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The Parallel Distributed Processing (PDP) framework has significant potential for producing models of
cognitive tasks that approximate how the brain performs the same tasks. To date, however, there has
been relatively little contact between PDP modeling and data from cognitive neuroscience. In an attempt
to advance the relationship between explicit, computational models and physiological data collected dur-
ing the performance of cognitive tasks, we developed a PDP model of visual word recognition which sim-
ulates key results from the ERP reading literature, while simultaneously being able to successfully
perform lexical decision—a benchmark task for reading models. Simulations reveal that the model’s suc-
cess depends on the implementation of several neurally plausible features in its architecture which are
sufficiently domain-general to be relevant to cognitive modeling more generally.
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1. Introduction

Comprehending meaning from text—visual word recognition—
is a pervasive and fundamental cognitive process that is studied
by researchers using a wide variety of methodologies. In broad
strokes, cognitive scientists seek to characterize the component
processes involved, cognitive neuroscientists seek to map those
processes onto neural signatures, and computational modelers
seek to make explicit the interactions that occur between the rep-
resentations involved. Each of these methodologies has strengths
that can supplement the weaknesses of others, and often impor-
tant discoveries are made when two or more of them are com-
bined—for example, when psychophysiology provides a time
course for proposed cognitive processes or when a computational
model shows that a particular cognitive architecture can in fact
produce the pattern of results it has been formulated to explain.

Interplay between cognitive science and computational model-
ing in the domain of visual word recognition has involved the par-
allel development of two prominent but very different modeling
frameworks: one utilizing learned representations and a uniform
set of computational principles—the Parallel Distributed Process-
ing (PDP) approach (e.g., Plaut, McClelland, Seidenberg, &
Patterson, 1996; Seidenberg & McClelland, 1989)—and another
which de-emphasizes learning and relies on different types of
computations in different functional pathways—the so-called
ll rights reserved.
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‘‘dual-route’’ or ‘‘dual-process’’ approach (e.g., Coltheart, Rastle,
Perry, Langdon, & Ziegler, 2001; Perry, Ziegler, & Zorzi, 2007). Each
of these approaches has its own strengths and weaknesses, but in
aggregate both of them are highly successful in simulating a num-
ber of results from behavior and neuropsychology. For example,
one compilation of effects that recent models have been successful
in simulating (Perry et al., 2007), includes 13 items, from diverse
tasks such as lexical decision, reading aloud, and many variants
of priming, as well as several items pertaining to performance in
dyslexia. However, there is one area in which even the most
sophisticated of current models is lacking, as agreed upon by pro-
ponents of both the PDP and dual-process frameworks (e.g., Harm
& Seidenberg, 2004; Perry et al., 2007), as well as advocates of
other modeling techniques in other domains (e.g., Bayesian model-
ing; see Griffiths, Chater, Kemp, Perfors, & Tenenbaum, 2010). That
area is contact with data from cognitive neuroscience and neuro-
physiology. It is widely hoped that more contact with cognitive
neuroscience can provide constraining data on appropriate internal
dynamics for models, and that more contact with data from neuro-
science can improve the neural plausibility of models largely based
on behavior.

Interestingly, this need for more contact with cognitive neuro-
science in computational investigations of visual word recognition
has coincided with a need for more contact with computational
models in similar investigations conducted using the Event-Re-
lated Potential (ERP) methodology. It has begun to be commonly
noted that theories about the representations and computations
involved in reading stemming from ERP data have become specific
enough that it would be desirable to test them by instantiating
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them as computational models (e.g., Barber & Kutas, 2007; van Ber-
kum, 2008). For example, a recent series of ERP studies pertaining
to the ‘‘obligatory semantics’’ view of visual word recognition has
presented data cast as strongly consonant with PDP models, while
less supportive of dual-process models (Laszlo & Federmeier, 2007,
2008, 2009, 2011). These studies have focused on the N400 ERP
component, which, as discussed in more detail below, is thought
to be a functionally specific marker of attempted semantic access
(see Kutas & Federmeier, 2011, for review). It has now been shown
several times that even meaningless items with little resemblance
to lexically represented items can engage the semantic access
thought to be indexed by the N400, both in sentences (Laszlo &
Federmeier, 2009) and in unconnected streams of text (Laszlo,
Stites, & Federmeier, in press)—that is, an attempt to access seman-
tics appears to be obligatory for all orthographic inputs, even con-
sonant strings like XFQ. Further, the N400s elicited by meaningless
illegal strings respond to manipulation of lexical characteristics
such as orthographic neighborhood size (i.e., Coltheart’s N, the
number of words that can be created by changing one letter of a
target item; Coltheart, Davelaar, Jonasson, & Besner, 1977) and
neighbor frequency in a manner both quantitatively and qualita-
tively similar to that demonstrated by words (Laszlo & Federmeier,
2011). These data have been taken as supportive of PDP models in
that they seem to reveal a language processing system which (1)
does not require an item to have a lexical representation, or even
be similar to an item with a lexical representation, in order to make
some contact with semantics and (2) performs what appear to be
indistinguishable computations on different input types, regard-
less of factors like lexicality or the regularity/consistency of spell-
ing-sound correspondences. Further, the degree to which an
attempt at semantic access occurs for meaningless items appears
to be strongly related to their similarity to items with associated
semantics (i.e., words, acronyms), a result which is consonant with
the fact that the distributed representations preferred by PDP mod-
els tend to associate similar inputs with similar outputs, to a de-
gree determined by the amount of overlap between
representations.

In contrast, the ERP results seem to be less supportive of dual-
process models, insofar as such models include lexical mediation
between orthographic input and semantics (e.g., Perry et al.,
2007), making it difficult or impossible for items such as consonant
strings, which are neither lexically represented nor similar to items
that are, to contact semantics. Note that a lexically mediated sys-
tem could potentially be made to allow illegal strings contact with
semantics by lowering the threshold of lexical activation that
needs to be met in order for semantics to be activated. That is,
the many lexical entries that overlap slightly with illegal strings
could be activated weakly, and the aggregation of this weak activ-
ity over many units could be allowed to be passed forward to
semantics. However, such a system is no longer strongly lexical-
ized, in that the internal representations that mediate between
orthography and semantics are now essentially distributed—that
is, many units participate in the representation of each input,
and the strength of activation in those units is proportional to
the degree of overlap with the input. This will be true not just
for nonwords but also for words as, of course, words overlap with
other words to differing degrees.

