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A B S T R A C T

Humans are generally thought to be experts at face recognition, and yet identity perception for unfamiliar faces

is surprisingly poor compared to that for familiar faces. Prior theoretical work has argued that unfamiliar face

identity perception suffers because the majority of identity-invariant visual variability is idiosyncratic to each

identity, and thus, each face identity must be learned essentially from scratch. Using a high-performing deep

convolutional neural network, we evaluate this claim by examining the effects of visual experience in untrained,

object-expert and face-expert networks. We found that only face training led to substantial generalization in an

identity verification task of novel unfamiliar identities. Moreover, generalization increased with the number of

previously learned identities, highlighting the generality of identity-invariant information in face images. To

better understand how familiarity builds upon generic face representations, we simulated familiarization with

face identities by fine-tuning the network on images of the previously unfamiliar identities. Familiarization

produced a sharp boost in verification, but only approached ceiling performance in the networks that were

highly trained on faces. Moreover, in these face-expert networks, the sharp familiarity benefit was seen only at

the identity-based output probability layer, and did not depend on changes to perceptual representations; rather,

familiarity effects required learning only at the level of identity readout from a fixed expert representation. Our

results thus reconcile the existence of a large familiar face advantage with claims that both familiar and un-

familiar face identity processing depend on shared expert perceptual representations.

1. Introduction

Faces are perhaps the most important class of visual stimuli for

humans, and adult humans have developed substantial expertise for

their perception (Diamond & Carey, 1986), performing effortless re-

cognition and recall of associated identity-specific semantic informa-

tion for a very large number of known individuals. However, the nature

of this expertise has been the subject of multiple substantive debates.

Researchers have long argued as to whether human expertise for faces

is supported by a modular neural and cognitive mechanism dedicated to

face recognition (Kanwisher, McDermott, & Chun, 1997; Kanwisher &

Yovel, 2006; Tsao & Livingstone, 2008) or whether it arises through

domain-general learning rules which could equally be applied to other

categories such as artificial “Greeble” stimuli (Gauthier & Tarr, 1997;

Gauthier, Tarr, Anderson, Skudlarski, & Gore, 1999b), or birds and cars

(Gauthier, Tarr, Anderson, Skudlarski, & Gore, 1999a; Gauthier,

Skudlarski, Gore, & Anderson, 2000) under appropriate task demands

(Tarr & Gauthier, 2000). The disagreement is not whether humans are

experts at face recognition, it is whether this expertise is domain-gen-

eral or domain-specific.

In addition to this ongoing debate, an even more basic claim has

recently been called into question, challenging the tenet that humans

are experts at face recognition. Young and Burton (2018) argued that

expertise for face recognition is restricted to familiar faces, and that

perceptual performance with unfamiliar faces does not meet the qua-

lifications for expertise. The evidence they offer for this proposition

comes from a body of research showing that humans perform more

poorly at processing the faces of unfamiliar versus familiar individuals.

For example, across four experiments requiring participants to match

unfamiliar faces, performance was highly error prone, especially when

matches varied in viewpoint and expression (Bruce et al., 1999). As

illustrated in Fig. 1, it can be quite difficult to determine whether two

images of unfamiliar individuals are of the same identity (Fig. 1A), but

if we are familiar with them, the task becomes substantially easier
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(Fig. 1B). Beyond verification, when asked to sort photographs of two

individuals into identity-specific piles, participants familiar with the

identities correctly sorted the photos into two piles, whereas individuals

unfamiliar with the identities used an average of seven piles; whereas

images of different identities were rarely confused as the same identity,

images of the same identity were frequently separated into multiple

piles, reflecting the failure to group highly variable images of the same

identity together (Jenkins, White, Van Montfort, & Mike Burton, 2011).

Finally, in addition to demonstrating that unfamiliar face identity

processing was less robust than that of familiarized faces, Megreya and

Burton (2006) demonstrated that upright unfamiliar and familiar face

matching accuracy correlated only weakly and non-significantly

(r=.277, p> .05), whereas the correlation between performance on

upright unfamiliar face matching and inverted familiar face matching

was strong and highly significant (r=.673, p< .01), leading the au-

thors to title their article Unfamiliar faces are not faces. Together, these

results indicate that unfamiliar and familiar face perception may be

quite different, and perhaps recruit qualitatively different perceptual

mechanisms.

To account for these results, Kramer, Young, Day, and Burton

(2017) and Kramer, Young, and Burton (2018) developed a computa-

tional model of face recognition of unfamiliar and familiar faces. This

model falls within the class of Active Appearance Models (Cootes,

Taylor, Cooper, & Graham, 1995; Cootes, Edwards, & Taylor, 1998) in

which the goal is first to account for variations in face landmark posi-

tion, and then to derive and analyze a shape-free appearance re-

presentation. Specifically, their model requires human input for a semi-

automated assignment of landmarks to positions along key facial lo-

cations (i.e., locating the outline of the lips, nose, and eyes). Images are

then linearly aligned to the average shape representation, and the re-

sulting aligned images are analyzed for “shape-free” texture/appear-

ance. To simulate unfamiliar recognition, Kramer and colleagues per-

formed principal components analysis (PCA) on the texture

representations of a set of familiar individuals, and projected images of

unfamiliar individuals into this space. In order to simulate familiar

recognition, they performed a linear discriminant analysis (LDA) on the

PCA representation, yielding a PCA + LDA space. Intriguingly, whereas

the PCA + LDA space separated familiar individuals well, the PCA

space alone did a very poor job at separating unfamiliar individuals

(Kramer et al., 2018). In contrast, the PCA space was shown to capture

non-identity attributes such as race and gender (Kramer et al., 2017),

which humans robustly perceive in unfamiliar individuals. The re-

searchers argued that this model helps explain why human observers

struggle at unfamiliar face recognition, but are robust at familiar face

recognition: the majority of within-identity face variability is idiosyn-

cratic and must be learned for each individual separately. Taking all of

this into consideration, Young and Burton (2018) claimed that the re-

cognition of unfamiliar faces does not meet the criteria for expertise,

which is characterized by high accuracy and by relative automaticity of

performance.

The claim that human face expertise is limited to familiar faces has

been met with sharp disagreement from researchers who view face

perception broadly as a specific instance of developed visual expertise.

For example, Sunday and Gauthier (2018) argued that humans are

experts at unfamiliar face recognition when compared to the appro-

priate baseline of general object recognition, and that expertise is not

determined by performance level per se but by the extent of develop-

ment of the perceptual skill. Such development can be induced for

novel stimuli in the laboratory (e.g. Greebles; Gauthier et al., 1999a),

and is associated with characteristic error patterns, such as the inver-

sion effect assumed to indicate configural processing which is greater

for learned than unlearned stimulus categories. Rossion (2018) further

argued that humans are expert at all forms of visual face recognition,

also pointing to key error patterns found for unfamiliar faces—in-

cluding the inversion effect (Valentine, 1988), the other race effect

(Bothwell, Brigham, & Malpass, 1989), and the composite face illusion

(Young, Hellawell, & Hay, 2013)—as well as neuropsychological evi-

dence, where the substantially better performance of normal adults

compared to that of individuals with prosopagnosia (both congenital

(Behrmann & Avidan, 2005) and acquired (Damasio, Damasio, & Van

Fig. 1. Verifying the identity of images of unfamiliar faces can be much harder than doing so for familiar faces. Most American readers will be familiar with the

American celebrities on the right, but not with the Australian celebrities on the left. The face verification task requires the participant to determine whether pairs of

images are of the same or a different identity. The top row shows difficult identity matches, and the bottom row shows difficult identity non-matches.

