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Abstract

Modality-specific naming deficits, such as optic aphasia, have
been taken as evidence that semantics is organized into distinct
modality-specific subsystems. We adopt an alternative view in
which semantics is a learned, internal representation within a
parallel distributed processing system that maps between
multiple input and output modalities. We show that the
robustness of a task to damage depends critically on its
systematicity, and that modality-specific naming deficits can
arise because naming is an unsystematic task.
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Background

What is the organization of semantic knowledge of objects?
� Standard view: A single, amodal semantic system

(Caramazza et al., 1990; Hillis & Caramazza, 1995; Riddoch et al., 1988)
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� Challenge: Performance of brain-damaged patients with
modality-specific naming disorders (e.g., optic aphasia)
(Gil et al., 1985; Lhermitte & Beauvois, 1973; Riddoch & Humphreys, 1987)

– Impaired naming from vision

– Preserved recognition/comprehension from vision
(e.g., as demonstrated by gesturing the object’s use)

– Preserved naming from other modalities (e.g., touch, audition)

– Analogous syndromes for tactile input (Beauvois et al., 1978) and
for auditory input (Denes & Semenza, 1975)

No location of damage within a box-and-arrow unitary
semantics model yields this pattern of performance.
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� Alternative view: Modality-specific semantic systems
(Beauvois, 1982; Lhermitte & Beauvois, 1973; Shallice, 1987; Warrington, 1975)
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impaired in optic aphasia

Problems: unparsimonious, post-hoc, poor accounts of
semantic acquisition and of cross-modal semantic effects.
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Current approach

We explain optic aphasia within a unitary semantic system
based on connectionist/parallel distributed processing (PDP)
principles:
� Representation: Within each modality, similar objects are

represented by overlapping distributed patterns of activity.
� Processing: Responses are generated by the interactions of large

numbers of simple, neuron-like processing units.
� Learning: Knowledge is encoded as weighted connections between

units whose values are adjusted gradually based on task performance.

Central Hypothesis:
� Semantic representations develop under the pressure of

mediating between multiple input and output modalities.

� Tasks differ widely in their degree of systematicity
(i.e., whether the mapping preserves similarity).

– Visual naming is unsystematic: Visually similar objects (e.g.,
BROOM and RAKE) typically have unrelated names.

– Visual gesturing/action is highly systematic: Visually similar
objects often involve similar actions.

� More systematic tasks are more robust to damage.

– Mild damage from vision to semantics will impair visual naming
far more than visual gesturing (and other tests of comprehension)
as observed in optic aphasia (see Hillis & Caramazza, 1995; Riddoch &

Humphreys, 1987, for similar but unimplemented proposals).
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Experiment 1: Demonstration of basic effects

Rate of acquisition and robustness to damage of a network
performing a single task that is either systematic (e.g.,
vision-to-action) or unsystematic (e.g., vision-to-phonology).

Network architecture
� Fully-connected three-layer feedforward network

20 Input Units

20 Hidden Units

20 Output Units

Semantics

Vision

Action or Phonology

Task definitions
� No attempt to model actual structure of domains
� Abstract tasks with extremes of systematicity:

– Visual input: 20 random vectors (each bit on with prob. ��� 0 � 5)
– Action output: same 20 vectors (identity mapping)
– Phonology output: 20 new random vectors (arbitrary mapping)

� Tested 20 random versions of each task

Training and testing procedure
� Back-propagation until sum-squared error � 1.0
� Lesions involve randomly removing some number of

Input � Hidden (Vision � Semantics) connections
(10 replications for each lesion severity)
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Experiment 1: Results
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Experiment 1: Conclusions

� Task systematicity has a strong influence on rate of
acquisition and on robustness to damage in networks.
� The use of an identity mapping to model the relationship of

vision and action is an unreasonably strong assumption as
this relationship is only partially systematic.
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Experiment 2: Simulation of optic aphasia

Network performed four mappings ([vision, audition] X
[action, phonology]) through a common hidden (semantic)
representation, in which only vision-to-action is systematic.

Network architecture
� Fully-connected feedforward network

Phonology (20 Units)Action (20 Units)

Semantics (500 Units)

Vision (20 Units) Audition (20 Units)

� Large number of hidden units (500) helps with learning
multiple arbitrary mappings

Task definitions
� Vision-Action systematicity based on category structure:

– Visual input: 10 exemplars in each of 10 categories formed by
changing 2 randomly chosen features of category prototype
(random pattern with ��� 0 � 5)

– Action output: Same procedure as for Visual input; Visual inputs
paired with Action outputs such that objects in the same visual
category are in the same action category

– Auditory input: 100 random vectors (��� 0 � 5)

– Phonology output: 100 new random vectors (� � 0 � 5)
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Illustration of Category-Based Systematicity between
Visual (Input) and Action (Output) Representations

Action representations
(organized in categories)

Visual representations
(organized in categories)

Training and testing procedure
� Back-propagation until all output units within 0.1 of targets

on all tasks (621 training presentations of each object in
each input modality)
� Lesions involve randomly removing some number of

Vision � Semantics connections (10 replications for each
lesion severity)
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Experiment 2: Results
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Experiment 2: Conclusions

� Damage to Vision � Semantics connections impairs visual
naming (vision-to-phonology) far more than visual
gesturing (vision-to-action) and also preserves naming from
other modalities (e.g., audition), as found in optic aphasia.