Another potential mismatch between the ERP results pertaining
to meaningless, illegal strings and dual-process models occurs be-
cause of one of the core properties of dual-process models: ortho-
graphic inputs tend to differentially engage separable processing
streams depending on the regularity of their spelling-sound
correspondence. This characteristic seems incongruent with the
repeated finding that items with irregular spelling-sound
correspondences (acronyms, consonant strings), elicit waveforms
that are qualitatively and quantitatively quite similar to those
elicited by items with regular spelling sound correspondence
(words, pseudowords) up to and including the N400 portion of
the ERP (Laszlo & Federmeier, 2007).

The fact that these ERP data have been explicitly cast as sup-
portive of one particular theoretical framework invites an attempt
to test the obligatory semantics view by trying to simulate key ERP
data in a PDP model of the type they are claimed to support. An at-
tempt to test the obligatory semantics view by instantiating its
assumptions in an explicit computational model would be useful
not only in advancing a theoretical position present in the ERP lit-
erature—it would also provide new information about the degree
to which the internal dynamics of a reading model constructed
with PDP principles match the internal dynamics of the groups of
neurons that are actually performing the task in the brain. Cur-
rently, there is limited constraint on the internal dynamics of cog-
nitive reading models, as they are all based almost entirely on
behavioral data, which is fundamentally end state data. That is,
while strong inferences about internal processing can and have
been made on the basis of, for example, RT or naming latency data,
these data do not provide direct evidence about the processes
occurring between when an item is presented and when a response
is made—only data about the final consequences of those pro-
cesses. ERPs, in contrast, can be collected continuously between
when an item is presented and when a response is made, and
can, in fact, be collected even when no overt response is made. Fur-
ther, ERPs can be divided into well-specified components, which
have been robustly replicated as reflecting particular cognitive
functions.

The N400 component, for a particularly relevant example, is
strongly tied with attempted semantic access. The designation of
the N400 as a semantic component is based on a variety of con-
verging results, including its functional properties, its neural gen-
erators, and the functional anatomy of components which
precede it. The N400 is known to respond to a wide variety of
semantic manipulations such as congruity with sentence and dis-
course context (Kutas & Hillyard, 1984; van Berkum, Hagoort, &
Brown, 1999), semantic association (Nobre & McCarthy, 1995),
and item concreteness (Kounios & Holcomb, 1994), to name only
a few, while not being sensitive to other types of linguistic manip-
ulations, such as those of syntactic constraint (Kutas & Hillyard,
1983), or font size (Kutas & Hillyard, 1980). Converging evidence
from intracranial EEG (Nobre & McCarthy, 1995), MEG (Halgren
et al., 2002), and the Event-Related Optical Signal (EROS; Tse
et al., 2007), as well as patterns of diminished N400 in brain dam-
age (Hagoort, Brown, & Swaab, 1996) all point to a primary source
of the N400 in the left anterior temporal lobe, a region strongly
linked with semantic processing (e.g., McCarthy, Nobre, Bentin, &
Spencer, 1995; Nobre & McCarthy, 1995). Finally, the N400 has
been argued to occur not only in the correct brain areas, but also
in the correct temporal window, to subserve semantic access,
based on both the neural generators and functional properties of
the sensory and form-based components that precede it (see
Grainger & Holcomb, 2009, for extensive review). In sum, the func-
tional specificity of the N400 component is a particularly useful
property for model-building, as its clear link with semantic pro-
cessing permits a direct comparison with semantic representations
and processes in a model.

The goal of the present work is to test the assumptions of the
obligatory semantics view of N400 processing in a PDP model that
continuously simulates N400 amplitude. Three particular consider-
ations are of importance. First, can such a model produce N400-like
dynamics at all—that is, can we produce a PDP model the semantic
activation of which resembles the morphology of the N400
component? To our knowledge there are no other implemented
computational models of N400 processing, so this is not assured.
We chose to link N400 amplitude with amount of activation in
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the semantic layer of representation in our model, on the basis of
the N400’s strong link in the literature with semantic access (as
just discussed) as well as findings that, at least in the context of
reading unconnected text, N400 amplitude represents the number
of semantic features being activated in response to a particular in-
put. (e.g., Laszlo & Federmeier, 2007, 2011). Larger (more negative)
N400s are elicited by items which might be expected to activate
more semantic features, such as items higher in concreteness
(e.g., West & Holcomb, 2000), or items with larger orthographic
neighborhood sizes. The morphology of the N400 is well-charac-
terized as essentially a curve which rises monotonically to a single
peak, and then decreases monotonically throughout the remainder
of its time course—Fig. 1 displays several N400 potentials represen-
tative of those we sought to simulate. To be successful, the mean
amount of activity in the model’s semantic layer must develop
similarly, without, for example, additional oscillations. In this fash-
ion, the model is constrained not only to reach some end state in a
manner consistent with the data (as is the case in behavioral mod-
els), but also to perform in a manner consistent with the data
throughout its evolution over time.

The second consideration is: will the dynamics of the semantic
layer in the model further mirror critical results supportive of the
obligatory semantics view? In seeking to answer this question, we
chose to focus our simulations on data from the single-item ERP cor-
pus (Laszlo & Federmeier, 2011), as it is both uniquely appropriate
for computational modeling and also representative of the key data
in support of obligatory semantics. The availability of single-item
ERPs enables items analysis (e.g., items multiple regression), in addi-
tion to the more typical parametric analysis available from ERP read-
ing studies. This makes the single-item ERP corpus a particularly
appropriate target for computational modeling, as it is advanta-
geous to model items effects, not just item aggregated, factorial ef-
fects, whenever possible. For the model to be successful, in
addition to showing the broad characteristics of the N400, it must
also produce simulated N400s that are consistent with the critical
findings from the single-item ERP corpus (described in detail below).