N.M. Blauch, et al. Cognition 208 (2021) 104341

2



Hoesen, 1982)) demonstrates that unfamiliar face recognition is a

highly and specifically developed skill. To explain the relative im-

provement for familiar faces, Rossion (2018) suggested that the ad-

vantage “may be based on associated semantic, affective, and lexical

(rather than visual) processes/representations” (p. 471). Finally,

Abudarham, Shkiller, and Yovel (2019) demonstrated that the same

critical features (Abudarham & Yovel, 2016) are used for both un-

familiar and familiar face recognition, suggesting that the difference

between unfamiliar and familiar face recognition may be conceptual

rather than perceptual.

In the current work, we attempt to combine many aspects of these

various accounts in simulations that clarify the extent of human ex-

pertise in unfamiliar and familiar face recognition, and the reason why

a strong advantage is seen for the latter over the former. Although

Kramer et al. (2018) claimed that much of the variability of face images

is idiosyncratic, we argue that they substantially underestimated

human performance on unfamiliar face recognition, thereby over-

estimating the share of idiosyncratic variability in face recognition.

Moreover, given that their model requires human input at the align-

ment stage—a process which obscures the representations required to

perform such landmarking—the model does not provide a good eva-

luation of the expertise underlying human unfamiliar face recognition.

Given recent successes in deep learning for classification of object

and face images (Cao, Shen, Xie, Parkhi, & Zisserman, 2018;

Krizhevsky, Sutskever, & Hinton, 2012; Parkhi, Vedaldi, & Zisserman,

2015; Simonyan & Zisserman, 2015), we hypothesized that a deep

convolutional neural network (DCNN) trained on faces would be cap-

able of achieving human-level performance on both unfamiliar and

familiar face recognition. Testing performance on ambient images from

Labeled Faces in the Wild (Huang, Ramesh, Berg, & Learned-Miller,

2007), we find that a DCNN trained on thousands of face identities

substantially outperforms a fully automated Active-Appearance Model

conceptually similar to that used by Kramer et al. (2017) and Kramer

et al. (2018). We go on to analyze the aspects of visual experience that

are necessary to achieve high performance in the network. If the ne-

cessary visual experience is both extensive and face-specific, it would

suggest that unfamiliar face recognition, like familiar face recognition,

is a specific learned expertise (Sunday & Gauthier, 2018).

To determine the extent to which human-level face verification

performance depends on extensive experience with faces per se, and not

just with general object categories, we manipulated the pretraining

conditions—both the extent and domain of visual experience—of the

DCNN before testing it on a new set of unfamiliar faces. To understand

the extent to which idiosyncratic visual experience with specific iden-

tities is critical, we fine-tuned the network on a training set of images of

the previously unfamiliar face identities, and then tested verification on

the same images for which we calculated unfamiliar verification per-

formance. To examine the perceptual level at which successful perfor-

mance emerges, we tested verification performance using representa-

tions at several layers throughout the network. We also examined the

extent to which familiarity effects depend on perceptual comparisons,

as opposed to learning to map fixed perceptual features to identity re-

presentations. Finally, we compared the performance of our network

directly with data obtained from humans performing a difficult face

verification task in order to confirm that our conclusions about the role

of prior experience, the extent of expertise for unfamiliar recognition,

and the computational role of familiarity apply to the typical human

observer.

2. Methods

2.1. A fully-automated shape-free linear texture analysis model

We performed a conceptual replication of the model used by Kramer

et al. (2017) and Kramer et al. (2018). Rather than determine land-

marks for thousands of images by hand, we opted for a fully automated

approach. We used a pretrained dense feature-based active appearance

model to compute shape-free appearance representations. This mod-

el—implemented in the menpofit toolbox (Antonakos, Alabort-I-

Medina, Tzimiropoulos, & Zafeiriou, 2015)—was fit on 3283 manually-

landmarked images across multiple databases. In training, the model

learns an alignment based on the Lucas-Kanade algorithm. The exact

pretrained model can be found at https://menpofit.readthedocs.io/en/

stable/api/menpofit/aam/load_balanced_frontal_face_fitter.html. Un-

familiar face representations were obtained directly from the appear-

ance representation of the model, defined as the principal component

scores of a PCA solution taken over post-aligned pixels in the training

images. Familiar face representations were obtained as the linear pro-

jection along the normal vector of an optimally separating hyper-plane

obtained through linear discriminant analysis (LDA) trained on a set of

training images of the familiarized identities, as in Kramer et al. (2017)

and Kramer et al. (2018).

2.2. A deep convolutional neural network model of visual recognition

Convolutional neural networks (CNNs) are a broad class of machine

learning models producing state-of-the-art performance in both com-

puter vision (Krizhevsky et al., 2012) and in predicting brain responses

in macaque (Yamins et al., 2014) and human visual cortex (Khaligh-

Razavi & Kriegeskorte, 2014), as well as in predicting human beha-

vioral similarity ratings. Rather than being hand-coded, CNNs learn

representations from data, and most commonly, from associating data

with appropriate labels through supervised learning. The defining

characteristic of a CNN is the convolutional layer, which contains a set

of filters with a fixed, restricted spatial receptive field, which are ap-

plied to all locations in the input (i.e., convolved with the input) to

produce a set of feature maps (one per filter). The restricted spatial

receptive field was inspired by this well-known property of V1 neurons

first discovered by Hubel and Wiesel (1959) (LeCun, Bottou, Bengio, &

Haffner, 1998; Zeiler & Fergus, 2014). While there is no known me-

chanism by which the brain explicitly computes convolution, the con-

volution operator has proven to be useful compared with non-con-

volutional locally-connected layers, due to a massive reduction in

model complexity through an inductive bias (i.e., prior) that image

features found in one location may be found in other locations. Most

CNNs contain a pooling operation following each convolution that in-

duces some spatial invariance to local shifts of the input data. Similarly

to convolution, the pooling operation was inspired the discovery of

"simple" and "complex" cells in primary visual cortex, where complex

cells respond to the preferred stimulus over a larger range than simple

cells, appearing to implement an OR operator over simple cells in

nearby regions (Hubel & Wiesel, 1962). However, pooling is not a de-

fining characteristic of CNNs and many state-of-the-art models forego

pooling (Springenberg, Dosovitskiy, Brox, & Riedmiller, 2015), instead

using stride> 1 in convolutional layers to progressively downsample

feature maps as network depth increases (He, Zhang, Ren, & Sun,

2016). Deep convolutional neural networks (DCNNs) are simply CNNs

constrained to contain at least two “hidden” (learned) layers of features

between input and output layers. The hierarchical organization of

DCNNs containing multiple hidden layers is broadly inspired by the

hierarchical organization of the visual cortex (see, e.g. Felleman & Van

Essen, 1991; Yamins & DiCarlo, 2016).

2.2.1. Architecture

We used the VGG-16 DCNN architecture in all of our simulations

(Simonyan & Zisserman, 2015), shown in Fig. 2. This architecture

achieved state-of-the-art performance in ImageNet object recognition at

the time of its publication, and has also been demonstrated to be a

highly effective architecture for face recognition (Parkhi et al., 2015).

