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The representations and mechanisms guiding everyday routine sequential action remain incompletely
understood. In recent work, the authors proposed a computational model of routine sequential behavior
that took the form of a recurrent neural network (M. Botvinick & D. C. Plaut, 2004). Subsequently, R. P.
Cooper and T. Shallice (2006) put forth a detailed critique of that work, contrasting it with their own
account, which assumes a strict hierarchical processing system (R. P. Cooper & T. Shallice, 2000). The
authors respond here to the main points of R. P. Cooper and T. Shallice’s (2006) critique. Although
careful and constructive, the arguments offered by R. P. Cooper and T. Shallice (2006) mistook several
superficial implementational issues for fundamental theoretical ones, underestimated the computational
power of recurrent networks as a class, and in some ways mischaracterized the relationship between the
accounts they compare. In responding to these points, the authors articulate several key theoretical
choices facing models of routine sequential behavior.
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The knowledge structures, or schemas, that guide everyday
action routines have been of fundamental interest to psychologists
since the time of William James (James, 1890; Miller, Galanter, &
Pribram, 1960; Norman, 1981; Reason, 1990; Schank & Abelson,
1977). However, whereas the topic has become increasingly cen-
tral within artificial intelligence (e.g., Barto, Singh, & Chentanez,
2005), human factors research (e.g., John, 2003), and neuroscience
(e.g., Grafman, 1995), within psychology it appears to have drifted
toward the sidelines. Although important work has certainly con-
tinued, both in psychology and in neuropsychology (e.g., Altmann
& Trafton, 2002; Buxbaum, Schwartz, & Montgomery, 1998;
Forde & Humphreys, 2002; Zacks & Tversky, 2001), research into
the representations underlying routine sequential behavior stands
in need of reinvigoration. Hence, the series of articles by Cooper
and Shallice (Cooper & Shallice, 2000; Cooper, 2003, in press;
Cooper, Schwartz, Yule, & Shallice, 2005) introducing an explicit
symbolic computational model of routine sequential action is of
considerable importance. Inspired by this work, we recently of-
fered an alternative model based on a recurrent neural network
architecture (Botvinick & Plaut, 2002, 2004). Cooper and Shallice

(2006) have analyzed the relationship between the respective ac-
counts, arguing broadly in favor of their approach and against ours.
Although the comments offered by Cooper and Shallice (2006)

rightfully restored the spotlight to some fundamental questions
concerning routine sequential action, they also have called for a
response. The investigators claimed to demonstrate several spe-
cific deficiencies in the behavior of the Botvinick and Plaut (2004)
model, but many of these can be shown to stem from fairly
superficial implementational factors rather than from basic theo-
retical assumptions. In translating their specific observations into
general statements about the Botvinick and Plaut (2004) frame-
work, Cooper and Shallice underestimated that framework’s com-
putational capacity and overestimated its dependence on ad hoc
assumptions. Finally, in characterizing the relations between the
Botvinick and Plaut (2004) account and their own, Cooper and
Shallice drew some debatable distinctions while at the same time
downplaying some critical ones.
In the present article, we reply to Cooper and Shallice (2006).

Although we aim to rebut a set of specific claims, our broader goal
is to advance the debate by laying out some key theoretical issues
that are raised by the contrast between the relevant models but
which have not yet been adequately articulated. These bear pri-
marily on two questions: (a) What kind of representational me-
dium supports routine sequential behaviors? and (b) What is the
computational basis of generativity in routine sequential behavior?
Our reply is organized into four sections. In the first, we con-

sider the specific results that Cooper and Shallice reported from
simulations using the Botvinick and Plaut (2004) model. In the
next section, we address two broad criticisms Cooper and Shallice
made of that model, both of which relate to the issue of generat-
ivity. In the third section, we offer an alternative perspective on
what Cooper and Shallice identified as the key differences between
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their paradigm and the one proposed in Botvinick and Plaut
(2004). Finally, we consider the parallel Cooper and Shallice drew
between the present debate and the rules versus connections debate
currently underway in some other domains of inquiry.
Throughout the article, in keeping with Cooper and Shallice

(2006), we refer to their computational framework as theIAN
(Interactive Activation Network)modeland to the Botvinick and
Plaut (2004) model as theSRN(Simple Recurrent Network)model.

Specific Observations

Cooper and Shallice (2006) presented observations from a series
of simulations using the SRN model that are purported to indicate
flaws in the theory the model implements. Six observations are
considered to be of particular concern: (a) the infrequency of
object substitution errors; (b) the failure of the model to produce
one specific anticipation error; (c) the failure of the model to
match, at test, the frequencies of tasks during training; (c) the
failure of the model to infer that certain subsequences are equiv-
alent and interchangeable; (d) the failure of the model to cope with
novel initial conditions; and (e) the susceptibility of the model to
catastrophic interference. In the following sections, we revisit
these issues, arguing that the observations reported in Cooper and
Shallice (2006) can largely be attributed to relatively inconsequen-
tial implementational considerations rather than to core paradig-
matic assumptions.

Object Substitution Errors

Object substitutions, as observed both in normal behavior and in
apraxia, involve incorrect use of one object in place of another—
Cooper and Shallice (2006) gave the example of pouring instant
coffee grounds into a sugar bowl instead of a cup. As Cooper and
Shallice (2006) noted, such errors do occur in the SRN model (see
Botvinick & Plaut, 2004, p. 417). However, as demonstrated in
their Simulation 1, substitutions make up a smaller proportion of
all errors than observed in human behavior.
As Cooper and Shallice (2006) correctly noted, for the SRN

model to acquire the wrong object in a given context, the model
must explicitly select that object, and it is unlikely to do this unless
its internal representation of task context is already disrupted.
Thus, having acquired the wrong object, the model is more likely
to select an action appropriate to that object than it is to use the
object to execute the correct action for the task context.
However, the infrequency of object substitution errors in the

SRN model stems from an inessential implementational choice.
For simplicity, Botvinick and Plaut (2004) modeled object selec-
tion as a deterministic process; when the model selected the
fixate-cupaction, the cup reliably appeared on the next time step
as the viewed object. This choice was made to minimize the
potential sources of error in the model so as to emphasize the role
of the model’s internal context representations in generating errors.
However, it is obvious from everyday life and well documented in
empirical studies (Zhang, Samaras, Yang, & Zelinsky, 2005) that
object selection is not deterministic. Searching for one object often
leads to the inadvertent and typically transient selection of another.
Incorporating this fact into the SRN implementation would have
increased the frequency of object substitution errors.

