eye-movement scenarios: a fixate-saccade-fixate sequence (purple

arrow) and smooth pursuit at 10�/s in opposite directions around a half-circle

(green and red arrows). To catch the ball, however, the brain would need to

know its true location and program the same set of motor commands,

regardless of its appearance on the retina. Note that different coordinate

systems are used across panels: world coordinates (Xw, Yw) for the object and

eye and retinal coordinates (Xr, Yr) for the visual images (hereafter, these r and

w subscripts are used to indicate the coordinate system of a spatial variable).

The object’s trajectory on the retina, orðtÞ, is roughly equal to the object’s

trajectory in the world, owðtÞ, minus the path traveled by the eyes, ewðtÞ. The
brain, however, must make the reverse inference to recover the object’s true

trajectory, i.e.,owðtÞ = orðtÞ + ewðtÞ. In this report, we show that V1 neurons

represent in parallel both terms on the right side of this equation and hence

implicitly also represent owðtÞ.
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information necessary to piece together snapshots taken from

different lines of sight.

We tested the alternative hypothesis that visual stability begins

in V1—despite superficial appearances to the contrary—through

a distributed population code [17–19]. Such a solution would

have the advantage that all downstream computations—in

both the dorsal and ventral streams—have direct access to vi-

sual information that is robust to eyemovements. Our hypothesis

builds on previous reports of neurons throughout visual cortex,

including in V1 [20–23], that alter their rates of action potentials

(spikes) systematically with changes in eye position, even

when the image within their RFs is held constant—a property

known as a ‘‘gain field’’ [24, 25]. This means that spikes in V1

carry information about not only the retinal image but also the

current eye position. This is critical, because to a first approxima-

tion, the location of an object in a scene is the sum of its position

on the retina and the current eye position (we ignore head move-

ments and other postural changes; Figure 1). Thus, a population

of gain-field neurons might allow an eye-centered area like V1 to

nevertheless carry a stable representation of visual space. This

prediction is supported by influential computational studies
2 Current Biology 29, 1–10, May 6, 2019
[17, 18, 26] that incorporated artificial, idealized gain-field neu-

rons, but it has to our knowledge never been tested empirically.

For this hypothesis to be true, real gain fields in V1 must sup-

port an accurate representation of the position of the eye during

natural vision. We and others have shown that neurons in higher

areas of the dorsal pathway reliably code the direction of gaze

during fixation [27–29] and predict the landing point of an im-

pending saccade [28, 30, 31]. Here, we show that not only is a

reliable eye-position signal present much earlier—in V1—but

also that it can be incorporated into downstream computations

in the same way irrespective of whether the eyes are exploring

a scene (i.e., saccades) or tracking an object (i.e., pursuit).

Thus, this crucial ingredient for visual stability and acting on

the world is present in the first cortical area and available to

both the dorsal and ventral processing streams.

RESULTS

We recorded extracellular action potentials from 397 units (232

single units and 165 multi-units) using multi-electrode arrays

permanently implanted in the parafoveal region of V1 in two adult

macaques. Unless otherwise specified, single and multi-units

were analyzed together (there were no qualitative differences be-

tween their responses; see STARMethods). On ‘‘saccade’’ trials,

the animal fixated a target at one of eight possible starting posi-

tions arranged in a circle (15� diameter; only one target was dis-

played at a time; Figure 2A). After a delay of 1,100 ms, the target

stepped to the opposite side of the circle, requiring an immediate

saccade and fixation at the new position for a further 1,100 ms.

‘‘Pursuit’’ trials (interleaved with saccade trials in 45/68 sessions)

were identical except that after 500 ms of initial fixation, the

target moved clockwise (CW) or counter-clockwise (CCW)

around the imaginary circle to the opposite side (speed =

10�/s), requiring the animal to track its position with pursuit eye

movements (Figure 2A). A final trial type (all sessions) required

fixation on a central target for the whole trial.

In most trials, we presented flickering noise on the monitor by

setting every pixel to black or white randomly every 13.3 ms. The

high spatiotemporal frequency of the noise ensured comparable

stimulation of RFs regardless of eye position or velocity (except

during the saccade itself, where high velocity retinal slip could, at

least partially, gray out the stimulus). Further, it allowed the use of

spike-triggered reverse correlation to estimate the RFs of the re-

corded units (see STAR Methods). Using this approach, we

confirmed that the observed RFs were located within the lower

parafoveal region in both animals (1.5�–3.0� from the fovea; Fig-

ures 2B and 2C). In a subset of experiments (N = 57 units), we

also recorded neural activity during trials in which the flickering

stimulus was replaced by a uniform gray screen (interleaved

with flicker trials).

Decoding Eye Position during Fixation
We extracted spike counts in 100-ms bins during the initial fixa-

tion epoch of the saccade trials (�700 ms to �300 ms relative to

saccade onset) and for a matched epoch on the central fixation

trials. Consistent with previous reports [20–22], roughly half of

the units (219/397) showed significant differences in mean firing

rate across the nine fixation positions, even though the RF was

stimulated by statistically identical visual noise—that is, they
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Figure 2. Experimental Design

(A) Animals performed a saccade (yellow arrow) or a pursuit task (blue arrow) over a background of flickering noise pixels. The two tasks were interleaved

randomly from trial to trial. Filled red circles show the initial and final positions of the target for the 9-o’clock starting position, and the plots show its 2D position

over time in the two tasks. The starting position varied from trial to trial (open circles), with all trials ending at the diametrically opposite position on a virtual circle.

Noise pixels are enlarged for illustration.

(B) The noise patterns were used to estimate the receptive fields of neurons (see STARMethods). An example RF is shown for one unit from each animal (M1 and

M2), plotted relative to the fovea (red dot). Each image shows the luminance pattern that, on average, caused the unit to generate a spike, as well as an enlarged

view of the RF. The units preferred oriented edges (transitions from bright to dark) presented below the fovea (M2) or below and to the left of the fovea (M1).

(C) The distribution of receptive fields across all recordings for the two animals. Because the recording array spanned a patch of cortex, units recorded from

different electrodes had RFs in slightly different parts of the visual field. Color saturation shows the proportion of recorded units that had RFs that included each

location in the display. White areas were outside of the RFs of all recorded units.

(D) Example gain fields for two units, plotted as mean spike counts for 100 ms samples during the fixation epoch (gray shaded region in A) at each of nine eye

positions (the standard errors of the means are omitted for clarity but were smaller than the symbols in all cases). Under the assumption of Poisson variability, the

fitted regression surfaces provide a generative model relating eye position to spike-count probabilities—a ‘‘probabilistic gain field’’ (pGF).

(E) Population decoding using pGFs. The two leftmost images show the probability of all possible eye positions given observed spike counts of 2 and 6 for units 1

and 2 in (D), respectively. The rightmost image shows the combined probability map for this minimalistic population of two units. The position of the peak (star)

represents the maximum likelihood estimate of eye position for this example, ½bewx;bewy�. In practice, the decoded population included all units with gain fields.

See also Figure S1.
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showed gain fields (Figure 2D). The mean strength of this modu-

lation was 43% (SD = 42%;median = 28%), defined as the differ-

ence between the maximum and minimummean rate divided by

the global mean. In control experiments, we confirmed that these

modulations were not driven by differences elsewhere in the

retinal image that co-varied with eye-position, such as the edges

of the display (which were at least 6� outside of the RFs at all

times; Figure S1).