As seen, the network contains 5 convolutional “blocks”, containing 2, 2,

3, 3, and 3 convolutions per layer, respectively, following by max

pooling and positive rectification. For simplicity, we refer to the output
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of the nth convolutional block as convn. The convolutional layers are

followed by 3 fully-connected layers, where the first two (fc6 and fc7)

are subject to rectification, and the last (fc8) is subject to a softmax

operation, converting unit activations into an explicit probability dis-

tribution over known categories/identities. For simplicity, we refer to

the rectified output of the first two fully-connected layers as fc6 and fc7,

the pre-softmax output of the last fully-connected layer as fc8, and the

post-softmax probability distribution as prob.

2.2.2. Pretraining

As a means of assaying the nature of pre-existing expertise needed

for face recognition, we simulated three initial states of the network: 1)

randomly initialized, 2) pretrained on objects, and 3) pretrained on

faces. For pretraining on objects, we used a subset of 584 categories

from the ImageNet large-scale image categorization challenge

(Russakovsky et al., 2015) for which entry-level labels were available

(although not used here) (Ordonez, Deng, Choi, Berg, & Berg, 2013).

The images were divided into a training set (for adapting the network

weights) and a validation set (for adapting the learning rate to avoid

overfitting) as provided by the 2012 ImageNet Large Scale Visual Re-

cognition Challenge (ILSVRC2012). For pretraining on faces, we used

the VGGFace2 database (Cao et al., 2018), and selected a subset of

identities that resulted in a close match in total number of images with

our ImageNet database, and that did not overlap with the other data-

bases we used for verification experiments. We manually created a

validation set using 10% of the training data, such that the total images

in the training and validation sets closely matched the numbers for the

ImageNet set.

For each network, we used back-propagation to perform stochastic

gradient descent in cross-entropy error, adapting the network weights

to minimize the discrepancy between the identity activation generated

by the network when presented with each image in the training set

(using minibatches of 256 images sampled randomly without replace-

ment each epoch) and the correct identity label for that image. An in-

itial learning rate of 0.01 was allowed to decrease 4 times by a factor of

10 upon reaching a stable plateau in performance on the validation set,

before performing early stopping at the 5th plateau, up to 50 epochs of

training. All models converged within 50 epochs.

Pretraining was performed using the PyTorch neural network

modeling package (Paszke et al., 2017). Code for setting up our image

databases from the original ImageNet and VGGFace2 databases, for

training the models, and for performing and visualizing the results of

simulations will be made available on the GitHub page for this project

(https://www.github.com/viscog-cmu/familiarity_sims).

2.3. Modeling familiarization through fine-tuning DCNNs

2.3.1. Experiments on Labeled Faces in the Wild

After pretraining, we performed fine-tuning of each network on a

new set of face identities (familiarization), using the deep-funneled

(aligned) images (Huang, Mattar, Lee, & Learned-Miller, 2012) of the

Labeled Faces in the Wild (LFW) database (Huang et al., 2007). Iden-

tities with at least 18 images were selected and 10 images were held out

for the test set. Verification was tested before, throughout, and after

fine-tuning, where verification before fine-tuning corresponds to un-

familiar performance, and verification after fine-tuning corresponds to

familiar performance. In the first epoch of fine-tuning (after testing

unfamiliar verification), we appended new identity units to the existing

ones, so that the network could learn to identify the new individuals.

Here, fine-tuning refers to stochastic gradient descent back-propagated

through the fully-connected layers only, with the weights of earlier

convolutional layers held fixed. The network was not trained on ver-

ification explicitly, but rather only on identification of the new set of

identities/categories. A fixed standard learning rate of 0.01, momentum

of 0.9, and duration of 50 epochs were used, as there were too few

images to permit the use of a validation set. As seen in Fig. 4A, the

networks converged within this training period, and did not exhibit

epoch-dependent over-fitting.

2.3.2. Experiments on VGGFace2 test set

In further experiments, we fine-tuned the face- or object-pretrained

models on a new set of face identities in the test set of VGGFace2. We

constructed several sub-databases from the set of 500 identities in order

to simulate varying forms of experience with novel identities. We cre-

ated datasets using 10, 50, or 100 identities, and set aside 100, 20, or 10

images per identity for verification testing, respectively, such that there

were always 1000 verification images, and thus 499,500 verification

pairs. We then set aside 10 images per identity for a validation set to

control the learning rate during fine-tuning. Finally, from the remaining

images available for each identity, we selected 1, 10, 50, 100, or 400

images to be trained on, such that the 100 image set contained all of the

images in the 50 image set. In contrast to experiments using Labeled

Fig. 2. Architecture of the VGG-16 deep convolutional neural network (DCNN) (Simonyan & Zisserman, 2015) (schematic produced using code at https://doi.org/10.

5281/zenodo.2526396). The DCNN takes a 224 × 224× 3 input image and transforms it in a hierarchical fashion to a set of output class probabilities. Convolutional

blocks (conv1, conv2, …, conv5) contain 2 or 3 convolutional layers which do not downsample the spatial resolution of their input (i.e., stride of 1), followed by

pooling. The convolutional blocks are following by three fully-connected layers, the last of which contains 1 unit per known identity. The activations in the last layer

fc8 are transformed with the softmax function to a probability distribution, represented in layer prob. Operations are colored as following: convolution in light

yellow, pooling in dark orange, linear transformation in light purple, rectification in dark yellow following convolution or purple following linear transformation, and

finally softmax in dark purple. Arrows indicate the flow of information. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)
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Faces in the Wild, here we scheduled the learning rate exactly as we did

in the pretraining phase, starting from a value of 0.01, and reducing it

by a factor of 10 upon stable plateau of validation set accuracy, to a

minimum of 10e−5 after which early stopping was performed. We set

an extremely liberal maximum number of epochs of 1000 to ensure

convergence of all models. Additionally, we varied the network layer at

which fine-tuning started; whereas the LFW simulations started fine-

tuning at layer fc6, here we examined fine-tuning beginning at the start

of each convolutional block (conv1, conv2, …, conv5) and each fully

connected layer (fc6, …,fc8).

2.4. Assessing identity perception through face identity verification

To perform face verification, we adopted a threshold-free similarity-

based approach that can be applied to an arbitrary m-dimensional

feature representation, including input images, shape-free texture

components, and DCNN layer activations. First, given a set of feature

responses [x1, …, xn] over images, the cosine distances between all test-

set images were computed as Di, j = cos (xi, xj) and then normalized to a

range of [0,1]. A range of thresholds θk ∈ [0,1] was then used to

compute a matrix of same/different judgments Yk = D > θk. The Yk

matrices were then compared to the true same/different matrix to

compute true positive and false positive rates tk and fk. The vectors t and

f constitute a Receiver-Operating-Characteristic (ROC) curve, and the

area under the curve (AUC) was computed with numerical integration.

Finally, we computed ′ =d Z AUC2 ( ) where Z( ⋅ ) is the inverse cu-

mulative distribution function (CDF) of the standard normal distribu-

tion. This approach was applied to image pixels, the output of each

layer of the VGG-16 network, and the appearance representations of the

Active Appearance Model (AAM) before and after projection into an

LDA space. Outputs were taken after pooling and rectification in each

convolutional block (conv1, …,conv5), after rectification in the first-

two fully-connected layers (fc6, fc7), and before and after the softmax

operation in the final fully-connected layer (fc8, prob., respectively).

2.4.1. LFW

For LFW simulations, verification is reported across the entire set of

237,705 image pairs.

