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Summary 17	
 18	
Studies in multiple species have revealed the existence of neural signals that lawfully 19	
co-vary with different aspects of the decision-making process, including choice, 20	
sensory evidence that supports the choice, and reaction time. These signals, often 21	
interpreted as the representation of a decision variable (DV), have been identified in 22	
several motor preparation circuits and provide insight about mechanisms underlying 23	
the decision-making process. However, single-trial dynamics of this process or its 24	
representation at the neural population level remain poorly understood.  Here, we 25	
examine the representation of the DV in simultaneously recorded neural populations 26	
of dorsal premotor (PMd) and primary motor (M1) cortices of monkeys performing a 27	
random dots direction discrimination task with arm movements as the behavioral 28	
report. We show that single-trial DVs covary with stimulus difficulty in both areas but 29	
are stronger and appear earlier in PMd compared to M1 when the stimulus duration is 30	
fixed and predictable. When temporal uncertainty is introduced by making the 31	
stimulus duration variable, single-trial DV dynamics are accelerated across the board 32	
and the two areas become largely indistinguishable throughout the entire trial. These 33	
effects are not trivially explained by the faster emergence of motor kinematic signals 34	
in PMd and M1.  All key aspects of the data were replicated by a computational 35	
model that relies on progressive recruitment of units with stable choice-related 36	
modulation of neural population activity. In contrast with several recent results in 37	
rodents, decision signals in PMd and M1 are not carried by short sequences of activity 38	
in non-overlapping groups of neurons but are instead distributed across many 39	
neurons, which once recruited, represent the decision stably during individual 40	
behavioral epochs of the trial.  41	
 42	
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Introduction 	43	
 44	
When navigating in traffic, a driver constantly integrates evidence about the outside 45	
world that must inform upcoming decisions: stay on the throttle, press the brake, 46	
switch gears, etc. This process of deliberating on available sensory evidence to reach 47	
a commitment to a specific proposition or action is termed perceptual decision-48	
making (Hanks and Summerfield, 2017, Brody and Hanks, 2016, Murakami and 49	
Mainen, 2015, Shadlen and Kiani, 2013, Gold and Shadlen, 2007). In the driver 50	
example, the actions involve limb movements, and in such contexts, primary motor 51	
cortex (M1) and dorsal premotor cortex (PMd) are thought to be involved in the 52	
decision-making process (Guo et al., 2014, Thura and Cisek, 2014, Cisek, 2012, Cisek 53	
and Kalaska, 2010, Cisek, 2007, Cisek and Kalaska, 2005, Wise, 1985, Vaadia et al., 54	
1988, Wise et al., 1997).  In particular, lesion (Passingham, 1985), inactivation 55	
(Kurata and Hoffman, 1994, Sasaki and Gemba, 1986) and electrophysiological 56	
studies (Cisek and Kalaska, 2005, Song and McPeek, 2010, Hoshi, 2013) suggest an 57	
important role for PMd and M1 in action selection and visuomotor association. 58	
Recent studies have employed more sophisticated perceptual discrimination tasks 59	
with arm movements as the operant response (Thura and Cisek, 2014, 60	
Chandrasekaran et al., 2017, Coallier et al., 2015) and shown that firing rates of a 61	
diverse neural population in PMd covaries with choice, stimulus difficulty, and 62	
reaction time (RT) well before the movement onset. These results are consistent with 63	
a role for PMd and M1 in “somatomotor” decisions and also suggest the presence of a 64	
candidate DV, organized by cortical laminae, in these brain areas (Thura and Cisek, 65	
2014, Thura and Cisek, 2016, Coallier et al., 2015, Palmer et al., 2005, Wang et al., 66	
2016, Chandrasekaran et al., 2017).  67	
 68	
With few exceptions (Bollimunta et al., 2012, Kaufman et al., 2015, Kiani et al., 69	
2014b, Ponce-Alvarez et al., 2012, Rich and Wallis, 2016), neurophysiological 70	
studies of decision mechanisms have focused on average decision-related signals at 71	
the single neuron level (Roitman and Shadlen, 2002, Churchland et al., 2008, Kiani 72	
and Shadlen, 2009, de Lafuente et al., 2015) and at the population level (Mante et al., 73	
2013, Machens et al., 2010, Raposo et al., 2014). Key questions remain unanswered 74	
about the single-trial dynamics and spatiotemporal structure of neural population 75	
responses in perceptual decision formation in PMd and M1. We therefore trained 76	
macaque monkeys to perform fixed as well as variable-duration random-dot motion 77	
direction discrimination tasks (Kiani et al., 2008) using an arm movement as the 78	
operant response while simultaneously recording hundreds of neurons using Utah 79	
arrays implanted in PMd and M1. We used decoding techniques to estimate single-80	
trial DVs from PMd and M1 firing rates, and examined how the dynamics of these 81	
decoded DVs changed with parameters such as stimulus difficulty and uncertainty 82	
about expected stimulus duration.  Our analyses focused on three interconnected 83	
questions.    84	
 85	
First, we analyzed the relationship between single-trial dynamics of the DV and 86	
sensory stimuli that inform the choice, and determined whether these dynamics differ 87	
between PMd and M1. We then tested whether the neural dynamics change when 88	
subjects transition from a context of temporal certainty to high temporal uncertainty 89	
about stimulus duration (Shadlen and Newsome, 2001, Murphy et al., 2016). 90	
 91	
Second, we used computational modeling of behavior and neural responses to identify 92	
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mechanisms that can explain the observed dynamics of choice representation in PMd 93	
and M1 under different task conditions. Bounded accumulation of evidence is a 94	
widely used modeling framework for perceptual decisions in the direction 95	
discrimination and similar sensory tasks (Ratcliff and McKoon, 2007). For a binary 96	
choice, the model assumes that two accumulators integrate sensory evidence in favor 97	
of the two competing options until one of the accumulators reaches a decision 98	
threshold or bound (Vickers, 1970, Link, 1992, Beck et al., 2008, Shadlen and Kiani, 99	
2013, Kiani et al., 2014a). We considered three variants of this model that could offer 100	
a theoretical account for accelerated representation of choice under temporal 101	
uncertainty: increased urgency or reduced bound (Churchland et al., 2008, Heitz and 102	
Schall, 2012, Purcell and Kiani, 2016, Hanks et al., 2014), increased input gain (Cisek 103	
et al., 2009, Thura et al., 2012),  and a novel framework based on progressive 104	
recruitment of choice representing neurons which suggests that the fraction of neurons 105	
carrying choice related signals increases throughout the trial, leading to increasingly 106	
more stable choice representation over the course of the trial.  107	
 108	
Our final goal was to understand how a stable choice representation is implemented 109	
by a population of PMd and M1 neurons. We considered two competing hypotheses: 110	
sustained representation of choice by: 1) a stable population of neurons, or 2) a 111	
sequence of transient responses in non-overlapping groups of neurons. Sustained 112	
responses are commonly observed in the frontoparietal cortex of the primate brain and 113	
are implicated as a substrate for working memory, decision-making, and higher 114	
cognitive functions (Chandrasekaran et al., 2017, Churchland et al., 2008, Cisek and 115	
Kalaska, 2005, Kiani and Shadlen, 2009, Machens et al., 2010, Mante et al., 2013, 116	
Roitman and Shadlen, 2002, Shadlen and Newsome, 2001, Thura and Cisek, 2014, 117	
Goldman-Rakic, 1995). An alternative mechanism has recently emerged from optical 118	
imaging studies in rodents (Harvey et al., 2012, Morcos and Harvey, 2016) and later 119	
expanded to electrophysiological and computational studies (Rajan et al., 2016, Scott 120	
et al., 2017), suggesting that decision-related activity may be carried by transient 121	
sequences of small subsets of neurons at different points in time.  The “sequence” 122	
model predicts that in a given epoch in the trial, only a small subset of neurons 123	
represents the decision, and this subset will be largely non-overlapping with the 124	
subset of decision related neurons for any other epoch in the trial.  125	
 126	
We found that, in the fixed duration task, single-trial DVs are represented in both 127	
PMd and M1 shortly after stimulus onset but are stronger and faster in PMd compared 128	
to M1. On single trials, estimated DVs exhibit ramp-like growth during stimulus 129	
presentation and the slope is steeper for easier coherences compared to harder 130	
coherences. In the variable duration task, for both PMd and M1, DV dynamics are 131	
strikingly accelerated and are nearly identical in the two areas throughout the entire 132	
trial, although PMd responses still lead M1 responses by ~15 ms. Even though single 133	
trial DVs ramp up faster in the variable-duration task, the co-variation of ramp slope 134	
with stimulus difficulty was preserved and behavioral accuracy remained largely 135	
stable. Control analyses show that these results are not explained by accelerated 136	
representation of motor variables such as reach speed, other kinematics of the arm and 137	
eye, or eventual RT, nor could the combined physiological and behavioral data be 138	
modeled accurately by changes in gain or urgency. Instead, the data are consistent 139	
with a progressive recruitment of choice-related neurons that is accelerated under 140	
uncertainty conditions. Consistent with the progressive recruitment model, the 141	
empirically observed population choice signals become increasingly stable throughout 142	
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the stimulus presentation as more units with sustained choice selectivity are recruited. 143	
This stabilization happens more rapidly in the variable duration task, in which there is 144	
a high premium for quick decisions (Murphy et al., 2016).  145	
 146	
 147	
Results 148	
 149	
Monkeys discriminate stimulus motion better for higher coherence and longer 150	
duration trials 151	
 152	
We trained monkeys in a variant of the classical random dot motion discrimination 153	
task (RDM, (Britten et al., 1992)), in which animals report the net direction of motion 154	
in a random dot kinematogram (Shadlen and Newsome, 2001, Kiani et al., 2008, 155	
Britten et al., 1992) presented on a LCD touchscreen (Fig. 1a). In our variant of the 156	
RDM task, the monkeys used an arm reach to one of two targets corresponding to the 157	
perceived direction of motion to report their decision (Fig. 1a-b).  In the fixed 158	
duration version of the task the stimulus was always presented for 1000 ms followed 159	
by a random delay period (400-900 ms) after which the monkey was provided with a 160	
“go cue” to report its decision. Eye fixation was enforced from the beginning of the 161	
trial until appearance of the go cue to impose additional behavioral control and avoid 162	
interpretational confounds since PMd activity can be modulated by eye-hand relative 163	
position (Pesaran et al., 2006).   164	
 165	
Monkeys displayed excellent behavioral performance in this task, achieving close to 166	
ceiling levels of accuracy (99% for both monkeys) for the highest coherence stimuli 167	
(Fig. 1c, black curves). The accuracy decreased smoothly with stimulus difficulty 168	
(lower coherence) and remained above chance for the lowest (non-zero) coherence 169	
stimulus (3.2% coherence, 59%-62% accuracy for monkey H-F). Psychophysical 170	
thresholds (α) (estimated at 81.6% accuracy by fitting a cumulative Weibull function 171	
to the performance curves) were 12.1% and 12.4% stimulus coherence for monkey H 172	
and F, respectively (Fig.1c, black dashed vertical lines).  173	
 174	
After data collection was concluded in the fixed duration task, monkeys performed a 175	
variable duration RDM task, (Fig. 1c, red curves). In these experiments, stimulus 176	
duration was randomly selected on each trial (200-1000 ms exponentially distributed, 177	
median 435 ms) and the delay period was eliminated, requiring subjects to report their 178	
decision immediately after stimulus offset. Psychophysical thresholds for both 179	
monkeys decreased as stimulus duration increased up to ~500 msec (Fig. 1d) 180	
indicating that monkeys performed better for longer stimuli. This improvement in 181	
performance suggests that additional visual evidence was utilized to improve 182	
decisions as a result of integrating the sensory evidence for a longer duration. The 183	
improvement in thresholds occurred at the rate expected from a perfect integrator 184	
model (slope, ~ -0.5) for stimulus durations up to approximately 533 and 682 ms for 185	
monkey H and F, respectively, with little or no improvement for longer stimuli (Kiani 186	
et al., 2008, Kiani and Shadlen, 2009).  187	

