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ABSTRACT
The visual complexity of orthographies varies across writing systems. Prior
research has shown that complexity strongly influences the initial stage of
reading development: the perceptual learning of grapheme forms. This
study presents a computational simulation that examines the degree to
which visual complexity leads to grapheme learning difficulty. We trained
each of 131 identical neural networks to learn the structure of a different
orthography and demonstrated a strong, positive association between net-
work learning difficulty and multiple dimensions of grapheme complexity.
We also tested the model’s performance against grapheme complexity
effects on behavioral same/different judgments. Although the model was
broadly consistent with human performance in how processing difficulty
depended on the complexity of the tested orthography, as well as its
relationship to viewers’ first-language orthography, discrepancies provided
insight into important limitations of the model. We discuss how visual
complexity can be a factor leading to reading difficulty across writing
systems.

Introduction

The study of reading development across writing systems has focused primarily on the principles
governing mapping between graphemes and various linguistic units such as phonemes, syllables,
and morphemes. Grapheme encoding itself has received relatively less attention. Graphemes are the
basic units that distinguish among a language’s written morphemes (e.g., single letters and letter
combinations in alphabets/abjads, akshara in alphasyllabaries/syllabaries, and characters in morpho-
syllabaries). Accurate, stable orthographic representations are required for associations to be reliably
learned between visual forms and other aspects of language (Perfetti & Hart, 2002). Representations
of the visual forms of graphemes are thus a critical beginning point of reading.

Visual complexity influences the development of orthographic representations, thus contributing
to difficulty in learning to read. Orthographies with visually complex graphemes are also likely to
contain a larger grapheme inventory, making learning that much more difficult (e.g., Nag, 2011; Nag
& Snowling, 2012; Nag, Treiman, & Snowling, 2010). Here, we use computational modeling as a tool
to examine the relationship between the visual complexity of graphemes and learning difficulty
across writing systems.

The visual demands of grapheme processing, driven by the size of the grapheme inventory and
the corresponding complexity of the graphemes, can pose a challenge to beginning learners.
Empirical studies covering a wide range of orthographies have demonstrated that grapheme com-
plexity is negatively correlated with grapheme identification efficiency (Liu, Chen, Liu, & Fu, 2012;

CONTACT David C. Plaut plaut@cmu.edu Department of Psychology, Carnegie Mellon University, 5000 Forbes Avenue,
Pittsburgh, PA 15213-3890.

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/hssr.
© 2015 Society for the Scientific Study of Reading

SCIENTIFIC STUDIES OF READING
http://dx.doi.org/10.1080/10888438.2015.1104688

D
ow

nl
oa

de
d 

by
 [

D
av

id
 P

la
ut

] 
at

 1
5:

56
 0

1 
D

ec
em

be
r 

20
15

 

http://www.tandfonline.com/hssr


Pelli, Burns, Farell, & Moore-Page, 2006). Learners are further challenged in mastering the complete
inventory of graphemes, which varies in size across orthographies. In alphabetic orthographies
(average number of graphemes: 20–30) such as Finnish, children master all graphemes after first
grade (Seymour, Aro, & Erskine, 2003; White, Graves, & Slater, 1990); in alphasyllabic orthographies
(average number of graphemes is 400) such as Kannada, children require 3 to 4 years of formal
instruction to master all graphemes (Nag, 2007); in morphosyllabic orthographies (average number
of graphemes is greater than 3,000) such as Chinese, children continue to learn novel characters after
6 years of formal education (Shu, Chen, Anderson, Wu, & Xuan, 2003). Thus, grapheme inventory
size, ranging from quite small in “contained” orthographies to extremely large in “extensive”
orthographies (Nag, 2007), has a strong influence on the pace of orthographic learning. The larger
the inventory, the greater the degree of exposure over a longer period required to master the visual
forms of the writing system.

Reading orthographies with large grapheme inventories and more complex graphemes may
require stronger visual-spatial skills and may, in turn, strengthen such skills. Tan, Spinks, Eden,
Perfetti, and Siok (2005) found that early progress in reading Chinese was linked more to copying
skills than to phonemic awareness. Moreover, McBridge-Chang, Zhou, Cho, Aram, Levin, and
Tolchinsky (2011) reported a link between the complexity of an orthography and children’s
visuospatial skills. Children learning to read traditional Chinese, which is written with highly
complex graphemes (average 10 strokes per character; Huang & Hanley, 1995), outperformed
children learning to read Spanish, which is written with relatively simple graphemes (average of
2.5 strokes per letter; Changizi & Shimojo, 2005), on a standardized visuospatial relationship task. A
similar effect of grapheme complexity was found in beginning readers learning two orthographies.
Abdelhadi, Ibrahim, and Eviatar (2011) compared visual vowel detection among Arabic–Hebrew
bilingual children and reported that the same individuals had higher accuracy in Hebrew, a visually
simple orthography, than in Arabic, a visually complex orthography. Furthermore, comparisons of
performance of Chinese and English dyslexic readers on a similar visual spatial task found a parallel
difference (Everatt, Jeffries, Elbeheri, Smythe, & Veii, 2006; McBride-Chang et al., 2013). These
results establish the importance that visual complexity has on reading development. This impact has
been explored within a variety of types of writing systems, including alphabets (Treiman & Kessler,
2011), alphasyllabaries (Nag, 2011), and morphosyllabaries (Shu et al., 2003). Our study aims to add
a comparative perspective that can be applied across writing systems, using both a general char-
acterization of visual complexity and a general model of grapheme learning.

Models of reading have tended to focus not on the visual forms used in writing but on the
mapping of these forms to linguistic units: phonological transparency (e.g,, Harm & Seidenberg,
1999), the mapping between orthography and semantics (e.g., Harm & Seidenberg, 2004; Plaut, 1997;
Plaut & Gonnerman, 2000) and reading words aloud (e.g., Coltheart, Curtis, Atkins, & Haller, 1993;
Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001; Plaut, McClelland, Seidenberg, & Patterson, 1996;
Seidenberg & McClelland, 1989; Zevin & Seidenberg, 2006; see Frost, 2012; Seidenberg, 2011, for
reviews). Several recent models have focused on alphabetic writing to examine the encoding of
grapheme strings—the spatial coding model (Davis, 2010), the overlap model (Gomez, Ratcliff, &
Perea, 2008), the Bayesian reader model (Norris, Kinoshita, & van Casteren, 2010), and the
sequential encoding regulated by inputs to oscillating letter (SERIOL) model (Whitney, 2001).
Models of reading Chinese (e.g., Perfetti, Liu, & Tan, 2005; Taft, 2006; Yang, McCandliss, Shu, &
Zevin, 2009) have focused on grapheme forms but have required independent coding specific to
Chinese, with no natural generalization to other orthographies. What is needed to capture the
broader reality of human writing is an approach that does not stipulate the specific form of
graphemic representation but can learn appropriate visual features through experience with any
orthography. Such a universally applicable learning model would provide a basis for comparing the
difficulty of graphemic form learning across writing systems and would provide the field with a more
general picture of orthographic development in reading (see Frost, 2012). A general graphemic
learning system could also provide a systematic assessment the complexity of any grapheme in the
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world’s writing systems. Such a quantitative, objective tool would provide the basis for measurement
of orthographies, enabling comparisons within and across writing systems and the testing of
hypotheses about the perceptual processing of graphemes.