� The quantitative relative impairment on visual naming vs.
gesturing (50% vs. 85% correct) is similar to some patients

45.5% vs. 75.0% for JB (Riddoch & Humphreys, 1987)

but not as extreme as others

69% vs. 100% for JF (Lhermitte & Beauvois, 1973)
0% vs. 50% for Coslett and Saffran’s (1989) patient

� Relative task systematicity is an important factor in
understanding optic aphasia but may not provide a complete
explanation.
– Also no clear extension to analogous syndrome for auditory input,

given the lack of systematicity between audition and action.

� Full account may require some degree of modality-based
specialization within semantics.
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Experiment 3: Topologically-biased learning

Introduce bias into learning favoring “short” connections and
“nearby” hidden units (cf. Jacobs & Jordan, 1992)
� Units are assigned (2D) positions with hidden units located between

input and output units; connections thus have (Euclidean) length.
� Effectiveness of learning (magnitude of weight changes) scaled by a

monotonically decreasing (Gaussian) function of connection length.
� Learning is initially strongest for connections to hidden units that are

near inputs and outputs, and only engages more distant hidden units as
necessary.

Motivation
� High-level representations for input and output modalities have distinct

neuroanatomic localizations.
� Strong neurobiological bias favoring short axons (in part because total

axon volume must fit within skull).
� Distance-dependent bias on learning should give rise to graded degree

of neuroanatomic specialization for combinations of input and output
modalities.
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Network architecture
� Fully-connected feedforward network
� 225 hidden units in 15x15 grid; input modalities (sides) and output

modalities (top and bottom) in 5x4 grids equidistant from hidden layer.
� Learning rate scaled by Gaussian (SD = 10) of connection length.
� Hidden (Semantic) units constrained to have strong negative biases.
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Task definitions
� Same as in Experiment 2

Training procedure
� Back-propagation for 1000 training presentations of each object in

each input modality.
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Experiment 3: Results
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� Distance bias in learning has only a small effect on the distributions of
semantic representations of visual vs. auditory input.
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Effects of Lesion Position
� For lesions, probability of removing each Vision  Semantics

connection is a Gaussian function of the distance of the Semantic unit
from some specified lesion location; SD of Gaussian controls the
severity of lesion.
� Plotted below for each Semantic location is visual gesturing

performance minus visual naming performance after Vision  
Semantics lesions centered at that location (SD = 2; 10 reps each).

– White = naming ! gesturing; Black = naming " gesturing

– Size of square reflects absolute numeric difference in performance
(e.g., full white square = 0% at naming, 100% at gesturing).
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� Greater extent and magnitude of relative impairment on visual naming
(white squares) due to lack of systematicity of naming vs. gesturing.
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Effects of Lesion Severity
� Lesions to Vision  Semantics connections at a single semantic

location across a range of severities (40 replications each).
� Note that hidden unit lesion is shown to illustrate location and extent

of damage (SD = 2.0); actual lesions are to incoming connections.
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Experiment 3: Conclusions

� Introducing a bias on learning favoring short connections
gives rise to a graded degree of topological specialization in
hidden representations.

– The network does not consist of separate modality-specific
semantic systems—both visual and auditory input engage the entire
semantic system.

� Particular tasks—combinations of input and output
modalities—come to rely more strongly on hidden units that
are located near the two modalities.
� Damage to these partially specialized regions (or their

incoming connections) gives rise to greater relative
impairments on the corresponding tasks, particularly if they
are unsystematic (e.g., visual naming).
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Summary

� Semantic knowledge for objects is typically thought to be
represented within a single, amodal semantic system, but
this view is challenged by brain-damaged patients with
modality-specific naming disorders (e.g., optic aphasia).

– Optic aphasic patients are selectively impaired at naming objects
when presented visually (but not in other modalities) even though
they can demonstrate recognition/comprehension of the objects
(e.g., by gesturing their use appropriately).

� An important factor in understanding the relative robustness
of tasks to damage is their degree of systematicity: the
extent to which similar inputs map to similar outputs.
� Connectionist simulations show that selective impairments

in visual naming can arise from damage to visual inputs to a
single, amodal semantic system because visual naming is an
unsystematic task whereas visual gesturing (and other tests
of comprehension) are far more systematic.
� The relative impairment of visual naming vs. gesturing is

further exacerbated if the network also develops a graded
degree of specialization within semantics due to a
topological bias favoring short connections.
� The results suggest that a single, amodal semantic system

with some degree of topological specialization, when
implemented as a connectionist network, can provide a full
account of optic aphasia (and other modality-specific
naming disorders).
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