 188	
The two tasks enabled us to probe the dynamics of decision-related signals in 189	
PMd/M1. The fixed duration task provided temporal separation between evidence 190	
integration (dots period), action planning (hold period), and action execution (post-go 191	
period). In contrast, the variable duration task provided the ability to query the 192	
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subject’s choice as soon as the stimulus is terminated.  193	
 194	
Single trial choice signals in PMd and M1 are compatible with the neural 195	
representation of a decision variable 196	
 197	
We recorded neural activity in PMd and M1, using two chronically implanted 96-198	
channel Utah arrays (Fig. 1e), while subjects performed each motion discrimination 199	
task. Consistent with prior studies in PMd (Cisek and Kalaska, 2005, Chandrasekaran 200	
et al., 2017), we found diverse responses at the single cell level, which may reflect 201	
multiple functions being implemented in this area (Supp. Fig. 1). The same 202	
observation was true for M1 (Supp. Fig. 2).   203	
 204	
Our primary goal was to understand the dynamics of these diverse neural responses in 205	
PMd and M1 at the population level—both on average and on single trials. We trained 206	
a regularized logistic classifier to predict right and left choices on individual trials 207	
based on short periods of neural activity (50 ms windows), using a method we 208	
developed in a recent study (Kiani et al., 2014b). Classification was based on features 209	
of the simultaneously recorded activity from ~100-200 units from each area (Kiani et 210	
al., 2014b) (median number of units/session: 153 for PMd, 147 for M1). 211	
     212	
For the fixed duration task, choice prediction accuracy before and immediately after 213	
the onset of the targets was near chance (Fig. 2a, Supp. Fig. 3a and 4a) suggesting that 214	
choice biases prior to motion onset were negligible and the monkey’s choices were 215	
shaped by the motion stimulus. Choice prediction accuracy rose above chance at 187 216	
± 12 ms (mean±s.d.) after stimulus onset for PMd and 240 ± 14 ms (mean±s.d.) for 217	
M1. The median latencies for PMd were significantly shorter than for M1 (Wilcoxon 218	
rank sum test, p<0.001) and were similar to other reports of decision-related signals in 219	
PMd (Thura and Cisek, 2014, Chandrasekaran et al., 2017)	and MIP (de Lafuente et 220	
al., 2015). Although our monkeys were extensively trained on this version of the task 221	
that allowed them 1000 msec to evaluate the stimulus motion and at least another 400 222	
msec of delay period to prepare the operant response, both PMd and M1 still 223	
responded in a choice predictive manner less than 250 ms after the stimulus onset and 224	
over a second before the initiation of the action was cued. Thus, choice predictive 225	
activity in these (pre)motor structures, similar to their parietal counterparts (Shadlen 226	
and Newsome, 2001) is not contingent on having to prepare for immediate action, but 227	
is also present when that action is delayed ~1-2 seconds into the future. 228	
      229	
Choice prediction accuracy rose steadily for both areas as the trial proceeded, but was 230	
significantly higher for PMd than for M1 (P<0.05 Wilcoxon Sign rank test, Holm-231	
Bonferroni corrected) during most of the motion-viewing epoch (Fig. 2a, Supp. Fig. 232	
3a and 4a). This difference was observed in both monkeys and did not result from a 233	
higher number of recorded units in PMd (Wilcoxon rank sum test comparing median 234	
number of units, p=0.41). At the end of the visual stimulus period prediction accuracy 235	
reached 84.5% ± 1.3% and 83% ± 0.5% (mean±s.e.m.) for PMd and 72% ± 0.9% and 236	
78% ± 0.9% (mean±s.e.m.) for M1 of monkeys H and F, respectively (Fig. 2a; Supp. 237	
Fig. 3a and 4a). These classification accuracies roughly matched (in M1) or exceeded 238	
(in PMd) those previously reported for neural population recordings in prearcuate 239	
cortex using similar recording and analysis techniques (Kiani et al., 2014b) (and could 240	
be even further increased by adjusting the window size Supp. Fig. 5), confirming the 241	
possibility of obtaining single trial read-outs of a decision state from these areas.  242	
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             243	
Highly reliable choice predictive activity with short latencies is expected from 244	
standard accumulation-to-bound models of decision formation (Mazurek, 2003, Cisek 245	
et al., 2009). The second expectation is that the rate of increase of choice predictive 246	
activity should depend on stimulus difficulty (Gold and Shadlen, 2007). Consistent 247	
with this expectation, classification accuracy on easier trials rose faster and attained 248	
higher values compared to harder trials (Fig. 2b-c, Supp. Fig. 3b-c and 4b-c). This 249	
feature was present in both areas though the separation between stimulus difficulties 250	
was stronger in PMd than M1 between 200-600 ms aligned to stimulus onset 251	
(Wilcoxon sign rank test, P<0.005, Supp. Fig. 6). The third expectation is that the 252	
relationship between classification accuracy and motion coherence be stronger during 253	
the first half of the dots period and becomes smaller as the trial unfolds (Shadlen and 254	
Newsome, 2001, Roitman and Shadlen, 2002, Kiani et al., 2008, Wang, 2002) (Supp. 255	
Fig. 6, 200-600 vs 600-1000 ms periods). Finally, during the delay and peri-256	
movement periods prediction accuracy is high with little or no separation by stimulus 257	
difficulty, suggesting that a categorical decision is made by the end of the delay 258	
period in the vast majority of trials.  Overall, the dynamics of the choice prediction 259	
accuracy matched accumulation of evidence and commitment to a choice when 260	
adequate evidence was accumulated. 261	
 262	
To better understand the dynamics of decision-related activity, we calculated a 263	
continuous readout of the strength of the model’s prediction for the subject’s choice, 264	
which is critical for single trial analyses to follow. We calculated the logistic model’s 265	
log odds ratio for the two choices for each time point on every trial. This variable is 266	
equal to the distance of the neural population activity from the classifying hyperplane 267	
(Supp. Fig. 7a). As in our previous study (Kiani et al., 2014b), we interpreted this 268	
distance as the model’s decision variable (DV) and used it as a proxy for the internal 269	
cognitive state of the animal, representing a preference for a given choice. Because 270	
the DV is continuous (unlike predicted choice which is binary) and can differ even 271	
between correctly predicted trials (Supp. Fig. 7a), it provided a continuous metric for 272	
quantifying the internal cognitive state and its dependency on stimulus difficulty.  Our 273	
convention was that positive values of the DV reflect increased likelihood of right 274	
choices and negative values reflect left choices. As expected the average decision 275	
variable showed the same effects found for choice prediction accuracy: (i) its 276	
magnitude increases with time and with stimulus coherence (Supp. Fig. 7b), (ii) the 277	
coherence-dependent separation of the DVs depends on the time in the motion 278	
viewing period, and (iii) this separation vanishes around the time of Go cue and motor 279	
response.    280	
 281	
We next investigated whether these effects of stimulus difficulty held on single trials. 282	
If the DV traces truly ramped up on single trials, their slopes should increase as a 283	
function of coherence. Alternatively, if the entire system synchronously stepped from 284	
an uncertain state to a committed state at different points in time for different trials 285	
(with ramping being an artifact of averaging multiple trials) the slopes should not 286	
depend on stimulus coherence. Our results cannot exclude the possibility that 287	
population-level ramping is implemented by asynchronously stepping neurons 288	
(Latimer et al., 2015) whose step times are coherence dependent.  289	
 290	
To quantify stimulus coherence effects on the single-trial DV we focused on the first 291	
half of the stimulus presentation interval (500 msec).  This time window was 292	
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consistent with a conservative estimate of the motion integration times from 293	
psychophysical data for both monkeys (Fig. 1d).  We used a tri-linear fit to single-trial 294	
DV traces. The fitted function consisted of an initial interval of zero slope, reflecting 295	
the finite latency between dots onset and initial modulation of PMd/M1 activity. The 296	
slope during the second interval captures a period of rapid DV change following dots 297	
onset, while the third interval reflects a general slowing of DV change that occurs by 298	
the middle of the dots period (Supp. Fig. 7b-d, see Methods). The tri-linear fit enables 299	
us to focus on the rate of rise of the DV during decision-making (Shadlen et al., 300	
2016). Consistent with the ramping representation, at the population level, of a 301	
decision variable on single trials in these areas, higher coherence trials are associated 302	
with steeper DV slopes (second slope of the tri-linear fits, Figure 2d-e, Supp. Fig. 3d-303	
e and Supp. Fig. 4d-e). The results are significant for both areas and choice directions 304	
(for both models: slope vs coherence and slope vs log2(coherence); see Methods, 305	
statistical analyses Supp. Table 1). 306	
 307	
Stimulus duration uncertainty increases and accelerates choice predictive 308	
activity in both areas  309	
      310	
So far, we focused on the neural activity from the fixed duration task for which the 311	
animals consistently had 1 second of visual evidence to deliberate and decide upon. 312	
However, in the real world, subjects rarely know the precise timing of visual 313	
information relevant to making a choice. Thus, after experiments on the fixed 314	
duration task, we introduced the variable duration task and trained the monkeys to 315	
report their decision immediately upon termination of the stimulus (Fig. 1a,b; 316	
Methods). Prior to these recordings the monkeys had never been exposed to short 317	
duration stimuli (< 1000 ms).    318	
 319	
Since subjects could not predict the duration of the stimulus on single trials and most 320	
trials were short (median 435 ms, see Methods), the variable-duration task 321	
incentivized accurate assessment of sensory evidence early in the stimulus 322	
presentation period: the first 200 ms of dots motion were guaranteed to be shown but 323	
stimulus presentation could be terminated at any point thereafter. We asked whether 324	
the dynamics of decision-related signals in PMd and M1 were different in the variable 325	
duration task. In both areas, we found that classification accuracy increased faster in 326	
the variable duration task leading to much higher accuracy values during the stimulus 327	
presentation period (Fig. 3a, Supp. Fig. 8a, Supp. Fig. 9a). This acceleration in 328	
prediction accuracy was most apparent in M1, where choice predictive neural 329	
responses emerged much faster in the variable duration task (193 ± 12 ms compared 330	
to 240 ± 14 ms in the fixed duration task). This earlier onset also happened in PMd 331	
(177 ± 8 ms compared to 187 ± 12 ms in the fixed duration task), though to a lesser 332	
extent. Consequently, the difference in the onset time of choice-related activity 333	
between PMd and M1 diminished substantially in the variable duration task (latency 334	
difference= 13.2 ms in variable duration versus 41.6 ms in fixed duration task, p=1.6 335	
x 10-13, Wilcoxon rank sum test). Moreover, the difference in absolute prediction 336	
accuracy between the two areas was significant for only 80 ms during the entire dots 337	
period (P<0.05 Wilcoxon Rank Sum test, Holm-Bonferroni corrected), confirming 338	
that these areas represent the upcoming choice with very similar strength in the 339	
variable duration task.  340	
 341	
The slope analysis of single-trial DVs in the variable duration task showed that the 342	
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coherence effects were largely conserved on single trials in both PMd and M1 despite 343	
the accelerated dynamics (dashed lines in Fig. 3b-c, Supp. Fig. 8b-c, Supp. Fig. 9b-c, 344	
statistical analyses, Supp. Table 1, all parameters, Supp. Fig 10 Supp. Fig 11). The 345	
DV slopes are overall larger for the variable duration task compared to the fixed 346	
duration task (vertical shift between the solid and dashed lines in Fig. 3b-c, Supp. Fig. 347	
8b-c, Supp. Fig. 9b-c). This difference was significant for all areas and target 348	
directions (p<10-18, see Methods and Supp. Table 4).  349	
 350	
Changes in decision-related dynamics are not due to contamination by motor 351	
signals 352	
 353	
The data in Fig. 3b,c suggested that dynamics of decision-related activity accelerated 354	
under conditions of temporal uncertainty, as indicated by the overall larger slopes in 355	
the variable duration task.  Before testing model predictions, we addressed a potential 356	
confound that could lead to misinterpretation of the DV slope data.  When the 357	
duration of the stimulus is uncertain and the operant response is required immediately 358	
after offset of the stimulus (i.e. no delay period), it is possible that motor planning is 359	
accelerated and that kinematic signals related to the operant movement invade the 360	
visual stimulus period, contaminating our DV estimates from PMd and M1 361	
recordings. If the accelerated dynamics were exclusively due to motor preparation 362	
signals contaminating the early dots period, we would expect the coherence effects on 363	
single trial DVs to diminish or disappear altogether in the variable duration task. This 364	
was not the case as shown in Figures 3b-c, Supplementary Figures 8b-c and 9-bc, and 365	
Supp. Tables 1-4  (effect of coherence on the DV slopes, p<10-4).  Nonetheless, we 366	
formally tested the motor kinematics hypothesis by measuring the extent to which 367	
neural activity during the stimulus viewing period predicts motor kinematic variables 368	
in both tasks. Our analysis focused on movement onset time after the Go cue (reaction 369	
time, RT) and hand velocity, both of which known to be reflected in the activity of 370	
PMd and M1 neurons (Afshar et al., 2011, Kubota and Hamada, 1979, Churchland et 371	
al., 2006a, Churchland et al., 2006b).  We performed Ridge regression of both 372	
kinematic variables onto population neural activity to determine the time when 373	
kinematic signals appear in PMd and M1.   374	
 375	
For the fixed duration task, our prediction of RT from neural population data was 376	
poor in the targets and dots epochs as expected from the task design (Fig. 4 a-b). Only 377	
late in the delay period (~last 50 ms), when the monkey was presumably planning the 378	
arm movement, did we observe a very small rise in RT variance explained by neural 379	
activity. This rise became significant for both areas and targets within 60 ms after the 380	
go cue (Wilcoxon signed-rank test p<0.01, Holm-Bonferroni correction for multiple 381	
comparisons). We observed a wide range of RTs in both tasks, which lead to a strong 382	
dynamic range in firing rates that correlated with RT after the go cue and thus lead to 383	
high R2 values, which are expected for (pre)motor brain regions. Crucially, the results 384	
for the variable duration task were similar in terms of temporal profile, with 385	
significant R2 values only present after the go cue but not during dots (Fig. 4 c-d, 386	
Supp. Figs 12 and 13 show model performance for example sessions). Repeating the 387	
same analysis for hand peak velocity, we observed only modest R2 values after the go 388	
cue and around the time of the response for both tasks (Fig. 4 e-h). The absence of 389	
significant R2 values during the stimulus presentation period in our two tasks (Fig. 4 390	
a-h) confirmed that hand motor signals were not contaminating our DV estimates. 391	
 392	
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Finally, and to rule out the contamination from additional variables associated with 393	
the eye movement, we performed the same analyses on the analogous saccade 394	
parameters: saccade RT and saccade peak velocity. Similar to our results for hand 395	
movement kinematics, we could predict a significant fraction of variance of saccade 396	
RT only during and following the go cue (but not before) (Supp. Fig. 14 a-d). The R2 397	
peaks for saccade RTs were significantly lower than those for hand RTs (Fig. 4 a-d vs 398	
Supp. Fig. 14 a-d) (Wilcoxon signed-rank test for peak R2 Hand vs Eye RT: p<5e-4 399	
for all areas, tasks and target directions). Further, saccade peak velocity was not 400	
explained by PMd or M1 neural data at any point in the trial (Supp. Fig. 14 e-h). The 401	
weaker representation of eye kinematics after Go cue is consistent with the expected 402	
role of PMd and M1 in controlling arm movements.  403	
 404	
In summary, our results showed that regardless of task timing, motor parameter 405	
representation in PMd and M1 was reliable only around and after the go cue and not 406	
while the visual evidence was presented. Thus, the accelerated dynamics of choice 407	
predictive activity early in the stimulus presentation period of the variable duration 408	
task was not due to a contamination by motor signals. 409	
 410	
Progressive recruitment of choice selective neurons underlies accelerated 411	
dynamics of the DV in the variable duration task  412	
 413	
In the previous sections, we showed that the dynamics of choice related neural 414	
activity on single trials is flexible, being strongly influenced by the expected statistics 415	
of stimulus duration. In conventional evidence integration models of decision 416	
formation (Ratcliff and McKoon, 2007, Lo and Wang, 2006, Mazurek, 2003) changes 417	
in the dynamics of the DV are implemented through parameters that govern the 418	
accumulation of sensory evidence. We tested whether these models could replicate 419	
our observation that the DV buildup rates are higher in the variable duration task, and 420	
that the size of the increase is independent of motion coherence.  421	
 422	
We focused on a simple formulation of integration-to-bound models, in which two 423	
competing integrators accumulate noisy evidence about motion energy over time 424	
toward a decision bound (Kiani et al., 2014a). As soon as one of the integrators 425	
reaches the bound, a choice is made and the two integrators maintain their state 426	
(integrated evidence) until the end of the trial (Kiani et al., 2008, Shadlen and 427	
Newsome, 2001). We simulated two pools of spiking neurons whose mean firing rates 428	
represent the state of integrators. Finally, we trained our logistic classifier on the spike 429	
counts of the simulated neurons and calculated the DV buildup rates, just as we did 430	
for our recorded neurons.  431	
 432	
We envisioned three possible mechanisms for changes in the DV dynamics, each of 433	
which can account for the observed psychophysical data with appropriate parameter 434	
adjustments (Fig. 5a). The first two are based on known phenomena: urgency 435	
(Churchland et al., 2008, Purcell and Kiani, 2016)  and sensory gain (Cisek et al., 436	
2009). Urgency is an evidence-independent signal that drives both integrators toward 437	
their bounds. In principle, an overall increase of urgency in the variable-duration task 438	
might mimic a coherence-independent increase in the DV buildup rates as observed in 439	
