A simple story....

Mary heard the ice-cream man coming.
She remembered her pocket money.
She rushed into the house.

Questions
- What is an “ice-cream man” and why does he make noise?
- Why does she think of money?
- Why does she go into the house?
- Why does she rush?
- How old is she?

Can constraint satisfaction support structured thought?

Useful properties
- content addressibility (by name and by partial content)
- default assignments
- graceful degradation (noisy cues, removal of weights)
- spontaneous generalization

Can relationships and constraints among different types of information really be reduced to pairwise interactions among simple features/descriptors?

Schemas: data structures for representing generic concepts in memory
- objects, situations, events, actions, sequences of events/actions...

Schemas: Essential properties

Schemas have variables
- Slots have restrictions (e.g., AGENT must be animate)
- Default values (values in absence of more specific information)
 - But must be context-sensitive (agent in breaking window vs. bubble)

Schemas can embed
- BREAK contains DO and CAUSE
- Not always simpler (e.g., room with picture of room)

Schemas range across levels of abstraction
- Original focus on lexical level (like GIVE, BREAK)
- Also intended to span larger "events" (e.g., restaurant "script")

Schemas represent knowledge rather than definitions
- Not "definitional" but what is "normal"
Challenges for traditional theories of schemas

- How to select relevant schemas (best-match problem)
- How to integrate multiple schemas (birthday party in restaurant)
- How to create new schemas
 - Specialize/generalize existing ones? Hybrids?
 - Transition from single instance to “general” knowledge
 - Proliferation makes selection problem more difficult

Schemas in constraint satisfaction networks

- Situations composed of primitive “features”
- A schema consists of knowledge about what features go with other features (i.e. constraints between features)
- Certain subpatterns tend to act in concert
 - Support each other and inhibit same sets of other units (“stable coalitions”)
- Good interpretations are goodness maxima / energy minima
- No structure corresponds to a schema
 - more like a description of structured/systematic behavior of system
 - No selection: use all knowledge all the time

Schema model (Rumelhart et al., 1986)

- Two subjects each imagined 8 different versions of 5 room types
- kitchen, office, bathroom, bedroom, living room
- For each imagined room, subject decided which of 40 descriptors applied to it
- Network has 40 units (one per descriptor); fully connected
- Weights set based on the likelihoods, across rooms, that the two descriptors agreed (both on or both off)
- Biases set based on likelihoods that each single descriptor was included in a room
- Five room types are only implicit in pattern of weights and biases (nothing explicit)

$$w_{ij} = -\ln \frac{p(x_i = 0 \& x_j = 1)p(x_i = 1 \& x_j = 0)}{p(x_i = 1 \& x_j = 1)p(x_i = 0 \& x_j = 0)}$$

$$bias_i = -\ln \frac{p(x_i = 0)}{p(x_i = 1)}$$

Each large square is a unit whose incoming weights (white = positive; black = negative) are displayed inside it

Internal position of each incoming weight corresponds to the sending unit’s position in large display
Clamp on “oven” unit, run network
(“Imagine a room with an oven; what else is in it?”)

Final pattern called “kitchen” prototype (although nothing explicit about a kitchen per se was involved)
Living room

- State space (bottom of cube) is interpolation within the unique plane determined by three points (kitchen, office, and bedroom prototypes)

- Goodness surface is plotted over this subset of state space
Schemas: Essential properties

- Schemas have **variables**
 - Slots have restrictions (e.g., AGENT must be animate)
 - Default values (values in absence of more specific information)
 - But must be context-sensitive (agent in breaking window vs. bubble)

- Schemas can **embed**
 - BREAK contains DO and CAUSE
 - Not always simpler (e.g., room with picture of room)

- Schemas range across levels of abstraction
 - Original focus on lexical level (like GIVE, BREAK)
 - Also intended to span larger "events" (e.g., restaurant "script")

- Schemas represent knowledge rather than definitions
 - Not "definitional" but what is "normal"
Challenges for traditional theories of schemas

- How to select relevant schemas (best-match problem)
- How to integrate multiple schemas (birthday party in restaurant)
- How to create new schemas
 - Specialize/generalize existing ones? Hybrids?
 - Transition from single instance to “general” knowledge
 - Proliferation makes selection problem more difficult