2.4.2. VGGFace2-test

For VGGFace2-test simulations, we divided the set of 499,500 image

pairs into 20 non-overlapping segments. For each segment, we com-

puted verification d′ as described above, and report the mean calculated

over segments. Error bars show 95% confidence intervals obtained from

bootstrapping the sample of 20 values.

2.5. A human behavioral experiment on unfamiliar face verification

To provide a quantitative basis for evaluating the models, we car-

ried out a behavioral experiment in which participants were presented

with pairs of images of unfamiliar individuals and rated how likely it

was that the images were of the same individual.

2.5.1. Participants

Twenty-three undergraduate students (15 female, mean age 20 yrs)

from Carnegie Mellon University provided informed consent to parti-

cipate in the experiment in exchange for course credit, in accordance

with the protocol approved by the Institutional Review Board.

Participants all reported normal or corrected-to-normal vision and were

either Caucasian or raised in environments with many Caucasian in-

dividuals.

2.5.2. Stimuli

We used a version of VGG-16 pretrained on the original VGGFace

dataset (Parkhi et al., 2015) to select difficult matching and non-

matching image pairs in a dataset of unfamiliar Australian celebrities

(Dunn, Ritchie, Kemp, & White, 2019). This dataset contains 40 iden-

tities with approximately 50 images per identity. Notably, there is no

overlap in either VGGFace or the Australian Celebrities datasets with

the VGGFace2 dataset that we used to train the DCNNs, as we explicitly

removed all overlapping identities from the VGGFace2 dataset before

any training. To select difficult image pairs, we selected the 1000

matching identity pairs with the largest cosine distance at the pe-

nultimate layer (fc7), and the 1000 non-matching identity pairs with

the smallest cosine distance at the penultimate layer. For each partici-

pant, we randomly selected 200 of these pairs for each of the matching

and non-matching conditions to yield 400 total trials per participant.

2.5.3. Procedure

Participants were seated approximately 60 cm from a computer

screen and stimulus size was computed in terms of degrees of visual

angle calibrated for either of 2 Dell LCD monitors. Participants com-

pleted a face verification experiment in which, on each trial, two face

images were shown simultaneously to the left and right of the center of

the screen for up to 10s. Participants were instructed to compare the

similarity of the perceived identity by providing a 1–7 rating using the

keyboard to indicate how similar the two faces were, where 7 indicated

that the identities were definitely the same, and 1 indicated that the

identities were definitely different. Following key press, a 500 ms in-

terval ensued before the start of the next trial. Participants completed

up to four sessions of the same 400-trial sequence, each taking ap-

proximately 15 min, performed back-to-back on the same day. No

feedback was provided and thus, no information about the face iden-

tities was given to the participants. Prior to the start of each session,

instructions were provided and the participant was given ten practice

trials to acclimate to the experimental setup.

We then tested the verification ability of the face-trained and object-

trained versions of VGG-16, as used in Methods 2.3.1 and Results

3.2–3.6, measuring unfamiliar verification performance of the pre-

trained models, before any fine-tuning on the identities used in the

behavioral experiment. Specifically, following earlier analyses, for each

participant, we computed network performance by first computing

cosine distances between fc7 representations of each pair of trials for a

given participant, extracting the area under the ROC curve, and con-

verting this area to d′ as the network performance for a given partici-

pant's set of trials.

2.6. An algorithm for combining perceptual and identity representations in

face verification

To directly model the human task of performing face verification on

images of unknown familiarity, we developed an algorithm that could

use either perceptual or identity representations depending on their

relative informativeness for a given face pair. The rationale for the rule

is that face verification can be performed trivially if the two identities

can be determined with confidence, and otherwise requires a more

detailed perceptual comparison. We thus implemented a criterion C for

determining whether to use identity or perceptual representations,

based on the sum of output probability maximums over the two images.

That is, identity representations are used if max(pID(x1)) + max (pID
(x2)) > C, and otherwise, perceptual representations are used. The

identity comparison can be made either by an explicit distance com-

putation between probability distributions for the first and second

image, or by verifying that the maximally active identity for each image

is the same. We chose to implement the latter, as it makes a weaker

commitment to the specific localist identity representation used in

DCNNs, requiring only that whatever identity representation is used, it

must be able to provide an index into the most probable identity; this

seems to be a minimal requirement of any model of human identity

representations. The criterion C was fit on a set of training images in

order to maximize the area under the ROC curve for identity verifica-

tion, for networks before and after familiarization. Fitting was
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performed with 5-fold cross-validation on the set of image pairs used in

the behavioral experiment and associated simulation. Performance was

computed before and after familiarization using the same face-trained

network as in earlier experiments.

3. Results

3.1. Humans perform better than a shape-free texture model at unfamiliar

face recognition

To get a better sense of the performance of the Kramer et al. (2018)

model's ability to verify unfamiliar and familiar faces, we reanalyzed

their main results. Given that the probabilities of hits and false alarms

were not provided, we simulated them from a normal distribution es-

timate of the face distances provided in Fig. 11 of Kramer et al. (2018).

We then performed an ROC analysis to compute d′. We estimated

d′=0.707 for the unfamiliar PCA space, and d′=3.56 for the familiar

PCA + LDA space, shown in Fig. 3A. These results demonstrate a severe

deficit for unfamiliar face verification, in contrast to reasonably accu-

rate verification of familiar face identities.

To understand whether their model accounted for human-level

performance in unfamiliar face matching, we next reanalyzed their

results for the Glasgow Face Matching Test. Notably, here the AAM

PCA + LDA model was used to compute unfamiliar face recognition,

using the LDA trained on the faces used in their previous experiment.

From provided values of hit and false alarm rates phit and pfa, we

computed d′ = Z(phit) − Z(pfa), where phit = p(saysame — same),

pfa = p(saysame — different). The results of the model, phit=.82 and

pfa=(1 − .78), yield d′=1.65. For the human data on the same task,

phit=.92, pfa=(1 − .88), we obtained d′=2.58 (Fig. 3B). Kramer et al.

(2018) did not provide analogous data for the PCA-only model; given

the results of the earlier experiment, where d′ was estimated as 0.707,

we can only assume that this model performed more poorly than the

unfamiliar PCA + LDA model. This suggests that some of the task-re-

levant (i.e., not purely statistical) variability is generic and not idio-

syncratic, as it may be learned from an LDA solution on other faces.

3.2. A face-trained DCNN performs better than a shape-free texture model

on both unfamiliar and familiar faces

We next tested an Active Appearance Model conceptually similar to

the one used by Kramer et al. (2017) and Kramer et al. (2018), however

with fully-automated (rather than semi-automated) landmark labeling;

the model is otherwise identical, with a PCA being performed on the

shape-free appearance, submitted to an LDA over training images for

familiar faces only. We compared performance with that of a DCNN

trained on either objects or faces. We assessed performance on a stan-

dard face verification baseline—Labeled Faces in the Wild (Huang

et al., 2007)—and used the deep-funneled images, which have been

computationally aligned using an approach based on deep learning

(Huang et al., 2007), providing a helpful starting point for landmark

labeling and alignment in the AAM.

As shown in Fig. 3C, both the AAM and DCNN models show a fa-

miliar face advantage. However, the face-trained DCNN performs sub-

stantially better with unfamiliar faces than the AAM model does even

with familiar faces. When the task is unconstrained, the 2D automated

AAM shows its weakness as a model of human face perception in

comparison with the face-trained DCNN. In contrast, an object-trained

DCNN performed worse at both unfamiliar and familiar face recogni-

tion, demonstrating that model complexity per se cannot account for

the increase in performance of the DCNN relative to the AAM; rather,

the specific experience of the face-trained network allows the network

to achieve higher performance on both unfamiliar and familiar faces.