This can be illustrated by examining the behavior of the original
Botvinick and Plaut (2004) model if the incorrect visual input is
presented following a search action. We ran the model on the
coffee-making task used in Botvinick and Plaut (2004) until it had
torn open the coffee packet and selected the outputfixate-cupin
preparation to pour.1However, rather than providing the cup as the
viewed object on the next time step, we instead presented the sugar
bowl (input featurescup-shaped, two-handles, sugar). Faced with
this input, on most trials (78%), the model selectedpour (fixate-
spoonwas selected on 17% of trials andfixate-cupon the remain-
ing 5%). On the basis of the classification introduced by Schwartz,
Reed, Montgomery, Palmer, and Mayer (1991), this error—pour-
ing the coffee grounds into the sugar bowl—would count as a
substitution error.
Of course, if the model were trained under circumstances in

which search occasionally yielded the incorrect object, it would
presumably be less prone to error under such circumstances. Never-
theless, under noise, such a change would obviously lead substitution
errors to become more frequent than in the original model.2

Anticipation Errors

A second type of action error that Cooper and Shallice (2006)
focused on is the anticipation error, in which a critical action is
skipped. As is acknowledged in Cooper and Shallice (2006), the
SRN model does produce such errors at rates resembling those
observed empirically. However, it is pointed out that the model
fails to commit a particular anticipation error that does occur in the
coffee task when performed by patients with action disorganiza-
tion syndrome. Here, in adding cream, the step of opening the
cream container is omitted, leading to an effort to pour from a
sealed container.
However, the failure of the original model to emit this error

reflects an inessential implementational choice rather than a deep-
seated flaw in the paradigm. The error fails to occur for the simple

1 The Botvinick and Plaut (2004) model was retrained on the coffee and
tea sequences as described in the original article. However, the background
set was not included. The background set included only scenarios involving
the objects involved in the coffee and tasks and so contained no instances
of pouring into the sugar bowl, as one might do in refilling. Thus, the
background set inappropriately biased against performing this action as an
error. Noise was added to hidden unit activations as described in Botvinick
and Plaut (2004) at a level of 0.2. All simulation results reported in the
body of the article were replicated in five separate training runs.

2 This, in turn, would also address two other concerns raised by Cooper
and Shallice (2006), allowing the presence of distractor objects to affect
performance and driving down the proportion of omission errors. In an-
ticipation of further debate, it is noted that the use of “perceptual actions”
as outputs of the SRN model is another implementational convenience,
standing in for a mechanism whereby objects are selected by top-down
biasing on the processing of bottom-up perceptual inputs (see Botvinick,
Bylsma, Buxbaum, & Jax, in press).
Note that our argument in the present section, as in subsequent sections,

implies the assumption that introducing the specified changes to the
Botvinick and Plaut (2004) model would leave previously established
aspects of the model’s behavior intact. Given that we have not tested this
through detailed simulations, the assumption can be questioned. Neverthe-
less, in the absence of obvious causes for doubt, the assumption appears
justifiable.
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reason that, in the repertoire of tasks on which the model was
trained, there is no example of a container that does not require
opening before use. Thus, the sequencepickup3fixate-cup3pour
never occurs in any context during training. In the real world,
containers are often open when first encountered (think of adding
cream to coffee from a pitcher), making the sequence
pickup3fixate-cup3pourquite familiar and more likely to intrude
as an error. Indeed, if the model is trained on coffee sequences in
which the cream is sometimes already open when first encountered
and then tested at a noise level of 0.2, it does occasionally commit
the anticipation error that is of interest to Cooper and Shallice
(2006).

Frequency Matching

Simulation 2 of Cooper and Shallice (2006) demonstrated that
the SRN model, as implemented in Botvinick and Plaut (2004),
does not produce sequences at the same relative frequencies with
which those sequences occurred during training. For example, the
simulation showed that if the model is trained with a slight fre-
quency bias toward adding cream before sugar, the trained model
shows a much stronger bias. Cooper and Shallice (2006) concluded
that “the frequency of sequences in the training set must be finely
balanced if the SRN model is to be able to generate all sequences
on which it has been trained” (p. 895).
This aspect of the model’s performance stems from another

inessential implementational decision, which was to use a winner-
take-all method for output selection. As Cooper and Shallice
(2006) pointed out (p. 902), an equally reasonable choice would
have been to select actions probabilistically, with the likelihood of
an action depending on the activation of the relevant output unit
(above some minimum). In fact, such a selection rule was es-
chewed by Botvinick and Plaut (2004) simply for expository
reasons. We wished to avoid introducing another potential source
of errors, again reflecting a desire to make clear the effect of
degrading the model’s context representations. Had a probabilistic
selection procedure been used, such as the Luce choice rule (Luce,
1963), it is evident that the model would come closer to matching
the frequencies of sequences in the training set, a point that Cooper
and Shallice (2006) themselves allowed (p. 902).

Interchangeable Subsequences

An important feature of routine sequential action is that it often
contains subsequences that can be substituted for one another.
Botvinick and Plaut (2004) showed that the SRN model can learn
to treat subsequences interchangeably, learning specifically to add
sugar from a sugar packet or a sugar bowl. However, Cooper and
Shallice (2006) raised the question of whether the model can infer
such sequence equivalence. Specifically, Simulation 3 demon-
strated that if the model is trained to prepare tea by using both a
sugar packet and sugar bowl but to prepare coffee by using only a
sugar bowl, the fully trained model does not spontaneously pro-
duce coffee sequences in which the sugar packet is used.
Although it is true that Botvinick and Plaut (2004) did not

directly demonstrate the ability to infer sequence equivalence, that
article did note that SRN models are capable of it and referred to
unpublished simulation results documenting this point (p. 423–
424). The relevant simulation, which we now briefly describe, and

which is further detailed in the Appendix, also makes clear why
Cooper and Shallice (2006) failed to observe the desired effect.
To keep things simple, our simulation posits a formalized task

domain that boils the issue down to its basics. It is assumed that all
legal action sequences within this domain have the same structure.
Each starts with the use of some objecta, transitions to the use of
a second objectb, and then finishes with a return to the original
object a (see the Appendix for details of the task and model
implementation). A critical assumption is that there are two ob-
jects,b1 andb2, analogous to the sugar packet and sugar bowl, that
can fill theb role. It is assumed, additionally, thatb1 andb2 can be
used interchangeably in a variety of different contexts, and to
capture this we assume that five different objects (a1-5) can fill the
a role. As a result, there are 10 legal sequences in the domain:
a13b13a1, a13b23a1, a23b13a2, a23b23a2, and so forth. In
our simulation, the model is trained on all but 1 (a13b23a1). The
question of interest is whether, following training, the model
produces that withheld sequence. As detailed in the Appendix,
when trained and tested under a reasonable set of assumptions, the
model does produce this sequence. This demonstrates, in a simple
way, that the SRN model can infer that 2 subsequences may be
used interchangeably in a context in which it has not been directly
trained to do so.
A critical observation from the above simulation is that the

model fails to generalize in the same way if a more restricted
training set is used. In the training set just described, both versions
of the object-b subsequence occurred in four different contexts
(a2-5). However, if sequences involvinga3-5 are removed from the
training set, so that the model observes bothb1 andb2 in only one
context (a2), the trained model’s behavior does not reflect the
inference that the two subsequences can be used interchangeably
in thea1 context. Details of the relevant simulation are once again
provided in the Appendix. The crucial point is that, to generalize
in the fashion Cooper and Shallice (2006) quite reasonably de-
manded, the SRN model must be exposed during training to an
adequate range of sequence variation. Restricting the training set,
as must be done for practical reasons, necessarily exposes the
network during learning to spurious correlations that are unlikely
to arise in actual human experience—such as the invariable and
massively repeated use of one of two permissible methods for
adding sugar during tea making, as in the Cooper and Shallice
(2006) simulation (for related computational observations, see
Rougier, Noell, Braver, Cohen, & O’Reilly, 2005). The reliance of
the SRN model on a training set that is broad and representative of
the task domain is a point we shall further emphasize in what
follows.

