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AbstractOpticaphasicpatientsareselectively impairedatnamingvisu-
ally presentedobjectsbut demonstraterelative intactcompre-
hensionof thoseobjects(e.g.,by gesturingor categorization)
andareableto namethemwhenpresentedin othermodalities
(e.g.,via tactileinput). This andothermodality-specificnam-
ing deficitshave beentaken asevidencethat semanticsis or-
ganizedinto distinctmodality-specificsubsystems.We adopt
analternative view in which semanticsis a setof learned,in-
ternalrepresentationswithin a paralleldistributedprocessing
systemthat mapsbetweenmultiple input andoutputmodal-
ities. We accountfor the critical aspectsof optic aphasiain
termsof the effects of damageto sucha system,despiteits
lack of modality-specificspecialization.We show that thero-
bustnessof a task in sucha systemdependscritically on its
systematicity, and that modality-specificnamingdeficitscan
arisebecausenamingis anunsystematictask.

Introduction

Thelexical semanticsystemcanbethoughtof asasetof rep-
resentationswhich mediatesbetweenmultiple input andout-
putmodalities.Perhapsthemostimmediatelyintuitivemodel
of semanticsis what has beentermedthe unitary seman-
tics model(e.g.,Caramazza,Hillis, Rapp,& Romani,1990;
Hillis, Rapp,Romani,& Caramazza,1990). A genericver-
sion of this model is shown in Figure1a. In sucha model,
semanticstakes input from any of several differentmodali-
ties,andgeneratesoutputin oneor moreothermodalities.

Shallice(1987)claimedthat certainaspectsof neuropsy-
chologicaldataposea seriouschallengeto unitary seman-
tics approaches.Oneproblemcomesfrom modality-specific
namingdeficits,suchasopticaphasia.Opticaphasiais a rel-
atively rareneuropsychologicaldisorder, typically causedby
damageto the left medialoccipital lobe (i.e., visual cortex
and the underlyingwhite matter),in which patientsexhibit
a selective impairmentin namingvisually presentedobjects
(seeIorio, Falanga,Fragassi,& Grossi,1992; Endo,Mak-
ishita,& Sugishita,1996,for reviewsof cases).For example,
patientJB (Riddoch& Humphreys, 1987)wassubstantially
impairedatnamingvisuallypresentedobjects,providingcor-
rect answerson only 46% of test trials. However, he was
75%correctonmimingtheusesof visuallypresentedobjects,
suggestingthat his namingdeficit couldnot be explainedin
termsof a morefundamentalvisual recognitionimpairment.
Furthermore,hewas75%correctonnamingobjectsfromtac-
tile presentation,ruling out anexplanationin termof a more
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Figure1: Two generalformulationsof the organizationof lexical
semantics.

generalanomia. JB’s performanceis typical of optic apha-
sics;heshows impairednamingfrom vision, with relatively
preservedgesturingfrom visualinputandnamingfrom other
modalities.

Notice that thereis no locationof damagein a box-and-
arrow versionof the unitary semanticsmodel that will give
rise to this patternof performance. Damagebetweenvi-
sion andsemanticswould result in visual agnosia,wherein
a visually presentedobjectwould not be recognizedandso
its usecould not be gestured. Damagebetweensemantics
andphonologywould lead to a modality-independentnam-
ing deficit. Finally, damageto semanticsitself woulddegrade
performanceon tasksin all modalities.

Shallice(1987,alsoseeBeauvois,1982)solvedthis prob-
lem by dividing semanticsinto multiple, modality-specific
subsystems(seeFigure1b). On this view, optic aphasiare-
sults from a disconnectionof visual and verbal semantics.
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Thus,� accessto the verbal semanticrepresentationsneeded
for namingis preventedonly for visual input, andall other
tasksareunimpaired.

While it might seemthat this modelprovidesanadequate
accountof the data,therearemajor problemswith it. First
andforemost,it seemsdistinctly unparsimonious.Theneed
to develop several relatively independentmodulesin which
to storesemanticinformationsignificantlyincreasesthedif-
ficulty of learningaboutobjects.Insteadof forminga single,
amodalrepresentationfor aparticularobject,thebrainwould
have to learna numberof differentrepresentations.Thepro-
cessesfor maintainingconsistency of theserepresentations,
andotherimplementationalfactors,areunclear.