3.3. Face domain experience is necessary to learn to recognize new face

identities robustly

Given that the face-trained, but not the object-trained DCNN per-

formed well on verification of both unfamiliar and familiar individuals,

we next sought to better understand how specific aspects of visual ex-

perience shaped DCNN identity perception. To do so, we pretrained two

networks on roughly the same number of objects or faces (as in the last

section), and randomly initialized a third network. We then fine-tuned

each network to recognize new identities. The training and validation

accuracy throughout learning for these three networks are shown in

Fig. 4A.

Whereas the face-trained network quickly and robustly learned to

Fig. 3. The model of (Kramer et al., 2018) underestimates human-level unfamiliar face recognition and is outperformed by a face-trained, but not an object-trained

DCNN. In A., we estimated d′ from their distance measurements. In B., we converted their reported hit and false alarm rates to d′, which notably were not reported for

the PCA model but only a PCA + LDA model fit on a separate set of identities from the ones tested. In C., we constructed an Active Appearance Model (AAM) similar

to that used by (Kramer et al., 2018) but with fully-automated labeling of landmarks, and compared its performance on face verification of deep-funneled images of

Labeled Faces in the Wild with a deep convolutional neural network model trained on faces (face-DCNN), or objects (object-DCNN), before and after familiarization.
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categorize both seen and unseen images for the new identities, the

object-trained network learned considerably more slowly, and gen-

eralization of its knowledge to held-out images was low. Despite the

poorer performance of the object-trained network, it still performed

better than the randomly initialized network. Performance plotted per

identity across a range of per-identity experience is shown in Fig. 4B.

These results demonstrate that the face-trained network learned to re-

cognize novel faces robustly based on very little identity-specific data,

achieving accuracy>=75% with as few as 10 training images per

identity, and 100% accuracy with as few as 25 training images per

identity. In contrast, the accuracy of the object-trained network de-

pended much more strongly on the amount of experience, and remained

below 90% even for the majority of individuals for which there were

over 50 unique training images. These findings support our hypothesis

that a high-fidelity featural description of faces—learned from a wealth

of experience—is necessary to be able to group together highly variable

ambient images of familiar faces for successful recognition. In other

words, idiosyncratic experience on its own is not sufficient for good

performance, especially when limited data is available for a given

identity. The findings also support the notion that some of the features

relevant to face identity recognition can be learned generically from

pretraining on objects, but that this amount is relatively small, and

object learning does not provide a sufficiently robust description for

generalizing to unseen face images based on limited experience.

3.4. Face domain experience is necessary for robust unfamiliar verification

performance

While recognition accuracy provides a good assessment of the

ability of our networks to learn new faces, a different approach is

needed to examine unfamiliar face processing abilities, and to compare

them with familiar face processing abilities on the same images. We

adopted the same approach as used in human studies: a face identity

verification task in which the goal is to determine whether two faces are

of the same identity. We computed a verification score based on the

pairwise distances in a given representation, and applied this metric to

image pixels and to each layer in the network, allowing us to determine

which layer's representation most effectively discriminates between

identities, and providing a measure of the extent to which performance

is based on image or low-level statistics.

Verification performance for face- and object-trained networks, as

well as for a randomly initialized network, are shown in Fig. 5, before

Fig. 4. Familiarizing three DCNNs with a novel set of identities. Networks pre-trained on faces, objects, or nothing (randomly initialized) were fine-tuned on novel

identities in Labeled Faces in the Wild. In A., we plot performance of each network throughout training on training and held-out testing images collapsed across all

new identities. In B., we plot accuracy for each new identity separately, vs. the number of unique training examples for each identity, shown for a representative

sample of epochs throughout the course of familiarization.
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and after familiarization. First, examining performance of the face-

trained network on a set of unfamiliar faces, shown in the dashed blue

line, we can see that identity verification performance improves with

increasing depth in the network (d′>3 in fc7) up until the final, ex-

plicit probability layer, where performance sharply drops off (d′<1 in

prob). Notably, the network does not yet have an identity representa-

tion for the images it is verifying, thus, this result implies that the

probability distribution over familiar faces is substantially less in-

formative for unfamiliar face identity perception than the network's

high-level perceptual representation in the penultimate layer. In

contrast to the face-trained network, the untrained and object-trained

networks show very little improvement with depth in the network, with

all d′<0.7. These results demonstrate that a similarity space developed

through hierarchical computations in a network which has learned to

recognize a large number of face identities naturally captures a sub-

stantial amount of identity-invariance for unfamiliar identities, placing

same-identity images closer together than different-identity images to

support good verification performance. These results challenge claims

that within-identity facial image variability is entirely idiosyncratic;

rather, the within-identity variability learned for familiar faces allows

for large improvements in verifying unfamiliar face identities.

3.5. Each fine-tuned layer shows a small familiarity advantage, but the final

identity-based representation shows a qualitatively larger advantage

One benefit of our method is that it allows us to compare unfamiliar

and familiar performance on the same images of the same individuals.

Fine-tuning was performed only on the weights into the fully-connected

and output layers, and, as shown in Fig. 5, all of these layers show a

small boost of familiarity. However, the large familiarity effect ob-

served in many studies comparing human unfamiliar and familiar face

processing is seen specifically at the output layer, which performed the

best after familiarization but performed very poorly on unfamiliar

faces. The randomly initialized and object-trained networks demon-

strated some improvement with familiarity, but neither came close even

to the unfamiliar performance of the face-trained network. These results

suggest that familiarization of a sufficiently developed representation

(i.e., one learned through prior experience with faces) allows the ver-

ification task to be performed on the basis of an identity representation,

which, in the network, approaches orthogonality in the limit of perfect

identification. In contrast, unfamiliar faces must be processed on the

basis of more overlapping perceptual representations, which none-

theless untangle a substantial amount of invariance related to the per-

ception of identity.

Fig. 5. Familiar and unfamiliar face verification by DCNNs with different

training distributions matched in total number of images. Cosine distance ma-

trices were computed over images for each layer separately, before and after

familiarization. Unfamiliar representations were computed immediately fol-

lowing pretraining, and familiar representations were computed for the same

images after 50 epochs of fine-tuning on a separate training set of images for the

novel identities. d′ was estimated with an ROC-based analysis (see Methods).

Fig. 6. Distance matrices of perceptual and identity representations in a face-trained DCNN before and after familiarization. Cosine distances were computed over

images, with images sorted by identity (10 images per identity). The top row shows distances for the highest-level perceptual representations (fc7), and the bottom

row shows distances for the softmax-probability identity representations (prob). The left-most column shows unfamiliar distance matrices, the middle column shows

familiarized distance matrices, and the right column takes the difference (familiar – unfamiliar). (For best viewing of familiarization difference plots, the reader is

referred to the online color version of the article.)
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3.6. Familiarity makes images of the same individual look more similar, but

minimally affects distances between different individuals

Another key aspect of familiarity effects in face perception is that,

when asked to sort ambient images of multiple identities into separate

groups, people are highly accurate for familiar faces, but for unfamiliar

faces they make many misses (failures to group together same-identity

images) yet few false alarms (failures to separate different-identity

images) (Jenkins et al., 2011). This suggests that the human face-si-

milarity space is largely sufficient to tell unfamiliar faces apart, but

requires experience with individuals in order to group together highly

variable images of the same person. To examine whether similar effects

are seen in the network, we plotted the cosine similarity matrices for

the penultimate fully-connected layer (fc7) and the output layer (prob)

of the face-trained network which entered the ROC analyses used to

generate d′ values in Fig. 5, for familiar and unfamiliar faces, as well as

the difference of these, shown in Fig. 6.

