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Signal detection theoretical analyses of spike counts have revealed that some cortical neurons can exceed psychophysical

sensitivity in cases where a sensory signal is specified exactly. It is not known whether this finding holds in the more natural

situation where signal occurrence is temporally uncertain. We investigated the ability of rat barrel cortex neurons to detect faint

and transient whisker deflections occurring at unspecified times. The progression from fully specified stimuli to temporal

uncertainty degraded neuronal sensitivity such that it seems highly unlikely that single neurons can provide the basis for decoding

uncertain perceptual events. However, modeling the sensitivity of neuronal pools on basis of spike timing precision across several

neurons in an optimal encoding window of 25 ms showed that the subject’s perceptual sensitivity could be based on the

occurrence of coincident spikes from four to five neurons.

The question of whether neuronal signaling is reliable depends on the
choice of measuring stick. Since early on, investigators have used the
performance of the whole subject as a benchmark1. Many studies since
then—most couched in the framework of signal detection theory
(SDT)2, which allows transformation of neurometric and psychometric
data onto the same scale—have corroborated that single neurons in the
sensory periphery and in sensory neocortical areas match the precision
of the subject (refs. 3–11, reviewed in ref. 8).

These studies clearly set standards for investigating the physiology of
perception and made a strong case for the reliability and precision of
single units in various areas of the brain. However, SDTanalyses assume
a ‘signal specified exactly’—that everything about the signal is known,
including its starting time and duration12—which is unlikely to hold in
an animal’s natural environment. Previous studies used relatively long
stimulus presentation times that were often cued and thus well
predictable (typically 500 ms to 2 s; for example, see refs. 6,11,13–15).
Evolutionary pressure, however, grants that subjects in a natural
environment must, at times, process sensory data that are transient,
faint in character and uncertain in their time of occurrence. Accordingly,
uncertainty about stimulus aspects has been shown to impair psycho-
physical performance (spatial location16, stimulus frequency17 and
timing18–20). Another constraint introduced by evolutionary pressure
is the need to commit to action as fast as possible after receiving sensory
evidence of a potentially dangerous agent, thus leaving time windows as
short as tens of milliseconds for sensory processing21.

Taken together, it seems important to measure the precision of single
neurons under conditions less well specified. In this study, we subjected
head-fixed rats to a whisker deflection detection task using transient,
faint and temporally uncertain stimuli while monitoring neuronal
signals in whisker representations of the primary somatosensory cortex

(barrel cortex) responding to activity in slowly adapting primary
afferents. We chose tactile, slowly adapting afferent-driven signals
because they feature very long tonic activity (on the order of seconds)
in response to transient ramp-and-hold stimuli22, truly challenging
properties for the search of fast neuronal processing times (we
characterize ramp-and-hold stimuli as ‘transient’ throughout this
paper because, as we will show, only its phasic phase is represented
in barrel cortex activity). In addition, to assess neuronal precision in the
case of stimulus uncertainty, we tested the hypothesis formulated
earlier23 that, despite the slow adaptation, these signals determine
upstream cortical responses and the percept of the animal at a very
rapid pace. We took advantage of the fact that slowly and rapidly
adapting afferents (the other system of primary afferents present in the
rat’s tactile whisker system) make up two distinct psychophysical
channels that respond to ramp-and-hold whisker deflections drawn
from nonoverlapping kinematic ranges23. Using stimuli that specifically
activate the slowly adapting primary afferents, we found that the
temporal progression of signals on the level of the barrel cortex driven
is indeed very fast. Here we provide arguments that neuronal signaling
of transient events under constraints of temporal stimulus uncertainty
is likely to rely on the concerted activity of very small pools of neurons
generating only a few spikes.

RESULTS

We trained four head-fixed Sprague-Dawley rats to respond to a
ramp-and-hold single-whisker deflection by licking at a water spout
(Fig. 1a,b). The exact time of stimulus onset was not known to the rat,
as it was not explicitly cued, and the interstimulus intervals were drawn
at random from a flat probability distribution covering 3.75–6.25 s.
Deflection, applied by a piezo bender, was fixed in amplitude at 121
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(Fig. 1c), and threshold conditions were achieved by varying the
maximal deflection velocity between 62 and 1,5001 s–1, presented to
the rat in pseudorandom fashion. ‘Catch’ trials (no deflection) were
interspersed to monitor random licking in the absence of a stimulus.
Using this range of kinematic parameters for deflection, we were able to
selectively activate a neuronal subclass of whisker primary sensory
fibers, the slowly adapting afferents, up to 7501 s–1 with minor
activation of the other subclass, the rapidly adapting afferents23.
Psychometric detection curves (Fig. 1d; 50% detection achieved
around 2501 s–1) and the spiking activity of single and multi units in
the barrel column receiving the principal input from the stimulated
whisker were measured simultaneously in short sessions, guaranteeing
that the rat’s motivation was constantly high
throughout data acquisition.

The more sensitive barrel cortex single
units began to show visually discernible
responses in the peristimulus time histograms

(PSTHs) at a minimum velocity of 2501 s–1 (Fig. 2a). Despite the salient
features of the response in the PSTHs, the spike responses to all stimuli
above velocity threshold were extremely sparse, consisting mostly of
none, less often of one, and very rarely of more spikes at latencies
varying inversely with stimulus velocity. Excitatory responses to higher-
velocity stimuli were often followed by a period of inhibition of about
100 ms. Comparison of these responses with those of primary afferents
recorded in the trigeminal ganglion in an earlier study23 revealed that
those stimuli that evoked a phasic peak response on top of the tonic
response in the trigeminal slowly adapting units also evoked a transient
response in the barrel cortex neurons. The width of the excitatory
response peaks for an example stimulus is shown in Figure 2b; none of
the cortex units we recorded showed an excitatory response longer than
19 ms. This finding holds even though the afferent input to the system,
coming from slowly adapting trigeminal ganglion units, responds to
ramp-and-hold stimuli in this range with prolonged spiking activity: 10
of 12 slowly adapting ganglion neurons (data reanalyzed from ref. 23)
responded for longer than 500 ms (example in Fig. 2c). In summary,
these results strongly suggest that only phasic, and not tonic, response
components reach the barrel cortex. This is in agreement with previous
findings that only the phasic response portion of slowly adapting
neurons contributes to the rat’s detection performance23.
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Figure 1 Behavioral protocol and psychometric data. (a) Experimental setup

of the head-fixed rat, whisker stimulator and water spout (reward delivery).