Finally, it is important that the model also be able to perform
the behavioral task of lexical decision, as lexical decision is among
the most common benchmark tasks for computational reading
DOG
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Fig. 1. Representative single-item ERPs averaged over 120 participants, but not over
items. The middle parietal electrode site, where N400 effects are most prominent, is
displayed. Typical N400 morphology is visible in the 300–500 ms N400 window
(boxed), for the words DOG, BUS, and FISH. In this figure, as in all ERP figures, negative
is plotted up.
models. Literate adults, though they do not receive extensive train-
ing on performing lexical decisions while learning to read, are able
to make them quite easily in a lab setting. In imitation of this sit-
uation, the model is never explicitly trained on lexical decision
but is asked to make lexical decisions on the basis of a simple
thresholding procedure after training is complete. Attempting to
implement this additional capability in the model helps to ensure
that, insofar as it is able to simulate results previous models do
not—from the domain of ERPs—it is also able to simulate the fun-
damental behavioral data that decades of visual word recognition
modeling have been built on. Without this additional ability, the
ERP model would not truly be tied to its thematic predecessors
(e.g., Harm & Seidenberg, 2004; Plaut et al., 1996; Seidenberg &
McClelland, 1989), which would be unfortunate given the signifi-
cant insights those models have provided into visual word recogni-
tion. Simulating both electrophysiological and behavioral data is a
more challenging task than simulating the ERP data alone, but a
worthwhile one: it lays a foundation for a much more complete,
holistic model than ignoring the behavioral data would. Further,
challenging the model to perform lexical decision instantiates an
incremental approach to computational modeling (Perry et al.,
2007) by extending a preliminary ERP model that focused on the
ERP data alone (Laszlo & Plaut, 2011). A criterion for model success
was that, by the end of processing each input, the model be able to
produce a signal that could reliably differentiate meaningful items
(words and acronyms) from non-meaningful items (pseudowords
and illegal strings).

In developing a model of ERP data, we considered it critical to
incorporate some of the most general properties of the neurons
which produce the ERP signal. The vast majority of the brain-gen-
erated electrical potential measured at the scalp is produced by the
synchronous firing of excitatory and inhibitory post-synaptic
potentials by cortical neurons arranged in an open-field configura-
tion (see Fabiani, Gratton, & Federmeier, 2007, for review). Thus,
we departed from previous reading models by trying to handle
excitation and inhibition in the model in a manner more true to
what is understood about the neural configuration of excitation
and inhibition (see, e.g., Crick & Asanuma, 1986). This was accom-
plished in three ways. First, we separated excitation and inhibition
in the model, such that individual units could have excitatory out-
going projections or inhibitory outgoing projections, but never
both, as is true of cortical neurons. This arrangement can be ob-
served in Fig. 2, which presents a schematic of the ERP model. Sec-
ond, we limited the distribution of inhibitory connections, such
that they could occur only within, but never between, levels of rep-
resentation in the model. This decision was motivated by the fact
that connections between cortical areas are largely excitatory, with
inhibitory connections occurring largely within a given cortical
area. This feature of the model is also visible in Fig. 2. Finally, we
severely limited the number of inhibitory units in the model—each
excitatory layer has only a single associated inhibitory unit—in
accordance with the finding that the large majority of neurons in
the cortex are excitatory (e.g., White, 1989). Each of these neurally
plausible adjustments to the way excitation and inhibition are
handled in the model represent a departure from previous reading
models (e.g., Harm & Seidenberg, 2004), in that inhibition is typi-
cally unconstrained in such models, with individual units able to
have both positive and negative outgoing connections, inhibitory
connections allowed between levels of representation, and, be-
cause excitation and inhibition are not separated, essentially equal
numbers of excitatory and inhibitory units.

In what follows, we first present the relevant phenomena from
the single-item ERP corpus in some detail, in order to directly moti-
vate the simulations that follow. Then, in two simulations, we ex-
plore a number of questions pertaining to the ability of a PDP
system to successfully simulate the ERP data. First, we attempt



Fig. 2. Schematic of the ERP model. Lines with empty circles indicate excitatory
connections, lines with filled circles indicate inhibitory connections. INH stands for
‘‘inhibitory,’’ and each INH bank consists of only 1 unit. Note that no units have both
excitatory and inhibitory outgoing connections, and that inhibition is always
within, never between, levels of representation.
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Fig. 3. Orthographic neighborhood size effect in item-aggregated ERPs. Item types
with high N (words, pseudowords) elicited larger N400s than item types with lower
N (acronyms, illegal strings).
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Fig. 4. Orthographic neighborhood size effect in single item ERPs. N400 mean
amplitude is computed over the middle parietal electrode site in the 300–500 ms
post stimulus onset epoch. Lexical items (words and acronyms) are represented by
filled dots, non-lexical items (pseudowords and illegal strings) are represented by
empty dots. Note that the slopes representing the relationship between ortho-
graphic neighborhood size and N400 mean amplitude are quite similar. Reproduced
from Laszlo and Federmeier (2011).
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to determine whether a PDP system can produce internal dynamics
which resemble ERP morphology at all. If this is accomplished, we
then seek to determine whether such a system can produce the re-
sults thought to be supportive of the obligatory semantics view of
N400 processing: namely a strong effect of orthographic neighbor-
hood size which acts similarly for lexical and non-lexical items.
Importantly, if the model is able to correctly simulate the key
ERP findings, its ability to perform lexical decisions is assessed as
an additional metric of success. Finally, the contribution of the sep-
aration of excitation and inhibition in the model to the model’s
ability to simulate the ERP data is examined.

2. Target phenomena: Event-Related Potentials

A detailed report of the methods and results of the single-item
ERP corpus is available elsewhere (Laszlo & Federmeier, 2011).
However, for clarity, we describe here the nature of that data set
and the key results that will act as target phenomena for the sim-
ulations presented below. 120 participants in the single-item ERP
study viewed an unconnected list of words (e.g., HAT), pseudo-
words (e.g., KOF), acronyms (e.g., DVD), and meaningless illegal
strings (e.g., NHK), while monitoring the stream for English proper
names (e.g., SARA, DAVE). No response was required for the critical
item types, in order to keep the critical ERPs free from response re-
lated components. This task, as well as the item types presented,
replicated Laszlo and Federmeier (2007). Acronyms were backsort-
ed on the basis of a post-test such that only acronym items that
individual participants were familiar with were included in that
participant’s averaged waveforms. Event-Related Potentials were
formed by averaging at each of the scalp electrodes time-locked
to the onset of each of the critical items. In the case of single-item
ERPs, averaging was done over participants only, not over items.
More typical, item-aggregated ERPs (representing, for example,
the response to all words) were formed by averaging over both
items and participants.

One of the most striking findings in the single-item data is that
individual lexical characteristics (e.g., orthographic neighborhood
size, neighbor frequency), tend to be much stronger predictors of
N400 amplitude than lexical type (e.g., word or pseudoword). This
is demonstrated in Fig. 3, in the case of orthographic neighborhood
size. As is evident in Fig. 3, items with high N (words, pseudo-
words) elicit larger N400s than items with low N (acronyms, illegal
strings), and this is true regardless of lexicality. That is, though
pseudowords are presumably not semantically represented, they
elicit similar N400s to words, because of their similarity on
N—the same is true when comparing acronyms and illegal strings.
This can be quantified as a main effect of N on N400 mean ampli-
tude, but no effect of lexicality and no interaction between the two
(see Laszlo & Federmeier, 2011, for details of statistical analysis).