Moreover, while themultiple-semanticsmodelprovidesa
convenientexplanationfor themajoraspectsof opticaphasia,
it doesa poorjob at accountingfor otherrelevantfactors.In
particular, performanceonmimingandonnon-visualnaming
aretypically alsoimpaired,althoughnotto thesameextentas
namingfrom vision. It is difficult to seehow asinglelesionto
the multiple-semanticsmodelwould result in minor impair-
mentof miming andtactile naming,andsubstantialimpair-
mentof visual naming. In fact, this would seemto require
threeseparatelesions.Furthermore,opticaphasics’ability to
discriminatebetweenvisually similar objectsin a semantic
categorizationtaskmayalsobemildly impaired(Riddoch&
Humphreys,1987),suggestingdifficulty in accessingseman-
tics from vision.

In light of theseproblems, Caramazzaand colleagues
(Caramazzaet al., 1990; Hillis & Caramazza,1995; Hillis
etal.,1990)arguethatthemultiple-semanticsmodeldoesnot
provide an adequateexplanationof the actualpatientdata.
Moreover, they argue that the unitary-semanticsapproach
can, in fact, accountfor optic aphasiaif certainpredictive
propertiesof the environmentare taken into account. They
postulatethat visual propertiestend to be highly predictive
of functionalproperties.This is similar to Gibson’s (1979)
notionof affordances—thefactthata cuphasa handleanda
concaveshapeis highly (althoughnotperfectly)predictiveof
its function;it affordsholdingliquid, andtheparticularphysi-
calmanipulationsinvolvedin drinking. However, thesesame
visual featuresprovide no systematicinformationaboutthe
object’s name.Thus,therearemany objectswhich we could
call “cup” but only a few whichafford drinking.

Thepredictivenessof a relationshipcanberecastin terms
of the systematicityof a mapping.A mappingis systematic
to the extent that it preservessimilarity; that is, similar in-
puts map to similar outputs. Thus, an identity mappingis
completelysystematicin that it preservessimilarity exactly,
whereasa randommappingis completelyunsystematicin
that input similarity is entirely unrelatedto output similar-
ity. Anotherway to characterizesystematicityis in termsof
how many input featuresareneededto predicteachoutput
feature. In an identity mapping,eachoutput featureis per-
fectly predictedby a single(corresponding)input feature;in
a randommapping,eachoutputfeaturecanbepredictedonly

by knowing the entire input. A highly predictive relation-
ship,suchasthatbetweenvisionandaction,correspondsto a
highly systematicmapping,whereasa relationshipwith little
predictivevalue,suchasthatbetweenvisionandnaming,can
beapproximatedby a randommapping.

If visual information is systematically related to ac-
tion/function,thenit maybepossibleto determinefunctional
properties(and,hence,gestureaccurately)from partially de-
gradedinformation. On the other hand, such information
maybeinadequatefor supportingaccuratenaminggiventhat
smalldifferencesin input mustproducecompletelydifferent
outputs. Thus, partial damageto the mappingbetweenvi-
sion and semanticsin a unitary-semanticsmodel might be
expectedto give rise to the overall patternof performance
in opticaphasia(alsoseeRiddoch& Humphreys,1987).

This ideacanbe testedby implementinga systemwhich
performstaskssimilar to thoseperformedby the semantic
system,andthenexaminingthe performanceof that system
whenit is damaged.We choseto implementsucha system
usinga paralleldistributedprocessing(PDP)framework, for
a numberof reasons.Primaryamongthem is the fact that
the type of computationsperformedby a PDP system,al-
thoughnot perfectlyfaithful to thoseperformedby neurons,
nonethelesssharecertainfundamentalpropertieswith them.
As a result, it is naturalto damagea PDP systemto vary-
ing degrees.Moreover, suchsystemshave beenshown to be
sensitive to relative degreesof systematicitywithin a single
task,both in termsof rateof acquisitionandin termsof the
effectsof damage(Plaut,McClelland,Seidenberg, & Patter-
son,1996;Seidenberg & McClelland,1989). In this paper,
weexplorewhetheropticaphasiacanbeaccountedfor by the
effectsof damageto a PDPnetwork in whichmultiple input-
outputmappingsof varyingsystematicityaremediatedby the
sameinternal(semantic)representations.

Simulation 1: Basic Effects
As a first stepto illustratethe basiceffectsof systematicity
in PDPsystems,we traineda simplethree-layerfeedforward
network on eithera systematictaskor anunsystematictask,
andcomparedits performanceon thesetasksover thecourse
of learningandfollowing damage.