(b) Behavioral protocol. Licks 1 s before scheduled stimulus onset lead to

shift of stimulus presentation by 1 s. A lick within a 600-ms window of

opportunity starting from stimulus onset is required to trigger a drop of water

as reward. (c) Stimulus waveform. The rat responded to the half cosine wave

(deflection in caudal direction). The kinematic parameters of the slow

return were far below the detection threshold. (d) Psychometric detection
curve as a function of peak deflection velocity. Scale on abscissa is

semilogarithmic. Smooth line is a Weibull fit to the psychometric data points,

averaged over four rats. Gray circles represent means; error bars represent

95% confidence intervals.
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Figure 2 Firing properties of barrel cortex neurons

and comparison with slowly adapting trigeminal

ganglion fibers. (a) Example data from a barrel

cortex unit (raster plots and PSTHs). Traces

depict stimulus waveforms scaled to the PSTH

abscissas. Bottom, PSTHs from a slowly adapting

trigeminal ganglion unit for comparison (data from

ref. 23). Open arrows point to the phasic response

portion. The cortex neuron shows a short-latency

response followed by inhibition with higher peak

velocities (filled arrow) to stimuli that evoke a

phasic response of the slowly adapting primary

afferent. Responses to 1251 s–1 peak velocity

were not sampled from the trigeminal ganglion

units. (b) Box plots of response widths for single

(SU; n ¼ 18) and multi (MU; n ¼ 131) units.

Boxes encompass middle 50% of data-point
distributions; whiskers extend to the largest data

points or to 1.5 times the interquartile range;

+ represents outliers; horizontal lines in boxes

represent medians. (c) Example PSTH of a slowly

adapting ganglion unit at extended time scale to

show duration of tonic response component.
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To obtain a quantitative measure of the temporal progression of
neuronal sensitivity, we first applied classical SDT analysis, which
assumes that the observer has full knowledge about stimulus timing.
We then used the resulting information about the temporal evolution
of sensitivity and relaxed the assumption of ‘stimulus specified exactly’
to analyze the performance of neurons under the condition of stimulus
uncertainty. We calculated a sensitivity index using receiver-operating
characteristic (ROC) analysis2. In this case, sensitivity can be under-
stood as the probability that an ideal (unbiased) observer can tell the
absence or presence of a whisker stimulus (catch trial versus deflection
at a certain peak velocity) by looking at single-trial spike counts.

To assess the time window in which the sensitivity of barrel cortex
neurons would be optimal, we varied window positions and durations
systematically over a large range (position varied 5–300 ms after
stimulus onset, duration varied 5–75 ms, both with 5-ms intervals;
Fig. 3a). To arrive at the best estimate of window position and duration,
we extracted the position-duration combination for which the sensi-
tivity index of each unit was maximal (if the index value exceeded the
given unit’s bootstrapped 95% confidence interval; see Methods). At
peak velocities of 2501 s–1 and more, the distributions of optimal
window positions (Fig. 3b) had a clear unimodal peak with low
variability that shifted toward earlier time points with increasing
peak velocity of the stimulus (15 ms at 1,5001 s–1). The distributions
of optimal window durations were relatively constant across stimuli
and were centered around 25 ms (Fig. 3c). This analysis indicated that
spike counts contain maximal information about the presence or
absence of a stimulus within a short time window, as might be expected
from the low spike counts evoked by stimulation. The latency of the

peak firing rate in trigeminal ganglion cells (Fig. 3d) matched quite well
the median of the optimal window positions, except for the slowest
deflection velocity, where hardly any response was discernable in any of
the neurons. Notably, median optimal window positions across stimuli
were strongly correlated with the subjects’ average reaction times
(ranging from 384 ms for the slowest to 329 ms for the fastest stimulus;
Spearman’s r ¼ 0.99), suggesting that the rats indeed rely on spikes in
the first afferent volley to decide whether or not to emit a response.

We next used the median of optimal window positions and dura-
tions to obtain the distribution of spike counts for each unit and
stimulus, including the catch condition, and calculated the neuronal
sensitivity curves (Fig. 4). The average sensitivity typically increased
with peak velocity of the deflection for both single-unit (Fig. 4a) and
multi-unit data (Fig. 4b). To compare neurometric and psychometric
performance, the sensitivities of the rat observers obtained in the same
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Figure 3 Identification of optimal encoding

windows. (a) Example neuron from barrel cortex.

Each panel depicts the sensitivity of the

neuron for each combination of window position

(5–300 ms; abscissa) and window duration

(5–75 ms; ordinate) for one stimulus velocity.

Sensitivity is color-coded, with lighter colors

depicting higher values. At low velocities, the
panels are basically uniform; with increasing

velocity, a yellow stripe appears (arrows),

indicating higher sensitivities. (b) Box plots of

optimal window positions as a function of stimulus

velocity. Units included are only those that

exceeded their own bootstrapped 95% confidence

intervals (see Methods). (c) Box plots of optimal

window durations as a function of stimulus peak

velocity, using same units as in b. (d) Box plots

show latency of peak firing rate in the trigeminal

ganglion (TG). For comparison, the median

optimal window positions of cortical units (see b)

is plotted (gray line). Boxes encompass middle

50% of data-point distributions; whiskers extend

to the largest data points; horizontal lines

represent medians; notches represent 95%

confidence intervals of medians.
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Figure 4 Psychometric precision acts as upper bound for neurometric