The presence of gain fields hints that as a population, these

units might carry enough information to encode 2D eye position

(i.e., horizontal and vertical orientation of the eye in the orbit, or

equivalently, fixation position on the screen). Building on our pre-

vious work [27, 30, 31], we used these neurons to construct a

decoder based on maximum-likelihood estimation. The decoder

translated a vector of spike counts (one for each unit in our sam-

ple) into an estimate of eye position within a finely-spaced 2D

grid of possible positions. To do so, it used the gain fields as a
kind of probabilistic ‘‘look-up table’’ (Figures 2D and 2E; STAR

Methods).

Figure 3 shows the decoder performance for population

responses measured during the fixation epoch (using cross-vali-

dation on a dataset not used to setup the decoder). V1 repre-

sented the eye accurately and precisely across all of the tested

positions, albeit with slight spatial compression (mean constant

error across conditions was 1.29� [standard error of the mean

(STE) across the nine eye positions = 0.16]; variable error,

defined as the median Euclidean distance of the trial-by-trial

estimates from the distribution median, and averaged over con-

ditions, was 3.35� [STE = 0.32�]). Comparable performance was

observed when decoding the initial fixation position on pursuit

trials (Figure 3), albeit with greater error (mean constant error =

1.97� [STE = 0.32�]), presumably due to a smaller population

size (pursuit trials were included during recordings for only

179/219 units). As a further test of robustness, we decoded the
Current Biology 29, 1–10, May 6, 2019 3



Figure 3. The Representation of Eye Position in V1 Is Accurate dur-

ing Fixation

Eye position was decoded from 100 ms samples of neural activity. Left panel:

median decoded eye positions during fixation before (pre) and after (post) the

saccade, compared with the actual fixation positions. Error bars represent the

variability (middle 50% of the distribution) across samples (trials and time).

Right panel: decoded positions during the initial fixation phase on pursuit trials.

The yellow-purple dashed line is a spline interpolation through the points; it is

used in Figure 5 to assess the quality of the decoder during the pursuit.

A

B

C

Figure 4. The Representation of Eye Position Updates Rapidly with

Each Saccade

(A) The decoded eye position over time for each saccade direction (red and

blue curves), plotted against the average eye trace (black and gray). Plots are

arranged spatially according to the starting position (no saccade was required

for the central fixation position). Curves represent the median decoded posi-

tion and shading represents the variability (middle 50% of distribution) across

trials. The gray shaded region indicates the fixation epoch used to build the

decoder (i.e., to estimate a pGF for each neuron).

(B) The data from (A), averaged over all eight starting positions (after rotating to

align their starting positions). Error shading represents ±1 STE.

(C) The upper panel shows the mean normalized firing rate (see STARMethods)

across the population in response to the flickering background and for a uniform

gray background. The lower panel shows the distribution of saccade onset times

(relative to the offset of the primary saccades) across all sessions, excluding the

primary saccade of the task. Most occur in the wake of the primary saccade.

See also Figure S2.
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fixation epoch after the saccade (+200 to +500 ms) and again

found good accuracy (mean constant error = 1.82� [STE =

0.23�]), even though the decoder had never been exposed to

data from these time points.

Decoding Eye Position during Fast Movements
Next, we asked whether this decoder, which was based only on

the gain fields measured during fixation, could track the eyes

across saccadic and pursuit eye movements without changing

any of its parameters. For this to be the case, firing rates must

continue to be influenced by the eyes during these other oculo-

motor behaviors and remain statistically consistent with those

observed during fixation. For example, if a neuron showed higher

mean firing rates during fixation on the right side compared with

the left, it must similarly do so in the immediate wake of a

saccade to this position and when the eyes pass smoothly

through it during object tracking.

To reveal the representation of eye position in V1 during

saccades, we applied the fixation decoder sequentially and

independently to each point in time throughout the fixation-

saccade-fixation sequence (Figures 4A and 4B). The transition

from initial to final eye position—the neural ‘‘saccade’’—

occurred shortly after the true change in eye position and with

approximately sigmoid-shaped dynamics, much like the actual

eye. This was true for all eight saccade directions and starting

positions (Figure 4A).

We summarized the decoder’s performance for saccades by

rotating the data in Figure 4A so that the horizontal coordinate

corresponded to the saccade direction and then averaging

across conditions. In this format, the time courses are repre-

sented as if all saccades were to the right. This averaged eye-

position signal closely matched the true eye position (Figure 4B).

To quantify the latency of the V1 signal, we fitted the decoded

eye position and the true eye position data in Figure 4B with sig-

moids (see STAR Methods). Using parameters from the fits, we
4 Current Biology 29, 1–10, May 6, 2019
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Figure 5. V1 Neurons Track the Eye during

Pursuit Using the Same Neural Code as dur-

ing Fixation

(A) Decoded eye position over time for clockwise

pursuit, plotted as in Figure 4A, but with the

addition of curves (yellow and purple) showing

what the decoder performance would look like if

the spatial errors in decoder performance seen

during fixation (Figure 3) were recapitulated during

pursuit. This predicted V1 signal corresponds to

the yellow-purple spline shown in Figure 3 but

plotted over time (see STAR Methods).

(B) As in (A) but averaged over the eight condi-

tions for each pursuit direction. Error shading

represents ±1 STE. The curves for the predicted

signal are mostly obscured by those for the de-

coded eye, reflecting the close match.

(C) The data from (B) plotted in space (black and

gray filled circles). Time points before the onset of

steady pursuit are plotted as smaller circles. (CW,

clockwise; CCW, counter-clockwise.) The black

curve indicates the true eye position, averaged

over clockwise and counter-clockwise directions.

The yellow-purple curve indicates the perfor-

mance predicted on the basis of fixation decoding.

Error bars represent ±1 STE.
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found that the V1 saccade had a similar duration (13 ms longer

than the real eye) and lagged the actual eye by just 45 ms. This

short lag is well within the duration of a typical fixation [32], sug-

gesting that the V1 representation of the eye is able to keep up

with the eye during exploratory vision. At this lag, the decoded

eye-position signal accounted for 97% of the variance in the

true eye position over the course of the trial. Interestingly, this

lag closely matched the visual latency in these neurons

(53.11 ms; SD = 9.93 ms; see STAR Methods). This implies

that, immediately after a saccade, the new retinal information

and the new eye-position information arrive in V1 at around the

same time.

There were, however, brief errors in the representation of the

saccade step. In Figure 4A, these errors are most visible for sac-

cades along the cardinal axes, but they were present in all con-

ditions and both parallel and orthogonal to the direction of eye

movement (Figure S2). This not surprising, because neural re-

sponses underwent considerable changes around the time of

the saccade, including a transient reduction in rate, followed

by an enhancement (Figure 4C). Further, these effects on firing

rate echoed (weakly) after the primary saccade due to the pres-

ence of corrective saccades on some trials (Figure 4C). Such

shifts in spiking regime are challenging for fixed-parameter de-

coders such as ours and can lead to volatility and bias. There

was no pattern to the observed errors across conditions, and

they largely cancelled out in the averaged time course. This sug-

gests that the eye would likely be represented accurately for all

saccade directions with a larger sample of neurons.