Variations in Initial Conditions

Another claim from Cooper and Shallice (2006) is that the SRN
model performs reasonably only if presented with precisely the
same environmental conditions as encountered during training.
Given different circumstances, it is suggested, the model cannot
infer correct modifications to action sequences. The example pro-
vided in Simulation 4 of Cooper and Shallice (2006) involved
running the trained model on the coffee task but also initializing
the environment such that the sugar bowl is initially open, a
situation never encountered during training. The sensible thing to
do when encountering a sugar bowl with a spoon in hand (as the
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model does) is of course to go ahead and scoop. Instead, the model
put down the spoon and momentarily picked up the sugar bowl
before picking up the spoon again, scooping sugar and reentering
the standard coffee sequence. As bizarre as the model’s behavior
may appear in this case, its implications for the underlying theory
are not as significant as Cooper and Shallice (2006) suggested.
What Cooper and Shallice (2006) were asking the model to do

in this simulation is to exhibit a form of generalization. As the
previous section concluded, before such generalization can occur,
the model must be exposed to an adequate, though not exhaustive,
range of variation. The model’s behavior in the Cooper and Shal-
lice (2006) simulation is a direct consequence of the use of a
highly restricted training set. As mentioned earlier, the Botvinick
and Plaut (2004) model never encountered during training any
container that did not need to be opened before use. There is every
reason to expect that if the model were trained on a wider range of
task sequences, including tasks involving the use of uncovered
containers, that it would show precisely the kind of generalization
Cooper and Shallice (2006) sought.
The point can be substantiated by pointing to other equally

meaningful instances in which the model does behave sensibly in
the face of novel initial conditions. For example, if the environ-
ment is initialized so that the coffee cup already contains cream at
the beginning of the trial—a situation never presented during
training—the model adds coffee grounds and sugar but skips the
cream-adding sequence. In this instance, the contents of the train-
ing set provided an adequate range of sequence variation for the
model to infer that cream need not be added if it is already seen to
be in the cup.

Catastrophic Interference (CI)

A well-known property of neural network models that use
distributed representations is their susceptibility to CI, the disrup-
tion of initial learning by later training on a different task (French,
1999). Cooper and Shallice (2006) demonstrated, in Simulation 5,
that the SRN model is no exception: To learn two tasks, the model
must be trained on both in an interleaved fashion. The suscepti-
bility of the SRN model to CI was acknowledged in Botvinick and
Plaut (2004), but it is not the fatal flaw that Cooper and Shallice
(2006) suggested. In particular, McClelland, McNaughton and
O’Reilly (1995) have suggested how CI might be avoided through
the interaction of dual learning systems, one based on medial
temporal lobe structures including the hippocampus. Cooper and
Shallice rejected the dual system theory as “neuroscientifically and
cognitively implausible” (p. 906), at least as an account of how
action sequences are learned. In particular, they state that there “is
no evidence that the hippocampus can retain and order completely
accurately a very long sequence of input-to-output mappings” (p.
896). However, there is abundant evidence that the hippocampus is
involved in encoding sequences (see Botvinick & Plaut, 2004, p.
424), and there is no evidence of which we are aware to suggest
that there is a hard limit on the capacity of hippocampal sequence
memory, falling below the relevant sequence length. Furthermore,
it might not be necessary for medial temporal lobe memory sys-
tems to encode long sequences; as Ans, Rousset, French, and
Musca (2004) have demonstrated, CI in sequence learning can be
prevented by mechanisms that generate only single-step input–
output mappings.3

Cooper and Shallice (2006) further attempted to undermine the
idea that the hippocampal system may alleviate CI by commenting
on the connectivity in rats between hippocampus and subportions
of the dorsal striatum thought to subserve habit production. How-
ever, the medial temporal cortex is well known to interact widely
with neocortex, including areas throughout frontal, parietal, and
temporal cortex that are certain to be involved in representing the
perceptual inputs and associated actions involved in habits. Fur-
thermore, the hippocampal complex also interacts with regions of
the prefrontal cortex generally agreed to support planning and
action in nonroutine situations (Cohen & O’Reilly, 1996). Bring-
ing in the McClelland et al. (1995) dual learning systems theory
thus in no way contradicts the proposal in Cooper and Shallice
(2006) that the learning of action routines is mediated in part by a
higher-level action system dedicated to the programming of ac-
tions in nonroutine circumstances. Nevertheless, unlike Cooper
and Shallice (2006), we do not assume that habitual action se-
quences are always or primarily learned via such a route. In a
reductio ad absurdum of the Botvinick and Plaut (2004) theory,
Cooper and Shallice (2006) argued that hierarchically structured
action sequences are not learned through “unguided imitation or
observation of lengthy, apparently purposeless action sequences”
(p. 899). However, there is abundant empirical evidence that
people actually are quite good at abstracting the sequential struc-
ture of purposeless sequences (Avrahami & Kareev, 1994; Cleer-
emans, 1993; Saffran, 2001), and this capacity is typically attrib-
uted to systems underlying procedural memory, systems that seem
likely to support routine sequential action in everyday life
(Poldrack, Prabakharan, Seger, & Gabrieli, 1999).

Broader Criticisms of the SRN Model

The preceding sections have shown that many of the problems
Cooper and Shallice (2006) purported to reveal in the SRN model
can be addressed without substantially altering the underlying
account put forth by Botvinick and Plaut (2004)—in most cases by
simply implementing the account in greater detail. Having re-
sponded to specific observations, we turn now to two key gener-
alizations that Cooper and Shallice (2006) advanced, on the basis
of those observations, concerning the theme ofgenerativity. The
first is the claim that the SRN model cannot produce sequences it
has not been directly trained upon; the second is the related claim
that the behavior of the model is unreasonably dependent on the
structure of the training set.

