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Researchers interested in human cognitive processes have
long used computer simulations to try to identify the prin-
ciples of cognition. The strategy has been to build com-
putational models that embody putative principles and then
to examine how well such models capture human perfor-
mance in cognitive tasks. Until the early 1980’s, this effort
was undertaken largely within the context of the “computer
metaphor” of mind. Researchers built computational models
based on the conceptualization that the human mind oper-
ated as though it were a conventional digital computer. How-
ever, with the advent of so-called connectionist, neural net-
work, or parallel distributed processing models (Anderson,
Silverstein, Ritz, & Jones, 1977; Hinton & Anderson, 1981;
McClelland & Rumelhart, 1981; McClelland, Rumelhart, &
PDP Research Group, 1986; Rumelhart, McClelland, & PDP
Research Group, 1986), researchers began exploring the im-
plications of principles that are more broadly consistent with
the style of computation employed by the brain.

In connectionist models, cognitive processes take the form
of cooperative and competitive interactions among large
numbers of simple, neuron-like processing units (see Fig-
ure 1). Unit interactions are governed by weighted connec-
tions that collectively encode the long-term knowledge of the
system. The activity of some of the units encodes the input
to the system; the resulting activity of other units encodes
the system’s response to that input. The patterns of activ-
ity of the remaining so-called hidden units constitute learned
internal representations that mediate between inputs and out-
puts. Learning involves modifying the values of connection
weights based on feedback from the environment on the ac-
curacy of the system’s responses. While each unit exhibits
non-linear spatial and temporal summation, units and con-
nections are not generally considered to be in one-to-one
correspondence with actual neurons and synapses. Rather,
connectionist systems attempt to capture the essential com-
putational properties of the vast ensembles of real neuronal
elements found in the brain, through simulations of smaller
networks of units. In this way, the approach is distinct from
computational neuroscience (Sejnowski, Koch, & Church-
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Figure 1. A generic connectionist network. Input units receive ex-
ternal input from the environment, and send connections to internal
(hidden) units which, in turn, send connections to output units. The
activity of each unit is a smooth, nonlinear function of the summed
weighted input from other units. The resulting activity over the
output units constitutes the network’s response to the input.

land, 1988), which aims to model the detailed neurophysi-
ology of relatively small groups of neurons. Although the
connectionist approach uses physiological data to guide the
search for underlying principles, it tends to focus more on
overall system function or behavior, attempting to determine
what principles of brain-style computation give rise to the
cognitive phenomena observed in human behavior. The ap-
proach enables developmental, cognitive and neurobiologi-
cal issues to be addressed within a single, integrated formal-
ism, providing new ways of thinking about how cognitive
processes are implemented in the brain and how disorders of
brain function lead to disorders of cognition.

The simplest structure for a connectionist network is a
feedforward architecture, in which information flows unidi-
rectionally from input units to output units, typically via one
or more layers of hidden units. Although such networks can
provide important insights into many cognitive domains, they
are severely limited in their ability to learn and process infor-
mation over time, and thus are relatively ill-suited for some
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domains, such as language, that involve complex temporal
structure (Elman, 1990). A more appropriate type of net-
work for such domains is one with a recurrent architecture,
with no a priori constraints on interactions among units. In
one type of recurrent network, termed an attractor network,
units interact in such a way that, in response to a fixed input,
the network as a whole gradually settles to a stable pattern of
activity representing the network’s interpretation of the input
(including any associated response). Recurrent networks can
also learn to process sequences of inputs and/or to produce
sequences of outputs. For example, in a simple recurrent net-
work (Cleeremans, Servan-Schreiber, & McClelland, 1989;
Elman, 1990, 1991), the internal representation generated by
a given element of a sequence is made available as input to
provide context for processing subsequent elements. Criti-
cally, the internal representations themselves adapt so as to
provide and make effective use of this context information,
enabling the system to learn to represent and retain relevant
information across time.