precision of barrel cortex neurons. (a) Sensitivity of single units (n ¼ 34) in

barrel cortex as a function of the logarithm of stimulus velocity, expressed as

d ¢ (thin gray lines). Bold line represents mean psychometric performance

with 95% confidence interval. Vertical gray bars represent extent of average

neurometric bootstrapped 95% confidence interval. (b) Same as a but

for multi units (n ¼ 166). (c,d) Same data as in a, but the position of the

encoding window was jittered (in a trial-by-trial fashion) by shifts drawn

from a Gaussian distribution. c, mean ¼ 0, s.d. ¼ 10 ms; d, s.d. ¼ 25 ms.
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sessions were plotted on the same axes. The sensitivity curves for
both single and multi units were bounded by the psycho-
physical performance. The proportion of single neurons that showed
increasing sensitivity with increasing velocity was 0.76 (26 of 34),
as evidenced by d¢ values exceeding their bootstrapped 95% con-
fidence intervals around 0. The best neurons (one to five
neurons, depending on stimulus velocity) just matched the subjects’
performance, and only occasionally was a unit found to show
slightly higher sensitivity than the subject (maximum overshoot
was B0.3 d¢ units).

It is notable that the ROC analysis averages across all possible criteria
of the observer. However, not many criteria were available to the single
units in our sample, as their spike count in the 25-ms window was very
low. In fact, it consisted mainly of counts of zero and one; two spikes
were only observed occasionally, and three spikes were virtually absent
(Fig. 5a; one of the strongest responses in our sample of single units is
shown in Fig. 2a). We therefore suspected that the criterion of ‘absence
or presence’ of spikes in the encoding window would contribute most
to the performance of the single units. This suspicion was confirmed by
searching for the criterion leading to the point in ROC space with
maximal classification performance (hit rate minus false alarm rate).
Throughout the range of sensitivities present in our set of single units
(except near-random performance at sensitivities of 0.5 and a few
exceptions in the uppermost sensitivity range, which yielded an
optimal criterion of ‘two or more’), the best criterion was indeed the
presence of one spike or more (Fig. 5b).

This finding seemed to suggest that, in principle, the subject could
base its decisions on the occurrence of one spike in one of its most
sensitive neurons. Before concluding this, however, we considered that
the SDT analysis was tuned to yield optimal performance of the
neurons. Both the position and duration of the neuronal encoding
windows were thus set with full knowledge of exact stimulus timing (at
millisecond resolution), whereas in the experimental reality, the rats
were deliberately left uncertain about stimulus timing within an
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Figure 5 Barrel cortex single units fire low numbers of spikes in response

to whisker deflections but may reach high sensitivities. (a) Frequency

histograms of spike counts in a 25-ms response window at optimal position

as a function of deflection velocity (775 trials from 34 single units).

(b) Optimal criterion spike count of barrel cortex single units (n ¼ 34) as a

function of stimulus peak velocity and the neurons’ sensitivity. Data shown

only for neurons with a criterion spike count of at least one.

Figure 6 Monte Carlo procedure to estimate

sensitivities of neuronal pools. The procedure is
shown for two encoding windows (boxes) with

different stimuli (no stimulus (s0), left, and

deflection at peak velocity of 5001 s–1, right) for a

pool of three neurons. In each trial, the window in

which the stimulus (s0 to s6) was presented (ws)

was determined at random. In each window, the

response r of the pool members (absence or

presence of spike) was drawn and the log LHF

calculated based on the measured response

probability of the chosen single units. Response

pooling was performed by adding the neurons’

LHFs in log space, resulting in the LHF of the

pool. Population LHFs of ‘stimulus present’ (s1 to

s6) were adjusted discounting the ratio of prior

probabilities as given by equation (3) (see

Methods) and individually compared to the

likelihood of ‘stimulus absent’ (s0), thus

implementing a winner-takes-all strategy based on
the event with maximum likelihood. The decision

in the trial was evaluated from the decisions in

the 24 windows (600 ms) around stimulus

presentation (ws–12 to ws+11). In the case of

presentation of s0, all decisions in the 24

windows were required to be 0 (stimulus absent)

to yield a correct rejection (CR). Otherwise, the

trial was counted as a false alarm (FA). Likewise,

in the case of presentation of one of the whisker

deflections (s1 to s6), all 24 windows holding

zeroes yielded a trial counted as MISS;

otherwise it was classified as HIT.
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interval of 2.5 s. The importance of knowledge about stimulus
timing was revealed by impairing the temporal precision of the
encoding window for each trial by adding a random number
drawn from a Gaussian curve with a mean of 0 and s.d. of 10 or
25 ms (Fig. 4c,d). Single-neuron sensitivity under these conditions was
reduced to values around 0.

A second problem was that knowledge about stimulus time effec-
tively reduces the false alarm rate. For example, the median sponta-
neous firing rate of single units in our sample was B6 spikes s–1, which
predicts the observation of an average of 0.15 spikes in 25 ms. Given the
‘one spike’ criterion and the negligible probability of observing two
spikes under catch conditions, this seems to correspond nicely to the
average response probability of the rat observers of 0.16. The crucial
issue is, however, that uncertainty about stimulus timing does not allow
the use of a time window fixed to stimulus onset. Rather, the observer is
forced to shift an appropriate window through time to gain a running
estimate about the sensory environment. Indeed, the one-spike criter-
ion, when applied to the running estimate obtained from shifting
25-ms windows, would clearly be unable to explain the false
alarm rate of the rat observer. In fact, the spontaneous firing rate of
6 spikes s–1 predicts that a neuron would generate a false alarm
probability of close to 1 when shifting a 25-ms window through
600 ms, the window of opportunity that has been applied to measure
the rat observer’s response to catch stimuli (for example, under the
assumption of a Poisson process at 6 Hz, intervals smaller than 600 ms
occur at a probability 40.99). This outcome was not borne out by the
observed performance of rats. In summary, we note that the SDT
analysis is valuable in yielding an estimate of the temporal progression
of neuronal sensitivity, but—given stimulus uncertainty—the compar-
ison of neurometric and psychometric data on the basis of SDTunfairly
favors the neuron’s performance.