The second critical finding we consider in the simulations below
is that, at an items level, the slopes relating N400 mean amplitude
to orthographic neighborhood size are qualitatively and quantita-
tively quite similar for lexical and non-lexical items—this is, of
course, reflected as the lack of interaction between N and lexicality
in the factorial analysis. This result is visible in Fig. 4 (reproduced
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from Laszlo & Federmeier, 2011), which displays a scatter plot of
items N400 mean amplitude vs. orthographic neighborhood size
along with single regression trendlines for lexical and non-lexical
items. Note that the distributions of N400 mean amplitudes for
lexical and non-lexical items are almost completely overlapping,
as are the trendlines depicting the relationship between ortho-
graphic neighborhood size and N400 mean amplitude for the two
lexical types. Thus, the N effect is quite similar for lexical and
non-lexical items. In addition, automated stepwise regression anal-
ysis of the single-item ERP corpus revealed that N is, by far, the
strongest predictor of unique N400 variance of those lexical vari-
ables considered (length, N, neighbor frequency, number of lexical
associates, and frequency of top associate were all considered in
Laszlo & Federmeier, 2011; subsequent analysis has extended the
list to include bigram frequency, concreteness, imageability, num-
ber of senses, and noun verb ambiguity; Laszlo, unpublished data).
The prominence of the N effect, combined with other findings indi-
cating that, unlike effects of variables such as concreteness or writ-
ten frequency, it is maintained both with repetition and in
sentence context (Laszlo & Federmeier, 2007, 2008, 2009), alto-
gether make it particularly relevant for simulations exploring the
obligatory semantics view of the N400.
3. Simulation 1

3.1. Methods

The architecture of the ERP model is depicted in Fig. 2. A 15-unit
visual input layer represents the visual features of each of three
letters in five non-overlapping slots. The visual input layer feeds
into a 20-unit orthographic autoencoder, which was pre-trained
to reproduce the visual input on a copy of the 15 input units. The
autoencoder feeds through a 50-unit hidden layer to a 50-unit
semantic layer with an associated 30-unit semantic cleanup layer.
At the semantic layer, relatively sparse, arbitrary semantic repre-
sentations were trained to be associated with the visual inputs,
in accordance with the fact that, for morphologically simple words
in English, orthography-semantics mappings are largely arbitrary.
Semantic targets consisted of random bit patterns over the 50
semantic units—that is, semantic features were not learned but
were arbitrarily assigned, with the constraint that each unit be ac-
tive in at least one semantic target. Either 3 or 7 features were ac-
tive in semantics for each target. The numbers 3 and 7 were chosen
simply so that semantic representations would be fairly sparse (i.e.,
6% of features active for a representation with three features, 14%
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active for a representation with seven features). Two different
numbers of features were chosen so that effects of semantic con-
creteness could be explored in future versions of the model using
the same materials: the N400 is known to be sensitive to semantic
concreteness (Kounios & Holcomb, 1994). Weights on connections
between levels of representation were constrained to be positive-
only. Each layer of representation (except for the cleanup and input
layers) has one associated inhibitory unit, connected as depicted in
Fig. 2.

For excitatory units, the standard logistic (sigmoid) function
was used to compute unit activations. For the inhibitory units, a
multi-linear activation function was used, with a slope of 1 from
inputs of zero through an inflection point, and a slope of 2 from
the inflection point onward (see Fig. 5). The multi-linear activation
function was used in order to approximate the presence in the
brain of separate populations of inhibitory neurons with varying
temporal response properties—that is, the fact that some inhibitory
neurons respond more quickly with stimulation than others (e.g.,
Benado, 1994; Traub, Miles, & Wong, 1989). As is visible in Fig. 5,
the multi-linear activation function is formally identical to the
sum of (1) a linear activation function that begins immediately
with even small amounts of input and (2) an identical linear acti-
vation function that does not begin until some threshold of activa-
tion is passed (the ‘‘elbow’’). Because it takes time for activation to
build up in the network, the result is that the steeper portion of the
inhibitory function is not used until later in network time than the
shallower portion. In this way, even though the network only has
one inhibitory unit at each level of representation, that one unit
is able to approximate the function of separate units with different
temporal properties. The inhibitory activation function is un-
bounded—allowing the single inhibitory unit associated with each
level of representation to produce significant inhibition—and the
location of the inflection point in activation space for each inhibi-
tory unit is a fixed parameter in the model. Output units (i.e., units
in the semantic layer or the orthographic output layer in the auto-
encoder) are additionally constrained such that their activation de-
cays towards zero as the inverse square root of their raw, logistic
activation. Thus, units that are strongly activated tend to stay
strongly activated, while units that are weakly activated tend to
decay towards zero activation. This procedure is reminiscent of a
k-winners-take-all function (O’Reilly, 1996a), in that it allows only
the units with the strongest activations to remain active, and qui-
ets all the rest, but differs in that the number of units that are able
to remain active is dynamic.

Training was accomplished by back-propagating cross-entropy
error through time (Hinton, 1989; Rumelhart, Hinton, & Williams,
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1986). Additional constraints were added to the back-propagation
procedure to assure that excitatory weights were always positive
and inhibitory weights were always negative. First, the minimum
outgoing weight of excitatory units is a fixed parameter in the
model such that in the present implementation of the back-propa-
gation algorithm, no weight change is made that would cause a
weight to be smaller than its fixed minimum. Second, inhibitory
weights were fixed to random, negative values at the beginning
of training and were not updated subsequently. Thus, it was
impossible for connections designated as excitatory to have nega-
tive values, or for connections designated as inhibitory to have po-
sitive values.

In order to keep the scale of the model small, there are only 10
letters in its vocabulary: seven consonants (SNCBDPT) and three
vowels (OIU). Of the possible 1000 strings of letters that could be
formed with 10 letters in three slots (103), we designated 62 as
‘‘words’’ and 15 as ‘‘acronyms.’’ Words were constrained to have
a CVC structure, and acronyms could have any letters in the 1st
or 3rd position, but were constrained to have a consonant in the
2nd position—this was done to create a structural difference be-
tween the representations of words and acronyms and also to en-
sure that the orthographic neighborhood sizes of acronyms would
be smaller than that of words, as is true in the single-item ERP cor-
pus. Within the limited vocabulary of the model, words had a with-
in-set N of 6.83, and acronyms had a within-set N of 0.8.