In fact, an issue of central relevance in the study of cog-
nition in general, and language in particular, is the nature
of the underlying representation of information. Some con-
nectionist models use localist representations, in which indi-
vidual units stand for familiar entities such as letters, words,
concepts, and propositions (e.g., Dell, 1986; McClelland &
Rumelhart, 1981). Others use distributed representations in
which such entities are represented by alternative patterns of
activity over large numbers of units rather than by the activity
of a single unit (e.g., Hinton & Shallice, 1991; Seidenberg &
McClelland, 1989). Although distributed representations are
more difficult to think about, they offer a rich basis for un-
derstanding learning, generalization, and the flexibility and
productivity of cognition (Gelder, 1990).

The key to the effectiveness of distributed representations
is the use of patterns whose relative similarities–in terms
of feature overlap—capture the relevant functional similar-
ities among the things being represented. The reason is that,
in connectionist models, similar patterns over one group of
units tend to have similar consequences elsewhere in the sys-
tem (see Hinton, McClelland, & Rumelhart, 1986, for dis-
cussion). This property arises because the input to each unit
is typically a weighted sum of the activations of units from
which it receives connections. A similar pattern of activ-
ity over the sending units, summed across the same weights,
will generally produce a similar input to the receiving unit
and, hence, a similar activation. This bias toward giving sim-
ilar responses to similar inputs can be overcome by having
large weights on particular connections, but this takes time
to develop and will happen only if it is required to perform
the task.

In very simple tasks, the similarities among the repre-
sentations provided by the environment may be sufficient to
guide behavior. However, in most cognitive domains, such
as language, the functional relationships that must govern ef-
fective performance are often quite different from the simi-
larities among surface forms. For example, the words cat and
cap look and sound very similar but have entirely unrelated
meanings. Consequently, the inputs to the system must be re-

represented, perhaps via successive transformations across
multiple intermediate layers of units, as new patterns of ac-
tivity whose relative similarities abstract away from mislead-
ing surface similarity and, instead, capture the underlying
structure of the domain. Traditional approaches to under-
standing cognition make very strong and specific assump-
tions about the structure of these internal representations and
the processes that manipulate them. For example, it is of-
ten assumed that underlying linguistic knowledge takes the
form of explicit rules which operate over discrete, symbolic
representations (Chomsky, 1957; Chomsky & Halle, 1968;
Fodor & Pylyshyn, 1988; Pinker, 1991) and, moreover, that
this knowledge is, in large part, innately specified (Chomsky,
1965; Crain, 1991; Pinker, 1994).

By contrast, the connectionist approach places much
greater emphasis on the ability of a system to learn the in-
ternal representations necessary to produce appropriate be-
havior. Learning in a connectionist network takes the form
of modifying the values of weights on connections between
units in response to feedback on the behavior of the network.
A variety of specific learning procedures are employed in
connectionist research; most that have been applied to cog-
nitive domains, such as back-propagation (Rumelhart, Hin-
ton, & Williams, 1986), take the form of error correction:
Change each weight in a way that reduces the discrepancy
between the correct response for a given input and the one
actually generated by the system. In this process, internal
representations over hidden units are learned by calculating
how each unit’s activation should change to reduce error, and
then modifying the unit’s incoming weights accordingly.

The emphasis on learning within the connectionist ap-
proach not only provides a natural means of addressing de-
velopmental phenomena (see Elman et al., 1996), it also has
fundamental implications for the nature of explanations of-
fered for skilled cognitive behavior. Instead of attempting to
stipulate the specific knowledge required for performance in
a domain, the approach instead stipulates the tasks the system
must perform, including the nature of the relevant informa-
tion in the environment, but then leaves it up to learning to
develop the necessary internal representations and processes
(McClelland, St. John, & Taraban, 1989). In some contexts,
the resulting solution may bear a close relationship to more
traditional mechanisms (see, e.g., Zorzi, Houghton, & But-
terworth, 1998), but it is more often the case that learning de-
velops representations and processes which are radically dif-
ferent from those proposed by traditional theories, and which
generate novel hypotheses and testable predictions concern-
ing human cognitive behavior.

