Review

Constraint satisfaction
- Units are hypotheses about parts of solutions; weights code constraints between hypotheses
- Network settles to pattern that maximizes “goodness” (satisfying constraints)
- Supports content-addressable memory (“find a Shark in his 20s....”)

Correlational learning (Hebb rule)
- Works perfectly only if input patterns are orthogonal (no similarity)
- Response is combination of all trained patterns, weighted by similarity to current input

Error-correcting learning (Delta rule)
- Works perfectly if input patterns are linearly independent (something unique about each)
- Guaranteed to find weights that produce zero error (if they exist)
- Cannot even categorize correctly if assignment of targets to inputs is linearly inseparable (e.g., XOR), where similar inputs tend to correspond to different outputs

Localist vs. distributed representations
- IAC model of letter and word recognition; TRACE model of speech recognition
- Representation is localist (1-to-1) or distributed (many-to-many) only relative to set of items
- Distributed representations can learn both general and specific/idiosyncratic knowledge

Review (2)

Back-propagation (generalization of Delta rule to multilayer networks)
- Can learn linearly inseparable problems by re-representing inputs over intermediate (“hidden”) units whose patterns have different similarities

Generalization and overfitting
- Add cost measure to penalize “complexity” of network (e.g., weight decay, to keep it more linear); improves generalization by avoiding overfitting training data
- Cross-validation estimates overfitting based on subset of training data (“validation” set)

Temporal learning (fully and simple recurrent networks)
- Back-propagation can be applied to recurrent networks if past unit activations are stored (back-propagation through time)
- Simple recurrent networks (SRNs) make previous hidden activations available as an additional (context) input; computationally efficient way to learn sequential tasks (e.g., prediction)

Boltzmann machines; contrastive Hebbian learning
- Contrastive Hebbian learning generalizes the Hebb rule for multilayer network (with symmetric weights; intrinsically settles to stable “attractor”)
- Mean-field version (Deterministic Boltzmann machines) is comparable to back-propagation

Review (3)

Unsupervised learning; forward models
- Unsupervised: Learn only from statistical distribution of inputs (e.g., generative models)
- Auto-encoders and SRNs for sequential prediction are “self-supervised” (inputs = targets)
- Forward model: Learned internal model of world can convert distal error (due to outcomes) into proximal error (due to actions)

Deep learning
- Many hidden layers between inputs and outputs; can learn complex, hierarchical features sets
- Practical at realistic scale due to technical advances, computational power, and massive data
- Network and training data are structured to promote needed types of generalization

Reinforcement learning
- Environment provides evaluative feedback; not specification of correct action in each situation (supervised)
- Temporal difference learning: Maximize expected future (discounted) reward
- Can be combined with deep learning in complex, continuous environments

Designing input and output representations

Constrain by empirical data when possible

Localist representations
- Useful for enforcing independence
- Won’t support generalization

Distributed representations
- Pattern overlap should capture relevant similarity structure
- Degree of sharing of features across entire training set matters

Binary features: code as binary states (0/1)

Real-valued features: discretize into separate “bins” (?)
- Drawback: loses similarity of values in neighboring bins (coded by non-overlapping units)
How to represent real-valued features/properties?

- Map to single real-valued unit activation?
 - Because (input) activations are multiplied by outgoing weights, activations near 0 have less direct impact on the network than activations near 1
- Map to two opposing real values (activations summing to 1)
 - No 0/1 asymmetry (all inputs have same total activation)
 - Difficult to treat different ranges of values differently/independently
- Code value over bank of units (each “centered” on particular value)
 - Unit activations are Gaussian function of difference between unit’s “preferred” value and coded value
 - Can also use simple linear interpolation