The unfamiliar distance matrix of fc7 shows a relatively accurate

form, with low-distance clusters near the diagonal where the identities

are the same, and mostly larger distances for different-identity pairs.

Familiarization cleans up the non-matching areas of the distance ma-

trix, resulting in greater overall uniformity across non-matching iden-

tities, despite greater overall similarity. However, familiarization does

not affect the diagonal for the most part. In contrast, the output (prob)

layer correctly places non-matching identities far apart before famil-

iarization; however, it also fails to assimilate most pairs of matching

identity images. After familiarization, this layer learns a near-perfect

representation, with virtually all of the difference emerging as the as-

similation of matching identity images. This result suggests that fa-

miliarity may provide a separate, identity-based similarity space which

more readily groups together highly variable images of the same

identity into a common representation than does the perceptual space

(e.g., that of fc7).

3.7. Increasing face experience improves both perception of unfamiliar faces

and learning of novel identities

An important aspect of the expertise account of unfamiliar (and

familiar) face recognition is that performance is dependent not only on

some experience with faces, but on substantial experience with faces. To

test this, we trained the network on 1%, 10%, or 100% of the identities

in the VGGFace2 database and tested unfamiliar and familiar verifica-

tion, as well as accuracy throughout learning. Fig. 7A demonstrates

increasing verification performance for both unfamiliar and familiar

faces when training on a larger number of face identities. Fig. 7B shows

that the increase in verification performance of unfamiliar and familiar

faces in fc7, and familiar faces in the output identity layer, is roughly

linear with the log of the fraction of identities that are pretrained.

Further, the left panel demonstrates a qualitative performance differ-

ence on novel faces with an increasing number of pretrained faces.

Specifically, whereas the network trained on all the face identities

shows a sharp increase in familiarized performance at the output

layer—the previously described recognition-based verification ad-

vantage—the networks trained on less data do not show this effect. The

right panel demonstrates that this qualitative change is explained by a

greater slope in the relationship between verification of familiar faces

in the output layer compared to that of verification of unfamiliar and

familiar faces in fc7. In sum, these results indicate that face training

alone is not sufficient to achieve both high performance in unfamiliar

face recognition, and a qualitatively large familiar face advantage at the

output layer; rather, both effects are enhanced through substantial face

experience, as present in the network trained on all the identities.

3.8. Perceptual learning is not necessary for the familiar face advantage

To determine whether the familiar face advantage depends on

perceptual learning—that is, fine-tuning of perceptual features—rather

than the mapping between perceptual features and output identity

nodes, we fine-tuned either the full network, the fully-connected layers

only (as in earlier simulations), or the output identity mapping only.

For these simulations, we used the VGGFace2-test set in order to test a

larger number of identities and images per identity. Here we used a

validation set in order to train to convergence with a learning rate that

decays upon plateau, as in pretraining, and then computed confidence

intervals of verification performance by performing bootstrapping on a

sample of non-overlapping segments of pairs of a different set of ver-

ification test images. Verification results for each network at the output

and fc7 layers are shown in Fig. 8, when pretraining on objects versus

faces, using either 10 or 100 newly familiar identities.

Examining the output layer verification performance of the face

pretrained network (top left subplot in each figure panel), for each

number of identities used in fine-tuning, the verification performance of

the network when fine-tuned starting at conv1, fc6 or fc8 did not differ

significantly (means within 95% confidence interval of fc8 perfor-

mance). In contrast, irrespective of the number of identities used in

fine-tuning, the output-layer performance of the object-pretrained

network improved with fine-tuning beginning earlier in the network,

especially for larger numbers of familiarization images per identity.

These results demonstrate that perceptual learning is not necessary for a

large advantage in verifying familiar faces. Rather, this advantage re-

quires only learning to map highly variable perceptual representations

of each identity to a common identity representation, making the

Fig. 7. Unfamiliar and familiar face verification measured in networks varying in the extent of face experience prior to familiarization. A fraction of 0.01, 0.1, or 1.0

of the total identities were used, and corresponding results for unfamiliar and familiarized face recognition are plotted as a function of layer (A) and fraction of

identities (B) for high-level perceptual and identity representations. In B, a log10 X-scale is plotted against a linear Y-scale.
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information relevant to the verification task explicit. Whether the per-

ceptual representations have actually been adapted to the newly fa-

miliar faces is therefore irrelevant to this effect.

Further, across a broad range of training conditions, we replicated

the earlier finding that prior experience with faces is necessary to

achieve high verification performance, here using up to 400 familiar-

ization images per 100 individuals. Thus, while such substantial fa-

miliarity permitted huge gains in face verification in the face expert

network (d′ ≈ 8 compared to d′<5 before familiarization; 100 iden-

tities, 400 images each, first fine-tuned layer fc8), performance of the

most heavily familiarized object network (d′ ≈ 5; 100 identities, 400

images each, first fine-tuned layer conv1) only barely surpassed the

performance of the unfamiliar face expert network, which achieved

equivalent familiarized performance with only 10 images of the same

individuals (d′ ≈ 6, identity representations, first fine-tuned layer fc8),

and achieved greater performance with 50 images per identity, without

modification to perceptual features (d′>6, identity representations,

first fine-tuned layer fc8). Thus, while familiarity may provide large

gains in verification performance through the development of a con-

fident identity representation, truly robust familiarized performance

depends on having an expert perceptual face mechanism, which may be

learned generically from other face identities.

3.9. Humans and a face-trained DCNN perform similarly on unfamiliar

verification of challenging pairs

Finally, we sought to confirm that the DCNN simulation performs

comparably to humans, to support our claim that its results are relevant

to understanding the human perceptual system. We selected a set of

challenging face pairs with an independent face-trained DCNN, and

tested both humans and the face-trained and object-trained DCNNs

used in the main LFW simulations. Human and DCNN performance is

shown in Fig. 9. Human performance was evaluated for each of 4 ses-

sions verifying the same pairs of unfamiliar face identities, whereas the

networks were evaluated only once following pretraining. In the first

session, humans showed a trend toward better performance than the

DCNN (t=1.82, p=0.0824) at this unfamiliar verification task. Humans

showed improvement over sessions even in the absence of feedback,

and performance in each of the second through fourth sessions was

significantly better than that of the DCNN (all ps<0.001). Notably, the

state of the DCNN that performed at this level of unfamiliar face re-

cognition was sufficient to learn to perfectly verify the same images

following familiarization on a separate set of images (see Fig. 10). In

demonstrating similar performance of humans and the DCNN at un-

familiar verification—and if anything, slightly better performance of

humans—these results validate our use of this model in making a claim

for perceptual expertise underlying both unfamiliar and familiar faces.