Connectionist models have been applied to the full range
of perceptual, cognitive, and motor domains (see McClel-
land et al., 1986; Quinlan, 1991; McLeod, Plunkett, & Rolls,
1998). It is, however, in their application to language that
they have evoked the most interest and controversy (e.g.,
Pinker & Mehler, 1988). This is perhaps not surprising in
light of the special role that language plays in human cogni-
tion and culture. It also stems in part from the considerable
divergence of goals and methods between linguistic versus
psychological approaches to the study of language. This rift
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goes deeper than a simple dichotomy of emphasizing com-
petence versus performance (i.e., what a system is capable of
in principle vs. what it actually does; Chomsky, 1957); it cuts
to the heart of the question of what it means to know and use
a language (Seidenberg, 1997). In contrast to the traditional
linguistic approach, from a connectionist perspective perfor-
mance is not an imperfect reflection of some abstract compe-
tence, but rather the behavioral manifestation of the internal
representations and processes of actual language users: Lan-
guage is as language does. In this regard, errors in perfor-
mance (e.g., “slips of the tongue”; Dell, Schwartz, Martin,
Saffran, & Gagnon, 1997) are no less valid than skilled lan-
guage use as a measure of the underlying nature of language
processing. The goal is not to abstract away from perfor-
mance but to articulate computational principles that account
for it.

A major attraction of the connectionist approach to lan-
guage, apart from its natural relation to neural computation,
is that the very same processing mechanisms apply across the
full range of linguistic structure, including phonology, mor-
phology, and syntax. The remainder of this paper discusses
three specific connectionist models, each applied to one of
these levels. The first model (Plaut & Kello, 1999) is directed
at central issues in phonological development, the second
(Joanisse & Seidenberg, 1998) accounts for neuropsycholog-
ical data in inflectional morphology, and the third (St. John
& McClelland, 1990) addresses the integration of syntax and
semantics in sentence comprehension. Beyond the use of
common computational machinery, these models are all sim-
ilar in that they they learn internal representations that medi-
ate between input and output surface forms and their under-
lying meanings. None of them provides a fully adequate ac-
count of the relevant phenomena in its domain. Nonetheless,
they collectively illustrate both the breadth and depth of the
approach. Finally, the concluding section highlights some
of the limitations of current models and identifies important
directions for future research.

Phonological Development:
Plaut and Kello (1999)

Phonology is concerned with the sound structure of a lan-
guage, and with how contrasts in meaning are conveyed by
contrasts in the surface forms of words. The development
of phonological representations plays a key role in the ac-
quisition of both speech comprehension and production. In
comprehension, time-varying acoustic input must be mapped
onto a stable representation of the meaning of the utterance.
This process poses a considerable challenge to the infant due
to the considerable variability in the speech signal across
talkers and contexts, and because the relationship of the spo-
ken form of a word to its meaning is largely arbitrary. In
other words, words that sound similar (e.g., cat and cap)
don’t generally also have similar meanings (apart from mor-
phologically related words formed from a common stem;
e.g., teacher, teaching). In production, a meaning representa-
tion must generate appropriate time-varying articulatory out-
put. Here, the infant must learn to produce comprehensi-
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Figure 2. The architecture of the simple recurrent network used
by Plaut and Kello (1999). Solid arrows indicate standard full con-
nectivity between groups (i.e., each unit in the sending group sends
a connection to each unit in the receiving group). Dashed arrows
indicate “context” connections where the sending activations are
from the previous time step (this is implemented by copying the
previous sending activations to a separate set of context units—not
shown in the figure—which then send connections to the receiving
group). The number of units in each group is given in parentheses.
(Adapted from Plaut & Kello, 1999)

ble speech without any direct feedback or instruction from
caretakers as to what articulatory movements are required to
produce particular sound patterns. Moreover, although abil-
ities in comprehension tend to precede those in production
(for reviews, see Jusczyk, 1997, this volume; Vihman, 1996)
these two processes must nonetheless converge on a mutually
consistent solution to ensure that the infant comes to speak
the same language(s) that he/she hears.