Method
Thenetwork had20 inputunits,40hiddenunits,and20 out-
put units. Eachhiddenunit receiveda connectionfrom each
input unit andsentoneto eachoutputunit. Weightson these
connectionswereinitialized to randomvaluesuniformly dis-
tributedbetween� �����

and0.5andwereunconstrainedduring
learning. In addition,hiddenandoutputunitshadbiascon-
nectionswhoseweightswereinitializedbetween� �����

and0
andwereconstrainedto remainnonpositive during learning.
All units usedthe standardlogistic activation function with
activationsrangingfrom 0 to 1.

Theinput to thenetwork consistedof 100randompatterns
over the input units,suchthateachunit hada probabilityof
0.5 of beingactive in eachpattern. For the systematictask,
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Figure2: Correctperformanceon thesystematicandunsystematic
tasksasa functionof thepercentof input-to-hiddenconnectionsre-
movedin Simulation1.

the network was trainedto regeneratethe identical pattern
over theoutputunits (i.e., an identity mapping).For theun-
systematictask,anew setof 100randompatternsweregener-
atedandpairedrandomlywith theinputpatterns(i.e.,anarbi-
trary mapping).Notethat thesemappingswerenot intended
to correspondin any direct way to the actualmappingsin-
volvedin visualnamingandgesturing,but simply to capture
the basicdistinctionbetweena systematicversusunsystem-
atic task.

The network was trainedwith back-propagation(Rumel-
hart,Hinton,& Williams,1986)usingthecross-entropy error
function(Hinton,1989),a learningrateof 0.1andno weight
decayor momentum.If anoutputunit waswithin 0.1 of its
target,thenit wascountedascorrectandno errorwasgener-
atedfor that unit. Training washaltedwhen,for eachinput
presented,all outputunitswerewithin 0.1of their targets.

After training, eachversionof the network was lesioned
by randomlyselectingandremovingaproportionof input-to-
hiddenconnections(rangingfrom 1%to 30%).At eachlevel
of severity, 10 repetitionswererun,whereina new randomly
chosensetof connectionswasremovedandthemodel’s per-
formanceon all 20 patternswasdetermined(where,in this
context, anoutputwasconsideredcorrectif all of theoutput
unitshadactivationson thecorrectsidesof 0.5).

Results and Discussion

Tasksystematicityhada dramaticeffect both on rateof ac-
quisitionandon robustnessto damage.The systematictask
wasmasteredafter only 50 epochsof training. By contrast,
theunsystematictaskwasatfloor until 100epochs.It reached
50% correctat epoch277 andonly achievedperfectperfor-
manceatepoch392.

Similarly, performanceonthesystematictaskwasfarmore
robust to damage(seeFigure 2). Removal of only 1% of
input-to-hiddenconnectionsleft the systematictask unaf-
fectedbut reducedcorrectperformanceon the unsystematic
task to 78%. With a 10% lesion, performanceon the sys-

Phonology (20 Units)Action (20 Units)

Semantics (500 Units)

Vision (20 Units) Touch (20 Units)

Figure3: The architectureof the network trainedto mapbetween
multiple inputandoutputmodalitiesin Simulation2.

tematictaskremainedat 87%correctwhile theunsystematic
taskwasnearfloor at3.7%correct.Evenwith 20%of input-
to-hiddenconnectionsremoved,correctperformanceon the
systematictaskwasbetterthan50%.

In summary, althoughthis first simulationis highly sim-
plified it servesto illustratethepowerful effect thattasksys-
tematicityhason theperformanceof PDPnetworks,both in
learningandfollowing damage.

Simulation 2: Multiple Modalities
Simulation1 wassimplifiedbothin theextremeform of sys-
tematicityit employedandin thefactthatthesystematicand
unsystematicmappingswerelearnedseparately. In the sec-
ond simulation,we traineda network to mapfrom multiple
inputmodalities(visionandtouch)to multipleoutputmodal-
ities (actionandphonology),employing a morerealisticfor-
mulationof systematicityfor thevision-to-actionmapping.

Method
The network, depictedin Figure3, consistedof five groups
of units: two input groupsof 20 unitseach,named“Vision”
and“Touch”; onehiddenlayerof 500units,named“Seman-
tics”; andtwo outputgroupsof 20unitseach,named“Action”
and “Phonology.” The large numberof units in Semantics
is usefulfor helpingthemodellearnmultiple arbitrarymap-
pingsin a reasonableamountof time. (Qualitatively similar
resultsobtainwith fewer hiddenunits, e.g., 100.). Seman-
tics receivedconnectionsfrom bothof the input groups,and
bothof theoutputgroupsreceivedconnectionsfrom Seman-
tics. Weightsandbiaseswereinitialized andconstrainedas
in Simulation1,

Thetrainingenvironmentconsistedof 100objects,divided
into 10 categoriesof 10 objectseach.Eachobjectconsisted
of patternsfor Vision,Touch,Action, andPhonology.