Generativity

Cooper and Shallice (2006) claimed that the SRN model “can
only produce—even as errors—sequences of actions on which it
has been substantively trained” (p. 905). With regard to errors, this
is clearly untrue. As indicated in the sectionAnticipation Errors,
the model does produce errors involving action sequences that do
not occur in the training set. Indeed, Botvinick and Plaut (2004)
reported such errors (e.g., pouring directly from the sugar bowl
into the cup, p. 417). It is true that the errors produced by the SRN

3 Importantly, this work by Ans et al. (2004) did address non-Markov
sequences, that is, sequences whose reproduction requires preservation of
temporal context information.
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model are influenced by the structure of the training set, in the
sense that the model is most prone to errors that fit with any
regularities of sequential structure that characterize the training set.
However, far from being a flaw of the account, this is in fact one
of its strengths, because the same characteristic has been observed
empirically in studies of human slips of action (Reason, 1990), as
in work on speech errors (Dell, Reed, Adams, & Meyer, 2000).
Neither is the Cooper and Shallice (2006) claim true with regard

to correct sequences. As shown above, in the sectionsInterchange-
able SubsequencesandVariations in Initial Conditions, the SRN
model is quite capable of producing legal sequences that were
never presented during training. The generative capacity of recur-
rent neural networks is further demonstrated by previous research
in which such models have been used to compose music. Networks
trained on a variety of melodies have been shown in several studies
to generate novel tunes in the same musical style, melodies not
matching any of those on which the model was trained (Eck &
Schmidhuber, 2002; Mozer, 1994). This work clearly demonstrates
that SRNs can generate sequences that are consistent with the
structure implicit in a training set, without matching any exemplar
presented during training. A critical point is that this sort of
generalization requires the training set to contain a broad and
representative sample over the relevant domain. The music-
composing SRN need not be exposed to all possible melodies in a
given style, but it does require exposure to a legitimate number of
them. The importance of a representative—though not necessarily
exhaustive—training sample is the same one we emphasized above
in discussing interchangeable sequences.

Importance of the Training Set

Cooper and Shallice (2006) argued repeatedly that the behavior
of the SRN model depends unreasonably on the detailed structure
of the chosen training set:

the training set has to be fine-tuned to produce the appropriate output
. . . [thus] the negative property of being hand coded is merely
transferred from the weights for the IAN model to the training set for
the SRN model. (pp. 905–906)

Again, it is true that the behavior of the SRN model is shaped by
the structure of the sequences presented during training, and this
was highlighted by Botvinick and Plaut (2004) as one of the core
tenets of the proposed account. Regrettably, Botvinick and Plaut
(2004) made no direct comment on the specific form of the
training sets used in the simulations it reported. However, two key
assumptions were strongly implied. The first assumption is that the
sequences observed by the system during learning constitute a
representative sample of well-formed behavior in the relevant
tasks. This means, above all, that what can vary in an action
routine will vary in the sequences observed during learning, al-
though—as just explained—the training set need not contain all
well-formed sequences but merely a sufficient sampling. The
second assumption (implied on p. 403 of Botvinick & Plaut, 2004)
is that learning of any specific task takes place within the context
of learning a very broad variety of other tasks and that there are
regularities of sequential structure spanning multiple tasks that
support generalization across task lines.
For practical reasons, it was not possible to fully implement the

second of these assumptions in the simulations reported in Botvin-

ick and Plaut (2004). Indeed, those simulations are quite artificial
in that they attempt to model the tasks of coffee and tea making
without directly modeling the thousands of other tasks a typical
Westerner would also have in his or her repertoire. This accounts
for why, as Cooper and Shallice (2006) found, the model’s behav-
ior is so sensitive to the precise form of the coffee and tea training
sets, and why the model does not generalize in all of the ways one
would expect of a human actor. Because the training set was
necessarily small, its details had an overly large influence on the
behavior of the model, in precisely the same way that individual
observations in a small sample can unduly influence the fit of a
statistical model. However, as with statistical models, the robust-
ness of learning and the capacity for generalization increase with
the sample size. A strong assumption of the Botvinick and Plaut
(2004) account, which we consider to be face valid, is that human
learners are exposed to a very broad and representative range of
action sequences.

Paradigmatic Assumptions: Schemas, Hierarchy, Goals

One strength of Cooper and Shallice (2006) is that it goes
beyond a simple critique of the SRN model, attempting to identify
the fundamental theoretical differences between the IAN and SRN
models. According to Cooper and Shallice (2006), the main points
of contrast center on the purportedly “eliminativist” stance of the
SRN model with respect to three elements said to be defining of
the IAN framework: (a) explicit schema representations, (b) hier-
archical network structure, and (c) explicit goal representations.
Although this framing pinpoints a critical set of issues, we would
propose a somewhat different perspective on the role of schemas,
hierarchies, and goals in routine sequential action.

Schemas

A core assumption of the IAN model is its inclusion ofschema
nodes,elementary components or units that are identified with
entire tasks or subtasks. Cooper and Shallice (2006) argued that it
is, in fact, necessary to assume such atomic computational ele-
ments to account for specific aspects of human behavior. These
include anticipation errors, adjustment to novel environmental
conditions, and generation of well-formed but novel sequences
(see Cooper and Shallice, 2006, pp. 893–894). However, as dem-
onstrated earlier, the SRN model can address all of these without
assuming localist schema representations. The SRN model devel-
ops, through learning, the functional equivalent of the IAN mod-
el’s schema nodes. Rather than being represented by single units,
task and subtask identity is represented in a distributed fashion,
forming part of the internal context representation analyzed in
Botvinick and Plaut (2004).
Whereas it is too strong to say, as Cooper and Shallice (2006)

did, that the SRN model is eliminativist with respect to task and
subtask representations (i.e., schemas), it is true that the relevant
patterns of activation may be more difficult to isolate within the
SRN model than in the IAN model. Intuition may suggest that this
is a problem. After all, in daily communication we use terms that
refer to whole sequences of behavior, abstracting over their details:
going to the movies, playing a game of tennis, checking email, and
so forth. In the artificial intelligence literature, such high-level
representations are referred to astemporal abstractions(Barto &
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Mahadevan, 2003; Barto et al., 2005; Sutton, Precup, & Singh,
1999), and there has been growing interest in their use. We
consider it informative, however, that the primary importance of
temporal abstractions within artificial intelligence has to do with
their role in reducing the search problem involved in planning,
rather than any role in supporting the execution of established
routines. This seems to reflect a point that is equally applicable to
human behavior: In planning one’s day, it may be useful to have
a compact representation of going to the store that abstracts over
and is quite independent of the internal details of this routine.
However, in actually executing the routine, such abstraction is not
particularly important, and for reasons that we shall discuss in the
next section, it may in fact be counterproductive. On the basis of
these considerations, we consider it likely that the generation of
human behavior does leverage highly abstract task representations
but that these are put to use by the processes involved in the
planning and programming of nonroutine action sequences rather
than by the processes underlying habit production, which use
context representations tied in a more intimate way to real-time
execution.