In addition to the transient effects around the time of the

saccade, there was a gradual reduction in firing rate during the

fixation intervals, totaling 6.0% over the course of the trial

(SD = 6.7%). These changes were tolerated well: the representa-

tion of eye position remained steady and accurate, reflecting a

degree of robustness to global changes in the firing rate in the

decoder.
Decoding Eye Position during Pursuit Movements
The previous section showed that V1 faithfully encodes eye

position across saccadic eye movements (albeit with a short

lag). We tested whether the same neural code also represents

eye position during pursuit—an oculomotor behavior that differs

greatly from saccades both in terms of kinematics and neural

control mechanisms [33]. In the pursuit task, the eye tracked

the target along a circular path at a constant speed, passing

through the positions measured during the fixation task on other

trials. The horizontal ðewxÞ and vertical ðewyÞ coordinates of the

eye therefore traced out a (half-period) sinusoid over time with

an amplitude of approximately 7.5�.
Figure 5 plots the decoded eye position during pursuit for each

of the eight starting positions (CW only; Figure 5A) and averaged

over conditions (separately for CW and CCW; Figure 5B). The

decoder tracked the position of the eye tightly but with a centrip-

etal bias toward the central position. We quantified this perfor-

mance with simultaneous sine and cosine fits to the horizontal

and vertical components of the decoded eye position (not shown

in the figure; Equations 3 and 4). The amplitude of the fit showed

that the decoded signal had a pursuit radius of 5.62 (i.e., 75% of

the true value).

Some of this bias, however, was expected on the basis of

the decoder performance for the fixation epochs of pursuit

trials (Figure 3, right panel). We thus generated a predicted pur-

suit curve—under the hypothesis that the neural code for eye

position is identical for stationary and moving eyes—by interpo-

lating the decoded fixation data points with a 2D cubic spline.

This provided a good match to the decoded data (R2 = 0.91

and 0.97 for CW and CCW, respectively; Figure 5), showing

that pursuit introduces few, if any, additional biases into the

decoder.

The sine and cosine fits suggested that the V1 representation

led the real eye by 35 ms and 61 ms for CW and CCW pursuit,

respectively. The decoded trajectories, however, were not
Current Biology 29, 1–10, May 6, 2019 5
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Figure 6. Population Codes for Eye Position in V1 Allow the Area as a

Whole to Represent the True Locations of Objects in the World

We simulated an observer that localizes objects by combining their instanta-

neous positions in the V1 retinotopic map with our experimentally measured

eye-position signal. The simulated scenarios were identical to our real

experiment—including the saccades and pursuit eye movements—but with

the addition of an object in linear motion (black arrow) as in Figure 1. The

observer’s ‘‘perception’’ (black circles), which indexes the representation of

visual space in V1, was accurate even though its projection on the retina

differed greatly under different eye movements (colored arrows). CI shows the

compensation index (see STAR Methods) for each of the scenarios.

(A) A saccade, identical to that in our real experiment, was performed mid-way

through the object’s trajectory.

(B) Object motion was viewed during clockwise or counter-clockwise pursuit.
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perfectly sinusoidal (Figure 5A), complicating a simple interpre-

tation of lag parameters. Calculating lag with respect to the pre-

dicted pursuit trajectory (see STARMethods) resulted in different

values: 58 ms for CW conditions (consistent with the estimate

from the saccade task) and�163 ms for CCW (i.e., anticipatory).

The lag during pursuit thus remains unclear.

How Well Does V1 Code the True Positions of Visual
Objects?
What does the reliable representation of eye position mean for

the coding of visual space in V1? Geometrically, the true location

of an object ðowÞ is the sum of its position on the retina ðorÞ and
6 Current Biology 29, 1–10, May 6, 2019
eye position (ew; we ignore head movements; Figure 1). This

means that, by definition, a region of cortex that simultaneously

encodes or and ew implicitly also represents ow (through the

availability of or + ew, as long as downstream neurons can

extract this information). The presence of a robust place code

for or in V1 is well established: neurons have RFs that remain

at a fixed position on the retina irrespective of eye position [2].

Hence, a point stimulus evokes a narrow hill of activity in the

V1 retinotopic map that moves across the cortical sheet accord-

ing to its own movements and those of the eyes. Our results

show that neurons within a local region of the map also encode

ew. This implies that V1 as a whole could hold a stable represen-

tation of visual space even when the eyes move. For this to be

true, the visual and eye-position signals would also need to be

updated at the same time.

To quantify how well V1 would represent the true location of a

visual object ðowÞ, we simulated an observer-viewing scenario

like those in Figure 1. The eye movements in the simulations

were identical to those in our real experiment. The simulated

observer located the moving visual object by combining its

momentary position on the retina, orðtÞ, with the empirical eye

position we extracted from neural activity in V1 (i.e., Figures 4B

and 5B), bewðtÞ, both represented in our analysis as 2D vectors.

To take into account the visual latency of our V1 neurons, we

lagged orðtÞ by 53 ms (see STAR Methods). orðtÞ was thus

used as a proxy for the (delayed) hill of activity this hypothetical

object would evoke in the V1 map rather than its position on the

retina, per se.

This hypothetical observer perceived the movements of ob-

jects to be close to their real-world movements, despite grossly

distorted trajectories across the retina and V1 map (Figure 6). To

benchmark this performance, we compared these reconstruc-

tions with a second hypothetical observer who used only the

retinal information to locate the object (i.e., by equating retinal

coordinates with world coordinates). We defined a compensa-

tion index (CI; see STAR Methods), in which a value of 1 corre-

sponds to a perfect reconstruction of the object’s trajectory

and 0 corresponds to the error expected using only its retinal tra-

jectory. Under the traditional view of V1—in which neurons sup-

port only a retinotopic position code—the CI values should all be

close to zero. Our results, however, showed a value of 0.99 for

saccades, and 0.90 and 0.93 for clockwise and counter-clock-

wise pursuit, respectively, showing that this hypothetical

observer compensated almost completely for the effects of

eye movements.

DISCUSSION

Our results show that neurons in primary visual cortex carry a

distributed signal that serves as an intrinsic eye tracker, repre-

senting the moment-to-moment direction of gaze. This popula-

tion code was nimble enough to keep up with the eye during

exploratory, saccadic eye movements, and it also tracked the

eye during smooth pursuit movements. Together with V1’s

well-established representation of retinal position (i.e., the reti-

notopic map), this signal provides a plausible neural substrate

for the stability of visual perception across eye movements,

and it suggests that the sensorimotor transformations needed

for action begin at the earliest stage of cortical vision.
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Where in the Brain Is the Stable World Represented?
Figure 6 showed that V1 contains the information necessary to

represent visual space in a way that is much more robust to

the effects of eyemovements than is suggested by its retinotopic

organization and eye-centered receptive fields [2]. That is, V1

neurons represent not only the locations of features on the retina

(which change every time the eyesmove) but also their true loca-

tions in theworld (technically, their positions relative to the head).

By ‘‘represent,’’ we mean that an algorithm can extract the infor-

mation from activity in V1 alone, without accessing any other

area. We showed this by construction; the algorithm used in Fig-

ure 6 added the 2D vectors of eye position decoded from our

data with a (hypothetical, but well-established) 2D vector of a

feature’s retinal position.

In the brain, such a computation can likely be performed

through appropriate pooling of activity in a single synaptic

step, as shown by extensive modeling work [17, 18, 26, 34].

Further, our results suggest this could occur with fixed pooling

weights irrespective of the oculomotor state of the animal. Pool-

ing V1 activity would allow, for example, the construction of an

RF that is anchored in head coordinates rather than retinal coor-

dinates, like those seen in higher visual areas [8, 11–14]. More

likely, however, downstream areas continue to represent stable

visual information in distributed, retina-centered representations

like that shown here. The finding that some visual illusions

depend on eye position is consistent with this view and the re-

sults reported here [18, 35, 36].