A consequence of these considerations is that the neuron’s criterion
would need to be elevated from one spike to explain the rat’s
performance. However, this would immensely reduce the hit rate of
single neurons, as even the most sensitive ones hardly fired more than

one spike, even in the presence of a readily detectable high-velocity
stimulus (Fig. 5a). There are two possible solutions to this dilemma.
The first is to assume that the coding symbol used by barrel cortex
neurons goes beyond spike counts and uses some sort of temporal
patterning of spikes. We will not explore this possibility further, as the
relatively small numbers of trials sampled under the present experi-
mental conditions precluded the quantitative study of such coding
schemes21. Alternatively, with spike counts as the coding symbol, we
must consider a population code; that is, the assumption that the rat’s
performance is based on more than one spike generated within a pool
of neurons. However, because the information-carrying spikes fall in
very short (B25-ms) windows, it is necessary to achieve high temporal
precision of population spiking to encode the transient stimuli. To
arrive at an estimate of the number of neurons and spikes that must be
involved to bring neuronal sensitivity to the level of the subject, we built
a model that combines the likelihood function (LHF) of neurons
within a pool.

As described previously24, the LHF holds the probability of a given
neuronal response across stimuli, and thus introduces a statistically
optimal weighting of each neuron’s contribution to the pool’s response
according to the quality of its tuning properties (Fig. 6; see Methods for
details). We used our sample of 34 high-quality single units and their
responses to catch stimulus and the six whisker deflections in each
25-ms window as the data basis for the simulation of neuronal pools
and their responses. The uncertainty period was subdivided into 100
windows of 25 ms each. In one of these windows randomly chosen for
each trial, one of the seven stimuli (catch and 62–1,5001 s–1) was
presented and the LHF for each neuron was calculated. The decision in
each 25-ms window was assessed by pooling the neuronal responses by
adding the LHF in log space and assessing the stimulus for which
maximum likelihood was obtained after discounting prior probabilities
of presence or absence of stimuli. In a final step, the decision in a trial
was assessed by looking at the pool’s decisions in each of the 24
windows that fell within a period of –300 ms to 300 ms to stimulus
onset. This was done to mimic the experimental situation in which a
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Figure 7 Comparison of simulated sensitivity of neuronal pools

with that measured from the rat observers. (a) Sensitivity of pools
composed from the three most sensitive neurons in the sample.

The thin gray lines depict sensitivities of pools with different sizes

overlaid on the average sensitivity of the rats (thick black line).

(b) Same as a, but for pools composed from the whole sample of single

units. (c) Plot of matching pool size depending on the sensitivity of the

neurons that served as source for the composition of the pool. Broken

lines (here and the following panels) depict a variation of uncertainty by

assuming shorter (1.25 s) and longer (5 s) periods of uncertainty.

(d) Similarity (expressed as Euclidean distance) of sensitivities of rats

and the best pools plotted across the data source from which the pool members were chosen. (e) Average number of spikes needed to generate a HIT trial.

Broken line extending from origin indicates unity. (f) Improvement of pool sensitivity if neurons with descending sensitivity are added.
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response based on a fake sensory event 300 ms before the stimulus
would be placed well into the window of opportunity of the rat, as the
response times (decision plus motor preparation and execution) were
about 300 ms for high-velocity pulse deflections with B5-ms response
latency in the barrel cortex. One or more decisions in favor of
stimulus presentation during this period led to a classification of the
trial as ‘go’ (hit or false alarm) or ‘no-go’ (miss or correct rejection).
The results presented in Figure 7 are based on 1,000 simulated trials
for each stimulus.

The model allowed us to vary the composition of the neuronal pool,
from a subset of the most sensitive neurons in the database to all
neurons, and the number of neurons in the pool. The effects of these
variables on the sensitivity of the model were tested and compared to
the actual performance of the rats. The performance of a pool of the
three most sensitive neurons in the sample (Fig. 7a) was compared to
that of a pool that potentially included all neurons in the sample
irrespective of their sensitivity (Fig. 7b). Pools composed of sensitive
neurons were clearly able to match the rat’s performance at a
much lower pool size than were pools that potentially included all
neurons. The minimum matching pool size was 4–5 neurons if only the
2–5 most sensitive neurons were allowed to enter the pool, and reached
15 if all neurons were allowed to contribute (Fig. 7c). The amount
of uncertainty had a minor role in determining these estimates:
between uncertainty periods of 1.25 and 5 s, the numbers of
neurons and the closeness of the match required to match the rat’s
performance remained stable (Fig. 7c,d). The number of spikes
required to correctly detect a stimulus (hit) depended on the size of
the pool that matched the rat’s performance. In small matching
pools of three to five neurons (typically the ones composed of highly
sensitive neurons), basically one spike of every pool member was
required for a hit. With larger matching pool sizes (typical for pools
that included insensitive neurons), the average criterion for a hit
was relaxed to coincident spikes to about 13 of 15 (Fig. 7e).
Taking the most sensitive neuron first and then adding the neurons
according to their order of sensitivity led to a steep improvement
of detection performance up to the sixth neuron added. Adding
more neurons gave only a minor gain of sensitivity (Fig. 7f). In
summary, one spike in one highly sensitive neuron is sufficient to
explain the subject’s detection performance if exact knowledge of
stimulus timing is assumed, whereas as few as four to five coincident
spikes from as many sensitive neurons are sufficient if this assumption
is dropped.

DISCUSSION

Hypotheses about the type of neuronal coding mechanism at work in
the sensory cortex should be constrained by taking into account the
temporal uncertainty of outside events. To provide a new approach to
the question, we investigated whether single-neuron representation
could be challenged by presenting highly transient and temporally
uncertain stimuli. Using stimulus onset as a reference, high neuronal
sensitivity was carried by just one spike within a 25-ms window.
Introducing uncertainty led to a marked breakdown of single-neuron
sensitivity, for two reasons. First, spontaneous spiking drove neuronal
false alarm rates up just short of 100%—greatly at variance with the
subject’s actual performance. Second, the sparse response of the
neurons virtually precluded the generation of more than two spikes
in the optimal encoding window. In consequence, with transient and
uncertain sensory inputs, the subject’s percept is highly unlikely to be
supported by a single neuron’s spike count. This makes a strong case for
the need for weighted pooling of single-neuron information, at least for
this class of behavioral tasks.