Before semantic training commenced, the autoencoder was
trained to reproduce the orthography of each of the 77 semanti-
cally represented (i.e., word and acronym) items (see the Section
3.2). This was done to ensure that, even before semantic training
began, the network had some knowledge about the orthographic
structure of input items. By forcing the network to condense, and
reconstruct, orthographic representations prior to the onset of
semantic training, the autoencoder ensures that orthographic
structure will be emphasized in subsequent processing. The model
learns, during autoencoder training, that inputs with interior con-
sonants are dispreferred, through the simple fact that more
words—items with interior vowels—are presented than acro-
nyms—items with interior consonants. This information is impor-
tant to the model, as without it illegal strings tend to produce
too much semantic activation, by virtue of their structural similar-
ity with acronyms. A related consequence of pre-training particular
orthographic structures is that acronyms form strong internal rep-
resentations in the model, without which they would be unable to
activate semantics sufficiently because they are dissimilar to and
less frequent than words. In essence, what the model learns by
pre-training on orthographic structure it is that internal conso-
nants are dispreferred, and thus should generally not pass much
activation forward, except in the specific cases with robust repre-
sentations in the autoencoder—that is, except for acronyms.

After autoencoder training was complete, the semantic training
phase began, during which time the network was trained to acti-
vate the correct (although arbitrary) semantic features for each
of the 77 semantically represented items, while simultaneously
being trained to keep all features in semantics ‘‘off’’ for a large
set of ‘‘wordlike’’ nonwords. The wordlike nonwords consisted of
the 1155 (77 items � 15 input features) items that could be formed
by flipping one bit in the input representations of the 77 semanti-
cally represented items. That is, by changing a single one in an in-
put representation to a zero, or vice versa. Although there were
more wordlike nonwords than semantically represented items in
the training corpus, each word was presented to the network dur-
ing training 50 times more frequently than each nonword. One
way to think about training on wordlike nonwords is that it
approximates training the network to not link semantics with
‘‘mistakes,’’ much like training a learning reader that a word mis-
spelled by one letter is not the same as the word itself.
On each training trial, the visual input for one of the items in the
training corpus was clamped on, and activation was allowed to
propagate through the network for 12 time steps with no accumu-
lation of error. Targets continued to be presented for a subsequent
four time steps, during which time error was accumulated. At the
end of 16 time steps, the trial ended, the network was reset to its
initial state, and the next trial began. Words and acronyms were 50
times more likely to be selected as the input for each trial than
wordlike nonwords. A single training epoch consisted of 1232
(77 + 1155) trials, however not every item was necessarily trained
in each epoch as words and acronyms were more likely to be se-
lected than nonwords (e.g., a single word could be selected 50
times, meaning that not every item would be selected in every
1232 trial epoch). After 9000 epochs of training in this fashion,
the network was tested on 441 items: the 62 words and 15 acro-
nyms it was trained on, in addition to 279 illegal strings (nonwords
with central consonants) and 85 pseudowords (nonwords with
central vowels) to which the network was not exposed during
training. The target for all illegal strings and pseudowords was
for all semantic units to remain off.

3.2. Results

3.2.1. Autoencoder
The orthographic autoencoder was trained to reproduce the vi-

sual inputs corresponding to the 62 words and 15 acronyms on a
copy of the input units. For the autoencoder, as for subsequent
analyses pertaining to the model’s semantic performance, an out-
put is considered correct if the Euclidean distance between the
output representation produced for an item and the target repre-
sentation for that item is lower than the distance between the out-
put and the target for any other item. After 3000 epochs of training,
the autoencoder’s performance was perfect (100%).

3.2.2. Semantics
After 9000 epochs of training, the network was 93% (411/441

items) accurate in producing either correct semantics (in the case
of words and acronyms) or silence in the semantic layer (in the
case of pseudowords and illegal strings). Of the 30 errors, 15 oc-
curred for pseudowords, and 15 occurred for illegal strings—all
items that were actually trained (words and acronyms) were cor-
rectly linked with semantics. Fig. 6 displays the mean activation
in semantics over time for words, acronyms, pseudowords and ille-
gal strings—that is, the data corresponding to the item aggregated
ERPs displayed in Fig. 3. Two important features of the data are vis-
ible in Fig. 6.

First, by the end of the processing epoch, the model has success-
fully separated words and acronyms from pseudowords and illegal
strings, meaning that a simple threshold on mean semantic activa-
tion is sufficient for separating semantically represented items
from non-represented items in 90% percent of cases. That is, the
model can accurately make lexical decisions based on a single,
set activation threshold, despite having never been explicitly
trained on lexical decision. In particular, with an activation thresh-
old of 0.0579, 100% of words and acronyms are correctly accepted,
and 88% (319/364) of pseudowords and illegal strings are correctly
rejected.

Second, as in the N400 data, words and pseudowords tend to
elicit more activity in semantics than do acronyms and illegal
strings. To investigate the relationships between N, lexicality, and
mean semantic activation in the model, we conducted a simulta-
neous multiple regression on mean semantic activation with N,
lexicality, and the N � lexicality interaction as predictors. Mean
semantic activation for an item in the model was computed as
the average amount of activation elicited by that item across all
16 time steps. This analysis revealed that, just as in the ERPs, there
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is a large main effect of N on mean semantic activation in the mod-
el (b = .0085, 95% confidence interval .0069 < b < .101), and no
interaction between N and lexicality (b = �.0031, 95% confidence
interval �.0065 < b < .0002). Unlike the ERP data, however, in the
model there was a reliable main effect of lexicality (b = .05, 95%
confidence interval .0332 < b < .0712). This is a direct result of aim-
ing to produce a model capable of performing lexical decision—as,
of course, if words and pseudowords (or acronyms and illegal
strings) elicited identical mean amounts of semantic activation
they would be impossible to tell apart on that signal.

We followed up the multiple regression with a focused analysis
of N effects in the model, as these effects are particularly promi-
nent in the ERPs. In the model, the single regression of N on mean
semantic activation is strongly reliable for both represented items
(words and acronyms: r = .40, r2 = .16, p < .0001) and non-repre-
sented items (pseudowords and illegal strings: r = .48, r2 = .23,
p < .0001). If the regression is computed over all items (i.e., col-
lapsed over lexicality), the amount of variance explained is compa-
rable to the 30.6% of variance uniquely explained by N in the ERPs
(r = .61, r2 = .37, p < .0001. Fig. 7 presents the model regression data
comparable to the ERP regression data presented in Fig. 4. Note
that, just as in the ERP data, the slopes of the trendlines represent-
ing the relationship between N and mean semantic activation the
model are very similar for represented vs. non-represented items
(.005 vs. .008, respectively), though the intercepts are different,
representing the model’s ability to perform lexical decision.