Hierarchical Structure

A key assumption of the IAN model, which is underscored by
Cooper and Shallice (2006), is that the processing system under-
lying routine sequential action is strictly and constitutively hier-
archical in structure. Cooper and Shallice (2006) claimed that this
assumption is necessary on the basis of arguments similar to those
used to defend schema nodes. One claim that received particular
emphasis (p. 899) relates to the ability to infer subsequence inter-
changeability, an ability that Cooper and Shallice (2006) believed
the SRN model to lack, as explained earlier. Cooper and Shallice
(2006) suggested that the ability to transfer a familiar subtask
sequence into a task context in which it has never previously
appeared requires that the subtask be represented in a way that is
invariant with respect to context. Thus, the claim goes, the routine
for adding sugar must be represented in precisely the same way,
regardless of whether it appears in the context of coffee or tea
making.
To some degree, this point must be valid. Clearly, subtask

representations must be separable from higher-level task represen-
tations if subtasks are to be performed in multiple contexts. There
is no barrier to this in the SRN model; as demonstrated earlier,
with sufficient variability in the training set, the model does
develop the ability to transfer subsequences to new contexts.
However, it is worth considering whether absolute context inde-
pendence, as required in the IAN framework, is a desirable repre-
sentational property. It is a conspicuous feature of naturalistic
human behavior that the way a subroutine is performed often
depends on the larger task context in which it occurs (Agre, 1988).
For example, the amount of sugar one adds to a beverage may
depend on whether the beverage is coffee or tea. As we have
observed in previous work (Botvinick & Plaut, 2002, 2004), this
context dependence raises a difficulty for strict hierarchical com-
putational accounts: Should sugar adding be represented by one
schema or two? If two schemas are assumed, this ignores the fact
that different versions of sugar adding are likely to share a great
deal of structure (see Schank & Abelson, 1977). If one, then how
is execution to be modulated by context?

Cooper and Shallice (2006) appeared to acknowledge that this
dilemma strains the limits of the IAN account. To deal with it, they
suggest that the framework could be extended by including an
inheritance mechanism by which parameters of lower-level sche-
mas could be controlled by parent schemas (p. 895). Whereas this
might mitigate the problem, it would also take the account one step
closer to resembling a full-fledged programming language, and it
would amount to another case in which the theory simply stipu-
lates what it is intended to explain. Moreover, there is empirical
evidence that action representations at the neural level are far more
context dependent than the IAN model assumes. Specifically,
Aldridge and Berridge (1998) observed in rats that the set of basal
ganglia neurons active during specific grooming movements dif-
fered dramatically depending on whether the relevant movement
was executed inside or outside the context of the animal’s groom-
ing sequence (see also Salinas, 2004).
The issue we are raising here is not merely a technical one,

pertaining only to the contrast between the IAN and SRN models.
What we are arguing is that, within the domain of routine sequen-
tial action, there is an inherent tension between the need for some
degree of context independence, responding to the part-whole
structure of everyday tasks, and the need for context sensitivity.
Any model of routine sequential behavior must provide an account
for how a balance is struck between these, accommodating what
we have termed thequasi-hierarchicalstructure of everyday ac-
tion routines (Botvinick & Plaut, 2004). The IAN model, in its
current instantiation, attends exclusively to the demand for context
independence by assuming a strictly hierarchical and localist rep-
resentational regime. As a result, the account faces difficulty with
the issues of information sharing and context sensitivity, creating
the need for additional, ad hoc mechanisms like inheritance.
The SRN model addresses the balance between context inde-

pendence and context sensitivity at a more basic level. Rather than
assuming hierarchy as a strict constraint on representational struc-
ture, the framework starts with a large and unstructured represen-
tational space that is shaped by experience with specific task
repertoires. Where independence between levels of structure is
needed for successful control, the model is entirely capable of
developing internal representations that capture this independence,
as demonstrated by the simulation of subtask equivalence de-
scribed earlier. However, because the model’s representations are
not constrained to be strictly hierarchical, there is room for repre-
sentational overlap when tasks share structure, and for interactions
across levels of task structure, whatever form these may take.
This point relates to the question, raised by Cooper and Shallice

(2006), of whether it might be possible to reduce the SRN model
to the IAN account. Cooper and Shallice (2006) offered the inter-
esting and valid observation that some distributed models can be
reduced to localist models, whereas others cannot. However, they
mistakenly characterized the SRN model as representing an “ex-
treme nonreductionist position” (p. 891). In our view the SRN
model relates to the IAN model as special relativity relates to
Newtonian physics. The former reduces to the latter in the limit of
small speeds. Analogously, the SRN model reduces to the IAN
model in the limit of strictly hierarchical task structure. To unpack
this point, consider that a system can be reduced from distributed
to localist when the system’s representations are mutually orthog-
onal. In the case of the SRN model, the representations at issue are
the activation vectors that indicate task and subtask context. Note
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that there is nothing in the system’s architecture to prevent these
from being orthogonal. Indeed, the tea-making context could in
principle be represented by a single hidden unit just as in the IAN
model. Thus, at a functional level, the SRN model can implement
a hierarchical representational scheme. Indeed, SRNs have been
used in some research (see Rodriguez, Wiles, & Elman, 1999) to
implement push-down automata, precisely the kind of mechanism
used in some production system architectures (e.g., adaptive con-
trol of thought—rational [ACT–R]; Anderson & Lebiere, 1998) to
support hierarchical goal and subgoal management. However, un-
like the IAN model, the SRN model is not restricted to orthogonal
representations, allowing it also to accommodate departures from
strict hierarchy where they exist in action routines.
Cooper and Shallice (2006) proposed a framework for reconcil-

ing the IAN and SRN accounts in which the localist representa-
tions in the IAN network correspond to point attractors in a
recurrent neural network. We consider this an appealing direction,
largely because it relaxes the constraint of strict hierarchy that
currently limits the IAN account. Indeed, in recent work, we have
reported an implementation of the Botvinick and Plaut (2004)
theory that takes the form of an attractor network (Botvinick, in
press). This work takes a further step toward reconciling the two
accounts by addressing neuroscientific data suggesting that se-
quential action is supported by neocortical networks that assume a
roughly hierarchical organization (Fuster, 1997).

Goals

The third element Cooper and Shallice (2006) identified as
distinguishing between the IAN and SRN accounts involves the
role of goals. Cooper and Shallice (2006) defined a goal as “a state
of affairs that an agent aims to achieve” (p. 888), stating that “a
schema may be seen as a means of achieving a goal” (p. 888).
Goals are considered to play a critical role in the operation of the
IAN model, whereas it is claimed that “goals play no role in the
functioning of the SRN model” (p. 898).
However, Cooper and Shallice (2006) overestimated the role of

goal representations in the IAN model. At an operational level, the
goal nodes in the IAN model are simply gates on activation from
high-level schemas to lower levels. As Cooper and Shallice (2006)
explained, “When a parent schema is selected, it does not excite all
of its component schemas, just those whose preconditions are
satisfied and whose post-conditions are not satisfied” (p. 895), and
it is goal nodes that enforce the latter constraint. Thus, goals in the
IAN framework ultimately function simply as negative precondi-
tions on schemas. Like the “test” component of the classic TOTE
unit of Miller et al. (1960), they simply close off certain portions
of activation space when particular conditions hold. One can thus
exhaustively describe the functional role goals play in the IAN
model without any appeal to the notions ofpurposeor aim.
Although Cooper and Shallice (2006) claimed that goals play no

role in the SRN model, that model’s behavior clearly reflects
gating by negative preconditions. This is shown, for example, by
the fact that the model skips cream adding if cream is already
present in the cup (seeVariations in Initial Conditions) and by the
fact that the model continues to execute thesipaction until the cup
is empty (see Botvinick & Plaut, 2004, p. 423). Unlike the IAN
model, there is no special structural element dedicated to imple-
menting the relevant precondition gates, but at a functional level

the model recognizes “goals” in precisely the same limited way
that the IAN does. Cooper and Shallice (2006) suggested that the
implementation of goals in the IAN model allows it to cope with
certain situations in which the SRN model is said to fail. However,
the supposed problems—dealing with interchangeable subse-
quences and recognizing when environmental conditions make it
unnecessary to execute particular actions—we have already been
able to set aside.
In the final analysis, there is little if any difference between the