Note that this interpretation does not preclude other uses of

the eye position signals in V1, including prioritization of visual sig-

nals arising from directly in front of an observer’s body [22, 37],

stabilization of image representations during fixational eye

movements [38, 40, 41] (A.G. Anderson et al., 2016, 50th Asilo-

mar Conference on Signals, Systems, and Computers, confer-

ence), or calibration of oculomotor signals [42].

Robustness in Rich Visual Scenes
In our simulations (Figure 6), and in the classical modeling work

[17, 18, 26, 34, 43], visual scenes consisted of a single, isolated

object. In contrast, real scenes are cluttered and have high

dimensionality (e.g., color, orientation, luminance, etc.). This

has consequences for the representation of an object’s retinal

position, as there is not a single hill of activity in the cortical

map but rather a mountain range reflecting the structure of the

scene. Similarly, scene structure could affect the representation

of eye position, because neural activity will be affected by the im-

age features that happen to be in the RFs. This raises the ques-

tion of whether the V1 eye-position signal is robust in the face of

rich visual scenes.

Two aspects of our results suggest that this should be the

case. First, our experiments used white-noise patterns that

spanned a large set of black-and-white scenes through their

random pixel structure. Despite these changes, the decoder

estimated eye position with good accuracy and precision. Sec-

ond, the decoder was relatively insensitive to global changes in

the population activity while a given eye position wasmaintained

(Figures 4B and 4C). This reflects a key computational advan-

tage of distributed population codes [17, 18]: information is

mostly encoded in the patterns of activity across neurons and

hence is robust to factors that affect all neurons similarly.
Finally, we note that the issue of robustness (or invariance) to

scene structure is not unique to eye-position coding [44, 45]. The

classical tuning properties of V1 neurons include many dimen-

sions of the retinal image, including position, orientation, motion,

spatial frequency, color, disparity, and so on. The spike rate of a

single neuron—as a one-dimensional quantity—clearly cannot

code all these visual dimensions simultaneously. Consider a

classical V1 neuron that responds strongly to a grating when it

is oriented horizontally but weakly when it is oriented vertically.

What can we conclude about orientation if the neuron is re-

sponding weakly? The grating could be vertical, but it could

also be that the grating has been moved to the margin of the

receptive field or switched to one of a non-preferred spatial fre-

quency. Hence, even classical properties of V1 are encoded

ambiguously at the level of single neurons andmust be extracted

through selective pooling of population activity. We suggest that

eye-position information in V1 should be viewed similarly, as one

of many features encoded in V1 that can be incorporated into

computations downstream.

The Origin of Eye-Position Signals
There aremany known sources of eye-position information in the

brain that could underlie the V1 signal we have observed. Propri-

oceptive signals from the eye muscles target visually sensitive

neurons in sub-cortical and cortical structures [46], including

the main feedforward driver of V1 (i.e., lateral geniculate nucleus

[19, 47]). In somatosensory cortex (area 3a), proprioceptive sig-

nals lag the eye by an amount similar to that observed here for V1

[48, 49] (compare our Figure 4B with Figure 3F in [48]). Such a

source could also explain why a single decoder generalized

across different oculomotor behaviors (fixation, saccades, and

pursuit). A further hint that proprioceptive signals play a role in

V1 is that blocking these afferent signals impairs the develop-

ment of orientation selectivity and stereo vision [50]. Ultimately,

experiments in which the proprioceptive afferents are selectively

abolished are needed to fully quantify their contribution to the V1

eye-position signal [48, 49].

Alternatively, or in addition, V1 could be informed of an im-

pending change in eye position by efference copy signals

originating in movement-planning areas, such as the superior

colliculus or the frontal eye fields [51–53]. These are the only

sources that could explain predictive eye-position signals,

such as those found in parietal cortex [30, 31, 54]. Although there

is evidence of presaccadic changes in V1 activity [55], there was

little sign of such effects in our data. Hence, it is unclear whether

efference copy signals contribute to the eye-position signals

reported here.

Interestingly, eye position can also be estimated from changes

in visual responses alone, provided that the scene structure re-

mains constant. V1 might use such an algorithm to stabilize a

representation of the retinal image during fixation, where tiny

eye movements would otherwise reduce acuity [38, 41, 52]. In

our experiments, however, the image was changed randomly

every 13 ms, and eye movements were large, suggesting that

this type of algorithm is unlikely to have contributed to our re-

sults. Conversely, however, the V1 signal we have observed

could be used to improve the performance of such stabilization

mechanisms. The precision of the V1 signal (decoded from just

219 units) in our experiments was too low to track such tiny
Current Biology 29, 1–10, May 6, 2019 7
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eye movements (Figure 3), but this might be feasible for V1 as a

whole.

Beyond V1
Visual stability during eye movements is a multi-faceted prob-

lem. Our data suggest that V1 solves one aspect: it establishes

a correspondence between the current retinal input and its loca-

tion in the world and thereby generates a representation of visual

information in a reference frame suitable for actions in the world.

This representation was nimble and accurate in the immediate

wake of saccades, thus addressing one of the main criticisms

levelled against gain-field models of visual stability [42]. Indeed,

it was updated considerably faster than the�150 ms delay seen

in many neurons in the lateral intraparietal area (LIP) of parietal

cortex [42] (though LIP as a whole also supports faster, even pre-

dictive, eye-position signals [30]). Of course, our study does not

show that the representation is perfect under all conditions, and

it would be interesting to find its limitations. For instance, what

happens in low light or even complete darkness? Are there errors

that can explain behavioral phenomena that suggest the use of

an incorrect reference frame [56–58]?

Other aspects of visual stabilitymay not be resolved at the level

of V1. For instance, saccades briefly interrupt the visual input,

and these interruptions could be perceptually jarring. Some neu-

rons mitigate this problem by remapping activity at different

times around the saccade, improving the temporal continuity of

visual signals [9, 59]. Remapping is exceedingly rare in V1, but

it is relatively common in other areas [15]. Hence, the temporal

continuity and reference frame problems are not only conceptu-

ally distinct (solving one does not necessarily solve the other) but

also seemingly solved by different neural substrates.

Our finding that V1 is home to a stable, distributed representa-

tion of visual space does not preclude the existence of similar

representations in other visual areas. In fact, we speculate that

the signals we observed in V1 propagate through the cortical

hierarchy along with the feedforward visual information. This

wouldmaintain the spatiotemporal alignment needed for stability

within each area (and hence at every spatial scale and at

every level of motion or form analysis). The presence of eye-

position signals across the visual hierarchy supports this view

[12, 21, 25, 27, 29–31, 60, 61].

Conclusion
V1 is usually thought to encode only what is on the retina, with no

information about where objects are in the world. Instead, the

true locations of objects are represented in V1 implicitly through

a reliable population code for eye position. This stable spatial in-

formation is available to both the dorsal (where) pathway and the

ventral (what) pathway, ideally placed to support action plan-

ning, object recognition, and decision making in the face of

eye movements.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Rhesus (Macaca Mulatta) Covance, Inc., Texas

Software and Algorithms

MATLAB, 2014-2017a Mathworks Inc. https://www.mathworks.com

Neurostim Experimental Control software SourceForge https://sourceforge.net/projects/neurostim/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Adam

Morris (adam.morris@monash.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects
Behavioral and electrophysiological measurements were performed in two adult, male macaques (Macaca Mulatta; M1: weight =

14 Kg; M2: weight = 9.9 Kg). All procedures conformed to the National Institute of Health guidelines for the Humane Care and

Use of Laboratory animals and were approved by the Rutgers University Animal Care and Use Committee.