The sparseness of neuronal responses and the short encoding
window suggest that candidate decoding mechanisms use temporal
precision of the population response, the spikes’ coincidence within
25-ms windows. Temporal precision of coding symbols is expected
whenever dynamically changing stimuli are to be encoded25–27.
Notably, the optimal information-carrying encoding window of
25 ms and the temporal precision of firing (half-width of response
peak around 5 ms) were nearly constant across all stimuli despite
greatly varying temporal devolution of deflection kinematics. This
temporal precision may be exploited by coincidence mechanisms of
receiving cortical networks residing in whole cortical neurons with
typical membrane time constants28, or even more precise mechanisms
in dendritic branches29.

Here we showed that optimal pooling of only four to five sensitive
neurons suffices to match the performance of the rats under conditions
of uncertainty. However, our whisker stimuli surely activated a much
larger number of neurons in a barrel column, or we would have been
unlikely to find any. At first glance, it seems odd that by pooling larger
and larger numbers of neurons, neurometric performance is able to
exceed that of the subjects by a substantial amount. Does the rat
willfully neglect potential information laid down in some hundreds of
barrel column neurons by using only a handful of them?

To resolve this discrepancy, it is first important to remember that
only a small fraction of neurons in our sample were highly sensitive for
the task (3–15%, depending on the stimulus; extrapolated to the
number of neurons in a barrel column, this amounts to B270–1,350
neurons30). It is possible that the fraction of sensitive neurons may
decrease even further for more complex problems encountered by
animals in their natural environment. Second, monitoring large
numbers of neurons may come at a computational cost because large
degrees of convergent projections have to be implemented, and pools
serving different behavioral tasks are bound to overlap. Moreover, the
gain in sensitivity contributed by extra neurons becomes smaller and
smaller with increasing pool size (see Fig. 7f). The actual pool size for a
specific task may therefore be set to a suboptimal level to ensure
acceptable overall sensitivity for a large range of behaviorally relevant
tasks. Third, while the probabilistic model processes information
optimally and noise free, the rat is probably not able to do so. For
instance, animals estimate the passage of time with a certain degree of
inaccuracy31, whereas the model makes perfect adjustments of the
probability of stimulus occurrence for each window (a quantity related
to the ‘hazard rate’; see ref. 31). Finally, results from cortical micro-
stimulation and optogenetic manipulation point to the possibility that,
indeed, the activity of small numbers of neurons in barrel cortex can be
perceived by the animal32,33.

The present study complements the previous results, as it provides a
lower bound of spikes and cells needed to provide sensory evidence to
form a percept, based on statistical appraisal of a neuronal pool’s
sensitivity. Under conditions of temporal uncertainty, the barrel cortex
cannot rely on single neurons but may nevertheless use an extremely
sparse and temporally precise neuronal code. Our results are thus
congruent with the notion that prediction of behavioral outcome from
activity in single neurons is fairly low but may be substantially
improved after integration in downstream cortical areas11,34. Stimulus
uncertainty, the perceptual constraint that gave rise to our notion of the
indispensability of neuronal pooling, is the common rule under natural
conditions, and the importance of dealing with them as quickly as
possible may have had a decisive role in shaping cortical function
during evolution. We therefore hold it likely that our results can be
generalized to other sensory systems and species and wish to emphasize
the importance of studying cortical function under these constraints.
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METHODS
Animals. All experimental and surgical procedures were carried out in

accordance with standards of the Society of Neuroscience and the German

Law for the Protection of Animals. Subjects were four male Sprague-Dawley

rats (Harlan Winkelmann), aged 12–16 weeks at the time of implantation.

Chronic implantation of movable multielectrode arrays and recordings.

Anesthesia was introduced with a combination of ketamine and xylazine (100

and 10 mg per kg body weight, respectively) injected intraperitoneally, and

maintained with isoflurane (1–2%). The rat was positioned in a stereotaxic

apparatus, the skull was exposed and holes were drilled for placement of 11

stainless steel screws. Screws were embedded in dental cement (Heraeus

Kulzer). A mounting screw turned upside down was placed in the head-cap.

During head-mount surgery, trepanation over the barrel cortex was performed.

The C1 barrel was located by mapping the cortex with a single intracerebral

electrode. Unit and field potential responses to a brief manual whisker flick

were monitored until a site maximally responsive to flicks of whisker C1 with

lower activation by flicks of adjacent whiskers was found. Multielectrode arrays

(3 � 3, 2 � 3 or 2 � 2; electrode distance, B250 mm to 375 mm) were centered

over the identified location of C1 and slowly inserted into the cortex at a speed

of 1.25 mm s–1 until all electrodes had penetrated the dura (usually 300–

800 mm). The electrodes were then slowly retracted to a depth of B250 mm

relative to the cortical surface. The cortex was covered with antibiotic ointment,

and the electrode array was fixed to the skullcap with dental cement.

The wound was treated with antibiotic ointment and sutured. Analgesia

and warmth were provided after surgery. Rats were allowed to recover for at

least 10 d before habituation training. Rats were housed individually and kept

under a 12:12 light-dark cycle with water and food available ad libitum

except during behavioral testing, when the rats were water-restricted for

5 d per week. Drops in body weight, monitored daily, were prevented by

supplementary water.