IAN and SRN models in terms of the functional role played by
goals. Neither model involves goals in the strong sense of that
term: In much of psychology and artificial intelligence, the term
goal typically denotes a representation of a desired outcome that is
matched against action effects as part of a process of means–ends
analysis. When understood in this sense, goals are tied closely to
problem solving or planning, functions that both Cooper and
Shallice (2006) and we attribute to systems separable from those
supporting highly routine behavior. In our view, the computations
underlying routine sequential behaviors do not, in fact, depend on
goals in this strong sense of the term.
Indeed, this idea fits precisely with recent work that Cooper and

Shallice (2006) cited, delineating the division of labor between
goal-directedandhabit systems. On the basis of animal studies,
Balleine et al. (Balleine & Dickinson, 1998; Yin, Knowlton, &
Balleine, 2004) have concluded that the system underlying routin-
ized behaviors, that is, the habit system, is not driven by repre-
sentations of desired and anticipated outcomes but instead operates
in a purely reactive way (see also Dickinson, 1985). This is also
consistent with reinforcement learning accounts of basal ganglia
function, which also posit a reactive mechanism for action selec-
tion (Daw, Niv, & Dayan, 2005). The SRN model provides an
account for how a reactive habit system could give rise to rela-
tively complex action routines, routines that respond flexibly to
varying conditions and that reliably bring about specific outcomes,
but that do not rely on goals of the kind involved in planning and
problem solving.

Relation to Nonroutine Action

Although we concur with Cooper and Shallice on the distinction
between two interacting systems underlying action control, a habit
(or Contention Scheduling) system and a goal-directed (or Super-
visory Attentional) system, one important difference between the
Cooper and Shallice (2006) account and our own concerns the
assumed relationship between the representations put to use by
these two systems. Cooper and Shallice (2006) implied that the
representations inhering in the goal-directed and habit systems are
essentially identical in nature. This is suggested, for example, by
the proposition that the goal-directed system constructs “tempo-
rary schemas” (p. 897) that are used as a basis for “instructing the
habit system” (p. 899) and that the habit system can be understood
as a “plan library” (p. 888). However, it is most directly indicated
by the discussion in Cooper and Shallice (2006) of the interaction
between goal-directed and habit systems. Consistent with the well-
known theory of Norman and Shallice (1986); Cooper and Shallice
(2006) assumed that the goal-directed system (identified with the
Supervisory Attentional System) operates by providing top-down
input to the habit system (identified with the Contention Schedul-
ing system). The Botvinick and Plaut (2004) account is compatible
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with this idea, as noted earlier. However, Cooper and Shallice
(2006) made the further assertion that, for the goal-directed system
to communicate with the habit system effectively, there must be a
one-to-one correspondence between schema and goal representa-
tions in the two systems. This position is implied in the criticism
that the absence of discrete, isolable schema and goal representa-
tions in the SRN model “limits the extent to which representations
used by the routine system can be communicated to and manipu-
lated by the nonroutine system” (p. 905).4

In contrast to this claim, numerous other accounts of action
control have suggested that the representations underlying estab-
lished action routines are different in form from those supporting
nonroutine action, or more specifically, planning. This is true, for
example, of the account of proceduralization in the ACT–R para-
digm (Anderson, 1987), as well as of the neural lesion studies of
Balleine et al. (Balleine & Dickinson, 1998; Yin et al., 2004) and
related computational work (Daw et al., 2005). Of possible rele-
vance, there is fairly extensive behavioral and neuroscientific
evidence for an analogous representational distinction in the do-
main of spatial navigation (see Hartley, Maguire, Spiers, & Bur-
gess, 2003).
At a quite general level, Rougier et al. (2005) have argued that

there is an intrinsic tradeoff in neural computation between the use
of graded, distributed representations, which can capture detailed
patterns of similarity and overlap, and the use of more abstract and
categorical representations, which are more amenable to arbitrary
manipulation and recombination. Rougier and colleagues proposed
that different brain systems may assume different points on the
continuum between these extremes, on the basis of the demands of
the particular operations those brain areas perform. This proposal
resonates with our own earlier comments concerning the issue of
temporal abstraction, in which we suggested that different degrees
of abstraction may be appropriate for executing routine procedures
and for planning. We consider it an important theoretical differ-
ence between the SRN and IAN accounts that the former leaves
open the possibility of multiple formats for action representation,
whereas the latter commits to a uniform code, spanning habit and
goal-directed systems.

Rules Versus Connections in the Habit System

In framing the relationship between their own theory and the
one laid out in Botvinick and Plaut (2004), Cooper and Shallice
(2006) attempted to draw a parallel to the rules versus connections
debate in language, which contrasts symbolic and parallel distrib-
uted processing mechanisms (McClelland & Patterson, 2002). It is
not clear that this analogy is neatly applicable. After all, the IAN
framework is based directly on a connectionist processing archi-
tecture (McClelland & Rumelhart, 1981), and, in enumerating the
supposedly symbolic components of their theory, Cooper and
Shallice (2006) placed links between nodes at the top of the list (p.
889). Moreover, other components described as irreducibly sym-
bolic in nature, specifically pre- and postconditions, we have
shown to have direct functional analogues in the SRN model.
Finally, the rules versus connections debate, at least as it arises in
research on the English past tense, centers in large part on the
question of whether there is a single system for the relevant set of
transformations or more than one system. In the case of sequential
action, it is agreed there seem to be two systems involved, a

goal-directed system and a habit system, the latter of which is our
focus.
Despite these inconsistencies, the rules versus connections de-

bate does resonate with the present discussion in at least one
important way. Like rule-based accounts of past-tense formation
(Pinker, 1999), the Cooper and Shallice (2006) account began by
focusing on a salient structural characteristic of behavior (i.e.,
hierarchy) that largely though approximately characterizes the
domain and builds this same structure directly into the architecture
of the processing system. As with rule-based accounts of past-
tense formation, the challenge then becomes to explain how the
processing system copes with secondary aspects of behavior that
strain or violate the governing structural principle initially as-
sumed. This leads to the stipulation of additional mechanisms to
handle such exceptions to the rule. In the case of the Cooper and
Shallice theory, the list of additional mechanisms has grown over
time and now includes manner and quality features and an inher-
itance mechanism (Cooper and Shallice, 2006, pp. 896–897), goal
decay (p. 904), a type-token distinction that allows multiple in-
stances of a schema to be created (p. 898), and precondition gates
that preserve information about previous actions.
The theory laid out in Botvinick and Plaut (2004), which we