Animal preparation
Surgery was performed under aseptic conditions and general anesthesia (isoflurane), and analgesics (ibuprofen and buprenorphine)

and antibiotics were delivered during recovery. Animals were first fitted with a titanium head-post (Gray Matter Research) to stabilize

the head during recording sessions using standard surgical procedures. After recovery, and completion of simple fixation training,

animals were prepared for chronic, subdural implantation of one (M2; left-hemisphere) or two (M1; right-hemisphere) 32-channel,

planar microelectrode arrays (Floating Microelectrode Arrays; MicroProbes for Life Science) into the parafoveal region of V1.

Each array consisted of a 4 3 8 arrangement of platinum/iridium electrodes (0.6–1.5 mm in length [tiered]), spanning 1.2 3

3.4 mm and separated by a distance of 0.44 mm (0.8–1 MU impedance at 1 kHz). A craniotomy was performed immediately anterior

to the occipital ridge and lateral from themidline, and a small patch of dura was removed to provide access to the parafoveal region of

V1. Each array was implanted normal to and flush with the cortical surface using manual descent and depth control via a stereotax-

mounted micromanipulator [62]. Neural signals were communicated via a fine bundle of wires that was routed out and along the

margin of the craniotomy to Omnetics connector(s) mounted in a stainless steel chassis (M2) or dental acrylic (M1). The two arrays

in M1 were implanted directly side-by-side in the same hemisphere. Full closure of the craniotomy was achieved using a layer of

DuraGen (Integra) and dental acrylic to reduce risk of infection (no subsequent signs of infection were observed). The animals

were allowed to fully recover before the commencement of electrophysiological recordings.

METHOD DETAILS

Stimuli and apparatus
Visual stimuli were presented on aCRT display (SonyGDM-520, NVidia 8800GT graphics card) at a vertical refresh rate of 150Hz and

resolution of 1024 3 768. The visible display area subtended 43.7� 3 33.6� at a center-aligned viewing distance of 50 cm and was

linearized for luminance at [CIEx, CIEy] = [0.33, 0.33]. Stimulus presentation and experimental flow was controlled by custom soft-

ware written in C++ (Neurostim, available at https://sourceforge.net/projects/neurostim/; last accessed March, 2019). The animal

was seated in a primate chair with its head stabilized using a head-post. During most experimental trials, neurons were stimulated

visually by dynamic binary noise, in which every pixel in the display was switched to black (0.6 cd/m2) or white (50 cd/m2) randomly

and independently on every second retrace of the display (and maintained its value for the intervening frame). This resulted in an

effective framerate of 75 Hz and a mean luminance of 25.3 cd/m2. In a subset of trials, the screen was a uniform gray matching

this mean luminance rather than filled with noise.

Fixation and pursuit targets were red spots (diameter = 0.25�) placed atop a larger black spot (diameter = 0.63�) that masked the

surrounding noise pixels. Left and/or right eye position was recorded using an infrared video-based eye tracker (Eyelink II, SR

Research) at a sample rate of 250 or 500 Hz, interpolated offline to 1 kHz, and temporally aligned to the neural data.
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Behavioral tasks
Each trial began with a fixation target presented at one of nine positions (eight equally spaced around a virtual circle [radius = 7.5�]
and one in the center of the display) against a gray background (25.3 cd/m2; Figure 2A). When ready, the animal fixated the target to

initiate the trial proper. The onset of fixation triggered the presentation of binary noise across every pixel in the display, which

continued until the end of the trial. On saccade trials, the animal maintained fixation for 1100 ms before the target stepped to the

diametrically opposite position on the circle. The animal was required to saccade to the target within 450 ms and hold fixation for

a further 1100 ms. On pursuit trials, the target started to move after animal had maintained initial fixation for 500 ms, and then moved

at constant speed (10�/s [i.e., degrees of visual angle]) around the circle (clockwise or counter-clockwise) to the diametrically oppo-

site position (at which time the trial ended). In the case of the central fixation target, the animal was required tomaintain fixation for the

duration of the trial. Trials in which the animal failed to maintain gaze within 1.5� of the target were terminated immediately without

reward, while successfully completed trials were rewarded with diluted fruit juice. The screen returned to gray during the 1200 ms

inter-trial interval and the animal was free to look in any direction. Animals M1 and M2 completed an average of 71.26 (SD =

16.88) and 50.90 (SD = 23.69) saccade trials correctly per starting position, per session. They also completed an average of

36.51 (SD = 7.95) and 21.46 (SD = 4.87) pursuit trials correctly per starting position, per pursuit direction (clockwise, counter-clock-

wise), per session.

Electrophysiology and data processing
Signals from the V1 microelectrode array were digitized (14 bit at 25 kHz) and band-passed (Butterworth, 120 Hz at 12 dB/octave to

6 kHz at 24 dB/octave) using AlphaLab recording hardware (Alpha Omega Co.). Candidate action potentials were detected using a

threshold of 3.5 standard deviations separately for each electrode and sorted into clusters using an automated algorithm (superpar-

amagnetic clustering [63]). Each cluster was categorized by hand as a single-unit, multi-unit, or junk on the basis of its (1) mean cluster

waveform; (2) inter-spike interval histogram, and (3) visual responsivity (assessed by peristimulus time histograms of spike counts

aligned to the onset of the binary noise). All analyses were performed on single- and multi-units without distinction unless otherwise

specified.

QUANTIFICATION AND STATISTICAL ANALYSIS

Estimation of receptive fields
The linear receptive-field (RF) of each unit was estimated from the fixation/saccade trials using a standard spike-triggered average

(STA). The approximate locations of the RFs were known from preliminary analyses and previous recordings. Accordingly, the STA

was calculated only for noise pixels within a 10.7� 3 10.7� (2513 251 pixels) square region of interest (ROI) centered on the position

[�4�,�1�] relative to the fixation point (i.e., from different screen locations depending on the fixation location). Each pixel subtended

2’ 33’’ (0.04�) of visual angle.
The luminance values (coded as 0 [black] and 1 [white]) of every pixel were collated into anm3 nmatrix, L,wherem is the number

of pixels in the ROI and n is the total number of frames (pooled across time and all trials). The spike times for each unit were aligned to

the first frame of the stimulus and binned by counting the number of spikes that occurred within each stimulus frame (i.e., 13.33 ms

bins). To take into account visual latency, the resulting n-length column vector, C, was replicated 11 times, each with an additional

frame of time lag (i.e., shifted from 13 to 147 ms), and compiled into anm x 11 matrix. The space-time STA (m x 11) was then calcu-

lated through matrix multiplication (L*C). The strongest STAs were found in the three lags from 54 to 80 ms prior to the time of the

spike, hence we calculated the spatial receptive field maps in Figure 2 by averaging these three time lags and smoothing with a

2D Gaussian filter (5 3 5 pixels, SD = 2). These visual latencies estimated using the STA approach were consistent with those esti-

mated from onset responses to the noise patterns (53.11ms) using the method of Friedman and Priebe (1998); that is, using only data

from 150 ms before to 200 ms after stimulus onset [64].