An important quantitative analysis of cross-orthographic grapheme complexity by Pelli et al.
(2006) focused solely on perimetric complexity, defined as the ratio of (a) the square of perimeter
length, measured both inside and outside curves, and (b) total ink area of a shape. Using this
measure, Pelli and colleagues compared a number of orthographies, typefaces, and artificial symbol
sets, concluding that perimetric complexity was a general predictor of learning efficiency. However,
other visual characteristics of graphemes have been demonstrated to have perceptual salience in
related reading studies, such as verticies (Lanthier, Risko, Stolz, & Besner, 2009), disconnected
components of single graphemes (Winskel, 2009), and number of strokes (Tamaoka & Kiyama,
2013). Chang, Chen, and Perfetti (2015) developed a more comprehensive visual complexity measure
by combining perimetric complexity with measurements involving these additional salient charac-
teristics and applied the measure to quantify 131 orthographies (see Appendix A for details on the
complexity measure, and Appendix B for detail on the orthographies).

The result was a clear trend across writing systems in how they handled variability in visual
properties. In general, orthographies from a writing system with a larger grapheme inventory (e.g.,
alphasyllabary) tend to be more visually complex than those from a writing system with a smaller
inventory (e.g., alphabet).

This visual complexity measure was applied to a cross-writing-system study that examined the effect
of learning to read different orthographies on visual perceptual processing (Chang, 2014). The complex-
ity measure was used to rank five orthographies, each representing a major writing system, from least to
greatest in complexity: Hebrew (abjad), Russian (alphabet), Cree (syllabary), Telugu (alphasyllabary),
and Chinese (morphosyllabary). With the addition of other orthographies to more fully represent
variations in complexity—from visually simple to complex: Hebrew, English, Russian, Arabic, Hindi,
Telugu, Japanese, and Chinese—eight orthographies were used in a perceptual judgment experiment
involving 480 adult, age-matched native readers of these orthographies. In the task, participants saw two
graphemes simultaneously and were instructed to quickly and accurately judge whether the graphemes
were the same (identical) or different (see Appendix C for details about the cross-writing-system
experiment, and Appendix D for example graphemes, varying in complexity, from each tested ortho-
graphy). Participants’ perceptual judgments were influenced both by grapheme complexity and by first-
language (L1) background (see Figure 1). As grapheme complexity increased, the accuracy of perceptual
judgments decreased, whereas individuals’ L1 background interacted with grapheme complexity to
produce patterns of performance that differed by L1. These results suggest that the visual complexity

Figure 1. Proportion accurate of same-different judgments made for grapheme pairs drawn from different orthographies
(grapheme group, plotted as different colored bars), made by participants with different first-language orthographies. Adapted
from Chang (2014).
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of both the perceived graphemes and L1 orthography affects perceptual processing of graphemes, and
thus influences the fundamental stages of learning to read.

Although these findings on perceptual processing suggest that grapheme complexity plays a role
in reading, there is a possible confounded factor: grapheme complexities covary with mapping
principles between orthographic and linguistic units (Perfetti & Harris, 2013) in that more visually
complex orthographies tend to map onto higher level linguistic units. Indeed, the need for complex-
ity is driven by the size of the grapheme inventory, which in turn is driven by the size of linguistic
units to which they map: phonemes, syllables, syllabic morphemes, in increasing order. In perceptual
judgments, there is little reason to think that mapping principles are relevant, especially for
orthographies not known to a participant. However, in the case of learning to read, the mapping
principles are indeed very relevant, and individual mappings of graphemes to language units are the
main object of early reading instruction. The learning of these mappings, however, is dependent on
learning of the graphemes as visual forms.

To address the strictly visual aspect of grapheme learning, independent of mapping, we developed
a computational model of grapheme learning that has no knowledge of linguistic units and, hence, is
based solely on learning the visual forms of graphemes. It thus provides a means of exploring purely
visually based, generalized grapheme learning. To be clear, we do not expect such a limited model to
capture all aspects of human performance in this domain; rather, we view the model as a valuable
means of evaluating and understanding both the strengths and limitations of the approach, with the
goal of informing improved modeling efforts in the future.

The model

We developed a model within the Parallel Distributed Processing (PDP) framework because of
its abstract approximation of neural computation and its intrinsic ability to model learning (Plaut,
2005; Seidenberg, 2006) by changes in the model’s output over time as a function of the input it
receives. In a PDP model, processing takes the form of cooperative and competitive interactions over
many simple processing units instead of activation of single units. Knowledge is encoded by weights
on the connections among the units; learning involves iteratively adjusting the weights based on
performance feedback. After learning, the model generalizes its knowledge to novel input, as
determined by the similarity between the novel and learned representations. In short, PDP models
instantiate learning as an incremental increase in knowledge. Such models have been used to
simulate reading processes in English (e.g., Zevin & Seidenberg, 2006) and in Chinese (e.g., Yang
et al., 2009), in skilled and less-skilled readers (e.g., Plaut et al., 1996; Seidenberg & McClelland,
1989), and in normal and dyslexic readers (e.g., Harm & Seidenberg, 1999; Plaut, 1999; Woollams,
Lambon Ralph, Plaut, & Patterson, 2007). Recent work (Di Bono & Zorzi, 2013; Hannagan, Ziegler,
Dufau, Fagot, & Grainger, 2014; Zorzi, Testolin, & Stoianov, 2014) has applied specialized multilayer
networks—so-called deep learning or convolutional neural networks (Hinton, Osindero, & Teh,
2006; see LeCun, Bengio, & Hinton, 2015; Schmidhuber, 2015, for reviews)—to learning ortho-
graphic representations of letter strings within a single orthography.

Our aim was to explore the extent to which a general computational model would capture the
effect of visual complexity of graphemes on orthographic learning. To that end, we applied the same
basic functional architecture to learning each of 131 orthographies to test the effect of complexity on
learning outcomes. We also modeled Chang’s (2014) perceptual judgment experiment to provide an
account of how the visual complexities of graphemes and the L1 orthography to which they belong
both affect perceptual processing. To the best of our knowledge, this is the first attempt to model
grapheme learning over a large number of orthographies and to examine the extent to which visual
complexity affects learning to read across writing systems.
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Method

Additional details of the modeling methodology that are not included here are given in Appendix E.
All network and example files and simulation software is available for download at http://www.cnbc.
cmu.edu/~plaut/ChangPlautPerfetti-SSR.

Model architecture

The model is a specific form of three-layer neural network known as an autoencoder. A standard
autoencoder learns to copy patterns of activity over a group of input units onto an identically sized
group of output units via a smaller number of intermediate or “hidden” units. Because there are
fewer hidden units than input (or output) units, the network must learn to re-represent the inputs in
a more concise form. In this way, the hidden representations come to emphasize the underlying
structure shared by the ensemble of inputs at the expense of more idiosyncratic aspects of only one
or a few patterns (Hinton & Salakhutdinov, 2006).