have further articulated here, takes an approach akin to the one
adopted by those pursuing the connectionist side of the rules
versus connections debate (Plaut, McClelland, Seidenberg, &
Patterson, 1996). The Botvinick and Plaut (2004) account began
by assuming an essentially unstructured representational space and
a general purpose learning mechanism and then investigated how
particular patterns of behavior might emerge from these in the
context of a particular environment. As in work on past-tense
formation, this approach results in an account that portrays the
most systematic aspects of behavior as emerging out of a system
that can also accommodate finer-grained aspects of behavior that
cut across this first-order structure. Specifically, the SRN model
shows how broadly hierarchical patterns of behavior can emerge
from a processing system that—because it is not constrained to
represent only strictly hierarchical relationships—retains the flex-
ibility to encode aspects of sequential action that violate strict
hierarchy. Thus, no special mechanisms are needed to allow for
interactions among levels of task structure.
In addition to capturing hierarchical relationships where they are

critical to the guidance of behavior, the system’s representational
space retains sufficient flexibility that it can accommodate poten-
tially complex interrelations among different operations. The rep-
resentations it develops can respond simultaneously to the simi-

4 This concern does not appear to run very deep because Cooper and
Shallice (2006) themselves offered the appropriate response. They write
that “one might envisage a system that maintains associations between
higher-level representations of schemas and the hidden unit patterns that
result in those schemas being performed. A supervisory system could then
interface with the SRN model to yield controlled behavior (when required)
by deliberately instantiating the hidden units with the corresponding acti-
vations . . . There is also a sense in which the instruction units already
present in the SRN model do this for the two basic tasks of preparing tea
and preparing coffee” (p. 905). This is, indeed, precisely the account we
would offer, as indicated in Botvinick and Plaut (2004, p. 424). We assume
that this form of interface would support recovery from errors, guided by
the supervisory system.
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larities and differences among sets of overlapping activities
(Botvinick & Plaut, 2002). This property is important, given that
complex patterns of overlap are characteristic of human behavioral
repertoires (consider the relationships among the routines for
spreading jam, spreading peanut butter, spreading sauerkraut on a
hot dog, spreading icing on a cake, spreading wax on a floor, using
a squeegee on a window, and raking the lawn).
It is worth remarking that it was considerations of this kind, and

specifically the role of complex shared structure, that in the 1980s
inspired David Rumelhart to abandon the symbolic approach to
schema representation (Rumelhart & Ortony, 1977) in favor of a
recurrent neural network account, laying some of the initial foun-
dations for connectionist psychology (Rumelhart, Smolensky, Mc-
Clelland, & Hinton, 1986). As noted in Botvinick and Plaut
(2004), the SRN account we have proposed builds rather directly
on this pioneering work, as does recent work in concept represen-
tation, another area in which the schema construct has a long
history (Rogers & McClelland, 2004).

Conclusions and Directions for Future Work

In the present reply to Cooper and Shallice (2006), we answer a
set of specific points from that critique and also examine some
fundamental theoretical issues brought to the surface by the con-
trast between our two models. In revisiting the observations re-
ported by Cooper and Shallice (2006) concerning the behavior of
the SRN model, we argue that in almost all cases, they stem from
incidental implementational choices rather than from core theoret-
ical commitments. Making this point allows us to spell out our own
assumptions concerning the patterns of experience on which learn-
ing of sequential action is based, which center on the concept of a
representative sample. Next, we consider the claim from Cooper
and Shallice (2006) that routine sequential action must rest on
strictly hierarchical trees of localist task and subtask representa-
tions. This provides the opportunity to make explicit our alterna-
tive assumption of a less constrained representational space, which
can accommodate quasi-hierarchical structure and simultaneously
support information sharing and context sensitivity. Finally, dis-
cussing the apparent claim from Cooper and Shallice (2006) that
habits and goal-directed actions must rely on isomorphic repre-
sentations, we point to theoretical motivations for an alternative
view according to which the two modes of action exploit different
kinds of representation, much as different modes of spatial navi-
gation are thought to depend on different kinds of spatial
representation.
In offering the present reply to Cooper and Shallice (2006), our

goal is to lay out some important theoretical alternatives rather
than to present a conclusive argument. Although we bring empir-
ical data to bear wherever possible, many of our assertions, like
many of those made by Cooper and Shallice (2006), rest on logical
considerations or appeals to common sense. There is a great need
for additional empirical data to guide decisions among (or dis-
place) the theoretical alternatives we lay out. Such data is chal-
lenging to generate, given the intrinsic complexity of the behav-
ioral domain and the difficulty of distinguishing routine habit-
driven action from more deliberate goal-driven behavior.
Botvinick and Bylsma (2005) reported one empirical finding,
concerning the impact of interruptions on sequence errors, that is
directly relevant to the contrast between the SRN and IAN models,

and it is disappointing that Cooper and Shallice (2006) did not
address this in the terms directly linked to their computational
model. On a broader level, we agree with Cooper and Shallice
(2006) that the behavioral and neuroscientific work reported by
Balleine and colleagues (e.g., Balleine & Dickinson, 1998) has
provided some important empirical points of reference. The com-
putational investigations reported by Daw et al. (2005), addressing
that empirical research, also strike us as providing a useful new
point of reference for the ongoing development of theories of
routine sequential action.
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Appendix

Details of the Simulation Briefly Described inInterchangeable Subsequences

Task and Representations

As explained in the main text, the task domain included 10 sequences,
each composed of four steps. The model’s universe was assumed to include
seven objects (denoteda1, a2, a3, a4, a5, b1, and b2) only one of which
could be viewed at a time. The universe was also assumed to contain 14
actions: 1 search action for each object (e.g.,fixate-a1) and 1 manipulative
action appropriate to each object (e.g.,use-a1). Each target sequence began
on Step 1 with an objectai � {a1, a2, a3, a4, a5} as the viewed object and
the target response beinguse-ai. On Step 2, the input remained unchanged,
and the target action becamefixate-bj � {b1, b2}. On Step 3,bj became the
viewed input, and the target action changed touse-bj. On Step 4, with the
viewed input remainingbj the target output becameai, redirecting the
system back toward the object with which the sequence began. Crossing all
choices ofa with all choices ofb yielded the 10 target sequences. As
explained underResults and Discussion,a second version of the task
assumed that on the first step an additional input was provided indicating,
as if via peripheral vision, whether objectb1 or b2 was present in the
environment.