Plaut and Kello (1999) proposed a connectionist frame-
work for phonological development in which phonology is a
learned, internal representation that mediates among acous-
tic, articulatory, and semantic representations in the service
of both comprehension and production. In support of the
framework, Plaut and Kello developed an implementation in
the form of a simple recurrent network, depicted in Figure 2,
that learned to understand and produce isolated spoken words
in the absence of explicit articulatory feedback

The framework instantiates two key assumptions. The
first is that both comprehension and production are subserved
by the same underlying phonological representations. These
representations develop initially under the pressure of map-
ping acoustics to semantics in the course of learning to un-
derstand adult speech, but become increasingly refined by ar-
ticulatory factors as skill in production develops. By sharing
common underlying phonological representations, structure
learned in the service of comprehension is available to guide
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production (see Vihman, 1996), and refinements driven by
the demands of articulation automatically apply within com-
prehension (see Liberman, 1996).

The second key assumption is that feedback needed to
guide the development of speech production is derived
from the comprehension system—that is, from the acous-
tic, phonological, and semantic consequences of the system’s
own articulations (Locke, 1983; Menn & Stoel-Gammon,
1995; Studdert-Kennedy, 1993). This can be accomplished
by first learning an internal model that maps specific articula-
tions to the acoustics they produce—this is called a forward
model because it mimics physical processes forward in time
(Jordan & Rumelhart, 1992; Perkell, Matthies, Svirsky, &
Jordan, 1995). Such a model can be learned by executing a
variety of articulations, predicting how they will sound, and
then adapting the model based on the discrepancy or error
between this prediction and the actual resulting acoustics. In
the infant, the forward model is assumed to develop primar-
ily as a result of canonical and variegated babbling in the
second half of the first year (see Vihman, 1996, for review,
and Houde & Jordan, 1998, for empirical support for the ex-
istence of such a forward model).

The importance of learning an articulatory-acoustic for-
ward model is that it can be used to convert acoustic and
phonological feedback (i.e, whether an utterance sounded
right) into articulatory feedback that can improve speech pro-
duction. The approach assumes that learning to produce
speech takes place largely in the context of attempts to imi-
tate adult speech. In imitation, the system first derives acous-
tic and phonological representations for an adult utterance
during comprehension. It then uses the resulting phonolog-
ical representation as input to generate a sequence of artic-
ulatory gestures. These gestures, when executed, result in
acoustic signals which are then mapped back onto phonol-
ogy via the comprehension system. The discrepancies be-
tween the resulting representations and the original acoustic
and phonological representations generated by the adult con-
stitute the errors that ultimately drive articulatory learning.
In order for this to work, however, error in acoustics and
phonology must be converted to error in articulation, since
this is what the talker controls directly. This is done by prop-
agating phonological and acoustic error across the forward
model to derive error signals over articulatory states. These
error signals are then used to adapt the production system
(i.e., the mapping from stable phonological representations
onto articulatory sequences) to better approximate the acous-
tics and phonology generated by the adult.

The implementation developed by Plaut and Kello neces-
sarily incorporated a number of simplifications to keep com-
putational demands within reasonable limits. Two of these
are most critical. First, the implementation used discrete
rather than continuous time. The time-varying acoustic input
and articulatory output were described in terms of sequences
of events marking points of significant change. In general,
there was one event per phoneme although, due to coarticula-
tory influences, information about each phoneme was spread
out over a number of adjacent events. Also, phonemes such
as plosives, affricates and diphthongs, with two natural com-

ponents (e.g., closure-release) corresponded to two events.
Second, the implementation used artificial rather than real

speech. Acoustic events were encoded in terms of ten vari-
ables:

1–3. the first three formants (which are bands of sus-
tained acoustic energy at particular frequencies
that are crucial for conveying spectral informa-
tion);

4–6. the three formants’ rates of change;
7–8. the amount of frication and bursting (where

amount reflects a combination of amplitude and
duration);

9. loudness (related to total acoustic energy);
10. degree of jaw openness.