the physiological data (Fig. 3b,c, vertical shift in DV slope vs. coherence traces) 440	
through faster commitment to choice. However, because urgency affects both 441	
accumulators, and the DV depends largely on the difference in the activity of our two 442	
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pools of neurons, the effect of urgency on the DV slope is small unless very large 443	
urgency signals are imposed (Fig. 5b, note that the cyan, red, and black data points are 444	
almost completely superimposed in this figure). A large urgency signal is 445	
mathematically equivalent to a reduction in the decision bound and would lead to less 446	
accurate choices and, consequently, to a sizeable increase in psychophysical 447	
thresholds in the variable duration task (Fig. 5c). Although the data of monkey F 448	
provided some support for increased threshold, monkey H was incompatible with the 449	
prediction of the urgency model (Supp. Fig. 15).  450	
 451	
The sensory gain model builds on the proposal that later sensory evidence is 452	
progressively amplified with a gain factor before integration (Cisek et al., 2009). The 453	
original proposal by Cisek and colleagues assumes a leaky integration process with a 454	
short time constant (Cisek et al., 2009) but in our tests the time constant of integration 455	
was not a key factor. Similar to increased urgency, increased gain on sensory inputs 456	
might lead to a coherence-independent increase in DV slope by accelerating bound 457	
crossing and causing earlier commitment to choice. However, just as we showed for 458	
the urgency signal, modest increases in gain do not generate a significant change in 459	
the DV slopes as these largely depend on the difference between the accumulators, 460	
both of which are affected by the increase in gain (Fig. 5b, red data points are largely 461	
superimposed on cyan and black). While large gains can increase the DV slope, they 462	
also lead to reduced performance accuracy (Fig. 5d) because the bound crossing is 463	
accelerated and effective integration time is shortened, similar to what we observed 464	
for the urgency signal above. The data from monkey H reduce the likelihood that the 465	
urgency or sensory gain mechanisms are the only causes of the accelerated DVs in the 466	
variable duration task.  467	
 468	
Our third hypothesis proposes that the accelerated dynamics of the DV is due to 469	
progressive recruitment of additional neural signals under conditions of temporal 470	
uncertainty that represent choice outcome, which we term “categorical choice”, but 471	
not the accumulation of sensory evidence that leads to the choice.  We postulate that 472	
these categorical choice signals appear in each pool of accumulator neurons with 473	
increasing frequency as each accumulator nears its bound (see below).  In our 474	
implementation, the strength of the categorical choice signal varies across single 475	
neurons and is independent of the strength of the accumulated evidence signal in each 476	
neuron (see Methods, 𝛾!  values). In effect, the weighted contributions of these 477	
neurons constitute a subspace of the neural population activity carrying coherence-478	
independent choice signals.  This “categorical choice subspace” would not contribute 479	
to the formation of the decision but might be necessary for translating the output of 480	
the integration process into preparation for a specific operant action. Hereafter, for 481	
brevity, we’ll refer to this subspace as the “choice subspace”. 482	
 483	
In principle, this choice subspace could be encoded by a population of dedicated 484	
neurons that transition from an uncommitted state (baseline firing rate) to a 485	
committed state for choice 1 or choice 2, with the transition becoming more probable 486	
as each accumulator approaches its decision bound. We, however, favor the 487	
alternative implemented in our simulations—the same neurons that represent 488	
integration of evidence also represent the categorical choice. This mixed selectivity at 489	
the level of single neurons leads to the representation of choice and evidence 490	
accumulation in separable subspaces at the level of population responses. These two 491	
methods for implementation of the categorical choice signal have similar 492	
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consequences for the behavior and calculated DVs, but the latter is more in line with 493	
previous observations in frontal cortex (Mante et al., 2013). 494	
 495	
As suggested above, we simulated this mixed selectivity in a population of model 496	
neurons whose responses were weighted sums of accumulated evidence and a 497	
categorical choice signal (Methods, Integration Models). The choice signal was a 498	
nonlinear monotonic function of the distance of the accumulated evidence from the 499	
decision bound and can be thought of as a readout of the accumulation process in 500	
preparation for commitment to a choice. We call this the progressive recruitment 501	
model (PRM) for representation of choice signals.  In the variable duration task, 502	
acceleration of the choice signal enhances the representation of the upcoming choice 503	
and boosts the model DV, leading to a coherence independent increase in DV slopes 504	
(Fig. 5b, note that the magenta points are offset vertically from cyan, black and red).   505	
 506	
PRM captures the behavioral data well because accelerated recruitment of coherence-507	
independent choice signals does not cause perturbations in the underlying integration 508	
process and does not change psychophysical performance (Fig. 5a).   Thus the PRM 509	
neatly captures the key behavioral (Fig. 5a) and physiological data (Fig. 5b) in 510	
monkey H.  In contrast to monkey H, psychophysical thresholds for monkey F 511	
increased under conditions of temporal uncertainty, implying changes in the 512	
underlying integration process (e.g., increased urgency or sensory gain).   513	
Importantly, accelerated choice representation could happen simultaneously with 514	
changes in the integration process that could cause an increased psychophysical 515	
threshold for monkey F. Overall, our modeling results suggest that accelerated choice 516	
representation, either in isolation or mixed with urgency or sensory gain, plays a key 517	
role in enhanced response dynamics in PMd and M1 in the variable duration task.  518	
 519	
The progressive recruitment model makes specific predictions at the population 520	
and single unit levels 521	
 522	
The PRM, as implemented in our simulations, makes specific, testable predictions 523	
about the spatiotemporal features of the neural responses in both the fixed and 524	
variable duration tasks. First, at the population level, the choice representing subspace 525	
should be stable during a trial as more units are recruited to maintain a representation 526	
of choice. Such stability facilitates decoding by downstream areas in the presence of 527	
timing differences in our tasks. Second, this stabilization should happen faster in the 528	
variable duration task due to the accelerated recruitment of choice representing 529	
neurons. Third, the choice subspace in the population responses should be shared 530	
across the two tasks. Fourth, at the single unit level we should observe the progressive 531	
onset of choice representing units, some during the psychophysical integration 532	
window (Fig.1d) and some only later in the trial. These units should have stable 533	
choice preference (left or right) and stable or increasing choice modulation and their 534	
recruitment should be accelerated in the variable duration task.  535	
 536	
For simplicity in our simulations, we assumed no categorical choice representation in 537	
the fixed duration task (Methods, Integration Models). Similar results would have 538	
been obtained, however, if categorical choice signals were also recruited in this task 539	
(a non-zero average 𝛾! parameter) as long as they remained substantially lower than in 540	
the variable duration task.  We expect this to be a more plausible scenario, and the 541	
extent to which progressive recruitment is present in the fixed duration task can be 542	
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tested empirically. 543	
 544	
In the following two sections we test these predictions first at the population level and 545	
then at the single unit level.  546	
 547	
Choice signal stabilizes during stimulus presentation in PMd and M1  548	
 549	
To test our predictions, we started by examining the structure of the temporal 550	
representation of choice across the entire trial. For each time point in each task we 551	
defined a “choice axis” that best represents modulation of neural responses with 552	
choice. Neurons with strong choice modulation at that time had a large weight in the 553	
choice axis and neurons with smaller modulation had smaller weights (see Methods). 554	
By comparing the similarity of choice axes at different times and in different tasks, 555	
we could quantify the stability of choice-representation in the population. Fig. 6 556	
shows the inner product of choice axes at different times. A large inner product 557	
suggests good alignment of the choice axes and high stability of the choice-558	
representing subspace. Conversely, a low inner product suggests a rotation in the 559	
choice axis, which could happen if two different sub-populations of neurons represent 560	
the choice at different times or if the relative contribution of neurons to the 561	
representation of choice changes over time. Mathematically, the projection of a choice 562	
axis on itself would be 1, making the diagonals uninformative. We therefore 563	
calculated two choice axes for each point in time for two independent halves of each 564	
session’s data and measured the projection of these two axes onto each other (see 565	
Methods). This way, the diagonal elements of the projection matrix were not set to 1 566	
but instead provided a measure of self-consistency of the choice axis. Armed with 567	
these stability and self-consistency metrics we investigated our model predictions.  568	
 569	
Starting with PMd in the fixed duration task (Fig. 6a, Supp. Figs 16a and 17a), we 570	
observed three important features. First there was a gradual emergence, rotation and 571	
stabilization of the choice axis (emergence of square structure in the heat map) that 572	
started ~350 ms after dots onset and unfolded over the remainder of the dots 573	
presentation. Second, the dots period was followed by a highly stable choice signal in 574	
the delay period. Importantly, the choice axes late in the dots period were largely 575	
overlapping with the choice axes early in the delay period (up until the go cue) 576	
indicating that the representation of choice was largely maintained even in the 577	
absence of additional visual evidence. Third, the choice signal around the initiation of 578	
the reach, despite being extremely strong, was also very transient in its direction in 579	
neural state space. These three main features were recapitulated for M1 (Fig. 6b, 580	
Supp. Figs 16b and 17b), the main difference being the latency for stabilization of the 581	
choice axis during the dots presentation, which happened faster for PMd (~350ms 582	
after dots onset) compared to M1 (>500 ms after dots onset). The temporal ordering 583	
between the two areas was consistent with our earlier analysis of choice predictive 584	
activity in the fixed duration task (Fig. 2a). These results are consistent with the first 585	
prediction from the PRM regarding stability of the choice subspace during dots and 586	
delay period. 587	
 588	
For the variable duration task the rotation and stabilization of the choice axis 589	
happened much faster (~250 ms after dots onset) than in the fixed duration task, 590	
consistent with the second prediction of PRM.  In the variable duration task, in fact, 591	
the temporal stabilization of the choice axis was virtually indistinguishable between 592	
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PMd and M1 (Fig. 6c-d, Supp. Figs 16c-d and 17c-d).  593	
 594	
The heat maps provide a qualitative description of stability of the choice subspace. 595	
We quantified stability within and across epochs using decoding analyses (see 596	
Methods). Our results show substantial choice representation stability within the 597	
target, dots and pre-go epochs, but not the peri-movement epoch (Supp. Fig. 18 and 598	
19). In addition, our results demonstrate choice representation stability across the dots 599	
and pre-go epochs but not across other pairs of epochs (Supp. Fig. 20).  600	
 601	
Finally, our results also suggest a stable choice representation across tasks. Taking 602	
advantage of sessions in which we recorded the same units in each brain area while 603	
the monkey performed both tasks, we compared alignment of choice axes across time 604	
and tasks (Fig. 6e-f). The choice axis measured in the stimulus presentation for the 605	
variable duration task was largely consistent with choice axes at later times in the 606	
fixed duration task (and vice versa), in agreement with the third prediction of the 607	
PRM.  This implies that the same transformation from integration of evidence to 608	
stable choice signal occurs in the two tasks and is being carried out through the 609	
recruitment of the same units, only at different rates that reflect the cognitive demands 610	
imposed on the subject.   611	
 612	
Stabilization of population choice axes occurs through progressive recruitment 613	
of neurons with sustained choice modulation 614	
 615	
We next examined the choice modulation at the single unit level to test the fourth 616	
prediction of the PRM. This analysis provides a bridge between our population 617	
analyses, modeling results, and single unit properties. We first calculated the 618	
cumulative fraction of units that display significant choice modulation as stimulus 619	
presentation progresses.  Consistent with the PRM, the cumulative fraction rises much 620	
faster over the course of stimulus presentation in the variable duration task (dashed 621	
lines) compared to the fixed duration task (solid lines) for both PMd (Fig. 7a, Supp. 622	
Fig. 21a and 22a) and M1 (Fig. 7b, Supp. Fig. 21b and 22b).    623	
 624	
Further support for a mechanism of progressive recruitment came from persistent 625	
activity of choice-selective neurons. We used area under the ROC (Shadlen and 626	
Newsome, 2001) (auROC) to quantify how well single neuron responses represented 627	
choice at each time point during the trial. If the representation of choice at the single 628	
neuron level is stable over time, a heat map of auROC of individual neurons, ordered 629	
by onset of choice representation, should show an upper triangular structure. In 630	
contrast, transient representation of choice in individual neurons should be evident as 631	
a diagonal structure in the heat map (Harvey et al., 2012, Morcos and Harvey, 2016). 632	
Fig. 7c-d showed a strong upper triangular structure for units with significant choice 633	
modulation (above the gray dashed line), indicating persistent choice modulation over 634	
the course of the trial. The existence of units that only become choice modulated late 635	
in the dots period or even during the delay period for both PMd (Fig. 7c) and M1 (Fig. 636	
7d) matches our expectation that progressive recruitment of choice signals is also 637	
present in the fixed duration task.  638	
 639	
Consistent with our logistic regression results, the emergence of persistent choice 640	
representation in the individual units was faster and more widespread in PMd (Fig. 7c 641	
Supp. Fig. 23a) than M1 (Fig. 7d, Supp. Fig. 24b) in the fixed duration task.  642	
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 643	
For a direct comparison across areas and tasks we also calculated the area under ROC 644	
traces for sessions in which fixed and variable duration tasks were run in the same 645	
experimental session (while putatively recording from the same units, see Methods).  646	
The results show that for both areas (Fig. 7e-f, Supp. Fig. 24c-d), units with stable 647	
modulation were recruited earlier during the trial, and just as in the fixed duration 648	
task, maintained their modulation strength until close to the time of the arm 649	
movement. Not only did the same units represent choice in both areas during the 650	
stimulus presentation period (Fig. 6e-f), but also their recruitment ordering was 651	
consistent across tasks for both areas (Spearman correlation between latencies across 652	
tasks for PMD: rho = 0.869, p = 1.37x10-11 and M1: rho = 0.579, p = 3.79x10-5 for the 653	
example session shown in Fig. 7e-f), further suggesting that the same transformation 654	
of signals is happening in both tasks at different rates. Finally, for the variable 655	
duration task, just as in the logistic regression analysis (Fig. 3a), the differences 656	
between the two areas largely vanished in the variable duration task, both in terms of 657	
fraction of significant units and rate of recruitment. Taken together these results 658	
corroborate the fourth prediction from the PRM and show that temporal stability of 659	
choice predictive signals inferred at the population mechanism is present at the level 660	
of individual units as well.  661	
 662	
 663	
Choice signal is distributed across the neural population  664	
 665	
The stability of the choice axis over time (Figs. 6,7) suggests that there is little relay 666	
of information between different ensembles of neurons (sequence mechanism: 667	
(Harvey et al., 2012, Morcos and Harvey, 2016, Rajan et al., 2016, Scott et al., 2017)) 668	
once the choice signal appears in the PMd and M1 populations. To further test 669	
whether a sequence mechanism might be compatible with our results, we quantified 670	
the distribution of choice-related neurons in the population as a function of time 671	
during the trial. If the choice representation is generated by a sequence mechanism, 672	
the neural representations at a given time during the trial should critically depend on a 673	
small number of key neurons. Removing these neurons from the population should 674	
result in a drastic degradation in the quality of the neural representations (Haxby et 675	
al., 2001, Kiani et al., 2007).  We tested this possibility by performing a unit dropping 676	
analysis that calculates how prediction accuracy is impacted by exclusion of the best 677	
units (Kiani et al., 2015).  678	
 679	
We illustrate our results by focusing on two points in time: the end of the stimulus 680	
presentation period (last 50 ms) and go cue presentation (50 ms before go), because a 681	
strong choice related signal is present at these times in both tasks. Our results (Fig. 8a, 682	
Supp. Fig. 24a and 25a) show that predictive accuracy decayed smoothly as the best 683	
units were removed for both areas and both monkeys. We did not observe any 684	
precipitous drop in prediction accuracy that might suggest a special role for a small 685	
group of transiently active neurons. PMd remained more predictive than M1 at the 686	
end of stimulus presentation (Fig. 8a, Supp. Fig. 24a and 25a), as expected from 687	
previous sections of this paper. This discrepancy vanished around the go cue. Also, in 688	
the variable duration task the decay in performance was shallower (up to only ~10% 689	
for the best 70 units) compared to the fixed duration task (Fig. 8b, Supp. Fig. 24b and 690	
25b) due to the higher number of strongly tuned units (Fig. 7). The key observation is 691	
that representations in both areas and in both time points show remarkable robustness 692	