The movable electrode arrays contained laboratory-built, pulled and ground,

glass-coated platinum tungsten electrodes (80 mm shank diameter, 23 mm

diameter of the metal core, free tip length B8 mm, impedance 2–6 MO;

Thomas Recording). Electrode depth could be adjusted by turning a small

screw, with one revolution equaling 250 mm. After each successful recording

session, we turned the screw by a half revolution until the entire depth of the

cerebral cortex was traversed. After that, the screw was turned up maximally

and the procedure started again. Voltage traces picked up by the electrodes were

bandpass-filtered (200–5,000 Hz) and recorded at a sampling rate of 20 kHz

using a multichannel extracellular amplifier (Multi Channel Systems). Spikes

were detected using amplitude thresholds. Two-millisecond cutouts centered

on the time bin in which the voltage trace first traversed the amplitude

threshold were recorded and sorted offline using a laboratory-written software

package35. Artifacts were removed and neurons sorted to yield either single- or

multi-unit spike trains. Criteria for classification as a single unit were

conservative and have been described36. Spontaneous firing rates for each unit

were computed from a 500-ms period preceding stimulus onset. We calculated

response latencies by measuring the time from stimulus onset (for the reference

stimulus) to the time when the firing rate first surpassed a 95% confidence

limit, which was computed based on the prestimulus firing rate37. Similarly, we

calculated the width of the response peak in the PSTH and, thus, the duration

of the excitatory response by measuring the time from the first crossing of the

upper 95% significance threshold to the time when the response decreased

below the threshold.

Experimental setup and behavioral task. Both the setup and the behavioral

task were identical in all aspects to those described in detail elsewhere23. Briefly,

the rats’ task was to respond to a brief whisker deflection occurring every 5 s

(±1.25 s) by licking from a water spout. If they emitted a lick response within

600 ms after stimulus onset (reinforcement period, gray field in Fig. 1a), they

received a droplet of water as reinforcement. To discourage random licking

during the intertrial interval, a period of 1 s without licking was required before

a new stimulus would be delivered. In case the rat licked during that period, the

scheduled delivery of the next stimulus was delayed by 1 s. Stimulus types were

presented in a pseudorandom sequence: the seven stimulus types—deflections

of differing velocity and the catch trial—were presented once each in random

sequence before one of them was presented again. Thus, the experiment

consisted of n blocks, with all seven stimulus types shuffled and presented

once before the seven stimuli were shuffled and presented again.

Optimizing precision of neurometric and psychometric data measurements.

The exact comparison of psychometric and neurometric data has been

notoriously difficult, and previous studies show considerable variation.

Basically, there is a tradeoff between adjusting the stimulus exactly to the

characteristics of the neuron (which favors the neurometric measurement but

eventually requires generalization on the animal’s side and makes the task

harder) and the simplicity of the task (which favors the precision of

the psychometric data, but eventually neurons do not get fully engaged; see

refs. 6,7,9,13).

To arrive at an optimal balance of both measurements, we used a very simple

behavioral task—detection of ramp-and-hold stimuli—and recorded cortical

neurons with well-investigated properties in a primary sensory area, the barrel

cortex. Parameters that affect neuronal responses in the whisker pathway are

receptive field topography, kinematic parameters of the stimulus (amplitude

and velocity23) and directional preference38. The match of topography was

ensured by choosing the barrel column corresponding to the deflected whisker

(C1) during implantation of the electrodes. In this study, we focused on activity

in the barrel cortex that is driven by slowly adapting trigeminal ganglion

primary afferents. Thus, the stimulus amplitude was chosen to fully engage

these afferents, and peak velocity was varied across the relevant part of their

response range23. For the sake of task constancy, we chose to omit the

adjustment of stimulus direction, which in the barrel cortex is weak38. We

did so because we wanted to provide a representative sample of barrel cortex

units that could be directly compared to each other because they were all

measured under identical conditions.

Psychophysical testing was conducted using the method of constant stimuli

exactly as described23, but using only the subset of the stimuli thought to drive

mainly the slowly adapting primary afferents. In one session, a set of stimuli of

identical amplitude (121) but differing peak velocities (621, 1251, 2501, 5001,

1,0001 and 1,5001) were presented in pseudorandom order (see above), each for

10–25 times. We then calculated the number of spikes generated by rapidly and

slowly adapting units in response to peak velocities of 250–5001 using the data

in ref. 23. We found that 16 rapidly adapting units fired B0.15 spikes to

stimulus velocities of 250–5001 s–1 at 121, while 12 slowly adapting afferents

confronted with the same stimuli generated B18 spikes (factor 120) within the

entire response and B2 spikes (factor 13) in the phasic part of the response.

Thus, the separation of responses was near complete in this range. In addition,

a catch stimulus was included in which no deflection of the whisker occurred,

but lick responses during the reinforcement period were recorded to yield a

measure of chance performance (false alarm rate). To check for consistency of

performance during the behavioral session, easily detectable reference stimuli

(rectangular pulses at amplitude 71, peak velocity 5,0001 s–1) were interspersed

with the stimuli of interest. Sessions in which responses to the reference

stimulus were below 70%, indicating sloppy performance, were not included

in the sample. Regular performance of our rats was much higher, averaging

94%. To ensure optimal performance, we also computed rank-biserial correla-

tions between trial numbers and responses (1 ¼ hit, 0 ¼ miss). A large negative

correlation would indicate a constant decrease in responding during the

session; the median correlation was –0.12, indicating that the rats worked

steadily. Furthermore, white noise (B80 dB) was presented during sessions to

ensure that rats responded to tactile input only. In control sessions, the

piezo element was disconnected from the whisker but all other experimental

variables were kept the same. In these sessions, the rats performed at

chance levels, indicating that they did not receive cues other than by tactile

whisker deflections.

Data analysis and statistics. Psychophysical data are expressed either as

response probability (number of responses divided by number of stimulus

presentations) or as the SDT index d¢2,12,39, which conveys the sensitivity of an

observer stripped of response bias. Because of the low number of stimulus

presentations in this study (10–25 per stimulus type), log-linear corrections

were applied to control for response probabilities of 0 and 1 (ref. 39). To

compute d¢, the response probability for signal trials (‘signals’ being one of six
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different peak velocities) was compared with the response probability for

noise trials (‘noise’ being catch trials) according to the formula

d0 ¼ f�1ðpHitÞ � f�1ðpFAÞ, where f–1 is the inverse of the phi function (also

called probit function), which converts a probability to a z score, pHit is the

response probability for signal trials (hit rate), and pFA is the response

probability for noise trials (false alarm rate).