The architecture of the specific network used in the current work is depicted in Figure 2. The
input patterns are images of graphemes over the 38 × 38 array of units at the bottom of the figure.
Note that, because the input and output groups have exactly the same structure, only a single group
of units is shown. The hidden layer is divided into four groups of units (shown at the top of Figure 2)
that differ in number of units and in the sizes of their “receptive fields” (RFs). In particular, each
hidden unit receives input only from a restricted circular region of the input and projects to the
corresponding circular region of the output (these are depicted in red for four representative units).
To allow the network to learn to be sensitive to features of varying scales and positions, different
groups of units had different RF sizes, with centers spaced evenly across the input (and output)
arrays: a 19 × 19 group with a RF diameter of five units and centers spaced every two units
horizontally and vertically; a 12 × 12 group with RF diameter = 7 and spacing = 3; a 9 × 9 group
with RF diameter = 11 and spacing = 4; and a 7 × 7 group with RF diameter = 15 and spacing = 5.
Including “bias” connections (which determine the activation of units in the absence of other
inputs), the network had a total of 83,607 connections. As a point of comparison, if all 635 hidden
units were fully connected to both the input and output, the network would have required 1,835,959
connections. Using topographically restricted connectivity not only drastically reduces the required
number of connections, and is broadly compatible with patterns of connectivity in visual cortex, but
also encourages the network to discover largely local features of varying scales. Note that, because
units in each hidden group are free to develop distinct receptive and projective fields, the network is
more flexible than a standard convolutional neural network (in which each such unit is constrained
to have identical incoming and outgoing weights). On the other hand, such networks typically
employ multiple hidden layers between input and outputs, whereas our model has only a single
hidden layer (with a range of receptive field sizes).

Stimuli

Two sets of stimuli were adapted from Chang (2014). The first set served as a training set to simulate
L1 orthographic learning; the second set served as a testing set to simulate human behavior in the
same-different judgment.

The training patterns were composed of grapheme images from 131 orthographies across five
writing systems (alphabetic = 60, alphasyllabary = 41, abjad = 16, syllabary = 11, morphosyllabary =
3); a total of 21,821 graphemes were used. To generate these images, the programming language
Processing (Reas & Fry, 2010) was used to construct a simple image of each individual grapheme.
Graphemes were presented in Arial font, in white against a 38 × 38-pixel black background. Of the
selected orthographies, 25% did not have support for Arial font; for these, an alternative font similar
to Arial was adopted (see Chang et al., 2015, for the fonts). These images were converted to 8-bit
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integer values, then inverted and normalized to values between 0.0 and 1.0, forming training patterns
to be passed to the network just described.

Testing patterns were generated in the same manner as the training patterns. Identical to
Chang’s (2014) experiment, grapheme pairs were selected within an orthography (i.e., Hebrew,
Russian, Cree, Telugu, and Chinese), matched to either uppercase or lowercase and, where
applicable, vowel or consonant (for Telugu vowels, primary forms were matched with primary
forms and vowel diacritics were matched with vowel diacritics); all graphemes in each orthography
were exhaustively used (except for Chinese). Given that thousands of graphemes with highly
variable complexity exist in the Chinese orthography, two groups of graphemes with contrasting
complexity (simple or complex) were formed from the overall orthography, and pairs were selected
within each group. Each “simple” character was a radical, the functional “building block” in
Chinese orthography (Shen & Ke, 2007), composed of a small number of strokes (average =

Figure 2. The architecture of the model used in the simulation. Note. Each small square corresponds to a unit. Input is presented
as activity values (shown in grayscale, with black = 0.0 and white = 1.0) over the 38 × 38 array at the bottom; four groups of
hidden units, varying in number and in receptive field size and spacing, are shown at the top. Input-to-hidden and hidden-to-
output connections were restricted to topographically constrained circular “receptive fields”—the red lines depict the scale of
these receptive fields for four representative hidden units (no actual connections are shown). The output units have exactly the
same 38 × 38 form as the input units and are not depicted separately; rather, their activations (for an example complex Chinese
character after training) are shown in the central region of each input unit, with the actual input value shown in the surrounding
ring. Thus, units for which the center and surround match are fully accurate in their reconstructed activations.
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4.52); “complex” characters were those containing multiple radicals, composed of a large number
of strokes (average = 13.21). Note that these characters shared the same forms between the
traditional and simplified Chinese visual orthographies. In summary, the testing patterns included
six grapheme groups, each with a similar number of grapheme pairs and a varying overall
complexity value (standardized score) from Chang et al.’s (2015) measurement system: Hebrew
(256; –.58), Russian (264; –.32), Cree (320; –.32), Telugu (280; .07), Chinese simple characters (160;
.48), and Chinese complex characters (160; 3.79).

Training

In the real world, successful orthographic learning critically involves successful visual representa-
tion and recognition of graphemes. In the model, successful learning occurs when hidden units
develop an internal representation of each input image that enables it to be reconstructed over the
output layer with minimal difference between the inputs and outputs, that is, minimal reconstruc-
tion error. To reduce reconstruction error, the back-propagation algorithm (Rumelhart, Hinton, &
Williams, 1986) was used in the present model with online learning, a learning rate of 0.01 and
momentum of 0.8. To simulate orthographic learning across writing systems, 10 versions of the
network (varying only in initial random weights) were trained on the grapheme patterns from
each of 131 orthographies, with number of patterns corresponding to their grapheme inventory
size, resulting in 131 trained networks. For each, training was halted when the average reconstruc-
tion error across the entire set of graphemes in that orthography fell below a fixed criterion
of 10.0.

The number of learning epochs required in reaching the average error per grapheme of 10.0,
averaged over the 10 versions of the network, was taken as the primary measure of the difficulty of
learning a given orthography. The use of an error measure that is averaged (rather than summed)
over graphemes is important because it allows us to reasonably compare orthographies that differ
widely in number of graphemes.

Testing

To model how individuals with different L1 experiences approach graphemes with various
complexities, we first selected eight trained sets of networks (average error < 10) to represent
skilled L1 readers as in Chang’s (2014) experiment. Next, we presented these networks (i.e.,
Hebrew, English, Russian, Arabic, Hindi, Telugu, Japanese, and Chinese) with testing patterns
consisting of pairs of both identical and differing graphemes, taken from six grapheme groups
(i.e., Hebrew, Russian, Cree, Telugu, simple Chinese characters, and complex Chinese characters).
Each grapheme in a pair was presented separately to the network, and the activation values over
all 635 hidden units were recorded. We assume that same-difference judgments are made on the
basis of the similarity of these representations. To measure this similarity, we repeatedly added
noise to each element of the two hidden patterns, computed their correlation, and then averaged
the results (n.b., noise was added to both “same” and “different” trials because the hidden
representations of the “same” trials were identical). We used these averaged correlations between
hidden patterns within each grapheme group to characterize each model’s performance, as an
instantiation of human performance. Higher correlations indicated worse performance on “dif-
ferent” trials (e.g., longer reaction time or lower accuracy) because the two given graphemes were
more similar and thus more difficult to discriminate; lower correlations indicated better perfor-
mance. Finally, to approximate the accuracy data in the behavioral experiment, these correlations
were inverted by subtracting them from 1 to create a measure termed representation dissimilarity,
which we compare against human accuracy data.
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Results

Effects of grapheme complexity on learning time

In training networks to learn internal representations of graphemes, we were particularly interested
in the relationship between grapheme complexity and learning performance. As an initial analysis,
we correlated the number of learning epochs (to reach average error < 10) from the 131 networks
(10 per orthography) with the overall complexity measures of the 131 corresponding orthographies
from Chang et al. (2015). This resulted in a significant correlation of .66 (p < .001, two-tailed),
indicating that grapheme complexity and learning difficulty were strongly, positively associated.

As discussed earlier, however, grapheme complexity is correlated with the size of the grapheme
inventory (r = .71, p < .001). To attempt to tease these factors apart, we carried out a partial
regression of both the complexity measure and inventory size against training epochs. Together the
factors produced a correlation of .80 with training epoch, with both complexity (β = .20),
t(128) = 2.67, p < .001, and inventory size (β = .64), t(128) = 8.42, p < .001, accounting for unique
variance. Thus, and not surprising, orthographies with more graphemes require greater training time
to reach criterion (even when based on average grapheme reconstruction error), although visual
complexity makes an independent contribution above and beyond this effect.