not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/283960doi: bioRxiv preprint first posted online Mar. 17, 2018; 

http://dx.doi.org/10.1101/283960


	 15	

to exclusion of the best predictive single units. Even after dropping 70 best units 693	
(corresponding to a median 46%/33% of units in PMd and 48%/31% of units in M1 in 694	
the fixed/variable duration tasks respectively) choice prediction accuracies remained 695	
well above chance.  696	
  697	
 698	
Discussion  699	
 700	
The primary goals of this study were: 1) investigate whether single-trial, decision-701	
related activity in PMd and M1 has the properties of a DV and determine whether and 702	
how DV dynamics depend on uncertainty about stimulus timing, 2) test computational 703	
models to identify mechanisms that can explain the observed choice behavior and 704	
neural dynamics, and 3) examine the spatio-temporal features of decision-related 705	
signals, under conditions of both temporal certainty and uncertainty, with a specific 706	
goal of differentiating between stable vs. sequential representations of choice-707	
predictive signals. To achieve these goals we employed two variants of a classical 708	
motion discrimination task, fixed and variable duration (Kiani et al., 2008, Shadlen 709	
and Newsome, 2001), and combined them with multi-electrode recordings and 710	
decoding techniques to obtain reliable single trial estimates of decision-related 711	
dynamics at the level of the neural population.  712	
 713	
Population neural activity in PMd and M1 exhibit properties of a decision 714	
variable. 715	
 716	
Our neural population data are consistent with predictions of classic accumulation-to-717	
bound models of the decision process. Specifically, choice predictive activity emerges 718	
quickly after stimulus onset in both PMd and M1 and increases with time and 719	
stimulus coherence as expected from evidence accumulation (integration) linked to 720	
the sensory stimulus.  Critically, our simultaneous population recordings provided 721	
statistical power to test these predictions on single-trial activity as opposed to trial-722	
averaged activity as in most previous studies.  The build-up of choice predictive 723	
activity on single trials—as captured in the rate-of-rise of the logistic decision 724	
variable—varied systematically with stimulus coherence (Figs. 2d,e, 3b,c; Suppl. 725	
Tables 1-3) as expected from accumulator models (Shadlen and Newsome, 2001, 726	
Roitman and Shadlen, 2002, Bollimunta et al., 2012) and inconsistent with step like 727	
transitions in the neural states (Latimer et al., 2015, Miller and Katz, 2010). 728	
 729	
Choice-predictive activity was present in both PMd and M1 even when action 730	
initiation was cued more than one second after termination of the visual stimulus. The 731	
most pronounced difference between the two areas occurred in the fixed duration 732	
task: significant choice related activity emerged faster and was stronger in PMd 733	
compared to M1 (Fig. 2b,c). These differences are consistent with the standard view 734	
of a greater cognitive role for PMd compared to M1 (Cisek and Kalaska, 2005, 735	
Coallier et al., 2015, Wise et al., 1997), and with the idea of a rostro-caudal gradient 736	
of visuomotor responses in PMd/M1 (Cisek and Kalaska, 2005) with stronger motor 737	
signals in caudal PMd/M1 and stronger target selection signals in pre-PMd/ rostral 738	
PMd.   739	
 740	
This difference, however, essentially vanished in the variable duration task. Following 741	
stimulus onset, prediction accuracy increased at nearly identical rates in the two areas 742	

not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/283960doi: bioRxiv preprint first posted online Mar. 17, 2018; 