To identify pixels in the STA that were statistically significant, we created an empirical null distribution of STAmagnitudes (including

the effects of smoothing and other averaging) by repeating our analysis across the entire 10243 768 stimulus. These 786,432 pixels

could be used as a measure of sampling variability because we knew from previous recordings that almost of themwere well outside

the tiny V1RFs. Pixels in the ROI STAwere deemed significant if their absolute value exceeded 3.5 times the standard deviation of this

null distribution (i.e., p < 0.0002). The fact that a small subset of pixels was inside the RF made this a conservative estimate.

To summarize the RFs across all units in an animal (Figure 2C), we calculated population RF densities by convolving each unit’s

significancemap (where significant and non-significant pixels had values of one and zero, respectively) with a 2DGaussian filter (103

10 pixels, SD = 4) and then summing across all units. Pixels in individual STAs that were false positives would occur at random po-

sitions and thus would tend not to accumulate across units and be largely absent in the population density image.

Normalized population activity
To compute the normalized activity in Figure 4C, we calculated the firing rate in sliding windows (100 ms, stepped by 25 ms), divided

thismeasure by themean response in the fixationwindow (�700ms to�300ms relative to saccade onset), and then averaged across

all neurons. This measure was calculated separately for trials in which the flickering background stimulus was shown and for trials in

which the background was uniform gray.
e2 Current Biology 29, 1–10.e1–e6, May 6, 2019
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Eye position gain-fields
Gain-fields were estimated from the fixation/saccade trials. Spike times were aligned to the offset of the primary saccade from the

first fixation position to the opposite side of the circle. This eyemovement was found offline and defined as the first saccade (detected

by the Eyelink system) after the change in target position that had an amplitude of at least 75% of the required distance (15�). Spike
times on central fixation trials, which did not require a saccade, were aligned to themean saccadic offset time from the saccade trials

(i.e., the time of the target step plus mean saccade latency and duration) to maintain consistent alignment. Spike times were then

binned into 100 ms windows stepped in 25 ms increments to provide a spike-count time course for each trial.

Gain-fields are defined as a systematic change in the mean firing rate of a visual neuron as a function of fixation position despite

constant stimulation of the receptive field. Accordingly, we calculated the mean spike-count during the initial fixation period (from

�700 ms to �400 ms, equivalent to �570 to 870 ms after the onset of the visual noise on average) separately for each of the nine

fixation positions. For plotting, we calculated the standard error of the mean (STE) for each of the nine eye positions, as shown in

Figure. 2D. A statistically significant gain-field was identified using stepwise regression, in which a second–order polynomial was

used to model the effect of eye-position (azimuth [X] and elevation [Y]) on mean spike counts, bc (Equation 1). Coefficient estimates

and the associated F-tests were performed using the ‘‘stepwiseglm’’ function in MATLAB (Mathworks Inc.). To prevent cardinal

biases all terms were retained for decoding (see below), even if the coefficients were individually non-significant [27].

bcðX;YÞ= a0 + a1X + a2Y + a3X
2 + a4Y

2 + a5XY (Equation 1)
Population decoding of eye position
Gain-fields provide an intuitive quantitative link between the activity of a neuron and eye-position. Such a link can form the basis of

decoding algorithms that predict or estimate eye position using only neural activity across one or more neurons. We have used this

approach successfully to decode eye position from populations of neurons across many regions in the dorsal visual system during

stationary gaze [27], and to examine the dynamics of these representations when the eyes move [30, 31] (see also [54]). In one such

study [27], we developed a decoding approach that estimates themost likely eye position given a set of observed spike counts across

a sample of neurons. The method is built on the well-established statistical approach of maximum-likelihood estimation, which takes

into account not only how the mean firing rates depends on eye position, but also the associated variability (sometimes referred to as

neural ‘‘noise’’). Here we applied this decoding approach to all V1 units that had significant gain-fields (219/397). The full method has

been described in our previous work [27] but is summarized here.

Maximum-likelihood estimation

The traditional definition of a gain-field quantifies only how the mean firing rate of a neuron depends on eye position and says nothing

about spike-count variability. We introduced a richer statistical quantification known as a probabilistic gain-field (pGF) [27]. Given an

eye position, the relative likelihood of observing each possible spike-count (i.e., c = 0, 1, 2, 3, etc.) is captured by a probability density

function (pdf), PðC j x;yÞ. Our approach is to estimate this generative pdf at each of the experimentally measured eye positions and

then to interpolate (in 2D) to unmeasured fixation positions. By doing so with a continuous expression, we can express PðC j x; yÞ
at arbitrary eye positions within or near the sampled range – this representation is the pGF. For decoding, however, we want to

come from the other direction: given an observed spike-count, we want to know the relative probability of all possible eye positions,

PðX;Y jcÞ. This a posteriori density can be computed from the pGF using Bayes Rule (we assumed a uniform prior over all eye posi-

tions) and then used to generate a point estimate by choosing the most likely current eye position.

The approach extends naturally to a population of neurons. With a pGF in hand for each of N recorded V1 units, a vector of

observed spike-counts across the sample, cpop, can be converted into a population estimate of PðX;Y��cpopÞ by combining the infor-

mation across units, implemented as the sum of the (log) posterior probabilities:

log PðX;Y��cpopÞ=
XN
i = 1

log PðX;Y jciÞ (Equation 2)

The final estimate of eye-position is taken as the position associated with the highest likelihood, ½xmax;ymax�.
For this study, we decoded across a discrete grid of possible eye positions spanning ± 30� in 0.5� steps both horizontally (azimuth)

and vertically (elevation). The spike-count vector, cpop, was compiled by taking a random trial for each unit from a common exper-

imental condition and treating them as if they occurred simultaneously. This pseudo-population response approach was preferred

because our dataset included only 7.49 visually-responsive units per recording session on average (SD = 5.35), whichwas insufficient

to decode the eye reliably for all positions. A consequence of this randomization, however, is that it removes correlated variability

across the population of neurons, which can influence the information that is available to a decoder (for better or worse, depending

on its structure) [65, 66]. Our estimates of decoder precision (i.e., moment-to-moment variability) thus incorporate this potentially

incorrect assumption of independence and should be interpreted accordingly.

As described above, we needed an estimate of PðC j x; yÞ at each measured eye position. Ideally, we would use the empirically

observed distribution of spike counts for a given unit for this purpose. In studies of this kind, however, it is usually not possible to

perform enough measurements to estimate the underlying probability model reliably, particularly for rare spike-count values (which

can then cause instability in the decoder). Instead, as in previous work [27, 28] wemade the simplifying assumption that the variability

can be approximated by Poisson distributions, in which the mean and variance are equal. This has the convenient property that the
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traditional gain-field function, which quantifies how mean evoked activity varies with eye position, can be reinterpreted as a contin-

uous expression of the value of the single-parameter (l) Poisson pdf. Accordingly, Equation 1 was used as a generative model for the

pGF of each unit.

Decoding during fixation

The previous section described how we built the decoder from the gain-fields of each recorded unit. To assess how well V1 repre-

sented the eye during fixation, the decoder was applied to spike-counts in 100 ms wide windows during the same interval that was

used to fit the gain-fields (i.e., �700 ms to �400 ms relative to saccade offset). This was achieved using leave-one out cross-valida-

tion, in which all but one trial from each of the nine eye-positions was used to fit the gain-fields (and hence, produce a pGF for each

unit). The resultant decoder was then applied to the remaining trial from each condition and the estimated eye position was recorded.

This was repeated 1000 times to produce a distribution of estimates for each eye position. The 2D median of each of these distribu-

tions (plotted in Figure 3) was used to summarize the accuracy of the V1 representation, and the span of the middle 50% of the data

(horizontally and vertically) was used to represent its precision (error bars in Figure 3).