3.3. Discussion

Simulation 1 served several goals. First, it helped to determine
whether a PDP reading model with neurally plausible architecture
could produce dynamics on its semantic output layer that resem-
bled the N400 ERP component. In this the model was successful:
the time course of mean semantic activation for words, pseudo-
words, acronyms, and illegal strings in the trained model strongly
resembled N400 morphology in several critical ways. Namely,
semantic output was delayed slightly from the onset of stimulus
presentation (i.e., from the time when input was clamped on in
the model)—just as the N400 does not onset immediately when a
stimulus is presented. When activation began to arise in semantics,
it did so in a way consistent with N400 morphology, by monotoni-
cally rising and falling into a stable state which was predictive of
lexicality. This characteristic in the model is, in fact, not only consis-
tent with N400 morphology but also with the morphology of subse-
quent components: the Late Positive Complex (LPC), which follows
the N400, often displays a relatively tonic level of activation which
has been shown to be predictive of the lexicality of the item which
elicited it (e.g., Laszlo & Federmeier, 2009; Laszlo et al., in press).

Since the model was successful in producing N400-like dynam-
ics in its output, the second goal was to explore the degree to
which its simulated N400 activity resembled N400 activity in the
single-item ERP corpus. Here, there were both similarities and dif-
ferences between the model and the physiological data. Both the
model and the physiological data displayed a strong effect of
orthographic neighborhood size, with N in fact explaining similar
amounts of variance in model and ERPs, and with no interaction
between N and lexicality. Additionally, in both the model and the
ERPs, the slope of the regressions of N on mean semantic activation
(in the case of the model) or N400 mean amplitude (in the case of
the ERPs) were highly similar for lexical and non-lexical items.
However, one difference between model and ERPs emerged in
these analyses: there was a main effect of lexicality in the model,
with words and acronyms eliciting more semantic activity than
pseudowords and illegal strings. This was not the case in the ERPs.
Based on comparison with previous simulations, it is clear that this
difference is largely the result of the model’s ability to perform
lexical decision solely on the basis of semantic output—nearly
identical models which do not perform the LDT show exactly the
same pattern as the ERPs (Laszlo & Plaut, 2011). The fact that it
was able to make accurate lexical decisions on the basis of a simple
fixed activation threshold—even without being explicitly trained
on lexical decision—is important, as it demonstrates that the ERP
model, which makes use of several neurally plausible architectural
features and was primarily designed to simulate ERP data, is not
completely divorced from the vast cognitive modeling literature
on reading. Further, it suggests that a neurally plausible model is
also a cognitively plausible one.
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In sum, the model was largely successful in simulating the phe-
nomena it aimed to simulate, and at demonstrating that a PDP
model can simulate not only general properties of ERPs, but also
specific, key results pertaining to the obligatory semantics view
of N400 processing. In the model, even meaningless, illegal conso-
nant strings elicited activation in semantics, graded by the similar-
ity of those strings to represented items in the training corpus.
Additionally, items regression analysis indicated that the relation-
ship between N and mean semantic activation was quite similar for
semantically represented items and items with out semantics.
Each of these phenomena, when observed in the ERPs, have been
interpreted as being consistent with PDP models, and the present
simulations indicate that such an interpretation is warranted.

In light of the model’s successes in Simulation 1, a clear ques-
tion for additional exploration is: To what degree did the neurally
plausible architecture of the ERP model contribute to its success?
We investigate this question in Simulation 2, in which the neurally
plausible features of the ERP model are removed. Specifically, the
constraints on the separation of excitation and inhibition are re-
moved: units in the second set of simulations have no constraints
on the sign of their outgoing weights, or on the distribution of
inhibitory connections. In what follows, we will refer to this model
as the unconstrained model, while the version with excitation and
inhibition separated will be referred to as the constrained model.
The critical issue to be determined by the unconstrained model
is this: will the model still display activation dynamics in seman-
tics that resemble N400 morphology without its neurally plausible
features?

4. Simulation 2

4.1. Methods

The unconstrained model was identical to the constrained mod-
el with the following exceptions: In the unconstrained model,
there were no constraints on the sign of a unit’s outgoing connec-
tions, with one consequence being that negative weights were al-
lowed between levels of representation. Thus, all units could
have outgoing connections of any sign. The unconstrained model
received exactly the same amount of training as the constrained
model: 3000 epochs of training on words and acronyms for the
autoencoder, followed by 9000 epochs of training on words, acro-
nyms, and wordlike nonwords for the semantic output layer.

4.2. Results

4.2.1. Autoencoder
After 3000 epochs of training, the unconstrained autoencoder’s

performance was perfect (100%).

4.2.2. Semantics
After 9000 epochs of training, the unconstrained network was

90% (398/441) accurate in producing correct semantics (in the case
of words and acronyms), or in staying silent (in the case of
pseudowords and illegal strings). Four errors were made for words,
zero for acronyms, 19 for pseudowords, and 20 for illegal strings.
Fig. 8 displays the item-aggregated mean activation in semantics
for words, acronyms, pseudowords, and illegal strings. It is clear
from Fig. 8 that semantic activation in the unconstrained network
does not resemble N400 activation in at least one important re-
spect: In the unconstrained network, there are two distinct peaks
in semantics, one occurring quite early on in processing. The first
peak is absent in both the constrained network and the ERPs.

Like the constrained model, the unconstrained model is able to
perform accurate lexical decisions based on a set activation thresh-
old. Using the same threshold as was adopted for the constrained
model, the unconstrained model is 87% accurate in discriminating
lexical from non-lexical items (384/441). Also like the constrained
model, a simultaneous multiple regression on mean semantic acti-
vation with predictors of N, lexicality and the N x lexicality inter-
action revealed a main effect of N (b = .0041, 95% confidence
interval .0031 < b < .0050), a main effect of lexicality (b = .0425,
95% confidence interval .0312 < b < .0538), and no interaction be-
tween the two (b = �.0015, 95% confidence interval �.0035 <
b < .0005). Focused single regression analysis reveals that, as in
the constrained model, there is a reliable correlation between N
and mean semantic activation for both lexical items (r = .31,
r2 = .10, p = .0055) and non-lexical items (r = .41, r2 = .16,
p < .0001). Trendline slopes for lexical (.003) and non-lexical
(.004) items are quite similar. If the regression is computed over
all items (i.e., collapsed over lexicality), the amount of variance ex-
plained is comparable to the 30.6% of variance uniquely explained
by N in the ERPs (r = .58, r2 = .34, p < .0001).