http://dx.doi.org/10.1101/283960


	 16	

and plateaued at similarly high levels, the only difference being ~20 msec longer 743	
latencies in M1 (Fig. 3a).  The dynamics accelerated in both areas under conditions of 744	
temporal uncertainty, but the change was particularly dramatic in M1 (compare Fig. 745	
2a with Fig. 3a).   These results could not be explained by displacement of motor 746	
kinematic signals into the stimulus presentation period in the variable duration task 747	
(Fig. 4).  Importantly, the accelerated dynamics were independent of the coherence of 748	
the visual stimulus; the DV slope vs. coherence curves for the variable duration 749	
condition are essentially vertically offset copies of those for the fixed duration 750	
condition.   751	
 752	
To our knowledge only one other study (Shadlen and Newsome, 2001) employed both 753	
fixed and variable duration motion discrimination tasks while recording decision-754	
related activity in individual units. Similar to the current study, the authors observed a 755	
larger and faster average increase in choice modulation in LIP neurons in the variable 756	
duration task, which they speculated could reflect increased urgency to make quicker 757	
decisions when the duration of the sensory evidence is uncertain.  While this intuition 758	
is appealing, it begs the question as to the actual mechanism underlying the 759	
accelerated dynamics, which we explored through a series of quantitative models.   760	
 761	
Progressive recruitment of choice-selective neurons 762	
 763	
The discovery of single-trial, coherence-independent acceleration of DV dynamics 764	
under conditions of temporal uncertainty provides a useful new constraint on 765	
mechanistic models of the decision process.  Different variants of race models 766	
between accumulation processes have long been proposed to explain both behavior 767	
(Beck et al., 2008, Link, 1992, Vickers, 1970, Wong and Wang, 2006) and neural 768	
activity in premotor structures (Churchland et al., 2008, Hanks et al., 2014, Scott et 769	
al., 2017) during perceptual decision tasks.  In this study we implemented three 770	
variants of race models that attempted to explain both the observed psychophysical 771	
behavior and the single trial DV dynamics across both tasks.  The increased gain and 772	
increased urgency models could not replicate the DV dynamics for the variable 773	
duration task without unacceptable deterioration in psychophysical performance. In 774	
contrast, our novel progressive recruitment model (PRM) with an adaptable 775	
recruitment rate closely matched both the physiological and behavioral data.  This 776	
model proposes that PMd and M1 population activity reflect recruitment of a second, 777	
coherence-independent “choice” signal in addition to the well-known coherence-778	
dependent signal.  Importantly, the PRM and accumulation-to-bound models are not 779	
incompatible. PRM simply adds a twist to how choice is represented while evidence 780	
accumulation proceeds during a trial.  781	
 782	
Temporal stability and latency of choice representation in PMd and M1 783	
 784	
The analyses of choice axes suggested a stable representation of choice during the 785	
dots and delay period. However, we found that the choice axis early in the dots period 786	
(~250 ms after dots onset) does not perfectly overlap with choice axis late in the dots 787	
period (~750 ms after dots onset). Through our simulations, we posited that changes 788	
in the choice axis between the early and late epochs of the dots period occur due to 789	
the recruitment of signals associated with the categorical choice in addition to signals 790	
associated with the accumulation of evidence. Similarly, but to a much larger degree, 791	
the choice axis during the actual arm movement did not overlap with the choice axis 792	
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from the dots period, probably reflecting the additional recruitment of signals 793	
associated with moving the arm. We believe that the shift in the choice axis across 794	
epochs is evidence for the existence of multiple choice subspaces in PMd/M1 (and 795	
other brain regions) that are engaged at different epochs in the tasks presented here 796	
(and for other tasks).  In this study, we have exposed one aspect of these choice 797	
subspaces. Multiple choice subspaces will likely reflect the different behavioral 798	
demands for the monkey at different points in the task such as sensory evidence 799	
evaluation, motor preparation, movement execution, post-movement evaluation, 800	
reward expectation, and learning. Reorganization of neural activity into different 801	
subspaces has been previously observed in PMd for delayed reach tasks between the 802	
movement preparation and execution phases (Elsayed et al., 2016) and is compatible 803	
with the low projection between peri-movement and delay period axes we obtained in 804	
the fixed duration task (Figure 6a).  805	
 806	
We also observed a difference in latency for choice representation to become stable 807	
between PMd and M1, and these latency differences depended on the task. For the 808	
variable duration task, the latencies for stabilization of the choice representation in 809	
both PMd and M1 were well within the estimated psychophysical integration 810	
windows for both monkeys (500-600 msec—Fig. 1d). In contrast, M1 data in the 811	
fixed duration task appear to stabilize at ~750 msec (Fig. 6b), well outside the 812	
psychophysical integration window. Thus, the M1 delay can be highly variable 813	
depending on the expected time for the execution of motor action. In the variable-814	
duration task, where the Go cue can happen any time, M1 responses reflect the choice 815	
much earlier. Note that similar progressive recruitment of the choice representing 816	
subspace in M1 and PMd would lead to similar reduction of latency in the two areas. 817	
Therefore, it is unlikely that a common input to the two areas underlies our results.  818	
An appealing hypothesis is that changes of latency in M1 are caused by changes of 819	
PMd dynamics. If the choice representation in PMd should reach a threshold level 820	
before it emerges in M1, the accelerated choice representation in PMd would cause 821	
both accelerated dynamics and significantly reduced latency of choice representation 822	
in M1 in the variable duration task. Overall, our results hint at a mechanism where 823	
PMd responses lead and furnish the choice representation in M1.  824	
 825	
 826	
Progressive recruitment accounts better for our data than a sequence hypothesis 827	
 828	
Our results suggest that progressive recruitment of units with temporally stable choice 829	
modulation is a plausible mechanism for choice representation in PMd and M1. In 830	
contrast, evidence from recent optical imaging studies in rodents (Harvey et al., 2012, 831	
Morcos and Harvey, 2016) suggests an alternative mechanism: representation of 832	
choice by transient ensembles of neurons that are activated sequentially as the trial 833	
proceeds, effectively passing choice information from one ensemble to the next 834	
throughout a trial. Intrigued by this finding in rodents, we analyzed our neural 835	
population data to test the predictions of these two mechanisms on individual sessions 836	
in monkeys. Our analyses of the temporal stability of choice axes, within and across 837	
epoch decoding, and unit dropping all support a stable choice representation 838	
mechanism over a sequence mechanism. Our failure to detect sequences during the 839	
visual stimulus and delay periods does not reflect a problem with our analysis 840	
techniques; sequences of ensemble activity were strikingly present in the peri-841	
movement interval for the operant arm movement, as shown by the diagonal structure 842	
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in the lower right portion of each plot in Figure 6. This diagonal structure results from 843	
fast modulations around movement onset that are expected because of impending 844	
changes in limb position and kinematics during movement, as reported before 845	
(Churchland et al., 2010, Churchland et al., 2012). At the individual unit level our 846	
results also matched the progressive recruitment model predictions: the choice signal 847	
is carried by a large (and growing) fraction of neurons (Fig. 7a,b) and their 848	
modulation is largely stable over the stimulus presentation and pre-go cue period 849	
(ROC analyses, Fig. 7c,d). 850	
 851	
The pronounced difference between stable choice representation in the primate cortex 852	
and sequential representation in the rodent cortex might simply reflect a species 853	
difference in neural mechanisms underlying choice behavior.  However, a recent 854	
study of choice mechanisms in rodents supports stable accumulation of evidence in 855	
parietal cortex (Hanks et al., 2015).  The key difference between the latter study and 856	
those that yielded evidence for sequences is that animals were actively locomoting on 857	
a track ball when sequences were observed. A more recent—and as yet not peer 858	
reviewed—study suggests that sequences of neuronal activity during track ball 859	
locomotion result not from choice-related signals per se, but from specific 860	
combinations of bodily position and head angle at successive times during locomotion 861	
(Krumin et al., 2017). Our best reading of the current literature is that the evidence for 862	
stable representations of choice in primate cortex is strong, whereas the sequence 863	
hypothesis that has emerged from rodent work requires further study to confirm, 864	
refine, or reject. Developing behavioral tasks that are as similar as possible for 865	
monkeys and rodents may help resolve some of these issues.   866	
 867	
Concluding remarks 868	
 869	
We have focused on single trial estimation of decision variables in neural population 870	
data and development of mechanistic models that explain both the behavioral and 871	
physiological data.  Like many studies in the contemporary literature, our comparison 872	
of models to data relies on regression analyses that produce vectors of weights on the 873	
responses of individual units, be they neurons or voxels.  Importantly, we do not 874	
assert that a downstream brain area or deeper cortical layer (Chandrasekaran et al., 875	
2017) actually performs a linear weighting of PMd/M1 activity in superficial layers to 876	
guide decisions. For present purposes, we simply use the DV as a proxy for the 877	
informational content about choice present at any given moment in these neural 878	
populations (Kiani et al., 2014b). Recordings across multiple brain regions and 879	
precise knowledge of projection pathways between them will be required to elucidate 880	
the actual mechanisms that transform this information to signals that trigger an action.  881	
 882	
More broadly, our study integrates a small but growing body of literature that 883	
leverages simultaneous electrophysiological population recordings to explore the 884	
neural substrate of internal cognitive phenomena at the level of single trials 885	
(Bollimunta et al., 2012, Kaufman et al., 2015, Kiani et al., 2014b, Rich and Wallis, 886	
2016). This approach promises to shed light on internal cognitive processes whose 887	
dynamics vary substantially from trial to trial (e.g. decision-making, attention). In the 888	
future, the strengths of this approach will be amplified by monitoring 889	
cognitive/attentional states in real time and probing the subject and circuit in a 890	
neurally contingent manner.  891	
 892	
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	1142	
	1143	
Methods 1144	
 1145	
Subjects 1146	
  1147	
Our experiments were performed on two adult male macaque monkeys (Macaca 1148	
mulatta) trained to perform a direction discrimination task with reaching movements 1149	
of the arm as operant responses. Neural activity was recorded from populations of 1150	
neurons in dorsal premotor and primary motor cortex while monkeys performed the 1151	
task. All training, surgery, and recording procedures conformed to the National 1152	
Institutes of Health Guide for the Care and Use of Laboratory Animals and were 1153	
approved by Stanford University Animal Care and Use Committee. 1154	
 1155	
Apparatus 1156	
 1157	
Monkeys sat in a primate chair in front of a video touchscreen, with their head 1158	
restrained using a surgical implant. The front plate of the chair could be opened, 1159	
allowing the subjects to reach the touchscreen with the arm contralateral to the 1160	
implanted hemisphere. The ipsilateral arm was gently restrained using a delrin tube 1161	
and a cloth sling. Stimuli were shown on the video touchscreen (ELO Touchsystems 1162	
1939L), which allowed us to track hand position at 75Hz and was positioned 1163	
approximately 35 cm away from the monkeys’ head.  Eye position was continuously 1164	
tracked with an optical eye tracker at 1kHz (EyeLink 1000, SR Research, Canada).  1165	
 1166	
Motion Discrimination Task  1167	
  1168	
The task employed is a variation of the classical dots discrimination task, in which 1169	
arm movement was the operant response (Fig. 1a). We used two variants of this task 1170	
that differed based on the stimulus duration employed. The first version was a 1171	
classical fixed duration task, in which every stimulus presentation lasted 1000 ms. We 1172	
termed this version the fixed duration task. In contrast, we also employed a version in 1173	
which the duration of the stimulus presentation varied from trial to trial. The stimulus 1174	
duration ranged from 200-1000 (median 435 ms) and it was randomly chosen on each 1175	
trial by sampling an exponential distribution. We termed this version, the variable 1176	
duration task. For all variants, the trial starts with the onset of a fixation point (FP; 1.5 1177	
degree diameter) on a video touchscreen (Fig. 1a). To initiate the task, the monkey 1178	
was required to maintain both eye and hand fixation within +/- 3 degrees of the FP as 1179	
long as it remained on the screen. Importantly, throughout the entire trial, the monkey 1180	
was required to always maintain direct hand contact with the screen, otherwise the 1181	
trial would be aborted. 1182	

not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/283960doi: bioRxiv preprint first posted online Mar. 17, 2018; 

http://dx.doi.org/10.1101/283960


	 25	

      1183	
After 300 ms of fixation, two targets (1.5 degree diameter) appeared on opposite sides 1184	
of and at same distance from the FP. After a 500 ms delay the random dot stimulus 1185	
was presented for either 1000 ms (fixed duration) or 200-1000 ms (variable duration), 1186	
depending on the task variant, after which it was removed from the screen. On each 1187	
trial a fraction of the dots moved coherently along the horizontal axis in the 0 and 180 1188	
degree directions. The monkey was asked to report the net direction of motion by 1189	
reaching to the target in the corresponding direction. The difficulty of the task was 1190	
adjusted by changing the fraction of dots moving coherently in one direction (motion 1191	
strength) (Britten et al., 1992). After the stimulus offset the monkey either entered a 1192	
delay period during which it was required to withhold his response for 400-900 ms 1193	
(for the fixed duration task) or was immediately presented the go cue (variable 1194	
duration task). The go cue was then signaled by the offset of the FP at which point the 1195	
monkey was free to gaze anywhere and report his decision by reaching to one of the 1196	
two targets. Although gaze was monitored, reward acquisition depended solely on 1197	
reaching to the correct target. Finally, for a response to be considered valid, the 1198	
monkey was required to hold its hand position within +/- 4 degrees of the center of 1199	
the target for 200 ms. The monkey was then rewarded with a drop of juice for correct 1200	
choices and given a timeout (2-4 seconds) for incorrect ones. Zero coherence trials 1201	
were rewarded randomly with a probability of 0.5 since there was no correct response 1202	
on these trials.  1203	
               1204	
Random dots stimuli   1205	
 1206	
The stimuli used in our psychophysical experiment were random dot kinematograms 1207	
(RDK) generated using MATLAB and Psychophysics Toolbox. Stimuli were 1208	
presented on a 19-inch LCD touch monitor (Elo Touchsystems) with 75 Hz frame rate 1209	
and 800 x 600 pixels resolution positioned 30 cm away from the monkey. The details 1210	
for generating the random dots stimuli have been described previously (Kiani et al., 1211	
2008). We used the same algorithm and parameters except: (1) the stimulus duration 1212	
was fixed at 1 s for the fixed duration task and variable from 0.2s -1s (exponentially 1213	
distributed) in the variable duration task; (2) the diameter of the stimulus aperture was 1214	
14 degrees, and (3) the speed of the coherent dots was 8 degrees / second. The dot 1215	
density was 16.7 dots/deg2/s, and the dot size 2 pixels. The center of the dots stimulus 1216	
was situated 12 degrees above the center of the fixation point.  To create the 1217	
impression of motion, the dots in the RDK were split into 3 consecutive sets with the 1218	
same number of elements (1 set displayed for each individual frame) and displaced 3 1219	
frames (40 ms) later. The fraction of dots displaced coherently toward one of the two 1220	
targets was determined by the coherence (motion strength), with the remaining dots 1221	
being displaced randomly. For both monkeys, the motion strength could take one of 6 1222	
possible values: 0%, 3.2%, 6.4%, 12.8%, 25.6% and 51.2%. The direction and 1223	
coherence of the motion were randomly assigned on each trial by sampling from a 1224	
uniform distribution with replacement. For zero-coherence stimuli all dots were 1225	
displaced randomly but, due to the stochasticity of that process, one obtains non-zero 1226	
net motion toward the targets over a small number of frames.  1227	
     1228	
Behavioral Training 1229	
      1230	
Training two monkeys to perform all versions of the dots discrimination task with 1231	
excellent behavior required a thorough operant conditioning protocol. The protocol 1232	
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had to be adapted to the individual monkeys since they had very different training 1233	
histories: monkey H was a naive monkey whereas monkey F had been trained on a 1234	
saccade version of the motion discrimination fixed duration task. Monkey H started 1235	
by being rewarded just for touching the touchscreen and then gradually progressed to 1236	
an instructed reach task and from there to a delayed reach task. Once he was 1237	
proficient in using the touchscreen, the dots stimulus was introduced, cueing the 1238	
correct target to reach to at the end of the trial. Only easy coherences were used at 1239	
first, with lower and lower coherences being introduced gradually until the final set 1240	
was used. The final component of training was eye fixation. Eye fixation was trained 1241	
by introducing blocks of trials for which the front plate of the primate chair was 1242	
closed, cueing the monkey to perform the task with eye movements. The fixation 1243	
window size was gradually decreased, and then eye fixation was also required during 1244	
the reach blocks. By aborting trials if eye or hand fixation was broken the subject 1245	
learned that both were required to perform the final task. Monkey F on the other hand 1246	
was already proficient at discriminating motion so the main focus of training was 1247	
achieving proficient use of the touchscreen with his hand. The same initial sequence 1248	
of steps was used to train monkey F to perform delayed reaches. From that point on, 1249	
the training was focused on combining knowledge about the dots task with the 1250	
reaching response. Coherences were also introduced sequentially from highest to 1251	
lowest but at much faster pace compared to monkey H. Recording sessions started 1252	
when good psychophysical performance was achieved.  1253	
          1254	
Behavioral Analysis 1255	
 1256	
Psychophysical performance was assessed in two ways: by describing the percentage 1257	
of correct choices as a function of (unsigned) stimulus coherence and by describing 1258	
the percentage of right choices as a function of signed stimulus coherence.  1259	
 1260	
The percentage of correct choices as a function of motion strength (stimulus 1261	
coherence) was fit by a cumulative Weibull distribution function (equation 1):  1262	
 1263	

𝑃!"##$!% 𝑐 =  1− 0.5× 𝑒(!
!
!)
!

 
 1264	
 1265	
where Pcorrect is probability correct, c is motion strength, α is the psychophysical 1266	
threshold (the value of c that corresponds to ~82% correct responses), and β is a 1267	
parameter that controls the shape of the function, especially its steepness. 1268	
 1269	
The percentage of rightward choices, Pright, as a function of motion strength and 1270	
direction was fit by a logistic regression (equation 2):  1271	
 1272	

𝑃!"#!! 𝑐 =  
1

1+  𝑒!!! × ( !!!!)
 