Vision input patternsweremadeto clusterinto categories
usingthefollowing procedure.We first generated10 random
prototypepatterns,suchthateachof 20 featureshadaproba-
bility of 0.5of beingpresentandall prototypesdifferedfrom
eachotherby at least5 features.For eachprototype,we then
generated10 exemplarsby choosingtwo featuresof thepro-
totypeandreversingthem. We constrainedall exemplarsto
differ from eachotherby atleasttwo features.Eachexemplar
wasusedasaVision inputpattern.

Action outputpatternsweregeneratedin thesameway as
wereVision inputs,althoughdifferentprototypeswereused.
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Figure4: A depictionof therelationshipbetweenvisual inputsand
action outputs. Correspondingpatternsare representedas points
with a line connectingthem.

Exemplarsgeneratedfrom a singleprototypecanbeconsid-
eredto form a category. In orderto createa systematicmap-
ping, we assignedVision inputsto Action outputssuchthat,
if two objectshad input patternsfrom the sameVision cat-
egory, thenthey would have outputpatternsfrom the same
Action category. Thus,membershipin a visualcategory was
predictive of membershipin anactioncategory, but individ-
ualvisualfeatureswerenotperfectlypredictiveof individual
actionfeatures(seeFigure4).

Althoughtheserepresentationsareby nomeansfaithful to
actualvisualandfunctionalrepresentations,they do capture
somebasicaspectsof theirstructureandrelationship.People
categorizeobjectsat leastpartiallyon thebasisof visualfea-
tures(Rosch,Mervis,Gray, Johnson,& Boyes-Braem,1976),
andthereis evidencethatour representationsof actionshave
a categorical structure(Klatzky, Pellegrino, McCloskey, &
Lederman,1993). Thus,the useof an environmentwith vi-
sualandfunctionalcategoriesprovidesa sufficient settingin
which to testtheimplicationsof relative tasksystematicity.

Touchinput patternsandPhonologyoutputpatternswere
generatedby settingeachfeatureof eachpatternto 1 with
a probability of 0.5, with the additionalconstraintthat no
two Touch patternsor Phonologypatternscould be identi-
cal. This designresultsin a systematicrelationshipbetween
Vision and Action, and a randomrelationshipbetweenVi-
sionandPhonologyandbetweenTouchandbothof theout-
put modalities.Note that, in additionto beingunstructured,
theTouchmodalityhadanentirelyunsystematicrelationship
with bothAction andVision. Of course,in actuality, thedo-
main of touchhasa high degreeof structurethat is closely
relatedto thestructureamongvisualandfunctionalrepresen-
tations. However, we chosenot to implementthis structure
nor the relevant relationshipsbecausewe wereprimarily in-
terestedin theeffectsof thesystematicrelationshipof vision
andaction. In fact, by makingall of the otherrelationships
random,weensuredthatthenetwork cantakeadvantageonly
of thoseregularitiesin themappingfrom Vision to Action.

Themodelwastrainedusingthesamelearningprocedure,
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Figure5: The proportionof Action versusPhonologyoutputscor-
rectgivenVisualinput,asa functionof trainingepoch.

parameters,andstoppingcriteriaasin Simulation1.

Results

Acquisition. Figure 5 shows, as a function of training
epoch,theproportionof correctoutputsin eachmodalityfor
Visual inputs. An outputpatternwas consideredcorrectin
this context if all of theoutputunitswerewithin 0.1 of their
targets.As expected,themodellearnedtheVision-to-Action
mappingmore quickly than the Vision-to-Phonologymap-
ping,F(1,99)=112.0,p � .001,dueto its greatersystematicity.

Effects of Damage: Visual Naming versus Gesturing.
Thetrainednetwork waslesionedby removing randomlyse-
lectedconnectionsfrom the Vision layer to the Semantics
layer. Levels of lesionseverity rangedfrom 1% to 30% of
connectionsremoved.At eachlevel, tenrepetitionswererun,
whereina new randomlychosensetof connectionswasre-
moved. Themodel’s performanceon all mappingswasthen
determined.An outputin a particularmodality wasconsid-
eredcorrect,for this task, if all of the outputunits wereon
thecorrectsideof 0.5. Averageperformanceat eachlevel of
severity is shown in Figure6.