In addition, given the relatively unstructured nature of the model, it is informative to consider
whether the strong relationship between training times and grapheme complexity is driven by
particular dimensions of the complexity measure (see Appendix A). In particular, it might be that
the network is particularly sensitive to parametric complexity (PC) relative to the other dimensions
(numbers of simple features [SF], connected points [CP], and disconnected components [DC]) as it
is more easily computed from pixel-based input without counting discrete entities. As it turns out,
however, a partial regression of these dimensions against training time reveals that each accounts for
unique variance, and PC is actually the weakest predictor: PC (β = .24), t(126) = 2.61, p < .05; SF
(β = −1.30), t(126) = 5.82, p < .001; CP (β = 1.29), t(126) = 7.02, p < .001; DC (β = .62), t(126) = 6.33,
p < .001. Moreover, the weighted combination of dimensions has a higher correlation with training
epochs (r = .77, p < .001) than does the simple averaging used in our complexity measure (r = .66,
p < .001).

Finally, it is worth considering whether the same results might be obtained based solely on a
simple measure of input similarity without any contribution of learned internal representations. To
evaluate this possibility, we computed the mean similarity (Pearson correlation coefficient) among
all nonidentical pairs of graphemes within each orthography and compared this measure to the
grapheme complexity measure and to network training times. Mean pairwise similarity was, in fact,
moderately (negatively) correlated with training time (r = –.22), t(129) = 2.61, p < .05. However,
whereas training time was strongly related to graphemic complexity (r = .66), pairwise similarity was
unrelated to graphemic complexity (r = .04), t(129) = 0.54, ns. Similar results hold for pixelwise
entropy (thresholding values at 0.5), which is another surface-level characterization of information
content: Entropy was moderately correlated with training time (r = .28), t(129) = 3.31, p < .01, but
not with graphemic complexity (r = –.11), t(129) = 1.27, p = .20. Thus, the network’s learned
representations are making an important contribution to performance beyond mere sensitivity to
pixelwise input similarity or entropy.

Effects of grapheme complexity and L1 background on perceptual judgments

Turning to a consideration of the findings from the same-different judgment task (Chang, 2014), an
initial question was whether, for the eight L1 networks comparing graphemes from six grapheme
groups, L1 background affects perceptual variability across grapheme complexity levels. To address
this question, an 8 × 6 (L1 Background × Grapheme Complexity) analysis of variance was conducted
with network accuracy (representation dissimilarity) as the dependent measure. The main effect of
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L1 background was significant, F(7, 82) = 158.89, p < .001, ηp
2 = .931; the main effect of grapheme

complexity was also significant, F(7, 410) = 5696.62, p < .001, ηp
2 = .986. There was a significant

interaction between L1 background and complexity, F(35, 410) = 94.28, p < .001, ηp
2 = .889. To

better understand this interaction, we carried out pairwise comparisons using Bonferroni adjust-
ments to control for the overall Type I error. Table 1 provides a summary of the comparisons along
with the means and standard deviations of network accuracy.

Results revealed an accuracy gradient showing that increasing grapheme complexity leads
to decreasing accuracy for all networks. Specifically, complex Chinese characters were the most
difficult to process, followed by simple Chinese characters, and then three orthographies (i.e.,
Telugu, Russian, and Hebrew) with varying processing difficulty depending on the networks’ trained
orthographies; note that Cree graphemes were the least difficult to process, regardless of trained L1.
Figure 3 illustrates that network accuracy for each tested grapheme group is a function of trained L1
orthography.

Figure 3. Modeling results of same-different judgments, in terms of representation dissimilarity, for grapheme pairs drawn from
different orthographies (grapheme group, plotted as different colored bars), made by networks trained with different
orthographies.

Table 1. Means and standard deviations (in parentheses) of network accuracy in examining whether L1 orthographic complexity
differentially affects perceptual variability across grapheme complexity levels.

Network (Ordered by
trained orthographies
from simple to
complex)

Grapheme group
(Ranked complexity from simple to complex)

F ηp
2

Pairwise comparison
(With bonferroni
adjustments)

1
Hebrew

2
Russian

3
Cree

4
Telugu

5
Simple
Chinese

6
Complex
Chinese

Hebrew
(–.58)

0.44
(0.003)

0.45
(0.003)

0.51
(0.005)

0.45
(0.014)

0.38
(0.005)

0.34
(0.006)

1236.03** .993 3 > 1,2,4 > 5 > 6

English
(–.50)

0.44
(0.003)

0.45
(0.002)

0.53
(0.004)

0.44
(0.007)

0.39
(0.004)

0.36
(0.004)

2907.04** .997 3 > 2 > 1,4 > 5 > 6

Russian
(–.32)

0.43
(0.003)

0.46
(0.002)

0.50
(0.003)

0.42
(0.007)

0.38
(0.004)

0.35
(0.003)

2493.22** .996 3 > 2 > 1,4 > 5 > 6

Arabic
(–.26)

0.41
(0.004)

0.42
(0.005)

0.51
(0.006)

0.43
(0.008)

0.36
(0.004)

0.30
(0.004)

4050.83** .998 3 > 2,1,4 > 5 > 6

Hindi
(–.02)

0.41
(0.003)

0.44
(0.002)

0.52
(0.004)

0.44
(0.008)

0.38
(0.004)

0.31
(0.002)

4424.54** .998 3 > 2,4 > 1 > 5 > 6

Telugu
(.07)

0.41
(0.004)

0.43
(0.004)

0.53
(0.005)

0.49
(0.009)

0.38
(0.004)

0.31
(0.004)

3717.38** .998 3 > 4 > 2 > 1 > 5 > 6

Japanese
(1.62)

0.45
(0.003)

0.49
(0.002)

0.52
(0.003)

0.43
(0.006)

0.41
(0.002)

0.41
(0.001)

2426.23** .996 3 > 2 > 1 > 4 > 5 > 6

Chinese
(3.79)

0.45
(0.010)

0.48
(0.011)

0.51
(0.008)

0.44
(0.013)

0.42
(0.013)

0.40
(0.021)

199.952** .913 3 > 2 > 1 > 4,5 > 6

Note. For the pairwise comparison with Bonferroni adjustments, all ps < .001.
**p < .001.

SCIENTIFIC STUDIES OF READING 9

D
ow

nl
oa

de
d 

by
 [

D
av

id
 P

la
ut

] 
at

 1
5:

56
 0

1 
D

ec
em

be
r 

20
15

 



To answer the question of whether L1 background affects perceptual processing, we first exam-
ined the patterns from networks tested on graphemes from their original training orthography (i.e.,
Hebrew, Russian, Telugu, and Chinese networks). For the Hebrew networks, the Hebrew graphemes
were just as difficult as Russian and Telugu graphemes and less difficult than simple and complex
Chinese characters. For the Russian networks, however, the Russian graphemes were less difficult
than Hebrew and Telugu graphemes, whereas the decreasing accuracy gradient was maintained for
other grapheme groups. Similar to this L1 advantage of the Russian network, the Telugu networks
showed less difficulty with Telugu graphemes than with other grapheme groups. Notably, although
the Chinese networks were tested within their L1, their L1 advantage was not obvious. Complex
Chinese characters remained the most difficult, whereas simple Chinese characters became as
difficult as Telugu graphemes but not less difficult than Hebrew, Russian, and Cree graphemes
(ordered in decreasing difficulty). Overall, these results suggested that, although familiarity played a
role in networks’ difficulty when processing L1, comparable to the effects of familiarity observed in
Chang’s (2014) behavioral results, grapheme complexity seemed generally to outweigh these effects
in accounting for variability.