4.3. Discussion

On the whole, the unconstrained model performs very similarly
to the constrained model, which is to be expected as they are
nearly identical. What is especially important to note is that the
functional effects present in the unconstrained model are the same
as those in the unconstrained model: that is, both models display
the ability to make lexical decisions, as well as reliable effects of
orthographic neighborhood size in the absence of an interaction
between N and lexicality. Where the results of the simulations
differ is in the dynamics of semantic activation—semantic activa-
tion in the constrained model strongly resembles the morphology
of the N400, while semantic activation in the unconstrained model
does not. This is a clear example of the benefits of linking a time
course of processing from ERPs with model dynamics: the ERPs
rule out a model which exhibits all the appropriate functional ef-
fects but which does not display the correct internal dynamics.
Constraint on internal dynamics of a model such as that which
rules out the unconstrained simulation would not be available
from behavioral data alone. The unique contribution of the ERPs
as target phenomena is that they strongly constraint the internal
dynamics of potential models to a degree not possible from end
state behavioral data.
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One issue left unresolved by Simulation 2 is whether it was a
lack of feedforward inhibition, lack of within-level mixed connec-
tions (i.e., units with both positive and negative outgoing weights),
or both of these that are required to produce the dynamics in
semantics observed in the ERPs and in Simulation 1. We investi-
gated this matter with two follow-up simulations: the between
simulation, which was identical to Simulation 1 but allowed inhi-
bition between levels of representation, and the within simulation,
which allowed mixed-sign connections within a level of represen-
tation. Neither of these simulations produced the appropriate
dynamics in semantics: in fact, both were quite poor at discrimi-
nating between item types (i.e., the effect of N was absent in the
between simulation, and extremely small in the within
simulation).1 Thus, neither limiting inhibition to within a level of
representation or restricting units in the sign of their outgoing
connections alone is enough to produce the dynamics observed in
Simulation—both together are required.
5. General discussion

The present simulations represented an exploration into the
feasibility of simulating ERP reading data in a PDP model. We
examined the specific case of visual word recognition data from
the single-item ERP corpus—data that has explicitly been cast as
conforming to PDP principles. Because ERPs represent summed
excitatory and inhibitory post-synaptic potentials, we imple-
mented basic principles of cortical excitation and inhibition in
the architecture of the model. Specifically, in our constrained mod-
el, we did not allow individual units to have both excitatory and
inhibitory outgoing connections, we limited the number of inhibi-
tory units, and we only allowed relatively short-range inhibition.
The constrained model was able to successfully simulate a number
of key effects from the single-item ERP corpus, most importantly
very similar effects of orthographic neighborhood size on items
which had been trained (words and acronyms) and items which
had not been trained (pseudowords and illegal strings), in the ab-
sence of an interaction between N and lexicality. The correspon-
dence between these features of the simulations and the same
effects in the ERPs represent converging evidence for the obliga-
tory semantics view of N400 processing. In addition, the model
was able to make accurate lexical decisions based on a set activa-
tion threshold, thus extending and broadening the scope of preli-
minary modeling work focused on the ERP data only (Laszlo &
Plaut, 2011). The constrained model simulated all these phenom-
ena in the context of internal dynamics which resembled the mor-
phology of the N400 ERP component. As discussed above, when
excitation and inhibition were no longer handled in a neurally
plausible fashion, the model was still able to produce many of
the key functional results (e.g., the effect of N, accurate lexical
decisions), but no longer displayed dynamics in semantics that
were consistent with the ERPs. Thus, the veridical manner in which
excitation and inhibition were handled in the constrained model
were at least partly responsible for producing N400-like dynam-
ics—a result that is encouraging although perhaps not surprising
given the neural source of the N400 signal. The fact that a function-
ally adequate model was ruled out on the basis of striking differ-
ences between its internal dynamics and those present in the
ERPs is representative of the unique contribution that ERP data
can make as target data for simulations of visual word recognition.

The internal dynamics of the constrained model were consistent
with the obligatory-semantics view of N400 processing in critical
respects. As predicted by the obligatory-semantics view, nonwords
1 The details of these follow-up simulations are available from the first author on
request.
in the model made clear contact with semantics. This was true
even for illegal consonant strings, which were never trained to
be linked with semantics and which had low neighborhood sizes
within the model’s vocabulary. This observation in the model is
consistent with the interpretation that N400 effects observed for
illegal strings (e.g., Laszlo & Federmeier, 2011, Laszlo et al., in
press) represent the obligatory contact that illegal strings make
with semantics. In contrast, this behavior in the model is inconsis-
tent with theories of the N400 that suggest it responds selectively
to items with regular spelling-sound correspondences (e.g.,
Deacon, Dynowska, Ritter, & Grose-Fifver, 2004), or theories which
suggest that N400 processing takes place only after an input has
been uniquely identified as a particular lexical item (e.g., Hagoort,
Baggio, & Willems, 2009). In fact, insofar as the model constitutes
evidence that contact with semantics is made prior to unique lex-
ical selection, it is more generally inconsistent with models outside
of the ERP literature which implement a strong ‘‘lexical stage’’,
such as the Entry Opening Model (see Forster & Hector, 2002). In-
stead, the evident contact with semantics made even by illegal
strings in the model constitutes converging evidence for both the
obligatory semantics view in particular and cascaded models of vi-
sual word recognition more generally (e.g., Plaut & Booth, 2000).

One important difference between the behavior of the con-
strained model and the ERPs was the mean difference in activation
between lexical items and non-lexical items. This difference is a
consequence of the model’s ability to perform lexical decisions
accurately solely on the basis of mean semantic activation—it does
not exist in similar models which do not perform lexical decision
(Laszlo & Plaut, 2011). Though insisting that the model to perform
lexical decision as a criterion for success caused it to deviate from
the observed ERP dynamics—especially at the end of the processing
epoch—the model’s ability to perform lexical decision while still
simulating the several key ERP effects constitutes an improvement
over previous work (Laszlo & Plaut, 2011). Because the model was
ultimately given the task of performing lexical decision and partic-
ipants in the single-item study were not—instead monitoring the
stimulus stream for proper names, one obvious question is
whether a lexicality effect might emerge on the N400 if partici-
pants were performing lexical decision. In fact, we have conducted
such a study, where participants were presented with the exact
same items used in the single-item study, but were asked to make
modified lexical decisions about them (responding that names,
words, and acronyms were ‘‘familiar’’ and pseudowords and conso-
nant strings were not; Laszlo, Stites, & Federmeier, 2010). Interest-
ingly, when using the standard mean amplitude over a broad time
window analysis technique typically employed in ERP studies, no
effect of lexicality was observed on the N400 even in that study,
again appearing only on the LPC (Laszlo et al., 2010, in press). In
the model, the difference in mean semantic activation between
lexical items and non-lexical items is most pronounced at the
end of the processing epoch, when the model has come to a rela-
tively stable level of activation (see Fig. 6). One potential interpre-
tation of the modeling data is thus that the processing occurring
during the N400 terminates with a stable representation of the
semantics of an item (or its lack of semantics), and this represen-
tation is fed forward to LPC processing as a basis on which, for
example, lexical decisions can be made (see Laszlo et al., in press).
Because the stable difference between lexical and non-lexical
items occurs primarily at the end of N400 processing, and because
LPC processing follows the N400 directly in time and tends to have
a quite similar scalp distribution, the stable differences between
lexical and non-lexical items that the model suggests are part of
terminal N400 processing could easily be missed or obscured by
the LPC—especially given the fact that N400 effects are typically
analyzed via component mean amplitude, a measure that could
easily miss small effects that occur only in a limited portion of
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the epoch on which the mean is taken. It is particularly difficult to
disentangle N400 and LPC effects because of their temporal conti-
guity and similar scalp distributions—what would be needed to
investigate the hypothesis about the N400 outputting a stable
semantic signal to the LPC would be high density ERP recordings
of responses to the same items investigated here, analyzed at fine
temporal intervals.