The last variable is, strictly speaking, visual/proprioceptive
rather than acoustic but has been shown to be a important
source of information in infant speech acquisition (Locke,
1995; Meltzoff & Moore, 1977). Articulatory events were
similarly encoded in terms of six variables: degree of oral
(1) and nasal constriction (2), place of oral constriction (3),
tongue height (4), tongue backness (5), and amount of voic-
ing (6). Finally, the physical processes relating articulation
to acoustics were approximated by a set of complex, coupled
equations that map any combination of values for the articu-
latory variables onto the corresponding values for the acous-
tic variables. Considerable effort was spent to make these
representations and equations as realistic as possible while
staying within the constraints of computational efficiency.

In the simulation, each articulatory variable was coded us-
ing two units—the value of the variable was represented by
the difference in activity between the units (e.g., activations
of 0.9, 0.1 would code a value of 0.8; activations of 0.3, 0.7
would code a value of � 0.4). Each acoustic variable was
coded using a bank of 12 units–the value was represented by
the mean of a Gaussian (i.e., bell-shaped) pattern of activity
over the bank, and the total activity of the Gaussian encoded
the strength of the information. For illustration purposes,
Figure 3 shows the articulatory and acoustic representations
for the closure and release of the

�����
in the word spin.

The training vocabulary for the network was the 400 high-
est frequency monosyllabic nouns and verbs in the Brown
corpus (Kučera & Francis, 1967) with at most four phonemes
(mean = 3.42). These words were chosen because they con-
stitute a large proportion of the vocabulary most familiar to
young children. Words were selected for presentation dur-
ing training in proportion to a logarithmic function of their
frequency of occurrence (as using actual frequencies would
have prolonged training time unnecessarily).

The network underwent three kinds of training episodes:
babbling, comprehension, and imitation. Intensional naming
is also mentioned because the network was tested on this task
even though it was not trained on it explicitly.

Babbling. Babbling served to train the articulatory-
acoustic forward model (see Figure 2). Pseudo-random artic-
ulatory sequences, designed to mimic a bias toward mandibu-
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Figure 3. The values of articulatory (left) and acoustic (right) variables corresponding to the closure and release events of ����� in an
utterance of the word spin. The articulatory and acoustic variables are defined in the text. (Adapted from Plaut & Kello, 1999)

lar (jaw) oscillation in infants (MacNeilage & Davis, 1990),
were generated and passed through the articulation-to-
acoustics equations to produce a sequence of acoustic pat-
terns. The articulations also served as input to the forward
model, which generated a sequence of predicted acoustic
patterns. The discrepancy or error between the actual and
predicted acoustics at each step was then back-propagated
through the forward model and used to adjust its connection
weights to improve its ability to predict the acoustic out-
comes of the given articulations. In this way, the forward
model gradually learned to mimic the physical mapping from
articulatory sequences to acoustic sequences (as instantiated
by the articulation-to-acoustics equations).

Comprehension. Comprehension involved deriving the
semantic representation of a word from the acoustic sequence
produced by an adult utterance of the word. The semantic
representations were generated artificially to cluster into cat-
egories and assigned to words randomly (see Plaut & Kello,
1999, for details). Although the relationship between the sur-
face forms of words and their meanings was arbitrary, no at-
tempt was made to approximate the actual meanings of the
words themselves.

Adult utterances were generated by applying the
articulation-to-acoustics equations to the sequences of artic-
ulatory events for words, subject to intrinsic variability and
coarticulation. Each resulting sequence was then mapped
from acoustics via phonology to semantics, and the error be-
tween the generated semantics at each step and the correct
semantics for the word was back-propagated to change the
weights between acoustics and semantics. Gradually, the net-
work learned to activate the correct semantic pattern for the
acoustic sequences corresponding to each word. At the end
of processing, the final pattern of activity over phonology
constituted the network’s internal phonological representa-
tion of the word, and the resulting pattern over semantic con-
stituted the network’s understanding of the word.