Next, we examined the patterns for networks tested on non-L1 graphemes (e.g., English, Arabic,
Hindi, and Japanese networks). Across the four sets of networks (10 per orthography), a decreasing
accuracy gradient was found for complex Chinese characters, simple Chinese characters, and Cree
graphemes. However, processing difficulty with Telugu, Russian, and Hebrew graphemes varied
across networks. For the English networks, Telugu and Hebrew graphemes were more difficult than
Cree graphemes; for the Arabic networks, these three grapheme groups were equally difficult; for the
Hindi networks, Hebrew graphemes were more difficult than Telugu and Russian graphemes; finally,
for the Japanese networks, Telugu graphemes were more difficult than Hebrew graphemes and
Russian graphemes. Although the variability in accuracy patterns from processing Telugu, Russian,
and Hebrew graphemes needs further investigation, it is important to note that the general pattern
holds across all six grapheme groups—increasing complexity leads to increased processing difficulty.

Collectively, results from the eight sets of networks establish a complexity effect—processing
accuracy decreased as grapheme complexity increased, whereas complexity of L1 orthography
interacted with tested grapheme complexity to produce patterns that differed by trained L1. For
purposes of comparison, it is worth considering whether simple pairwise similarity among gra-
phemes would exhibit the same pattern of results (apart from effects of L1 background, of course).
To determine this, we calculate the pixelwise correlations among pairs of graphemes that occurred in
“different” trials in the experiment and then subtracted this from 1.0 to provide a measure of the
relative ease of correctly discriminating the graphemes. Across L1 backgrounds, the empirical data
pattern into three groups of roughly equivalent difficulty: Hebrew, Russian, and Cree are easiest,
following by Telugu and simple Chinese characters, with complex Chinese characters being much
more difficult. The pairwise similarity measure, by contrast, patterns completely differently: Cree is
easiest (0.964), following by Hebrew (0.946), complex Chinese (0.943) and simple Chinese (0.941),
then Russian (0.921), with Telugu (0.828) being by far the most difficult. Thus, the pattern of
complexity effects exhibited by both participants and the model cannot be explained by simple
pixelwise similarity among graphemes.

At a general level, our modeling results are consistent with Chang’s (2014) findings. However,
close comparison of the empirical results (Figure 1) and modeling results (Figure 3) reveals some
clear discrepancies as well. The most obvious is that the networks find Cree much easier to
discriminate than any of the other orthographies, whereas for participants, it is only among the
easiest (along with Hebrew and Russian). One possible explanation for this is that Cree graphemes
are highly geometric shapes that often differ only by rotation or reflection (see Figure 4). Participants
find these somewhat more difficult to distinguish because, based on extensive visual experience, their
visual systems have learned to ignore transformations that preserve shape: translation, rotation,
scaling, and reflection. By contrast, the network’s representations did not develop under the pressure
to recognize shapes across these transformations but developed only to reconstruct them accurately
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on a pixelwise basis. As a result, the network outperforms participants because its representations for
graphemes that differ only in these ways are overly distinct. A similar explanation likely applies to
the network’s relatively elevated performance (compared to participants) on Telugu graphemes, as
they also have a high degree of similarity under rotation or reflection.

The other main discrepancies between the model and participants concern effects of familiarity,
that is, being tested on the same orthography on which the model was trained. In cases such as
Russian and Telugu, the network shows a somewhat greater benefit from familiarity than partici-
pants, again perhaps because it is overly sensitive to pixelwise similarity. On the other hand, the
network shows less benefit from familiarity than participants when tested on the simpler Chinese
characters. This may reflect inadequacies in our training procedure—in particular, failing to include
relative grapheme frequency—but it may also reflect participants’ partial reliance on higher-level
(semantic) representations that the model lacks.

Discussion

We developed a neural network model intended to capture basic visual characteristics of grapheme
learning independent of specific orthographies, and then tested the model’s learning of graphemes
across a large number of orthographies. Using an autoencoder to implement a distributed-coding
scheme, the model simulated grapheme learning in each of 131 orthographies, showing that
grapheme complexity is positively, strongly associated with learning difficulty. Moreover, we simu-
lated skilled learners from eight L1 orthographies performing same-different judgments on gra-
pheme stimuli from six grapheme groups. Apart from some specific discrepancies involving Cree
and Telugu (discussed next), the model captured the rough ordering of difficulty across orthogra-
phies, with Hebrew and Russian as the easiest (and least sensitive to L1 orthography), complex
Chinese characters as the most difficult (and most sensitive to L1 orthography), and with simple
Chinese characters falling somewhere in between. These simulations confirmed that perceptual
performance is a function of complexity of grapheme stimuli and learners’ L1 orthography.

The model’s most important quality is its distributed-coding scheme for orthographic representa-
tions. Unlike the slot-coding scheme used commonly in prior modeling work (e.g., interactive
activation model, McClelland & Rumelhart, 1981; dual route cascaded model, Coltheart et al.,
2001), graphemes in this model were not individually represented with specified units. Each
grapheme is represented by a particular pattern of activity over many units. Thus, our distributed
coding scheme was designed to learn to detect features that make up graphemes in general. The fact
that models trained on one orthography were accurate at representing and discriminating between
graphemes from other orthographies suggests that the developed coding schemes have a fair degree
of generality. Another important property of the model is the use of hidden units with varying
receptive (and projective) field sizes; this design assured the model would not be biased to learning
structure at any particular spatial scale (which might vary across orthographies). These capacities are

Figure 4. Cree graphemes.
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critical because they allow for practical and precise cross-orthographic comparisons, which are
important in capturing both the general and orthography-specific properties that combine to affect
orthographic learning across the world’s writing systems. Essentially, the present model serves as a
universal grapheme learning device.

The model results are informative about the factors contributing to the visual phases of ortho-
graphic learning and to the perception of grapheme forms. First, simulating L1 learning across 131
orthographies showed that the number of learning epochs to reach mastery has a strong, positive
correlation with grapheme complexity, as quantified by Chang et al. (2015) measurement system,
and that this effect is not simply a matter of larger grapheme inventory or increased pixelwise
similarities. This finding is in line with reports from vision research that the perceptual load of letters
hinders individuals’ recognition efficiency given individuals’ limited visual-processing capacity (Pelli
et al., 2006; Vogel, Woodman, & Luck, 2001; Xu & Chun, 2006). This interpretation is also consistent
with several reading studies suggesting that perceptual load of visual orthography may be a source of
processing difficulty (e.g., Nag, Snowling, Quinlan, & Hulme, 2014, for Kannada; Rao, Vaid,
Srinivasan, & Chen, 2011, for Urdu). At the same time, the fact that grapheme inventory does
make an independent contribution to learning times mirrors the prominent role-played by this
factor in the pace of orthographic learning across writing systems (e.g., contained and extensive
orthographies; Nag, 2007).

Second, the model provided a closer causal link from visual complexity of both graphemes and
readers’ L1 orthography to processing difficulty. Consistencies found when comparing the modeling
results (Figure 3) with behavioral data in Chang (2014; Figure 1) suggest that processing difficulty
increases as grapheme complexity increases while the specific pattern of difficulty differs by L1
orthography. Because our model focused on learning orthographic representation without mapping
to phonology or semantics, the resulting patterns can be attributed to the complexity encoded in the
representation. It is important that the model’s orthography-focused design may also help to clarify
the interpretation of the results of previous cross-orthography studies. Although these studies
suggested that grapheme complexity plays a role in reading development (e.g., Abdelhadi et al.,
2011; McBride-Chang et al., 2011), the confounding of complexity with level of linguistic mapping
made the suggestion uncertain. Our simulations suggest that when linguistic mapping is out of the
picture, there remains a strong effect of visual complexity.