To achieve comparability with psychometric functions, neurometric detec-

tion functions were computed using ROC analysis2 as used previously40 and

more thoroughly described by others6. Briefly, spike counts from signal trials

were compared with spike counts from noise (catch) trials from the same

session. Using a shifting criterion of n spikes, in which n shifts from the

minimum spike count to the maximum spike count observed across both trial

types, the fraction of both signal and noise trials featuring Zn spikes was

computed. This yielded n measures of hits and false alarms for signal and noise

trials, respectively. The area under the ROC curve (AUROC) gives an index of

sensitivity, which expresses the amount of overlap between signal and noise

(catch) spike count distributions. Sensitivity varies between 0 and 1, with 0.5

indicating complete overlap between the distributions and, thus, nonsepar-

ability. Values of 0 and 1, on the other hand, indicate complete separation of

the two distributions. To compare psychometric and neurometric functions

on the same scale, AUROC was converted to d¢ using the equation

d0 ¼ f�1ðAUROCÞ.
To identify both the optimal duration and position of the spike encoding

window, we computed the sensitivity for a range of window duration and

position combinations (durations, 5–75 ms; positions, 5–300 ms; both incre-

mented in steps of 5 ms). To arrive at distributions of optimal window

positions and durations, we took the duration-position combination at which

the sensitivity value was maximal for each given unit, provided that the

sensitivity value exceeded a 95% confidence level bootstrapped for each unit

individually using spike count distributions taken from the catch trials. As a

result, n values for these analyses ranged from 86 units for 621 s–1 to 167 units

for 1,5001 s–1. Throughout, 95% confidence intervals were constructed from

t distributions41 unless stated otherwise.

To model the sensitivity of a neuronal pool, information of single neurons

was combined in a statistically optimal way using LHF as described24 (Fig. 6).

The LHF holds the probability of a given neuronal response across stimuli.

We used our sample of 34 high-quality single units and their responses to

catch stimulus and the six whisker deflections in each 25-ms window as the

data basis for simulated pools of neurons and their responses. A Monte Carlo

procedure was designed to present all seven stimuli (catch, 62–1,5001 s–1) at a

randomly chosen window (ws) during the uncertainty period (2.5 s, as 100

windows of 25 ms each). The response of each neuron (spike or no spike) in

the pool was drawn according to its measured response probability in a 25-ms

window centered on the optimal window position for the given stimulus

(catch, 0–25 ms after stimulus onset). The LHF holding the likelihood of

each of the stimuli given the response (spike or no spike) was then calculated.

Next, the LHF of the pool was determined by calculating the likelihood

of each stimulus given the particular response pattern. Assuming inde-

pendence of neuronal responses, this amounts to summing the neuron’s

logarithmized LHFs25. At this point, the uncertainty about stimulus timing

was incorporated by accounting for the prior probability of the absence or

presence of a stimulus in each window. The decision within the window was

formed by sequentially comparing the likelihoods for each stimulus versus ‘no’

stimulus, on the basis of the following rationale. From the odds form of Bayes’

rule, one can derive that it is optimal to decide for hypothesis h1 versus the

alternative h2 if

LR1;2 ¼ 1ðh1 rÞj
1ðh2 rÞj ¼ pðr h1Þj

pðr h2Þj 4
pðh2Þ
pðh1Þ

¼ PR2;1 ð1Þ

that is, if the likelihood ratio of h1 and h2 given the response r(LR1,2) exceeds

the inverse ratio of the respective prior probabilities PR2,1 (as in ref. 42, for

example). In the present case, the prior ratio is not a constant, but rather

decreases with the numbers of past windows in the period of uncertainty,

according to

PR2;1ðwÞ ¼ 2ðwtot � w + 1Þ � 1 ð2Þ

When calculating the prior ratio for the occurrence of two equally probable

stimuli (here, catch versus the given stimulus), wtot is the total number of

windows making up the period of uncertainty and w is the running number of

the current window. The optimal criterion to decide for the presence of

stimulus i (converted to log space) then reads

logðpðrðwÞ siÞÞ � logðPR2;1ðwÞÞ4 logðpðrðwÞ scatchÞÞj
�
� ð3Þ

where w again represents the wth window and r(w) is the pool response in

window w. On the left side of the inequality, PR2,1 is accounted for by taking

the logarithm and subtracting from the log likelihood of the stimulus (si). The

right side holds the log likelihood of the catch stimulus given r(w). This

procedure was iterated for each of the six whisker stimuli, and the pool’s

decision was set to 1 (‘stimulus present’) in one window if any of the six

comparisons favored the presence of a stimulus over its absence.

In a final step, the decision in a trial was assessed by looking at the pool’s

decisions in each of the 24 windows that fell within a period of 600 ms around

stimulus presentation (±300 ms). The rationale was that the rat needs a

minimal motor execution time of 300 ms (see Results) and therefore needs

to trigger a motor response 300 ms after stimulus onset, at the latest, to emit a

lick that falls into the window of opportunity and is thus counted as a response.

In addition, ‘fake percepts’ during the 300 ms before stimulus onset may trigger

a response that falls into the window of opportunity. If one or more decisions

in favor of stimulus presentation were recorded in this period, the trial was

classified as ‘go’ (hit or false alarm). In case all windows yielded a decision in

favor of stimulus absence, the trial was classified as ‘no-go’ (miss or correct

rejection). One run of the simulation repeated this procedure 1,000 times for

each stimulus type. For each of such trial, a new combination of neurons was

picked from the data source (either the whole sample or varying numbers of

the most sensitive neurons; see Results). As there is only one criterion for a

decision (spike or no spike) in each encoding window, sensitivities in Figure 7

are expressed as the difference of probabilities of hit and false alarm.