For all subsequent analyses (described below) we used a decoder built from this initial fixation interval but without leaving out any

trials. This fixation decoder was then locked down – no further learning could take place – and applied to either different time points to

which it was naive (e.g., during the saccade), or to different trial types (e.g., pursuit trials).

Decoding across saccades

One-thousand pseudo-population responses were compiled for each starting position in the saccade task and then decoded using

the decoder described above. Each time point, from 900ms before the saccade to 900ms after, was decoded sequentially and inde-

pendently and with no knowledge of the true eye position. Hence, only changes in the activity of V1 neurons over time could lead to

changes in the decoded eye positions. The result was a distribution of 1000 decoded time courses for each condition. As for the fix-

ation analysis, we used the median and width of these distributions at each time point to assess the accuracy and precision of the

decoder. To summarize overall performance, we combined all conditions by rotating them onto a common starting position (the

9 o’clock position) and then taking the mean (of the medians; Figure 4B).

Of key interest was the timing and speed with which the recorded units transitioned from a representation of the initial fixation to

that of the final position at the diametrically opposite position on the circle. Like the real eye, the decoded eye showed a sigmoid-like

change over time in the saccading channel, while remaining relatively stationary in the orthogonal channel. To quantify this transition,

we fitted a cumulative Gaussian (using MATLAB’s ‘‘lsqcurvefit’’ function) to the saccade channel. The mean parameter (m) of the fit

corresponded to the mid-point of the represented saccade and so was used as the time at which updating occurred. The duration

was taken as the interval between the 5th and 95th percentile (i.e., saccade duration = 2*1.65*s). The samemethod was used to quan-

tify the real eye, whichwas also binned in 100ms for consistencywith the neural data. This binning dampens the signals, which is why

the average saccade duration reported here (114 ms) is longer than its true duration (33.1 ms). This does not affect our conclusions

because identical binning was used for the eye and neural data. The difference between the two updating times (sdecoded – sreal) was

used as the estimated latency of the eye-position signals represented in V1 (i.e., the delay from a true change in eye position to when

that change is represented in cortex).

Decoding during smooth pursuit

The spike times on pursuit trials were aligned to the onset of the target motion and binned in the same way as for saccade trials.

Because pursuit trials were not included in all recording sessions, some units had to be removed from the decoder. In all other re-

spects, however, the decoder remained unchanged and hence had never been exposed to a single data point from pursuit trials. We

decoded the neural data in the same manner as described above for saccade trials and extracted the same measures of accuracy

and precision over time.

Both the real and decoded eye position traced out approximate sine/cosine functions over time for the horizontal and vertical chan-

nels. We fitted such functions (Equations 3 and 4) to the averaged decoded time courses (Figure 5B) and to the real eye and used the

difference in phase between them to estimate the latency of the V1 eye-position signal. Data from the first 400 ms after the target

motion onset (where pursuit was not yet stable) was excluded.

bxðtÞ=asinðbt +4Þ (Equation 3)
byðtÞ=acosðbt +4Þ (Equation 4)

To ensure that all temporal differences manifest in the phase ð4Þ, the period parameter ðbÞwas constrained to be the same for the

real and decoded eye position traces. This was achieved by first fitting Equations 3 and 4 to the two datasets separately, and then re-

fitting them with b fixed to the average of the two values from the first stage.

Decoder performance during the initial fixation period of pursuit trials (i.e., –200 ms to +100 ms relative to target motion onset) was

examined for multiple purposes. First, it allowed us to compare the spatial errors with those of the saccade trials for this reduced

population size (Figure 3). Second, and more importantly, we used these errors to construct baseline time courses for how the

decoder should perform during smooth pursuit if the neural code for eye position remained identical to that of a stationary eye –

that is, if neural firing rates depended only on the instantaneous eye position (Figure 5).

Each pursuit condition passed through five of the positionsmeasured during fixation (including the start- and end-points) during its

half-circle trajectory, whichwe refer to as ‘‘waypoints.’’ To generate expected trajectories for each condition, we first fitted a 2D cubic
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spline through the eight decoded positions associated with each waypoint (i.e., the dotted line in Figure 3). Spatially, the predicted

pursuit signal should travel around this spline, but how it should do so in time is complex and requires explication.

As a hypothetical example, suppose the decoded eye position for the 9 o’clock position during fixation was 1� above the true po-

sition. What would happen if this same error occurred during pursuit at the moment the eye passed through the 9 o’clock waypoint?

The decoder would appear to lead the eye during clockwise pursuit because the decoded position would already be�1� ahead of the

upward moving eye. Conversely, the same error would look like a temporal lag when the eyes were moving counter clockwise

because the decoded position would remain �1� behind the downward moving eye. Thus, although the real eye travels from one

waypoint to the next with approximately constant speed and distance, the signal that is predicted on the basis of the fixation perfor-

mance should travel different distances depending on the errors associated with the departure and arrival waypoints.

With this in mind, we computed a predicted pursuit signal by (1) noting the times at which the eye crossed each waypoint, and (2)

moving around the cubic spline from the (erroneous) position associated with each waypoint to that of the next within the same time

interval as the real eye. These predictions are plotted in Figure 5, and the pursuit decoding performance is expressed as the corre-

lation with these predictions.

Comparison of single unit versus multi-unit activity
Most analyses were done on a dataset in which we combined single andmulti-unit activity. This is warranted given that the properties

of single units and multi-unit activity were quite similar. For instance, 55% of single units (127/232) and 56% of multi-units (92/165)

had significant eye position modulation. We also found that the decoding results were highly similar. For instance, decoding the eye

position across fast eye movements using only the single-units (127/219) in our sample led to an almost identical time course

compared to the one shown in Figure 4B (the correlation was 0.997; data not shown). This suggests that neighboring neurons share

eye-position modulation (otherwise, one would expect the modulation to average out in multi-unit activity). The limited spatial extent

of the multielectrode recording arrays (23 3 mm), however, prevented us from assessing whether this reflects a local clustering or a

global organization across the cortical map such as the bias for straight ahead locations that has been found in the peripheral visual

field [37].

Control experiments
The binary noise background was designed to stimulate neurons in the sameway irrespective of eye position. The CRT display, how-

ever, subtended 43.7� 3 33.6� of visual angle and so there was a peripheral visible edge between the luminance of the display and

surrounding darkness that changed position on the retina depending on the fixation position. This edge was at least 6� away from the

receptive fields at all eye positions, making it unlikely to have much influence on firing rates. Trotter & Celebrini [20], who found gain-

fields in V1 in similar proportions to ours even whenmoving the display with each change in eye position to keep the retinal projection

constant. Nevertheless, effects of luminance and contrast in the far periphery have been reported in V1 [67–69]. Control experiments

(one animal only; 15 sessions) quantified any such effects, and ultimately, ruled out an influence of the display edge on the findings

reported in the main paper.

We interleaved trials of the fixation task from our main experiment (but without requiring a saccade) with simulated eccentric fix-

ation trials. In the simulated trials, the animal fixated centrally but a dark band (0.04 cd/m2) was presented on the display in a way that

mimicked the darkness beyond the screen edge for a particular eye position. For example, for a simulated upper-right fixation, the

band was presented along the upper and right margins of the display, at the same position and distance relative to the fovea as when

truly fixating eccentrically. If the screen edge was the source of eye position effects in our V1 neurons, these bands in the visual pe-

riphery should drive similar modulations in firing rates. That is, mean firing rates for real and simulated eye positions should correlate

and a regression line-of best-fit should have a slope of �1. This was not the case (Figure S1).