In the broader context of learning to read, the effects of visual complexity cannot be fully
established based solely on observations at the level of graphemes or orthography. Reading is
fundamentally a process of associating graphemic forms with phonology and semantics, but the
“stimulus encoding” phase is an important part of this process. In testing the hypothesis that
complexity leads to reading difficulty and generalizing the results to various writing systems, a
first step is to demonstrate that more visually complex orthographies are processed less reliably and
efficiently, adding pressure when learning to read. This is what the current work has shown.

Notwithstanding the usefulness of the model in capturing general effects of graphemic complexity
and L1 background, it must also be acknowledged that there were a number of substantial
discrepancies between model and human performance when compared in detail. Graphemes from
certain orthographies—Cree and Telugu—were too easy for the network to discriminate, and the
network showed some effects of familiarity that differed from those of participants. Of importance,
these discrepancies can be understood in terms of limitations of the current modeling approach. The
model lacks the range of visual experience and task demands that, in participants, lead to substantial
invariance to changes in translation, rotation, scaling, and reflection—and, hence, poorer perfor-
mance when graphemes differ only in these respects. Indeed, a fully adequate account of perceptual
invariances of these sorts will almost certainly require a much deeper and more structured network
architecture (see LeCun et al., 2015; Schmidhuber, 2015). The network’s inadequate treatment of
familiarity may also reflect undue sensitivity to pixelwise similarities, as well as a lack of interactions
with higher level representations. The identification of these limitations thus provides important
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information in the development of more comprehensive models of grapheme acquisition in parti-
cular, and visual processing in reading more generally.

It is also worth pointing out that, to fully account for graphemic learning in reading acquisition, the
model would need to be extended to apply to strings of graphemes. Here we envision an approach
similar to that used by Plaut (1999), in which the visual system initially fixates every grapheme (as in
the current model) but then, as it develops competence in representing and processing such gra-
phemes, begins to extend its processing—some might call it attention—to adjacent but slightly more
peripheral graphemes as well. In this way the system gradually builds up the capability of representing
and processing longer and longer strings of graphemes as it gains reading experience.

In conclusion, we have presented a novel approach to understanding the visual component of
learning to read across writing systems by implementing a PDP learning model that represents
orthographic knowledge in a distributed fashion. The model captures broad effects of graphemic
complexity and L1 background on perceptual processing, and its limitations provide clear directions
for future work. The broader contribution of this study is threefold. Theoretically, it shines a light on
the visual processes that are important but often ignored in reading. Methodologically, we demon-
strate the value of a distributed-coding scheme that can accommodate graphemes from any ortho-
graphy, encouraging examination into orthographic learning across writing systems. Practically, we
explain how visual complexity adds pressure to perceptual processing during reading, bringing to
light a prominent risk factor for reading difficulty.
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Appendix A

The visual orthography measure

The visual orthography measure (VOM; Chang et al., 2015) was developed to quantify the visual
complexity of any grapheme in any orthography. This measurement system includes four dimen-
sions, each of whose strength in capturing different visual properties of graphemes has been
demonstrated in prior reading research: (a) perimetric complexity: sensitive to ratio of written
form to surrounding white space (Pelli et al., 2006), (b) number of simple features: sensitive to
“building blocks” or strokes which graphemes comprise (Wu, Zhou, & Shu, 1999), (c) number of
connected points: sensitive to continuity (Lanthier et al., 2009), and (d) number of disconnected
components: sensitive to discontinuity (Gibson, 1969). Operational definitions of these four dimen-
sions and their examples from five writing systems are provided next:

Perimetric complexity (PC): PC is defined as the square of the sum of the inside and outside
perimeters of a grapheme divided by the product of 4π and the foreground area (Pelli et al., 2006;
Watson, 2011). For example, in a 500-pixel × 500-pixel bitmap, 1 represents “ink” and 0 represents
“paper”; if uppercase W has a 4,656-pixel perimeter and 136,602-pixel squared area, its perimetric
complexity is 12.6287 (= 4656 × 4656/ 136602 /4π).

Number of simple features (SF): An SF is a discrete element of an image that can be discriminated
independently from other features (Pelli et al., 2006). Namely, an SF is a mark drawn in a single
movement in a specific orthography so that an SF can be a line, a dot, a curve, or a circle. For
example, English < L >, Hebrew < ד >, Cree < ᑭ >, Telugu < ల >, and Chinese <人> each have
two SFs.

Number of connected points (CP): A CP (or a junction) is an adjoining of at least two simple
features. For example, English < F >, Hebrew < צ >, Cree < ᔨ >, Telugu < అ >, and Chinese <仆>
each have two CPs.

Number of disconnected components (DC): Counter to the CP dimension, a DC is a simple
feature or features in a set that do not adjoin any other feature. For example, English < i >, Hebrew
< ה >, Cree < ᐄ >, Telugu < ఠ >, and Chinese <云> each have two DCs.

These four dimensions give objective, quantitative, and size-invariant estimations about grapheme
complexity. Table A1 shows how these four dimensions capture different properties of five gra-
phemes in five writing systems.

VOM methods: To quantify grapheme complexity

From five writing systems, 131 orthographies were selected that have been specifically examined in
cross-writing-system (Changizi & Shimojo, 2005), cross-alphabet (Seymour et al., 2003), and cross-
Chinese-orthography (Chen, Chang, Chiou, Sung, & Chang, 2011) studies. Ager’s Omniglot: The
Online Encyclopedia of Writing Systems and Languages (Ager, 1998), the same source used in
Changizi et al.’s (2005) study, was consulted to discern writing system classification for these
orthographies, as well as the number of graphemes—21,821 graphemes in total. The programming

Table A1. Properties of graphemes in five writing systems.

Writing system Abjad Alphabet Syllabary Alphasyllabary Morphosyllabary

Orthography Hebrew Russian Cree Telugu Chinese

Example grapheme

PC 6.02 7.83 12.04 18.06 20.85
No. of SF 3 2 6 5 9
No. of CP 1 1 3 2 14
No. of DC 2 1 3 3 1

Note. PC = perimetric complexity; SF = simple features; CP = connected points; DC = disconnected components.
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language Processing (Reas & Fry, 2010) was used to construct a simple image of each grapheme in
black Arial font against a 500 × 500-pixel white background. The visual complexity of a grapheme
can be represented in two ways: (a) raw scores from each of the four dimensions of the visual
orthography measure, and (b) a standardized composite score for representing overall complexity
(calculated by transforming raw scores to within-dimension z scores and then averaging the resulting
scores).

VOM implications: To predict grapheme inventory size predication

To determine which weighted combination of dimensions could best predict grapheme inventory
size across 131 orthographies, a multiple regression with four dimensions as predictors (i.e., mean
scores from four dimensions for each orthography) was performed. The PC dimension was entered
first given its reported significance in comparing grapheme complexity across orthographies (Pelli
et al., 2006). Next, the three other dimensions were entered in a stepwise manner to determine
whether any of them could account for remaining variance, above and beyond that explained by PC.
The resulting model (i.e., Model 4 which included all four dimensions as significant predictors;
R2 = .82, p < .01) suggested that the four dimensions collectively, as opposed to the PC dimension
alone, can best predict grapheme inventory size.