 1273	
where c is signed motion strength, β1 is the slope parameter and, −β0 is the motion 1274	
strength corresponding to the indifference point. This value was used to assess the 1275	
monkey’s behavioral bias on each session.  1276	
 1277	
To analyze performance as a function of stimulus duration (Fig. 1d) trials in the 1278	
variable duration task were ranked by stimulus duration, binned and fitted with 1279	
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Weibull curves. In the y-axis we plot the α (threshold) parameter (log2 scale) obtained 1280	
from the fits for each set of trials, and in the x-axes the median duration of the 1281	
stimulus for each bin (log2 scale).  1282	
 1283	
For a perfect integrator threshold should decrease linearly with stimulus duration (in 1284	
log2 vs log2 plot) with a slope of -0.5 (Kiani et al., 2008). To assess at what point the 1285	
observed decrease in threshold deviated from that expected for the perfect integrator 1286	
we performed bi-linear fits to the data. We forced the first slope to be -0.5 and let the 1287	
intercept, the second slope and the time of slope change as free parameters. The time 1288	
of slope change obtained from the fits indicates the point at which behavioral 1289	
improvement deviates significantly from the perfect integrator prediction. For the 1290	
regression analyses we used independent bins of 500 trials. For Figure 1d we show 1291	
bins of 500 trials that are incremented by 250 trials to interpolate the data and guide 1292	
the eye. 1293	
 1294	
In addition to psychophysical performance two behavioral metrics related to the arm 1295	
reach itself were also quantified: reaction time (RT) and hand velocity. To obtain 1296	
precise measurements of reaction times and maximum hand velocity we used the raw 1297	
hand position data on each trial. We started by up-sampling the raw data by a factor of 1298	
13 to obtain artificial 1 ms resolution (since it had been acquired at 75Hz). Then we 1299	
smoothed the up-sampled data by performing local linear regression to obtain smooth 1300	
hand traces for each trial. The instantaneous velocity was calculated as the norm of 1301	
the sum of vertical and horizontal speed components (the instantaneous derivative of 1302	
the position). The peak hand velocity was calculated for each trial and reaction time 1303	
was determined as the interval between the presentation of the go signal and the time 1304	
point at which 20% of the peak velocity was reached.   1305	
    1306	
Electrophysiological recordings 1307	
          1308	
Two multielectrode arrays (Blackrock Microsystems, Utah) with 96 electrodes each 1309	
(1mm long platinum-iridium electrodes, 0.4 mm spacing, impedance 400 kOhm) were 1310	
implanted in primary motor and dorsal premotor cortex of each monkey (Figure 1e). 1311	
The arrays were placed anterior to the central sulcus, posterior to the arcuate sulcus 1312	
and lateral but near the superior pre-central dimple (Churchland et al., 2010). Prior to 1313	
the array implantation, single electrode recordings were performed (FHC, Maine) by 1314	
lowering dura-piercing electrodes (tungsten, average impedance 6 MOhm) through 1315	
burr holes, to determine the best location for the arrays. M-L position was determined 1316	
by performing muscle palpation during recordings and searching for a strong upper 1317	
arm representation; A-P position was determined by strong perimotor/delay activity in 1318	
a delayed reach task for M1/PMd, respectively. The coordinates for the best sites were 1319	
calculated with respect to the center of the chamber and verified during surgery using 1320	
stereotaxic measurements. These coordinates were used to determine the final 1321	
location of the arrays, subject to anatomical constraints (curvature of the cortex, blood 1322	
vessels etc). Continuous neural data were acquired and saved to disk from each 1323	
channel (sampling rate 30 kHz) and thresholded at -4.5 RMS. Waveforms 1324	
corresponding to threshold crossings were sorted offline (Plexon Inc., Dallas) using 1325	
both semi-automatic clustering methods and manual sorting. For all analyses 1326	
presented in this study we did not differentiate between single-units and multi-units. 1327	
Our goal was to maximize population predictive power and spatial coverage of the 1328	
cortex and not just to select the very best isolated single-units. Only units with an 1329	
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average firing rate of 2 spikes/s or more during dots presentation were analysed in this 1330	
study. The number of units meeting this criterion in each experimental session 1331	
typically ranged from 100-180 per array.  1332	
 1333	
Datasets     1334	
 1335	
For each task version and monkey we analyzed all datasets from each brain area that 1336	
met two behavioral inclusion criteria: 1) over 750 trials and 2) a behavioral bias (|β0|) 1337	
under 5%, as determined by a logistic regression fit. These criteria were imposed to 1338	
guarantee that we have a sizeable number of trials per condition (6 coherence x 2 1339	
directions = 12 conditions) and that the behavior of the monkey is minimally biased, 1340	
such that both neural and behavioral results are more easily interpretable. These 1341	
criteria resulted in a selection of 9 (12) sessions of the fixed duration task and 6 (5) 1342	
sessions of the variable duration task with no delay for monkey H (F), respectively. 1343	
Data from both areas were collected simultaneously and the same recording sessions 1344	
were used.  1345	
     1346	
Peri-stimulus time histograms (PSTHs) 1347	
      1348	
PSTHs were generated by aligning spike trains of each trial to relevant task events: 1349	
target onset, stimulus onset, go cue, and movement initiation. These spike trains were 1350	
then convolved with a Gaussian kernel with a 50 msec acausal and a 50 ms causal 1351	
component. The standard deviation of the Gaussian used was 30 msec. The resulting 1352	
spike density functions were then sorted by experimental condition. Once the trials 1353	
were selected for the specified condition, their spike density functions were averaged.  1354	
          1355	
Logistic Regression 1356	
  1357	
For each session, the responses of all neurons in 90% of the trials were fit with a 1358	
logistic model that attempted to separate rightward (T1) and leftward (T2) upcoming 1359	
choices. The logistic model was fit in 50 ms windows, advanced in 20 ms steps over 1360	
the entire trial duration (equation 3).  1361	
 1362	

𝑃(𝑇!|𝑟 ) =  
1

1+  𝑒!(!! ! ! !! ! ×!! !!
!!! )  

 1363	
Where 𝑃(𝑇!|𝑟 ) is the probability of observing a particular behavioral choice (T1 or 1364	
rightward choice in this case) given the population response 𝑟; 𝑟! 𝑡  are the z-scored 1365	
summed spike counts for each neuron and time window, β0 is an intercept term and 1366	
βi(t) are the classifier weights (one for each neuron and time window). 1367	
      1368	
The remaining 10% of the trials were tested using the previously trained model and its 1369	
accuracy was recorded. The same process was followed 10 times for each window 1370	
(10-fold cross-validation) and the percentage of correctly predicted choices recorded. 1371	
This process was repeated for consecutive windows displaced by 20 ms and yielding a 1372	
prediction accuracy trace for each session and brain area. Both correct and error trials 1373	
were included in this analysis to assure there would not be an imbalance between high 1374	
coherence trials (more likely to be correct trials) and low coherence trials, which 1375	
would bias the classifier to perform better on high coherence trials.  1376	
 1377	
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An L1- regularization technique (LASSO) was used to constrain the norm of the beta 1378	
coefficients fitted by the model to prevent over-fitting (Kiani et al., 2014b). The 1379	
lambda parameter that determines the strength of the penalty for the L1 norm was 1380	
calculated for the 50 ms window preceding the go-cue by sweeping through 25 1381	
potential values and selecting the value with lower deviance by running 10-fold cross 1382	
validation. This lambda value was then used for the model for all time points. 1383	
 1384	
The exact same procedure was also followed using 150 ms windows (instead of 50 1385	
ms) to test whether choice prediction accuracy could still further improve, when 1386	
applying an identical logistic regression method to the same datasets.  1387	
 1388	
Finally, a slightly different procedure was used when training a single classifier over 1389	
an entire epoch. The four epochs used for training the four corresponding classifiers 1390	
were:  1391	
 1392	
 • Targets epoch: [-150, 350] ms aligned to targets onset; 1393	

 • Dots epoch: [150, dots offset] ms aligned to dots onset. Dots offset was 1000 ms for 1394	
fixed duration task and between 200-1000 ms for the variable duration task; 1395	

 • Delay/Pre-Go epoch: [-600, 0] ms aligned to go cue; 1396	

 • Peri-movement epoch: [-200, 600] ms aligned to reach; 1397	

All valid 50 ms samples of neural data during the selected period (above) for each 1398	
epoch were used as a sample to train the corresponding classifier. The classifier was 1399	
trained on 90% of the trials and tested on 10% of the trials using 10-fold cross-1400	
validation. As before, LASSO regularization was used to prevent over-fitting. The 1401	
regularization parameter lambda was calculated individually for each epoch through 1402	
cross-validation and chosen as the value with minimum expected deviance. Accuracy 1403	
was calculated as fraction of test trials correctly predicted at every 50 ms long 1404	
window (stepped in 20 ms increments). 1405	
 1406	
Coherence effects on prediction accuracy 1407	
 1408	
For each dataset, coherence effects were assessed by measuring the difference in 1409	
prediction accuracy between consecutive coherence levels: (51.2%-25.6%), (25.6%-1410	
12.8%), (12.8%-6.4%), (6.4%-3.2%), (3.2%-0%). Five 200 ms long periods during 1411	
the dots presentation were considered. For each period, the five differences in 1412	
prediction accuracy were averaged across time. Results for each period, brain area 1413	
and task were combined across datasets. The Wilcoxon signed rank test (p<0.005) 1414	
was used to assess if coherence accuracy differences were considered significantly 1415	
larger than 0. The same criterion was used to assess significance of differences in 1416	
coherence effects magnitude between brain areas within the same time period.  1417	
 1418	
Latency analysis      1419	
 1420	
We determined the latency for choice predictive signals during the dots period as the 1421	
first of three consecutive (and non-overlapping) 50 ms time steps for which the 1422	
prediction accuracy is significantly larger than chance (0.5) according to a Wilcoxon 1423	
signed rank test, p<0.001.  1424	
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 1425	
Decision Variable 1426	
 1427	
When performing logistic regression on the population activity, the set of weights 1428	
associated with each neuron form the hyperplane that best separates leftward and 1429	
rightward choices for the corresponding time window (50 ms width at a time). For 1430	
each trial and time point, the distance of the population state to this hyperplane is 1431	
given by the model choice log odds, i.e. it corresponds to the model’s certainty about 1432	
the upcoming choice of the monkey—the further from the hyperplane, and thus the 1433	
larger the distance, the higher the confidence of the model on its estimate of the 1434	
eventual choice of the animal (equation 4): 1435	
 1436	

𝐷𝑉 = log
𝑃(𝑇!|𝑟 )
𝑃(𝑇!|𝑟 ) =  𝛽! 𝑡 + 𝛽! 𝑡 ×𝑟! 𝑡

!

!!!
  

 1437	
Where ri(t) are the z-scored summed spike counts for neuron i and time window t, 1438	
β0(t) is an intercept term and βi(t) are the classifier weights (one for each neuron and 1439	
time window). We use this distance as a proxy for an internal decision variable (DV) 1440	
and study its dynamics as a function of stimulus difficulty and trial epoch. Using 1441	
longer time windows of neural activity as predictors of choice increased the accuracy 1442	
even further (Supp. Fig. 5a) at the expense of time resolution.  1443	
 1444	
Slope Analysis 1445	
           1446	
To analyze the dependency of our putative decision variable on the stimulus strength 1447	
we fit the single trial DV traces with a tri-linear curve. Data in the interval [0-500] ms 1448	
aligned to dots onset was used to fit the curves. For the variable duration task no data 1449	
after the go-cue was presented was used in this fit. We fix the first slope at zero since 1450	
the stimulus does not influence the neural representation of choice within the first 1451	
~100-150 ms following stimulus onset. The intercept, the 2nd and 3rd slopes, as well 1452	
as the transition times are all free parameters. All free parameters were fit to minimize 1453	
squared error. We used the value of the 2nd slope to quantify the DV initial rate of 1454	
rise due to motion information. Since the subsequent analyses focused on this 1455	
parameter, variable duration trials with stimulus duration in the [200,500] ms range 1456	
were also used.  1457	
The curves were fitted independently for each trial and the fitting procedure was blind 1458	
to stimulus coherence or task variant. Only correct trials were used in this analysis. 1459	
Within each task we then tested if the slopes resulting from the fitting procedure had a 1460	
statistically significant dependence on coherence. We did this in two ways: 1) by 1461	
regressing slopes as a function of stimulus coherence and 2) by regressing slopes as a 1462	
function of log2(stimulus coherence). The results were similar in both cases. 1463	
  1464	
Finally we tested the effect of coherence, task variant, and their interaction on slopes 1465	
across tasks for each brain area and target direction by fitting the following model: 1466	
 1467	

𝐷𝑉!"#$% = 𝛽! + 𝛽!×𝐶 + 𝛽!×𝐼 + 𝛽!×𝐶×𝐼 
 1468	
Where 𝐷𝑉!"#$%  is the 2nd slope, 𝐶  is the magnitude of the stimulus coherence, 1469	
normalized to 1 and 𝐼  is the task identity (0 for fixed duration, 1 for variable 1470	
duration). 1471	
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 1472	
The resulting 𝛽! is the intercept term, 𝛽!quantifies the effect of coherence on slopes 1473	
(across tasks),  𝛽!  quantifies the shift in slope magnitude between tasks (across 1474	
coherences) and 𝛽! captures the coherence dependency of the offset of the slopes 1475	
between tasks. A significant and positive/negative 𝛽! value would indicate slopes 1476	
increase/decrease as a function of coherence, a significant and positive 𝛽!  value 1477	
would imply slopes are higher for the variable duration task compared to the fixed 1478	
duration task (across coherences), and a significant and positive 𝛽! value would imply 1479	
the offset between variable duration and fixed duration slopes is coherence dependent.  1480	
 1481	
All slope analyses were done on correct trials only to assure coherence effects were 1482	
not a result of including higher number of incorrect trials for low coherences.  1483	
 1484	
Behavioral metrics prediction 1485	
      1486	
We attempted to predict/explain four behavioral metrics based on neural activity 1487	
throughout the trial: hand reaction time, eye reaction time, hand peak velocity and eye 1488	
peak velocity. 1489	
To predict hand or eye Reaction Time (RT) based on neural activity we performed 1490	
Ridge regression on the z-scored firing rates of all units within a 150 ms window 1491	
according to: 1492	
 1493	

𝑅𝑇! =  𝛽! 𝑡 + 𝛽! 𝑡 ×𝑟! 𝑡
!