Additional methodological considerations. In the probabilistic model

described above, we assumed statistical independence of spike probabilities

between subsequent 25-ms windows and between neurons in the pool. In view

of the common finding that spike trains from single cortical units often show

significant features in autocorrelograms, and that pairs of cortical neurons that

are subject to common input can show spike synchrony in the range of tens of

milliseconds (typically neurons within one column or related receptive field

properties, see for example refs. 43–47), the assumption of independence seems

to be an oversimplification. The magnitude of neuronal correlation in the

barrel cortex is unknown, particularly under conditions such as our transient

stimuli. In cross-correlograms from pairs of cortical neurons, a maximum of

B0.1 coincidences per spike at a precision of 10 ms within B50% of neuronal

pairs showing peaks in correlograms has been found47. Again, the effect of this

correlation—especially on small counts taken from short time windows and

small neuronal pools, as is relevant for our main finding—is likely to be

negligible. Indeed, it has been shown that the common finding of correlation

coefficients around 0.2 for the so-called ‘noise correlation’ (trial-by-trial

covariation of spike counts, for example in ref. 48) is an overestimation

resulting from the use of long integration windows46,47. Direct experimental

assessment in monkey primary visual cortex revealed that the common value of

noise correlation is reduced by more than 75% when using integration

windows in the range used here49. In summary, considering that the detailed

effect of correlation in auto- and cross-correlograms on pool size and spike

criterion awaits future measurements that also take possible stimulus-depen-

dent variations of spike correlation into account47,50, we conclude that our

simulation is likely to represent a useful first approximation of effective pool

sizes and spike criteria.
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Volkes. We thank F. Jäkel and M. Bethge for helpful discussions concerning
signal detection theory and design of the probabilistic model and U. Pascht
for excellent technical assistance.

1098 VOLUME 11 [ NUMBER 9 [ SEPTEMBER 2008 NATURE NEUROSCIENCE

ART ICLES
©

20
08

 N
at

ur
e 

P
ub

lis
hi

ng
 G

ro
up

  
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

en
eu

ro
sc

ie
nc

e



AUTHOR CONTRIBUTIONS
M.C.S. and C.S. designed the experiments; M.C.S. performed the experiments;
M.C.S. and C.S. conducted data analyses and wrote the paper.

Published online at http://www.nature.com/natureneuroscience/

Reprints and permissions information is available online at http://npg.nature.com/

reprintsandpermissions/

1. Barlow, H.B. & Levick, W.R. Three factors limiting the reliable detection of light by retinal
ganglion cells of the cat. J. Physiol. (Lond.) 200, 1–24 (1969).

2. Tanner, W.P. & Swets, J.A. A decision-making theory of visual detection. Psychol. Rev.
61, 401–409 (1954).

3. Barlow, H.B. Single units and sensation: a neuron doctrine for perceptual psychology?
Perception 1, 371–394 (1972).

4. Talbot, W.H., Darian-Smith, I., Kornhuber, H.H. & Mountcastle, V.B. The sense of flutter-
vibration: comparison of the human capacity with response patterns of mechanorecep-
tive afferents from the monkey hand. J. Neurophysiol. 31, 301–334 (1968).

5. Parker, A. & Hawken, M. Capabilities of monkey cortical cells in spatial-resolution tasks.
J. Opt. Soc. Am. A 2, 1101–1114 (1985).

6. Britten, K.H., Shadlen, M.N., Newsome, W.T. & Movshon, J.A. The analysis of visual
motion: a comparison of neuronal and psychophysical performance. J. Neurosci. 12,
4745–4765 (1992).

7. Celebrini, S. & Newsome, W.T. Neuronal and psychophysical sensitivity to motion signals
in extrastriate area MST of the macaque monkey. J. Neurosci. 14, 4109–4124 (1994).

8. Parker, A.J. & Newsome, W.T. Sense and the single neuron: probing the physiology of
perception. Annu. Rev. Neurosci. 21, 227–277 (1998).

9. Geisler, W.S. & Albrecht, D.G. Visual cortex neurons in monkeys and cats: detection,
discrimination, and identification. Vis. Neurosci. 14, 897–919 (1997).

10. Hernandez, A., Zainos, A. & Romo, R. Neuronal correlates of sensory discrimination in
the somatosensory cortex. Proc. Natl. Acad. Sci. USA 97, 6191–6196 (2000).

11. de Lafuente, V. & Romo, R. Neuronal correlates of subjective sensory experience.
Nat. Neurosci. 8, 1698–1703 (2005).

12. Swets, J.A. Detection theory and psychophysics: a review. Psychometrika 26, 49–63
(1961).

13. Purushothaman, G. & Bradley, D.C. Neural population code for fine perceptual decisions
in area MT. Nat. Neurosci. 8, 99–106 (2005).

14. Uka, T. & DeAngelis, G.C. Contribution of middle temporal area to coarse depth
discrimination: comparison of neuronal and psychophysical sensitivity. J. Neurosci.
23, 3515–3530 (2003).

15. Heuer, H.W. & Britten, K.H. Optic flow signals in extrastriate area MST: comparison of
perceptual and neuronal sensitivity. J. Neurophysiol. 91, 1314–1326 (2004).

16. Cohn, T.E. & Lasley, D.J. Detectability of a luminance increment: effect of spatial
uncertainty. J. Opt. Soc. Am. 64, 1715–1719 (1974).

17. Swets, J.A., Shipley, E.F., McKey, M.J. & Green, D.M. Multiple observations of signals in
noise. J. Opt. Soc. Am. 31, 514–521 (1959).

18. Green, D.M. & Weber, D.L. Detection of temporally uncertain signals. J. Acoust. Soc.
Am. 67, 1304–1311 (1980).

19. Green, D.M. & Forrest, T.G. Temporal gaps in noise and sinusoids. J. Acoust. Soc. Am.
86, 961–970 (1989).

20. Lasley, D.J. & Cohn, T. Detection of a luminance increment: effect of temporal
uncertainty. J. Opt. Soc. Am. 71, 845–850 (1981).

21. de Ruyter van Steveninck, R.R. & Bialek, W. Reliability and statistical efficiency in a
blowfly movement-sensitive neuron.Phil. Trans. R. Soc. Lond. B348, 321–340 (1995).

22. Gibson, J.M. & Welker, W.I. Quantitative studies of stimulus coding in first-order vibrissa
afferents of rats. 2. Adaptation and coding of stimulus parameters. Somatosens. Res. 1,
95–117 (1983).
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