Table A2. Step-wise multiple regression of graphemic complexity measure components against graphemic inventory size

Model 1 Model 2 Model 3 Model 4

B SE B β B SE B β B SE B β B SE B β

PC 94.98 10.79 .61** 3.59 13.48 .02 −24.31 12.42 −.16 .65 10.35 .01—
DC 1087.74 124.00 .76** 795.43 116.15 .56** 1185.76 103.48 .83**
CP 244.38 36.99 .48** 796.41 71.12 1.57**
SF −702.71 82.34 −1.46**
R2 .38 .61 .71 .82—
R2 change .23 .10 .11—
F for change in R2 77.49 100.03** 103.45** 139.69**

Note. PC = perimetric complexity; DC = number of disconnected components; CP = number of connected points; SF = number of
simple features.

**p < .01.
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Appendix B

A full list of orthographies

Table B1. One hundred thirty-one orthographies (listed in alphabetic order) in five writing systems with overall complexity (Chang
et al., 2015) and networks’ learning epochs (mean of 10 runs).

Writing system classification Orthography Grapheme inventory
Overall complexity

(in z score)
Learning epochs

(mean)

Albanian (Elbasan) 40 −0.54 15140
Albanian (Todhri) 53 −0.39 20820
Armenian (Eastern) 38 −0.55 32980
Asomtavruli 38 −0.43 21760
Avestan 54 −0.23 32390
Bassa 30 −0.55 21540
Belarusian 32 −0.43 37760
Bosnian 30 −0.40 34230
Bulgaria 30 −0.44 37890
Celtiberian 28 −0.28 15070
Cyrillic (Abkhaz) 56 0.01 37640
Danish 29 −0.57 32570
Deseret 38 −0.58 28120
Dutch 26 −0.64 25900

Alphabet English 26 −0.50 25900
Enochian 22 −0.49 15770
Finnish 28 −0.56 26470
Fraser 40 −0.55 16260
French 26 −0.65 25900
Glagolitic 42 0.44 37580
Gothic (Wulfila) 25 −0.64 15660
Greek 24 −0.62 22020
German 26 −0.64 25900
Hungarian Runes 46 −0.12 27550
Icelandic 32 −0.49 32300
Italian 21 −0.66 25090
Kazakh 42 −0.43 43790
Korean (Hangeul) 40 0.15 25240
Kyrgyz 36 −0.40 41190
Latin (ancient) 21 −0.56 16410
Latin (modern) 41 −0.28 25200
Macedonian 31 −0.45 29740
Marsiliana 26 −0.29 10880
Mkhedruli 38 −0.61 22060
Mongolian 35 −0.40 41310
Montenegrin 33 −0.39 34430
N’Ko 27 −0.52 15000
Norwegian 29 −0.57 32580
Nuskhuri 38 0.16 17040
Old Church Slavonic 45 −0.22 33910
OldPermic (Abur) 38 −0.21 12540
Pahawh Hmong 166 0.26 25850
Pollard Miao 85 −0.31 17500
Portuguese 26 −0.64 25910
Romanian 31 −0.56 26930
Runic (Danish Futhark) 16 −0.53 15000
Runic (Elder Futhark) 24 −0.31 18820
Russian 33 −0.32 40190
Santali (OlCemet’) 30 −0.15 15510
Serbian 30 −0.45 30920
Somali (Osmanya) 30 −0.38 21520
Sorang Sompeng 24 0.07 15000
Spanish 27 −0.61 27830
Swedish 29 −0.54 29350
Tajik 35 −0.40 39130
Theban 25 0.23 19700
Ukrainian 33 −0.45 39690

(Continued )
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Table B1. (Continued).

Writing system classification Orthography Grapheme inventory
Overall complexity

(in z score)
Learning epochs

(mean)

VarangKshiti 30 −0.40 15410
Yupik 44 −0.25 32120
Zhuyin Fuhao 37 −0.11 25250
Ancient Berber 25 0.28 13320

Abjad Arabic 28 −0.26 29340
Aramaic (Early) 22 −0.45 15000
Hebrew 32 −0.58 18960
Middle Persian 22 −0.64 15000
Nabataean 22 −0.57 15000
Neo Tifinagh 33 −0.20 20330
Parthian 22 −0.60 15000
Pashto 40 0.05 25100
Phoenician 22 −0.39 16110
Psalter 21 −0.75 11510
Sabaean 29 −0.28 15000
Samaritan 22 −0.08 20000
South Arabian 28 −0.31 15000
Syriac 22 −0.60 19230
Tifinagh 33 −0.16 17700
‘Phags-pa 41 0.37 29310
Ahom 45 0.02 27740
Amharic 282 −0.23 50900
Balinese 84 0.85 37960
Batak (KaraBatak) 32 −0.70 15000
Bengali 57 0.71 37860
Brahmi 52 −0.62 15690
Buhid (Mangyan) 48 0.22 17890
Burmese 62 0.23 29690
Dehong 30 −0.51 11310

Alphasyllabary Devanagari 62 0.01 32810
Dives Akuru 46 −0.26 27370
Ethiopic (Ge’ez) 234 −0.29 54390
Gujarati 64 −0.34 34820
Gurmukhi 60 0.32 31270
Hanuno’o (Mangyan) 48 0.19 21790
Hindi 66 −0.02 36040
Inuktitut 112 −0.29 32960
Kannada 50 0.17 28960
Kharosthi 39 −0.54 26420
Khmer 130 1.12 43490
Lao 78 0.51 27310
Lepcha Rong 77 −0.11 38060
Limbu 45 −0.29 22530
Malayalam 69 0.03 33030
Manipuri 57 0.26 32340
Marathi 65 0.06 22330
Meroitic 23 −0.21 15000
Oriya 66 0.12 32540
Redjang (Kaganga) 36 −0.46 17720
Sindhi 51 0.26 25940
Sinhala 71 0.45 28500
Soyombo 86 1.10 23070
Syloti-Nagri 38 0.23 16780
Tagalog 45 0.18 29230
Tagbanwa 42 0.21 18770
Tamil 47 0.40 19360
Telugu 70 0.07 27140
Thaana 49 −0.18 25240
Thai 102 1.07 40250
Tibetan 34 0.20 21700
Carrier 195 0.10 25790
Cherokee 85 −0.49 25910

(Continued )
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Appendix C

The behavioral experiment (Chang, 2014)

Design
A 8 × 6 mixed design was used with participants’ first-language (L1) orthography as a between-
participants factor (Hebrew, English, Russian, Arabic, Hindi, Telugu, Japanese, and Chinese parti-
cipants) and grapheme group as a within-participants factor (Hebrew, Russian, Cree, Telugu, simple
Chinese characters, and complex Chinese characters).

Participants
A total of 480 participants (60 participants for each of eight L1 orthographies) took part in the
experiment. Across all eight orthographies, the participants were matched by age (M = 26.88,
SD = 5.16), F < 1, and met the following criteria: (a) native speaker of one of the languages in
eight target orthographies, (b) age from 18 to 35, and (c) no vision or hearing impairments.

Same-different judgment task
This task tapped individuals’ perceptual processing of graphemes. Each trial began with a black
fixation cross appearing for 300 ms, followed by a pair of graphemes appearing for up to 1,000 ms,
followed by a blank for 1,000 ms. The participants were instructed to judge whether two graphemes
were the same or different using their index fingers; response keys were counterbalanced across the
four stimulus lists. After instructions, the participants were given 12 example trials with answers, 36
practice trials without feedback, and 360 critical trials with randomized presentation.