That the model has suggested the existence of subcomponents
of N400 processing that may previously have been obscured by
typical ERP data analysis techniques is a good example of how
models can help to move theories in the ERP literature forward,
just as ERP results constrained the internal dynamics of the model
in the current simulations. This sort of reciprocal relationship be-
tween modeling and cognitive neuroscience is an important reason
to interweave modeling with cognitive neuroscience investigations
even more tightly in the future. In service of this goal, it is impor-
tant to note that the neurally plausible architecture employed here
is not specific to reading models—it could naturally be employed in
cognitive models of essentially any phenomenon. All that is re-
quired is setting appropriate constraints on the sign of outgoing
weights in any model, and limiting the number of available inhib-
itory units.

The model constitutes a step forward in the goal of linking ERP
data, neuroscience, and PDP modeling. However, there still remains
a substantial amount of work to be done both in increasing the neu-
ral plausibility of the model, simulating more nuanced characteris-
tics of the ERP data, and making more contact with the behavioral
literature. In terms of neural plausibility, the model makes use of
back-propagation to reduce error during training and effect learn-
ing. However, back-propagation is considered unlikely as a mecha-
nism of neural learning (e.g., O’Reilly, 1996b). Thus, in moving
forward, it will be advantageous to investigate the degree to which
the ERP model can produce appropriate results if trained with a
more biologically plausible learning algorithm, such as Contrastive
Hebbian Learning (Ackley, Hinton, & Sejnowski, 1985), which at
least in some cases provides similar solutions to back-propagation
(e.g., Xie & Seung, 2003), while avoiding many of back-propagation’s
biologically implausible properties. Intermediate algorithms, which
combine the power of back-propagation with the neuronal validity
of Hebbian learning (e.g., O’Reilly, 1996a), may prove useful in bridg-
ing the gap between the two techniques.

Another possibility for immediate improvement of the model’s
neural plausibility is found in the way fast and slow inhibition is
approximated in the model. Currently, a single inhibitory unit pro-
vides both fast and slow inhibition, through use of the multi-linear
inhibition function. However, in the cortex, single inhibitory neu-
rons do not vary drastically in their time constants. Instead, sepa-
rate populations of neurons provide fast and slow inhibition
(Benado, 1994; Traub et al., 1989). In future versions of the model,
it would be quite simple to have separate inhibitory units with
separate time constants—for example one fast inhibitory unit and
one slow inhibitory unit. This can easily be accomplished by
implementing different time constants of integration on different
inhibitory units, or by implementing different slopes on the activa-
tion functions of different inhibitory units.

In terms of simulating more nuanced aspects of the ERP data,
the model’s training corpus in the present simulations included
words which essentially varied only in terms of orthographic
neighborhood size: they were all the same length, all the same fre-
quency (as each other, though they were more frequent than the
wordlike nonwords they were trained with), and though they dif-
fered in neighbor frequency, neighbor frequency was equivalent to
N in the corpus (since all items were the same frequency). Simi-
larly, since semantic features were assigned to each item ran-
domly, there was no coherence to the semantic structure of the
corpus, meaning that there were no meaningful correlates in the
model to variables such as strength of lexical association. However,
all of these variables have prominent effects in the single-item ERP
corpus (Laszlo & Federmeier, 2011)—we focused on N here only be-
cause of the strength and robustness of its effects. In moving for-
ward, it will be important to develop a training corpus with
lexical characteristics more similar to those of the items in the sin-
gle-item ERP corpus. The development of more realistic semantic
representations, in particular, will be critical if the model is to be
extended beyond simulation of items in unconnected lists, to sim-
ulation of ERP effects observable in sentence comprehension. The
N400 is known to be extremely sensitive to even very fine manip-
ulations of factors such as sentence constraint (e.g., Federmeier,
Wlotko, De Ochoa-Dewald, & Kutas, 2007), making sentence-level
N400 effects an important venue for future modeling work. In
addition to more veridical semantic features, development of a
sentence-level ERP model would require a mechanism for accruing
semantic context over time. A clear starting place for such a mech-
anism would be to simply not reset semantic activations to zero
between each stimulus presentation, as was done in the current
simulations.

Finally, just as it will be important to develop more detailed
simulations of the abundance of effects observable in the single-
item ERPs, it will also be important to improve the sophistication
of the model’s cognitive simulations. Presently, it is able to make
accurate lexical decisions, but there are many more benchmark
behavioral phenomena—some of them even pertaining to more de-
tailed aspects of lexical decision—that the model has not at-
tempted to address—for example, the frequency and consistency
effects in lexical decision, the word superiority effect, and semantic
categorization effects. Increasing the model’s behavioral sophisti-
cation will be critical to bringing it into better contact with past
models of reading—a contact which is desirable because of the
substantial insights into representation and processing already
available from the model’s thematic predecessors (e.g., Harm &
Seidenberg, 2004; Plaut et al., 1996; Seidenberg & McClelland,
1989). For example, the model’s predecessors also consider the
interaction of phonological representations with semantics and
orthography—with phonology’s role being extremely important
in interpretation of many behavioral findings (e.g., pseudohomo-
phone effects) as well as patterns of impairment in dyslexia. The
ERP model currently has no implemented phonology, but adding
appropriate phonological representations is likely to be important
for expanding the model’s scope.
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