Model Architecture

The model was identical to the one used in Simulation 1 of Botvinick
and Plaut (2004), except with regard to the following details. The model
included 7 input units, each representing a single visual object. To repre-
sent the currently viewed object, on each step of processing 1 of these units
was set to an activation level of 1 whereas the others were set to 0. Unlike
the Botvinick and Plaut (2004) model, the present network did not include
input units representing held objects. The output layer contained 14 units,
each representing 1 of the actions identified above. The hidden layer
contained 100 units.
To simulate the alternative version of the task described above and under

Results and Discussion,an extended version of the model included an
additional 2 “peripheral vision” units, allowing it to receive information, on
the first step of the task, as to whetherb1 or b2 was present in the
environment. In sequences involvingb1, one of these input units was
activated on the first step of processing, and onb2 trials the other unit was
activated. On subsequent trials, both units were inactive.

Training and Testing

The model was trained and tested following the procedure used in
Botvinick and Plaut (2004). In a first simulation, the model was trained on
all 10 basic target sequences, and the model was then tested on all 10
sequences. In a second simulation, all but 1 sequence (a13b23a1) were
presented during training, and the model was tested on the omitted se-
quence. In a final simulation, the extended task was used, again omitting
and testing (a13b23a1). In the latter two simulations, the sequence
a13b13a1 was presented twice as often as other sequences during train-
ing, to assure that the frequency of alla fillers was matched. In all
simulations, the duration of training was 2,500 trials. To establish replica-
bility, each simulation was repeated with each of 10 sets of random initial
weights.

Results

When trained on all 10 sequences, the model successfully reproduced
each sequence at test. On Step 2,fixate-b1 and fixate-b2 output units both
assumed activation values of approximately 0.5, reflecting the uncertainty
associated with this point in the sequence. More important was the question
of whether the model would producea13b23a1 when this was omitted
during training. Of particular interest was the model’s behavior at two
specific steps following initial presentation ofa1. First, we considered
whether, on Step 2, the model would activatefixate-b2 as well asfixate-b1.
Second, we considered whether, on Step 4, the model would most strongly
activatefixate-a1. Together, these behaviors would indicate that the model
had inferred that the subsequencesfixate-b13 use-b1 and fixate-b23
use-b2 are interchangeable.
In the first simulation in which generalization was tested, to our initial

surprise the model did not show the first form of generalization. On Step
2, only fixate-b1 was significantly activated. However, there turned out to
be a sensible reason for this. Note that during training the model observed
only b1—neverb2—employed in thea1 context without any explanation
for this bias. This would be analogous to observing sugar added from a
packet—and not from a sugar bowl—over thousands of witnessed execu-
tions of coffee making. Clearly, on the basis of this experience, it would be
quite reasonable to infer that coffee making forbids the use of a sugar bowl.
However, consider the same scenario if it were also known that, in each
witnessed instance of coffee making, only sugar packets were available.
This would provide an explanation for the failure to observe use of a sugar
bowl, making it more reasonable to infer that sugar bowl and sugar packet
use are interchangeable in the coffee making context, as elsewhere. To
impose an analogous situation in our model, we included the peripheral
vision units described above. These provided information at the outset of
each trial as to whetherb1 or b2 was present in the environment. When
trained on this modified version of the task, the model showed both forms
of generalization predicted, including correct responses on Step 4, on all 10
simulation runs. Presented initially witha1 as the viewed object and
peripheral vision input indicating the presence ofb2 in the environment, the
model consistently generated the doubly novel sequenceuse-a13fixate-
b23use-b23fixate-a1. This result contradicts the assertion in Cooper and
Shallice (2006) that the SRN model has “no way of knowing how to
preserve context information (e.g., whether it is making tea or coffee)
across a subtask (e.g., adding sugar) unless it has received explicit training
on that variant of the task” (p. 899).
Critically, as noted in the main text, the results differed when a smaller

range of contexts was included in training. Specifically, when the training
set included only the sequencesa13b13a1, a23b13a2, anda23b23a2,
and the model was again tested for production ofa13b23a1, the model
never correctly generalized on Step 2, even when the peripheral vision
units were included.
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Postscript: The Way Forward

Matthew M. Botvinick
University of Pennsylvania

David C. Plaut
Carnegie Mellon University

In our view, the reply by Cooper and Shallice (2006) left our
original responses more or less intact. Cooper and Shallice dispar-
aged our account of anticipation errors by arguing that it serves
only to “highlight the importance of the training set in shaping the
[SRN] model’s errors” (p. 892). However, as we argued earlier,
this link between errors and prior experience may be viewed as a
strength of the SRN model rather than a weakness. They dismissed
the idea of selecting among actions probabilistically in the SRN
model (an idea they earlier seemed to promote) on the basis of the
claim that such a selection procedure cannot be biased by previous
intentions. However, it is easy to see how the setting of intentions
could be encoded in the context layer, leading to amplification of
intended action outputs and the suppression of competitors. They
rejected our demonstration that the SRN model can, under appro-
priate circumstances, deal appropriately with novel initial condi-
tions, but they did this by resorting to the confusing argument that
the model’s correct performance must be understood as an error.
They rejected our demonstration of object substitution errors in the
SRN with the assertion that this class of error is defined in earlier
work in terms of the actions following the actual incorrect use of
an object, but we fail to find this kind of definition in the sources
they cite (Reason, 1984; Schwartz et al., 1998). They responded to
our analysis of the role ofgoal nodesin the IAN model with the
assertion that this mechanism “captures the fact that some schemas
have a common purpose” (p. 894). However, at the level of
function (rather than description), goal nodes serve only to enforce
the selection of one among a set of competing schemas. This
functionality involves no direct reference to purpose or goal.
Certainly, in human behavior, interchangeable action sequences
often share a common goal. However, in the IAN model, this fact
only informs the way that the network is wired up by the modeler.
It is in no way intrinsically “captured” by the goal node
mechanism.
Clearly, the present exchange will leave a range of questions

unresolved. However, what we are left with is far from a hopeless

impasse. Instead, the debate has made clear what measures might
be taken to shed further light on the mechanisms underlying
routine sequential behavior. Clearly, one road forward involves
implementing and evaluating the various refinements and exten-
sions that have been proposed for both the SRN and IAN models.
With regard to the SRN model, it may be particularly informative
to develop further the simulation we offered to address the topic of
interchangeable subsequences, considering more fully the problem
of implicit negative evidence (the problem that led us to include
“peripheral vision” inputs to the framework). With regard to the
IAN model, what seems most urgently needed is an explicit,
implemented account of how the goal-directed action system (or
supervisory system) trains up the habit system (contention sched-
uling system). Here and in general, the present exchange has
strongly highlighted the degree to which any account of the habit
system will interact with how the goal-directed system is under-
stood. Many of the points we have debated have turned out to
depend on what assumptions are made about the goal-directed
system and about how it interfaces with the habit system. In view
of this, what seems necessary is to place our present accounts of
routine sequential action within a larger computational framework
that explicitly addresses both systems and their interrelations. We
agree with Cooper and Shallice that such an enterprise might best
concentrate on instances of behavior that depend critically on a
collaboration between the two systems, such as error correction or
coping with novel and unexpected environmental contingencies
encountered during routine behavior. Building a larger theoretical
framework, capable of dealing with such areas of behavior, will
require innovative experimental research, because there are at
present frustratingly few meaningful empirical benchmarks to con-
strain new modeling.
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