Themodel’sability to mapfrom Visionto bothAction and
Phonologywasimpairedby thelesions,and,asexpected,per-
formancedecreasedaslesionseverity increased.However, at
low andintermediateseverities,the modelperformedmuch
better at visual gesturingthan at visual naming. Overall,
the advantagefor the Vision-to-Actionmappingwassignif-
icant,F(1,99)=963.2,p � .001,aswasthe interactionof out-
put modalityandlesionseverity, F(13,1287)=64.76,p � .001.
Note that the model’s performanceon mappingfrom Touch
to eitherof theoutputmodalitiesremainedunimpaired.Since
themodelwasfeedforward,it is unsurprisingthattheremoval
of connectionsfrom Visionto Semanticshadnoeffecton the
model’sperformanceonTouchmappings.

Effects of Damage: Semantic Categorization. One
sourceof evidencein supportof the claim that optic apha-
sic patientshave animpairmentin accessingsemanticsfrom
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Figure 6: Correct performanceon tactile naming, visual gestur-
ing, and visual namingas a function of the percentof Vision-to-
Semanticsconnectionsremoved.

vision ratherthanan impairmentin semanticsper secomes
from Riddoch and Humphreys (1987), who demonstrated
that their patient,JB, had difficulty performingcategoriza-
tion taskswhen fine-grainedvisual discriminationwas re-
quired. Riddochand Humphreys arguedthat, becausethe
semanticrepresentationis formedfrom inaccurateand/orin-
completeinformation,it is generallysufficient to drive tasks
whichdonot requireahigh level of detail,but inadequatefor
hardertasks. Accordingly, we examinethe extent to which
ourmodelexhibitssimilarbehavior.

We implementeda forced-choicetask by presentingthe
modelwith threeobjectsanddeterminingwhich two it con-
sideredmostsimilar. Similarity wasjudgedby computingthe
normalizeddot productof themodel’s Semanticrepresenta-
tions generatedby Visual presentationof two objects. The
larger the normalizeddot product,the moresimilar the ob-
jectswereconsideredto be.

We examined the model’s performanceon two forced-
choicetasks.In thebetween-categoriestask,it waspresented
with two objectsfrom the samecategory anda third object
from a differentcategory. In thewithin-category task,it was
presentedwith threeobjectsfrom the samecategory. When
testingadamagedmodel,wedefinedthecorrectresponsefor
eachcomparisonto betheresponsegeneratedby theundam-
agedmodel.For bothtasks,we presentedthemodelwith all
of thetriplesof objectsrelevantto that task.This resultedin
40,500triples for thebetween-categoriestask(10 categories���������� pairsin eachcategory � 90 objectsfrom outsidethe
category) and3600triples for thewithin-categoriestask(10
categories � ������ � triplesin eachcategory).

Weacquiredperformancedatafor themodelat twelve lev-
els of damage,ten rangingfrom oneto ten percentof con-
nectionsfrom Vision to Semanticslesioned,one at fifteen
percentlesioned,andoneat twenty percentlesioned. Only
onerepetitionwasperformedat eachlevel, largely because
of thecomputationaldifficulty of performingdotproductson
thousandsof 500elementvectors.
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Figure7: Correctperformanceatchoosingwhichof threeobjectsis
leastsemanticallyrelatedto the othertwo whenthat object is in a
differentcategory (“Between-Category”) versuswhenall threeob-
jectsarefrom thesamecategory (“Within-Category”), asa function
of thepercentof Vision-to-Semanticsconnectionsremoved.

Figure7 shows themodel’s performanceon eachtaskfor
eachlevel of severity. At all levels,themodel’sperformance
on the between-categoriestaskwasnearlyperfect. At 20%
of connectionslesioned,themodelstill hada correctperfor-
mancerateof nearly99.5%. By contrast,the model’s per-
formanceon the within-categoriestaskwasvery poor even
for extremelymild lesions.At a mere1% of connectionsle-
sioned,themodel’scorrectperformancewasonly about58%.
Thisdroppedto slightly lessthan10%correctat20%of con-
nectionslesioned.