!!!
 

 1494	
 1495	
Where RTi is the behavioral reaction time on a given trial, n is the number of units, 1496	
ri(t) is response of unit i at time t and the β coefficients are the fit model parameters.  1497	
For each window, a different model was trained for each reach direction (left and 1498	
right) on 90% of the correct trials that lead to the corresponding choice. Then the RTs 1499	
on the remaining 10% of the trials were estimated using the trained model and the 1500	
units firing rates. We performed this same process 10 times for each window (10-fold 1501	
cross validation) and obtained a set of estimated Reaction Times. We then performed 1502	
a linear regression between the estimated and the observed reaction times for all trials 1503	
and recorded the R-squared value. Finally, we slid the window by 20 ms and repeated 1504	
the process until all relevant epochs of the trial were tested. The adequate Ridge 1505	
parameter was estimated independently for each dataset and reach direction for the 1506	
window comprising [200, 350ms] after the Go cue, where the RT signal tended to be 1507	
strongest. The estimation was performed using 10-fold cross validation over 20 1508	
potential values. The value corresponding to the smallest testing error was chosen and 1509	
used to regularize the linear model in every window.  The exact same procedure was 1510	
followed when attempting to predict hand and eye peak velocity. Trials with hand RT 1511	
lower than 150 ms or higher than 800 ms were excluded from this analysis. 1512	
  1513	
Integration models 1514	
 1515	
We investigated which variations of the integration-to-bound models could potentially 1516	
explain changes in the dynamics of single trial DVs in the fixed and variable duration 1517	
tasks. To contrast quantitative predictions of these models, we implemented a basic 1518	
integration model and its three key variants for acceleration of choice representation 1519	
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by changing input gain, urgency, and recruitment of choice-representing units. The 1520	
basic model assumes that two large neural populations integrate sensory evidence in 1521	
favor of the two competing choices. Each integrator receives two types of inputs. The 1522	
first is the momentary evidence about motion:  1523	

𝑒(𝑡) = 𝑠(𝑡)×𝑔(𝑡) 
where 𝑠 𝑡  is a random draw from a Gaussian distribution and 𝑔(𝑡) is a gain term that 1524	
scales the input of the integrator. The mean of the Gaussian distribution of 𝑠 𝑡  is 1525	
𝑘×𝐶 for one integrator and −𝑘×𝐶 for the second integrator, where 𝐶 is the signed 1526	
motion coherence in a trial, and 𝑘 is the sensitivity coefficient for motion on the 1527	
display monitor. The linear dependence of the mean of momentary evidence on 1528	
motion strength is compatible with neural responses in motion selective areas MT and 1529	
MST (Britten et al., 1996, Celebrini and Newsome, 1994). The standard deviation of 1530	
the Gaussian distribution is 1. The second input to the integrators is an urgency signal 1531	
that drives both integrators toward their bounds. The accumulated evidence is: 1532	

𝑣 𝑡 =  𝑒 𝑡 + 𝑢 𝑡  𝑑𝑡 

Each integrator has a lower reflective bound 𝐵! and an upper absorbing bound 𝐵! 1533	
(Kiani et al., 2014a). The integration continues until one of the integrators reaches the 1534	
upper bound. At that time, a choice is made and the two integrators maintain their 1535	
states until the end of the motion presentation period. The model shows a monotonic 1536	
improvement of choice accuracy with motion strength, consistent with the monkey’s 1537	
behavior. 1538	
 1539	
To mimic our recordings, we simulated 100 spiking units from each of the two 1540	
integrator populations. The spikes were generated based on an inhomogeneous 1541	
Poisson process. The instantaneous firing rate of each unit at each moment in a trial 1542	
was a weighted average of the accumulated evidence and a choice-representing 1543	
signal: 1544	

𝑟! 𝑡 = 𝛼!𝑣 𝑡 + 𝛾!ℑ 𝑡  
where 𝑟! 𝑡  is the firing rate of unit i at time t. 𝛼! and  𝛾! are weights between 0 and 1 1545	
and determine the tuning of the neuron for representing integrated evidence and 1546	
choice. The choice representing signal, ℑ 𝑡 , is assumed to be a monotonic function 1547	
created by a non-linear transformation of 𝑣 𝑡 . We chose an accelerating function 1548	
based on distance of accumulated evidence from the decision bound (𝐵!) 1549	

ℑ 𝑡 = 𝜌!"#Φ 𝑣 𝑡 ,𝐵!,𝜎         𝑓𝑜𝑟 𝑣 𝑡 < 𝐵! 
𝜌!"#                                  𝑓𝑜𝑟 𝑣 𝑡 ≥ 𝐵!

 

where Φ .  is a cumulative Gaussian function, 𝜌!"# sets the maximum of ℑ 𝑡 , and 1550	
𝜎 determines the rate of acceleration. Introducing more realism by allowing response 1551	
correlations, similar to those observed in electrophysiological recordings, or testing 1552	
other monotonic functions did not significantly change our conclusions about the 1553	
models. 1554	
  1555	
We simulated 3000 trials for each motion direction and coherence, saved the spike 1556	
times of the units, and used a logistic regression to calculate the single trial DVs, just 1557	
as we did for the PMd and M1 neural responses. For the base model and its gain and 1558	
urgency variants, 𝛾! were set to 0, making the units represent only the accumulation of 1559	
evidence. For the progressive recruitment model, 𝛾! could take any value between 0 1560	
and 1, making the neurons represent a mixture of accumulated evidence and 1561	
categorical choice signal. 𝛼! and 𝛾! where chosen independently. For the simulations 1562	
presented in this paper, the parameters of the base model were 𝑘 = 0.3, 𝑔(𝑡) = 1, 1563	
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𝑢(𝑡) = 0, 𝐵! = −5 and 𝐵! = 20. The same parameters were used for the progressive 1564	
recruitment model, while 𝜌!"# was set to 40. For the model with high input gain, 1565	
𝑔(𝑡) linearly increased from 1 to 3 over 1000ms. For the model with low gain, 𝑔(𝑡) 1566	
grew from 1 to 1.25. For both models 𝑢(𝑡) was 0. For the models with low and high 1567	
urgency, 𝑢(𝑡)  was 0.005 ms-1 and 0.025 ms-1, respectively, and 𝑔 𝑡 = 1 . Our 1568	
conclusions are not critically dependent on these specific numbers and hold for a wide 1569	
range of model parameters, as long as the upper absorbing bound is low enough to 1570	
curtail the integration process, compatible with the monkeys’ behavior (Fig. 1). 1571	
Simulations of the integration process and spiking of the model units were done with 1572	
1ms time steps. 1573	
    1574	
Stability of the population choice vector  1575	
 1576	
For each dataset, we divided the trials in two disjoint sets. Within each set of trials, 1577	
we then modeled the (z-scored) firing rate of each unit at each point as a linear 1578	
combination of task related predictors (equation 9):  1579	
 1580	

𝑟!(𝑡) = 𝛽! + 𝛽!"!×𝑐𝑜ℎ!  + 𝛽!!!"#$×𝑐ℎ𝑜𝑖𝑐𝑒!  + 𝛽!"##"$%&'(×𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦! 
 1581	
Where 𝛽! is the intercept term, 𝑐𝑜ℎ! is the signed stimulus coherence on trial i. (1 for 1582	
51.2% rightward motion and -1 for 51.2% leftward motion), 𝑐ℎ𝑜𝑖𝑐𝑒! is the behavioral 1583	
choice on trial i (1 right choice and -1 for left choice) and 𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦!  is the absolute 1584	
stimulus coherence on trial i (1 for 51.2% trials and 0 for 0% trials) 1585	
 1586	
At every 10 ms interval, we obtained a 𝛽!!!"#$  coefficient for each unit. We 1587	
concatenated these values for all units into a vector 𝛽!!!"#$ and normalized it. We 1588	
repeated this same procedure across all time points and obtained a matrix 𝐵!,!!!"#$. 1589	
We then followed the exact same steps for the second set of trials and obtained a 1590	
second matrix 𝐵!,!!!"#$. Next, we projected 𝐵!,!!!"#$ onto 𝐵!,!!!"#$ to obtain a cross-1591	
validated measure of vector alignment (dot product) matrix. Because 𝐵!,!!!"#$ and 1592	
𝐵!,!!!"#$  were calculated using disjoint sets of trials the diagonal values are 1593	
meaningful and not set to 1 by convention (Fig. 6, Supp. Figs 16 and 17). To further 1594	
average out spurious vector alignment when the choice signal is small, for each 1595	
dataset we performed the dot product matrix calculation 20 times always starting from 1596	
different sets of trials. We then averaged the dot product matrices across iterations 1597	
and finally across datasets within each condition (brain area, task - Fig. 6a-d, Supp. 1598	
Figs 16 and 17). For the comparison across tasks we used data from 3 sessions in 1599	
monkey F for which we collected data on the fixed duration task and the variable 1600	
duration task back to back (Fig. 6e-f). In total, these sessions comprised 1425 trials in 1601	
the fixed duration task and 2466 trials in the variable duration task. For these sessions, 1602	
neural activity was hand sorted and only channels with waveform shapes deemed 1603	
stable and easily identifiable in both blocks of trials were included in the analyses. 1604	
The sorting procedure was done prior and without knowledge of the results of the 1605	
choice stability analyses. The median average of channels excluded this analysis was 1606	
only 8 out of up to 96 channels.   1607	
 1608	
The analysis of the stability of the population choice vector could have been 1609	
implemented using the discriminant hyperplanes obtained from the logistic regression 1610	
analysis. However, we instead performed the linear regression described above for 1611	
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two reasons. First, the beta values for the discriminant hyperplane are obtained using 1612	
aggressive L1 regularization, which pushes the lowest weights to zero to improve 1613	
prediction accuracy and avoid overfitting. The logistic classifier could underestimate 1614	
the contribution of neurons with small but significant choice representation especially 1615	
late in the trial when strong choice selectivity arises in the population. This scenario 1616	
would lead to “artificially” lower dot product of the choice axes across time. Instead 1617	
we used three regressors in our linear model for choice, signed motion strength and 1618	
absolute motion coherence. The choice regressor will capture the choice 1619	
representation while the signed motion regressor will capture motion related signals 1620	
that are not fully explained by choice. Finally, we included a stimulus difficulty 1621	
regressor that captures non-directional motion coherence signals whose presence has 1622	
been reported in some LIP cells (Meister et al., 2013).  1623	
 1624	
Choice predictive units 1625	
 1626	
We applied the same linear model described above (equation 9) to model the (z-1627	
scored) firing rate of each unit at each time point and across all trials. For each time 1628	
point we extracted a 𝛽!!!"#$ and an associated p-value.  We considered a unit to be 1629	
significantly modulated by choice if 𝛽!!!"#$  was significantly different from zero at 1630	
five consecutive 10ms time points (p<0.05, Holm-Bonferroni corrected across all time 1631	
points). The first of those data points was considered to be the onset of significant 1632	
modulation for choice for that particular unit. We extended this analysis across all 1633	
units within a dataset and calculated for each time point the cumulative fraction of 1634	
units with significant choice modulation.  The results were then averaged across 1635	
datasets within the same condition (brain area, task).   1636	
 1637	
To quantify how reliably each neuron predicted choice over time, we calculated the 1638	
auROC (Shadlen and Newsome, 2001) metric for every 50 ms of the periods 1639	
analyzed. According to our convention, right preferring neurons had 1 > auROC > 0.5 1640	
and left preferring neurons 0 < auROC < 0.5 (Supp. Fig.24). To collapse across both 1641	
choice directions, we calculated | auROC -0.5| (Fig. 7c-f). The units analyzed were 1642	
collected in a session with both a fixed and variable duration block (monkey F) from 1643	
channels whose waveforms were deemed stable (see above). For this representative 1644	
session (Fig. 7c-f) only data from one channel in PMd and eight channels in M1 (out 1645	
of up to 96) were excluded.  1646	
 1647	
Unit dropping  1648	
 1649	
For the unit dropping analysis we fit a logistic model (equation 3) to data obtained in 1650	
the last 50 ms of dots presentation using 10-fold cross validation, just as before. The 1651	
lambda regularization parameter however, was in this case fit to the same 50 ms 1652	
epoch we would test (again using 25 potential values and 10-fold cross validation). 1653	
The set of beta coefficients of the model corresponding to the lowest deviance lambda 1654	
parameter was then chosen and ranked by magnitude. We removed from the data the 1655	
unit with highest beta coefficient and re-trained and re-tested the model using 10-fold 1656	
cross-validation and recorded the accuracy. This process was repeated 70 times until 1657	
the 70 units with highest beta coefficients (ranked using the full model) were all 1658	
dropped in descending order.  1659	
	1660	
 1661	
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Figures	1662	
	1663	
	1664	
	1665	