3.10. A simple cognitive rule allows for optimal combination of perceptual

and identity information in the service of identity verification of images of

arbitrary familiarity

Two potential critiques of our work thus far are 1) no single re-

presentation in the model performs similarly to humans in both un-

familiar and familiar face recognition; rather, human unfamiliar face

recognition is modeled well by the highest perceptual layer (fc7)

whereas the benefits of familiarity in verification are seen when ex-

amining the explicit probability layer (prob), and 2) it assumes a loc-

alist identity representation which seems at odds with the distributed

semantic, biographical, and episodic representation many believe

constitutes a human identity representation. Regarding the first point,

our claim is that humans have access to both forms of representations

and can easily determine the more useful one for a pair of images, a

process which is likely automated by the confidence of identity re-

cognition of each individual. We developed a simple cognitive rule-

Fig. 8. The effect of experience with familiarized identites on familiar face verification, depending on the point in the network where fine-tuning begins: conv1,

where the entire network is adapated; fc6, the type of fine-tuning used in the LFW experiment; and fc8, where only the final classifier layer is adapted. Fine-tuning on

10 identities is shown in A., and on 100 identities in B. Within both A. and B., columns vary the domain of pretraining (faces, objects), and rows vary the layer from

which verification is computed (prob or fc7).

Fig. 9. Comparing human and DCNN unfamiliar verification performance on a

challenging set of face image pairs from a dataset of Australian local celebrities.

Unfamiliar verification performance of VGG-16 DCNN pretrained on objects or

faces is shown on the left. Humans performed the same verification task 4

times, and performance is plotted for both the first totally unfamiliar session,

and each of the three repeat sessions.
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based model to demonstrate how this might be done. We performed this

analysis as a proof of concept that perceptual and identity representa-

tions can be optimally combined on the fly for human-like unfamiliar

and familiar face identity verification, and hold no strong commitment

to the specifics of the rule. As described in Methods 2.6, the intuition is

straightforward: given two images, if the system is highly confident

about the identity of either image, or relatively confident about both, it

should decide based on whether the identities match; otherwise, it

should perform the task by comparing the perceptual representations

elicited by each face. This rule also addresses the second point, as it

softens the assumption of a localist identity representation, rather re-

quiring only that whatever identity representation is used, it yields a

confidence value for and index to the most probable known identity for

a given face image.

Using the same images as in the human behavioral experiment, as

shown in Fig. 9, we implemented the cognitive rule and evaluated it

before and after familiarization. Results are shown in Fig. 10. As ex-

pected, this unitary mechanism recognizes difficult pairs of unfamiliar

faces at above-chance levels and produces a sharp benefit for familiar

faces, reaching perfect performance on the small set of images used.

4. Discussion and conclusions

The hypothesis that humans are not experts at unfamiliar face re-

cognition has gained considerable attention recently, in part due to a

host of studies demonstrating deficits on challenging face verification

tasks for unfamiliar versus familiar faces. But the question remains: Are

we as poor at unfamiliar face recognition as has been suggested by some

(Young & Burton, 2018), or are we perceptual experts for faces re-

gardless of familiarity (Rossion, 2018; Sunday & Gauthier, 2018)? Is the

majority of face variability idiosyncratic to each identity (Kramer et al.,

2018) or more generic across individual face identities? If the varia-

bility is more generic, do humans simply fail to learn this variability in

the service of unfamiliar face perception?

Kramer et al. (2018) have recently put forth a model of face per-

ception to explain both the robust human performance in recognizing

familiar faces as well the poorer performance on unfamiliar faces.

However, although this model does exhibit a familiar face advantage,

we demonstrated that it substantially underestimates human-level

performance on unfamiliar faces, and in so doing, may have led to a

false rejection of human perceptual expertise in unfamiliar face re-

cognition (Young & Burton, 2018). We showed that a conceptually si-

milar active appearance model, using fully-automated computational

face alignment, performed much more poorly than a deep convolu-

tional neural network (DCNN) at both unfamiliar and familiar face re-

cognition, but only if the DCNN was trained for face recognition

(Fig. 3). Strikingly, the performance of the DCNN on unfamiliar faces

was substantially better than the AAM model's performance on familiar

faces. In contrast, the accuracy of a face-trained DCNN on unfamiliar

and familiar face verification was comparable to that of humans

(Fig. 9). The high performance of the DCNN justified an exploration of

it in greater detail in order to better understand the experience neces-

sary for human-level unfamiliar face identity verification, and why

humans display a sharp improvement in the verification of familiar

identities.

The high performance of the face-trained DCNN on unfamiliar face

recognition suggests that a large share of the variability in face images

that is relevant to recognition is generic across faces. The boost in

performance on familiar faces confirmed the result of Kramer et al.

(2018) that an additional share of variability is idiosyncratic and must

be learned for each face. The next question is how much of the neces-

sary generic variability is specific to faces versus being potentially

learnable from other natural object categories? The answer to this

question is important for our understanding of unfamiliar face re-

cognition: if high performance is dependent on experience with faces

and cannot be achieved through generic experience with natural object

images, it reinforces the idea that unfamiliar face recognition perfor-

mance is the product of a specific learned expertise with faces per se.

To answer this question, we compared the face-trained DCNN to one

trained on a size-matched database of objects and to a randomly in-

itialized one. The object-trained DCNN performed slightly better than

the randomly initialized network at unfamiliar face recognition and

much better at familiar face recognition. However, it performed strik-

ingly worse than the face-trained network at both unfamiliar and fa-

miliar face recognition, with even familiarized recognition substantially

worse than the unfamiliar recognition of the face trained network. This

result suggests that the majority of generic identity-preserving face

variability is not also generic across a broader class of natural objects.

Further, these results demonstrate that a representation trained to

capture generic face variability through experience with face images is

important for human-level unfamiliar face verification, for learning to

recognize new familiar individuals, and for robustly verifying those

familiarized individuals.

Given strong evidence that the domain of experience is important for

developing expertise in both unfamiliar and familiar face recognition,

we next asked how performance depended on the extent of experience

recognizing faces. To do so, we varied the number of identities seen in

pretraining. We found that performance in verification of both un-

familiar and familiar faces consistently improved with experience over

an increasing number of identities. This result strengthens the expertise

account of general face recognition, and weakens the claim that faces

must be learned one at a time (Young & Burton, 2018). Lastly, we ex-

tended our simulations to a broader range of familiarization conditions,

varying both how many layers of the network were allowed to be fine-

tuned, as well as the specific number of identities and images per

identity shown to the network. In doing so, we found that the features

learned from a large set of face identities were sufficient to learn an

accurate mapping over multiple examples to arbitrary new identities,

and this mapping (learned through familiarization) produced robust

familiarity advantages regardless of whether perceptual learning took

place. Thus, we argue that perceptual learning is not necessary for the

familiar face advantage. Although, in humans, perceptual learning

(Collins & Behrmann, 2020) and associated neural changes (Collins,

Robinson, & Behrmann, 2018; Dobs, Isik, Pantazis, & Kanwisher, 2019)

Fig. 10. Verification using a cognitive rule that flexibly determines whether to

use perceptual or identity representations. Results are shown for the face-pre-

trained network before and after familiarization, evaluated on the same images

as in the behavioral experiment. We plot area under the ROC curve (ROC-AUC)

here instead of d′, as d′ = ∞ for the familiarized network on this small set of

image pairs.
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may very well occur for familiar faces, we argue that these effects are

not necessary to develop a familiar face advantage in identity percep-

tion. Rather, the ability to map an image of a familiar face to a pre-

existing identity/biographical representation provides a more effective

means of matching faces than a perceptual comparison, and this iden-

tity-based matching is possible only for familiar faces. However, we

want to be clear that it is possible that familiarization could produce

greater perceptual orthogonalization of different identities through re-

current dynamics or vector length normalization (Liu et al., 2017;

Ranjan, Castillo, & Chellappa, 2017)1; however, our findings show that

this is not necessary, likely because the same features are relevant

across a wide range of faces. This idea has been supported by

Abudarham et al. (2019) who show that the same critical perceptual

features are used by humans for recognizing familiar and unfamiliar

faces, as well as by a deep neural network. Thus, we reject the claim

that each face identity must be learned from scratch (Young & Burton,

2018); rather, a lifetime of face learning allows for new faces to be

rapidly familiarized based on little to no perceptual learning.