Our model, therefore,displaysthe expectedbehavior: it
performsmuch more poorly on a task that requiresfine-
grainedvisual discriminations.However, JB’s error rateon
sucha taskwas only about8%, whereasour model’s error
ratestartsat above 40%. This extremelyhigh error rate is
aneffect of thestructureof our Visualdomain.Membersof
a Vision category do not differ enoughto give the modela
goodchanceatperformingthewithin-categoriestask.With a
morerealisticallystructuredenvironment,onewould expect
thewithin-categoryerrorratesto decreasesubstantially.

Discussion
Thesimulationdemonstratesthatthecategory-basedsystem-
aticity of the Vision-to-Actionmappingprovidesan advan-
tagefor both learningandperformanceunderdamage.As
a result,whendamaged,themodelexhibits thecentralchar-
acteristicsof optic aphasia:an impairmentin visualnaming
with relativelysparedperformanceonvisualgesturingandon
namingfrom othermodalities(e.g.,touch). The modelalso
accountsfor preservedbetween-categorydiscriminationwith
impairedwithin-categorydiscrimination.

Themodelevenprovidesa fairly goodquantitative match
to datafrom somespecificoptic aphasicpatients. JB (Rid-
doch& Humphreys, 1987)was75% correctat miming the
useof visuallypresentedobjectsbutonly46%correctatnam-
ing them. The graphindicatesthat the modelmatchesthis
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fairly� closelywhen6% of Vision-to-Semanticsconnections
are lesioned(77% and42% correct,respectively). JulesF.
(Lhermitte& Beauvois,1973)was72%and77%correctand
visual namingof picturesandwords, respectively, andwas
flawlessat visual gesturing. The model approximatesthis
with a 4% lesion: visual namingis 76% correctandvisual
gesturingis 93%correct.

Thereare, however, somepatientsfor whom the model
doesnot providea goodquantitativematch.CoslettandSaf-
fran’s (1989)patient,for example,was50%correctat visual
gesturingbut failed to producea single correctnamingre-
sponseto thesameobjects.With a 10%lesion,themodelis
48% correctat visual gesturingbut remains15% correctat
visualnaming;with a 20%lesion,visualnamingis reduced
to 3%correctbut visualgesturingreachesonly 16%correct.

Also notethat, becauseit hasa feedforwardarchitecture,
the modeldoesnot accountfor casesin which tactile nam-
ing is lessthanperfect.JulesF., for instance,wasonly 91%
correcton namingfrom touch. In a recurrentversionof the
currentmodel,interactionsacrossdamagedVision-Semantics
connectionsmightleadtosomenamingerrorsfor stimuli pre-
sentedto the undamagedmodality. It may alsobe the case
thatsomeopticaphasicpatientshaveadditionalmild damage
to thesemanticsystemitself; suchdamagewouldbeexpected
to leadto a mild deficit in namingfrom othermodalitiesand
to exacerbatethevisualnamingdeficits.

Despiteits limitations,thesimulationdoesprovidesupport
for the centralclaim of the currentwork, that optic aphasia
and other modality-specificnamingdeficits are not incom-
patiblewith a unitary-semanticsaccountif onetakesinto ac-
counttherobustnessof tasksof differingsystematicity.

Conclusions
Semanticknowledgefor objectsis standardlythoughtto be
representedwithin a single,amodalsystem. Onechallenge
to this point of view is thatmodality-specificnamingdeficits
suchasoptic aphasiaarenot easilyexplainedon suchanac-
count. In this paperwe have shown that a PDPimplemen-
tation of a unitary semanticsystemcan,in fact,accountfor
centralcharacteristicsof optic aphasiaundertheassumption
thatinput-outputrelationshipsvary in their systematicity.

It shouldbeacknowledged,though,thatthemodeldoesnot
accountfor all of thedata,includingthequantitative magni-
tudeof thedifferencebetweenvisualnamingversusgesturing
performancein somepatients(e.g.,Coslett& Saffran,1989).
This discrepancy may simply reflect limitations in the scale
of thesimulationandin thesophisticationof therepresenta-
tions. However, if anything, thesesimplificationsmay have
amplifiedthe effect in the model. Thus, the currentresults
shouldbe takenasindicatingthatsystematicityis an impor-
tant contributing factor in understandingthesedeficits, but
maynot provide a completeaccount.We leave it for future
researchto determinewhetherit is possibleto providea fully
adequateaccountof opticaphasiaandrelateddisorderswith-
out at leastsomegradeddegreeof modality-specificspecial-
izationwithin thesemanticsystem(alsoseeShallice,1993).
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