Stimuli
The stimuli comprised six grapheme groups of increasing complexity (i.e., Hebrew, Russian, Cree,
Telugu, simple Chinese, and complex Chinese). For the same-different judgments, graphemes
paired with themselves comprised “same” pairs; all graphemes in each orthography (except for
Chinese) were exhaustively used. For “different” pairs, graphemes were matched by complexity,
with individual graphemes appearing only once during testing. For practical reasons, not all
possible pairs of graphemes were used. Four lists were created to allow generalization of results to
other grapheme combinations. Within each list, complexity varied by grapheme group according
to the following ranking (overall complexity of grapheme pairs per orthography across all four
lists): Hebrew (−0.58) < Russian (−0.32) < Cree (−0.32) < Telugu (0.07) < simple Chinese (0.48) <
complex Chinese (3.79), F(5, 1439) = 2339.61, p < .001. Between lists, no complexity differences
in grapheme pairs were found for any grapheme group, F(3, 1439) = 1.64, p = .18. Each list
contained 360 pairs.

Table B1. (Continued).

Writing system classification Orthography Grapheme inventory
Overall complexity

(in z score)
Learning epochs

(mean)

Cree (Woodland) 80 −0.38 36550
Cypriot 55 0.15 30900
Japanese (Hiragana) 48 0.73 40030

Syllabary Japanese (Katakana) 48 0.06 32550
Kpelle 86 2.44 33710
LinearB 71 1.66 49430
Ndjuka’ 57 −0.31 25000
Ojibwe 88 −0.47 36020
Vai 208 0.59 48120
Japanese (Kanji) 2136 1.62 107350

Morphosyllabary Chinese (Simpified) 2707 3.22 63770
Chinese (Traditional) 2707 3.79 194790
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Results
An 8 × 6 (L1 Background × Grapheme Complexity) analysis of variance was conducted with
proportion accurate as the dependent measure. The main effect of L1 background was significant,
F(7, 472) = 12.31, p < .001, ηp

2 = .154; the main effect of grapheme complexity was also significant, F
(5, 2360) = 2224.13, p < .001, ηp

2 = .825. There was a significant interaction between L1 background
and grapheme complexity, F(35, 2360) = 16.26, p < .001, ηp

2 = .194. Pairwise comparisons using
Bonferroni adjustments are provided in Table C1 along with the means and standard deviations of
proportion accurate.

Appendix D

Table D1. An illustration of graphemes with varying complexity for eight orthographies.

Orthographies ranked by overall complexity
(average grapheme complexity; in z score)

Graphemes with varying complexity within Its orthography
(sampled by extreme values and quartile)

Min. Q1 Q2 Q3 Max.

1 Hebrew

2 English

3 Russian

4 Arabic

5 Hindi

6 Telugu

7 Japanese

8 Chinese

Note. min. = minimum; Q1 = first quartile; Q2 = second quartile; Q3 = third quantile; max. = maximum.

Table C1. Means and standard deviations (in parentheses) of proportion accuracy in examining whether L1 orthographic
complexity differentially affects perceptual variability across grapheme complexity levels.

Participant (ordered by L1
orthographies from simple to
complex)

Grapheme group (ranked complexity from simple to
complex)

F ηp
2

Pairwise comparison
(With bonferroni
adjustments)

1
Hebrew

2
Russian

3
Cree

4
Telugu

5
Simple
Chinese

6
Complex
Chinese

Hebrew
(–.58)

0.93
(0.05)

0.93
(0.06)

0.91
(0.05)

0.79
(0.10)

0.79
(0.11)

0.48
(0.15)

329.17
**

.848 1,2,3 > 4,5 > 6

English
(–.50)

0.87
(0.08)

0.88
(0.08)

0.87
(0.08)

0.74
(0.13)

0.77
(0.11)

0.45
(0.16)

321.22
**

.845 1,2,3 > 4,5 > 6

Russian
(–.32)

0.89
(0.11)

0.90
(0.08)

0.89
(0.09)

0.78
(0.13)

0.78
(0.12)

0.49
(0.16)

255.89
**

.813 1,2,3 > 4,5 > 6

Arabic
(–.26)

0.85
(0.12)

0.88
(0.13)

0.86
(0.13)

0.75
(0.12)

0.75
(0.14)

0.48
(0.14)

311.27
**

.841 1,2,3 > 4,5 > 6

Hindi
(–.02)

0.86
(0.09)

0.87
(0.09)

0.86
(0.08)

0.74
(0.14)

0.71
(0.12)

0.45
(0.14)

308.67
**

.840 1,2,3 > 4,5 > 6

Telugu
(.07)

0.86
(0.10)

0.87
(0.11)

0.84
(0.12)

0.81
(0.12)

0.73
(0.11)

0.45
(0.11)

377.34
**

.865 1,2 > 3,4 > 5 > 6

Japanese
(1.62)

0.91
(0.07)

0.92
(0.06)

0.92
(0.06)

0.83
(0.10)

0.87
(0.10)

0.62
(0.13)

209.87
**

.781 1,2,3 > 4,5 > 6

Chinese
(3.79)

0.90
(0.07)

0.91
(0.06)

0.90
(0.08)

0.81
(0.08)

0.88
(0.08)

0.69
(0.13)

159.56
**

.730 1,2,3 > 5 > 4 > 6

Note. For the pairwise comparison with Bonferroni adjustments, all ps < .001.
**p < .001.
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Appendix E

Additional modeling details

Simulations were carried out using a modified version of the Lens simulation software package
developed by Doug Rohde (http://tedlab.mit.edu/~dr/Lens/). The modified software and all neces-
sary network scripts and example files are available for download at http://www.cnbc.cmu.edu/~
plaut/ChangPlautPerfetti15SSR.

Network architecture

Details of the network architecture are included in the main text. Bias connections for hidden and
output units (from a unit with fixed activation of 1.0) were initialized to random values sampled
uniformly within [−2.05, −1.95]. All other (nonbias) weights were initialized randomly, sampling
uniformly within [−0.1, 0.1]. Ten different sets of initial random weights and biases were generated,
corresponding to 10 instances or “participants.” Each such instance was trained on each of the 131
orthographies, starting from its specific initial weights. Thus, exactly the same 10 networks and the
same training procedures were applied to each of the 131 orthographies.

Stimuli

Each 38 × 38 pixel grapheme image was converted to white-on-black and normalized so that pixel
values ranged from 0.0 to 1.0 (inclusive). These values formed both the input activations and target
output activations for the network.

Training procedure

The network was trained with back-propagation using momentum descent (learning rate of 0.01,
momentum of 0.8) to minimize cross-entropy error. Activations within 0.05 of their specified targets
were considered correct and generated no error. Weights were updated after the presentation of each
grapheme (i.e., online learning), each of which was presented once per training epoch. Training was
halted once the average cross-entropy error per grapheme for a given epoch fell below 10.0.

Testing procedure

To compare two graphemes in an approximation a same-different judgment task, the 635 hidden
activations generated by each grapheme were converted back to the net inputs that generated them
by applying the inverse of the sigmoidal input–output unit function. These two sets of net inputs
were then corrupted with Gaussian noise (M = 0.0, SD = 1.0), converted back to activations by
applying the sigmoid function, and then compared by computing 1.0 – r, where r is their Pearson
correlation. This gives a measure of the dissimilarity of the two representations. This measure was
computed 100 times (for different noise samples) and averaged. Greater representational dissim-
ilarity was assumed to correspond to better performance on “different” trials, and poorer perfor-
mance on “same” trials.
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