	1666	
	1667	
Figure 1 - Motion discrimination task, psychophysical performance and 1668	
recording locations and techniques.	1669	
a) Behavioral setup - The monkey performed the motion discrimination task on a 1670	
touchscreen using one arm, while the other arm remained gently restrained. Eye 1671	
position was continuously tracked using an infrared mirror placed in front of the 1672	
monkey’s eyes.  	1673	
b) Direction discrimination task structure - Trials start with the onset of a fixation 1674	
point on the touchscreen. Once both eye and hand fixation are acquired two targets 1675	
appear on the screen. The motion stimulus was shown after a short delay (500 ms) 1676	
and lasted 1000 ms (200-1000 ms) for the fixed (variable) duration version. The dots 1677	
offset was followed by a 400-900 ms delay in the fixed duration version whereas no 1678	
delay was present for variable duration version. At the end of the delay, the offset of 1679	
the fixation point cued the monkey to report his decision by making a hand reach 1680	
movement to the appropriate target.	1681	
c) Psychophysical performance in the motion discrimination task. Percentage 1682	
correct is plotted as a function of motion coherence for the fixed duration version 1683	
(black) and the variable duration task (red) for monkey H (left panel) and monkey F 1684	
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(right panel). Observed data points (+/- SEM) are represented by the red and black 1685	
markers.  The data for each task was independently fit with Weibull curves (red and 1686	
black curves). 17167/ 17440 trials for the fixed duration task and 4923/5381, trials for 1687	
the variable duration task for monkey H/F, respectively. 1688	
d) Psychophysical thresholds in the variable duration motion discrimination 1689	
task. Psychophysical threshold is plotted as a function of stimulus duration for 1690	
monkey H (circles) and monkey F (squares). Dashed blue lines show predicted perfect 1691	
accumulation for each subject. The observed performance deviates from perfect 1692	
accumulation for stimuli longer then 533/682 ms for monkey H/F respectively.	1693	
e) Location of the two multielectrode arrays. Two 96 channel Utah arrays were 1694	
implanted in primary motor and dorsal premotor cortex as judged by anatomical 1695	
references (left and middle panels). Example waveforms collected from PMd and M1 1696	
for the same experimental session (monkey H, right panel). White squares denote 1697	
ground pins in the four corners of the arrays. 	1698	
	1699	
	1700	
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	1701	
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Figure 2 - Neural population choice prediction accuracy on single trials in the 1702	
fixed duration task (pooled results across 2 monkeys).	1703	
	1704	
a) PMd is more choice predictive than M1 during the stimulus presentation but 1705	
not later in the trial. Average prediction accuracy (see Methods) over time +- SEM 1706	
for both monkeys.  PMd (M1) data are plotted in green (orange). Black dots denote 1707	
time bins for which the prediction accuracy was significantly different between the 1708	
two areas (Wilcoxon signed rank test, p<0.05 Holm-Bonferroni correction for 1709	
multiple comparisons). 	1710	
b) Choice prediction accuracy in PMd rises faster for easier trials during 1711	
stimulus presentation. Average choice prediction accuracy as function of stimulus 1712	
difficulty. Easy stimuli are represented in darker tones while harder stimuli are plotted 1713	
in lighter tones, and shading corresponds to +- SEM. Same data as a) (green trace), 1714	
except prediction accuracy is calculated individually for each stimulus difficulty.	1715	
c) Choice prediction accuracy in M1 rises faster for easier trials during stimulus 1716	
presentation. Same data as a) (orange trace), except prediction accuracy is calculated 1717	
individually for each stimulus difficulty. Figure conventions as in b).  1718	
d) Single-trial decision variable slopes in PMd co-vary with stimulus coherence.  1719	
Average of single trial DV slopes are plotted as a function of stimulus coherence and 1720	
choice. Positive values (circles) correspond to T1 (right) choices and negative values 1721	
(squares) to T2 (left) choices (correct trials only). Error bars indicate +/- SEM across 1722	
trials.	1723	
e) Single-trial decision variable slopes in M1 co-vary with stimulus coherence. 1724	
Same as d) for M1. 	1725	
	1726	
	1727	
	1728	
	1729	
	1730	
	1731	
	1732	
	1733	
	1734	
	1735	
	1736	
	1737	
	1738	
	1739	
	1740	
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	1741	
	1742	
	1743	
Figure 3 - Effects of stimulus duration uncertainty on choice prediction accuracy 1744	
and model decision variable (pooled results across 2 monkeys).   1745	
 1746	
a) Average prediction accuracy for variable stimulus duration sessions increases 1747	
during the stimulus presentation. Equivalent to Figure 2a, but for variable stimulus 1748	
duration sessions (same figure conventions).  In the “dots on” panel, data were only 1749	
included prior to the offset of the stimulus, ensuring that peri-movement activity did 1750	
not affect the firing rates in this epoch.  Because the visual stimulus varied in 1751	
duration, fewer trials contribute to the trace as time progresses. In contrast to Figure 1752	
2a, prediction accuracy rises much faster and reaches higher values when the stimulus 1753	
duration is uncertain.  Differences between PMd and M1 dynamics are highly reduced 1754	
under conditions of uncertainty.  	1755	
b) Single-trial DV slopes for PMd increase for the variable duration task while 1756	
maintaining co-variation with stimulus coherence. Data points show average 1757	
single-trial DV slopes as a function of stimulus coherence and choice for variable 1758	
stimulus duration (dashed lines) and fixed stimulus duration (solid lines, same data as 1759	
Figure 2d) sessions. Error bars indicate +/- SEM across trials.  1760	
c) Single-trial DV slopes for M1 increase for the variable duration task while 1761	
maintaining co-variation with stimulus coherence. Same as b) for M1. Figure 1762	
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conventions as in b).	1763	
	1764	
	1765	

	1766	
	1767	
Figure 4 - Neural activity in PMd and M1 only becomes predictive of RT and 1768	
hand velocity around the go-cue in both tasks (pooled results across 2 monkeys). 	1769	
	1770	
a) Fraction of variance explained by a linear model regressing unit activity in 1771	
PMd against reaction time for the fixed duration task only increases after the go 1772	
cue. Red traces represent average fraction of variance for rightward choices and blue 1773	
traces for leftward choices ± SEM (shaded areas). Across the population, neural 1774	
activity only becomes a reliable RT predictor on or after the time of the go cue.  1775	
Magenta and cyan lines (highly overlapping) show results from a model trained on 1776	
shuffled data as a control. Red (Blue) dots above the x-axes denote time points for 1777	
which the explained variance was significantly different from baseline (defined as the 1778	
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average for [-100, 200] aligned to targets onset) for T1 (T2) according to Wilcoxon 1779	
signed-rank test (p<0.01 Holm-Bonferroni correction for multiple comparisons). 1780	
Median RTs for fixed duration task monkey H: 361 ms, monkey F: 424 ms.	1781	
b) Fraction of variance explained by a linear model regressing unit activity in 1782	
M1 against reaction time for the fixed duration task only increases after the go 1783	
cue.  Same as a) for M1. Figure conventions as in a)	1784	
c) Fraction of variance explained by a linear model regressing unit activity in 1785	
PMd against reaction time for the variable duration task only increases after the 1786	
go cue. Figure conventions as in a). Median RTs for variable duration task monkey 1787	
H: 335 ms, monkey F: 427 ms. 	1788	
d) Fraction of variance explained by a linear model regressing unit activity in 1789	
M1 against reaction time for the variable duration task only increases after the 1790	
go cue. Figure conventions as in a)	1791	
e)-h) Same as a)-d) for hand peak velocity. Across the population, neural activity is 1792	
a poor predictor of hand peak velocity throughout the trial; a slight increase in 1793	
variance explained occurs only around reach initiation. 1794	
	1795	
	1796	

 1797	
Figure 5 – Modeling results suggest that the progressive recruitment model can 1798	
explain the increase in the DV slopes for the variable duration task. When the 1799	
parameters of the urgency, gain, and progressive recruitment models are adjusted to 1800	
match the psychometric function under two task conditions (a), only the progressive 1801	
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recruitment model could replicate the increased DV slopes observed in the data (b). 1802	
Because the curves were highly overlapping, data points in (a) were offset on the x-1803	
axis by multiplying the x-coordinates by a factor c for each curve (𝑐!"#$%&'$ =1804	
1.04 , 𝑐!"#$ = 0.96 , 𝑐!"#$%&' = 1.08 , 𝑐!"# = 0.92)  to aid interpretation. Same 1805	
procedure was performed in (b) with 𝑐!"#$%&'$ = 1 , 𝑐!"#$ = 0.96 , 𝑐!"#$%&' =1806	
1.04 , 𝑐!"# = 1  . Increasing urgency or gain to match the increased DV slopes leads 1807	
to significant changes in the psychometric function, inconsistent with the observed 1808	
data (c and d).	1809	
   	1810	
 1811	
 1812	
 	1813	
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 1814	

1815	
  	1816	
Figure 6 – Stability of choice representation during dots is dependent on the 1817	
statistics of stimulus duration (pooled results across 2 monkeys).   1818	
  1819	
a) Choice representation only becomes stable late in the dots presentation period 1820	
in the fixed duration task. Heat map shows the dot product of the choice vector 1821	
(vector of beta values for choice) across time. Vectors were obtained using 50 steps of 1822	
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2-fold cross-validation. Warm colors correspond to very high overlap between vectors 1823	
whereas cool colors denote little projection between vectors. In PMd (left panel) 1824	
choice representation becomes stable ~600 ms after stimulus presentation. In M1 1825	
(right panel) this phenomenon occurs even later around ~750 ms. Note how broadly 1826	
stable the choice signal is during the delay period and how locally stable it is around 1827	
the reach. White solid lines denote the separation of epochs (dots end, and go cue 1828	
+200 ms), golden, magenta and black dashed lines mark the dots onset, go cue and 1829	
reach initiation, respectively.  Data from both monkeys. b) Same as a) for M1. 1830	
c) Choice representation becomes stable very early in the dots presentation 1831	
period in the variable duration task. Heat map shows the dot product of the choice 1832	
vector (vector of beta values for choice) across time. The choice signal is already very 1833	
stable only 300 ms after the stimulus presentation both in PMd (left panel) and M1 1834	
(right panel). Unlike in a) and b), the pre-go period in the variable duration task 1835	
overlaps with the dots period because of the absence of a delay period; thus 1836	
correlations in the off-diagonal quadrants should be interpreted with caution since the 1837	
same data can be correlated against themselves.  Figure conventions as in a). Data 1838	
from both monkeys.  d) Same as c) for M1. 1839	
e) Choice representation is stable across tasks. Heat map shows the dot product of 1840	
the choice vector (vector of beta values for choice) across time between the fixed 1841	
duration task (y-axis) and the variable duration task (x-axis). Note that the 1842	
representation of choice in the second half of the dots presentation and delay period 1843	
on the fixed duration task strongly overlaps with the early choice representation in the 1844	
variable duration task. Figure conventions as in a). Data from monkey F. f) Same as 1845	
e) for M1.	1846	
 1847	
  	1848	
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 1849	
Figure 7 – Recruitment of choice predictive cells accelerates for both brain areas 1850	
under uncertainty conditions.  1851	
 1852	
a) Fraction of units carrying significant choice signals increases faster in the 1853	
variable duration task. The cumulative fraction of units with significant choice 1854	
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signals is plotted as a function of time aligned to dots onset for PMd. Solid line shows 1855	
the results for the fixed duration task and dashed line the variable duration task. 1856	
Shaded areas denote ± SEM (across sessions). Data from both monkeys. b) Same as 1857	
a) for M1. 1858	
c) Individual unit choice predictive activity is stable during dots presentation 1859	
and builds up slower in the fixed duration task. Area under ROC traces for all 1860	
units recorded in one session in PMd. Traces we sorted by onset of significant choice 1861	
modulation during the dots presentation (one row for each unit). White solid lines 1862	
denote the separation of epochs (dots end, and go cue +200 ms); golden, magenta and 1863	
black dashed lines mark the dots onset, go cue and reach initiation, respectively. 1864	
Horizontal dashed gray line separates cells with significant choice modulation during 1865	
dots (above) from cells with significant choice modulation that only starts during the 1866	
delay period. Horizontal dashed white line separates the latter group from the 1867	
remainder of the population (below). Data from monkey F. d) Same as c) for M1. 1868	
e) Individual unit choice predictive activity is stable during dots presentation 1869	
and builds up faster in the variable duration task. Figure conventions as in b). 1870	
Data from monkey F. f) Same as e) for M1.     1871	
   	1872	
  	1873	
	1874	

	1875	
	1876	
         	1877	
   	1878	
Figure 8 - Choice signal is robust and distributed across the population of cells in 1879	
both areas and both tasks (pooled results across 2 monkeys).  	1880	
   	1881	
a) Choice signal is robust in the fixed duration task. Average prediction accuracy 1882	
curves for PMd (green) and M1 (blue) ± SEM (shaded areas) as a function of the 1883	
number of best units excluded for the fixed duration task. The unit dropping curves 1884	
were calculated for two separate time points: end of dots presentation (light shades) 1885	
and go cue presentation (dark shades) Curves were calculated for each session/area 1886	
separately and then averaged across sessions.  The decay in performance is smooth, 1887	
demonstrating that the choice signal is distributed across many cells. As expected 1888	
from figure 2 a), the initial accuracy for the go cue period is higher than for the end of 1889	
dots. 	1890	
b) Choice signal is extremely robust in the variable duration task. Same as a) for 1891	
variable duration task. The choice signal is even more robust in this task as evidenced 1892	
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by the very small decline in prediction performance (<10%) after dropping the 70 best 1893	
units.  Figure conventions as in a).  The end of dots and go cue coincide in this 1894	
version of the task so only one curve is shown for each area. 	1895	
	1896	
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