Assessing visual stability
A neural code for vision is stable if it remains spatially accurate even when the eyes move. In the current context, this requires encod-

ing an object’s position relative to the head (or equivalently, because the animal was head-fixed, relative to the display), because this

position remains the same irrespective of eye position. To a good approximation, the head-centered location of an object is equal to

the sum of two quantities: its projected position onto the retina (i.e., its horizontal and vertical distance from the fovea, in degrees of

visual angle), and eye position (i.e., the horizontal and vertical angles of rotation in the orbit). Assuming a stationary object, both of

these quantities change every time the eyes move but their sum remains constant.

Given that objects move in the real world, however, all terms in this linear relation are functions of time. Moreover, the cortical rep-

resentation of an object’s position on the retina, br , presumably encoded via retina-fixed receptive fields [2], does not reflect its current

position, but rather where it was some time ago, reflecting the transmission delay (visual latency,VL) from the retina to the cortex. That

is, assuming a perfect cortical code:

brðt � VLÞ= hðt � VLÞ � eðt � VLÞ (Equation 5)

where h is the true location of the object in the world and e is the true eye position.

Similarly, the brain does not have access to eye position directly but must estimate it from an internal signal (e.g., efference copy

from themotor system or proprioception originating in the eyemusculature). Tomaintain spatiotemporal alignment with the incoming

visual information, this internal eye-position signal, be, must but also lag behind the eye by the visual latency (as well as faithfully
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representing the dynamics of the eye). In that case, the combination of retinal and eye-position signals gives rise to a stable internal

representation of the outside world (at least, as it was VL milliseconds ago).

To assess visual stability in V1 within this framework, we simulated an object moving across the display during the saccade and

pursuit tasks, and used the observed V1 data to reconstruct a neural estimate of its position over time. The simulated object moved at

a constant velocity in the fronto-parallel plane, which varied in speed and direction across simulated trials (8 evenly spaced directions

between 0 and 2p, 5 speeds [0�/s, 2�/s, 4�/s, 8�/s, 16�/s]). A neural estimate of the object’s position was calculated by combining the

decoded eye position signal (i.e., the time course shown in Figure 4B or Figure 5B) with an idealized representation of the object’s

position on the retina. The latter was calculated as the difference between the position of the simulated object and the true eye po-

sition (as reported by the eye tracker, also shown in Figure 4B). This representation of the retinal projection was then lagged by the

visual latency.

The two quantities – visual and eye-position – were represented as [x,y] vectors and summed to provide an estimate of the object’s

position at each moment in time, across saccades and during pursuit. That is:

bhðtÞ= brðtÞ+ beðtÞ (Equation 6)

We compared the estimated and true object positions to quantify visual stability in V1. We first calculated a traditional sum-of-

squared errors to quantify the spatial mismatch (i.e., 2D Euclidean distance) between the predicted object trajectory and its true

trajectory:

dðtÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� bhxðtÞ � hxðtÞ

�2

+
�bhyðtÞ � hyðtÞ

�2
r

SSEbr +be = XN
t = 1

dðtÞ2
(Equation 7)

To provide ameaningful reference, we compared this error value with that observed if we used only the retinal signal for localization

(i.e., only the object’s position within the V1 map) and ignored the eye-position signal. That is:

d tð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rx tð Þ � hx tð Þð Þ2 + ry tð Þ � hy tð Þ� �2q
SSEbr = XN

t = 1

d tð Þ2
(Equation 8)

We defined a compensation index (CI) to capture howwell gain-fields allowed V1 to compensate for the effects of eye movements:

CI= 1� SSEbr +be
SSEbr (Equation 9)

The index has a value of zero if the prediction is no better than using V1 receptive fields alone, and 1 in the case of perfect prediction

(the upper-bound). The index has no lower-bound (negative values are possible).

The CI index was computed for all of the simulated object trajectories during saccades, and during both pursuit directions (clock-

wise and counter-clockwise).

DATA AND SOFTWARE AVAILABILITY

Data were analyzed in MATLAB (Mathworks Inc.) using a range of built-in, external, and in-house toolboxes, classes, and scripts, as

well as in-house databases. Details and access to in-house resources are available on request. Processed data files, including spike

counts and eye tracking data, are available on request.
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Figure S1. Gain-fields are not an artefact of the visible screen edge, related to Figure 2. (A) 
Control experiments interleaved trials of real eccentric fixation (at each of the 8 positions on 
the circle used in the main experiment) and a corresponding set of conditions in which 
eccentric fixation was simulated by matching the pattern of retinal stimulation. Here, a 
schematic of the experimental configuration for the upper-right eye position is shown (the 
display is drawn to scale; quadrant lines are shown for illustration only and were not 
present on the display). In the simulated trials, a dark band was presented on the display 
(here shown as grey for clarity) to mimic the darkness beyond the screen edge (black region) 
and was approximately matched for luminance. (B) Firing rates were calculated in a time 
window that approximately matched those used to define fixation in the main experiment 
(i.e. 600-900 ms after the onset of the noise stimulus). Significant gain-fields were observed 
in 20/56 units for real changes in eye position, but only one of these had an effect in the 
simulated condition (in that case, the two GFs were anti-correlated). Each data point in the 
scatterplot represents the mean firing rate for one unit at one real/simulated eye position 
(expressed as a percentage difference relative to the unit’s global mean rate; N = 20 × 8). 
The correlation between these values was close to zero at the population level (Pearson’s r 
= 0.05, p=0.54) and non-significant for all but one unit when calculated individually (the anti-
correlated case noted above). None were significant after correcting for multiple 
comparisons. Further, the line of best fit (orthogonal regression, black line) to the 
population data had a slope close to zero (0.05), showing that real changes in eye position 
accounted for the overwhelming majority of response variance. (C) As a further test, we 
compared the strength of modulation between the “best” and “worst” eye position for real 
changes in eye position with that observed in the corresponding simulated conditions. 
Strong modulation was observed for real changes (mean = 49%) but not simulated changes 
(mean = -6%%). Finally, seven units that did not have a significant gain-field for real changes 
in eye position did have a significant effect of simulated eye positions. In those cases, again, 
there were no significant correlations between the two conditions. In sum, although there 
were weak visual effects in a small number of neurons, they were statistically dissimilar to 



 

 
 

the changes in firing rate that occurred for real changes in eye position and thus cannot 
account for the decoding results presented in the main paper (which themselves were cross-
validated to ensure statistical reliability). 

 

 

 

Figure S2. Transient errors in the representation of the saccade step, related to Figure 4. 
Curves represent the error between the true eye position and the decoded eye position, 
averaged over the eight saccade directions (± 1 STE of the mean across conditions). The data 
were rotated before averaging (as if all saccade were from left-to-right), as in Figure 4, so 
that errors parallel and orthogonal to the direction of the saccade are represented by 
respective components of the 2D vectors. Because the aim here was to assess the spatial 
aspects of the step, the lag of the decoded signal behind the eye (45 ms) was removed (by 
shifting the data in time by that amount) before calculating the residual error between the 
V1 representation and the real eye. Similarly, we removed the slight compression of 
decoded eye positions seen during fixation, visible in Figure 3, and in Figure 4B as an under-
estimation of eccentricity. We did so by scaling the decoded data by the ratio of step 
amplitudes from the sigmoid fits. 
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