Finally, we devised a task to compare human performance with that

of a DCNN on challenging image pairs chosen by an independently

trained DCNN. Our results showed that the network was only slightly

worse than humans at difficult unfamiliar face recognition. Given that

DCNNs have recently been shown to perform on par with trained

human facial examiners, which both performed better than untrained

students (Phillips et al., 2018), the gap in performance seen here may

be a result of using another DCNN—albeit one trained on entirely dif-

ferent face identities—to select hard images. Given the common ar-

chitecture of the networks, it is possible that some image pairs are more

difficult for these DCNNs than for humans, and vice-versa, and that

some untested image pairs would be more difficult for humans than for

the DCNN. Further, while our approach guaranteed that unfamiliar

faces were totally unfamiliar to the network, some participants may

have had some familiarity with some of the local Australian celebrities

used as unfamiliar identities, which would give the human population a

further advantage. Finally, the ability of humans to make multiple

fixations and perform detailed featural comparisons between image

pairs provides a further advantage not available to the network, which

computed a single perceptual representation for each image, in-

dependent of the other image it was compared to. A more fine-grained

analysis of the differences between humans and DCNNs in face re-

cognition is an important open question for further research. Intrigu-

ingly, humans improved substantially over sessions of repeated trials

even without feedback, suggesting that they were able to learn about

the unfamiliar faces in the absence of any explicit cues to identity. This

result suggests that, while pre-existing identity-specific representations

are unavailable for unfamiliar individuals, they may be rapidly con-

structed without explicit cues to identity, perhaps by building episodic

representations throughout the course of the behavioral experiment,

which can be mentally clustered into a set of possible identities. In so

doing, humans may integrate guesses about identity clusters with

comparisons of perceptual representations to improve performance. An

integration of identity information with existing perceptual re-

presentations may also explain how learning new faces creates apparent

changes in an existing face space that are selective for the learned

identities (Collins & Behrmann, 2020).

Given the results of our simulations and behavioral experiments, we

return to the question of expertise in human unfamiliar face recogni-

tion. Let us consider an analogy of a professional golfer. As professional

golfers routinely play the most challenging golf courses in the world, it

is not hard to imagine that they get better at playing these courses with

experience—whether via examination of a map, engagement with

word-of-mouth advice from local experts, or experience through game-

play. In this sense, the professional golfer must learn the idiosyncrasies

of each course—just as Young and Burton (2018) argue humans must

do for novel familiar faces. Imagine now that a cognitive psychologist

interested in golf expertise asks professional golfers to play a round of

18 holes on 6 courses that they have never played, and prevents them

from seeing a map or gaining any other knowledge of the course besides

what they experience as they play it. After this first round, they are

allowed to study the course in depth, and play as many practice rounds

as they can in a week before coming in for a final test of their perfor-

mance. It would not be surprising if the pro golfers performed better

with experience, as a result of learning the course's geography and other

relevant details which were entirely unknowable in the first round.

Imagine further that untrained golfers, amateur golfers, and profes-

sional tennis players (who are not also professional golfers) are brought

in for the same experiment. It again would be unsurprising if the final,

familiarized score of these less-skilled golfers improved from the earlier

baseline, but yet, it would be surprising if their score reached even the

baseline performance of the professional golfer. Given this, is the pro-

fessional golfer a golf expert, or only an expert at familiar courses? In

our view, the golfer's expertise is evident both in their high baseline

performance level relative to other well-defined groups, as well as in

their ability to rapidly learn the idiosyncrasies of the new course in the

service of maximizing performance. We believe that the case of face

expertise parallels the case of the golfer. Like golf courses, faces have

idiosyncrasies which must be learned. But these idiosyncrasies do not

represent the dominant variability of faces (which can be learned from

other faces). By learning this generic variability, unfamiliar face per-

ception is enhanced, and idiosyncratic variability can be learned ra-

pidly in the service of familiar face perception.
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Appendix A. Supplementary data

Data from all simulations is made available at https://doi.org/10.

1184/R1/12275381, and code relevant to reproducing the simulations

and plotting the results is made available at https://github.com/viscog-

cmu/familiarity_sims. Supplementary data to this article can be found

online at https://doi.org/10.1016/j.cognition.2020.104341.
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Data from all simulations is made available at https://doi.org/10.1184/R1/12275381, and code relevant to repro-
ducing the simulations and plotting the results is made available at https://github.com/viscog-cmu/familiarity_sims.

1 Learning vector-length normalized face representations: effects on

perceptual face verification for familiar and unfamiliar faces.

Normalizing the vector-length of face representations has proven to be an effective method for achieving representations
which are more separable across identity using a cosine (i.e. angular) distance metric[3]. Very similar work has
reformulated the softmax loss as an angular softmax loss with margin, to encourage angular separation of features lying
on a hyper-sphere manifold [1]. We implemented the method of [3], where the vector length of fc7 representations is
normalized and scaled to a value of α = 40 for each image. As shown in the paper, the specific value of α is not crucial
so long as it is sufficiently large to allow enough surface area to ensure separability of the classes. This approach was
used in the best performing model in [2].

Figure S1: Comparing face verification from identity and perceptual representations in face-pretrained networks.||l||2 =
40 networks were additionally fine-tuned (fc6-fc8) with the constraint that the vector length of fc7 representations
was normalized to 40 for all images. Whereas strong improvements in verification with familiarity are seen only in the
output layer for the standard face-pretrained network, in the l2-normalized network, familiarity gains are also seen in
the perceptual representations. However, the best verification is still seen in the output identity representations, and
this performance is equivalent to the standard network. Similarly, performance in the perceptual representation layer
(given by the green line in two righmost plots) is similar for unfamiliar faces.
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Figure S2: Sub-figures show an increasing number of training images per identity from top to bottom, with starting
fine tuning later in the network from left to right. The l2-normalized network, shown in orange, show a large familiar
face advantage that extends into perceptual representations. However, unfamiliar performance is equivalent across
l2-normalized and standard softmax face-trained networks.
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Normalizing the vector length of perceptual representations allows for a larger degree of orthogonalization of
face identities in the perceptual layer, allowing for gains in verification performance in the fully-connected layers for
familiar identities that are qualitatively similar to the gains seen only in the output probability layer in the standard
softmax face-trained network. Unfamiliar performance is unaffected by this change. The results demonstrate that the
standard face-trained DCNN with learned readout from fixed perceptual representations performs approximately
as well as the end-to-end fine-tuned l2-normalized face-trained DCNN. But, the l2-normalized face-trained DCNN
demonstrates that qualitatively large gains in perceptually-based verification are possible given learning from vector-
length normalized face representations. Given the similar verification performance between perceptual representations
in the l2-normalized network and identity representations in the standard network, it appears the l2-normalized is
mainly serving to orthogonalize the representations of familiar identities (as motivated in the original paper [3]),
which in the standard network is accomplished via the learned mapping and softmax over identity units.
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