Imitation. Imitation involved using a phonological repre-
sentation derived from an adult utterance as input to drive ar-
ticulation, and comparing the resulting acoustic and phono-
logical representations with those of the adult utterance.
Specifically, after hearing an adult utterance, the network
used its derived phonological representation as input to gen-
erate a sequence of articulatory representations. The for-
ward model then mapped this sequence to generate predicted
acoustics, while the articulation-to-acoustics equations were
used to compute the actual acoustics produced by the articu-
lation. The latter were in turn mapped via the comprehension
system to phonology (and semantics). The representations
generated by the network at both the Acoustics and Phonol-
ogy (see Figure 2) were compared with those generated by
the adult. The resulting error was then back-propagated from
phonology to acoustics and then back across the forward
model to derive error feedback for articulation. (Note that
the forward model plays the critical role here of convert-
ing acoustic error into articulatory error.) This feedback was
then back-propagated to phonology and used to modify the
weights in the production system to improve its ability to re-
produce the acoustics and phonology of the adult utterance.

Note that, in learning to imitate, the network is provided
only with the acoustics of adult utterances. It must learn to
adapt its own articulations based solely on how similar to the
adult utterances they sound.

Intentional naming. Intentional naming involved generat-
ing an articulatory sequence given the semantic representa-
tion of a word as input. Although the network was not trained
specifically to perform this task, it can be tested on it in a way
that is similar to imitation. The only difference is that the ini-
tial phonological representation is generated from semantics
top-down rather than from an adult utterance bottom-up.

The network was tested for its ability to comprehend, imi-
tate, and intentionally name words after every 500,000 word
presentations, up to a total of 3.5M (million) presentations.
(Although this may seem like an excessive amount of train-



6 PLAUT

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Word Presentations (in Millions)

0

10

20

30

40

50

60

70

80

90

100
Pe

rc
en

t C
or

re
ct

Comprehension
Imitation
Intentional Naming

Figure 4. Correct performance of the Plaut and Kello (1999) net-
work on comprehension, imitation, and intentional naming, over the
course of training. (Adapted from Plaut & Kello, 1999)

ing, children speak up to 14,000 words per day, or over 5 mil-
lion words per year; see Wagner, 1985.) Figure 4 shows the
levels of correct performance on these tasks over the course
of training. For comprehension, a word was scored as correct
if the semantic pattern generated by the network matched
the semantics of the presented word better than those of
any other word. Comprehension performance improved rel-
atively rapidly, reaching 84.3% correct by 1M word presen-
tations and 99.6% by 3.5M presentations. This level of per-
formance is impressive given the lack of systematicity in the
mapping between acoustics and semantics and the consid-
erable intrinsic variability of adult utterances. Relative to
comprehension, production developed more slowly: the net-
work was only 54.2% correct at imitation by 1M presenta-
tions, although it did achieve 91.7% correct by 3.5M presen-
tations. Intentional naming was slightly poorer than imita-
tion throughout training, eventually reaching 89.0% correct.
This is not surprising as the task involves mapping through
the entire network and was not trained explicitly.

Thus, the network achieved quite good performance at
both comprehension and production. The fact that compre-
hension precedes production in the model (as in child lan-
guage acquisition; Benedict, 1979) stems directly from the
fact that learning within the production system is driven by
comparisons over representations within the comprehension
system. The excellent performance on imitation demon-
strates that feedback from the comprehension system via a
learned forward model can provide effective guidance for ar-
ticulatory development.

Plaut and Kello also carried out an analysis of the errors
produced by the network. In general, the network showed a
strong bias toward phonological similarity in its errors com-
pared with the chance rate, for both comprehension and im-
itation. At the phoneme level, there were far more errors on
consonants than on vowels and, among consonants, a rela-
tively higher error rate on fricatives (e.g.,

� � �
as in shoe),

affricates (e.g.,
�����

as in chip) and
��� �

(as in ring). These
errors involved both additions and deletions; when they were

deleted, they were often replaced by a plosive (e.g.,
��� �

). In
fact, plosives accounted for over half of the total number of
insertions. By contrast, the liquids

��� �
and

��� �
were deleted

occasionally, but never inserted. These characteristics are in
broad agreement with the properties of early child speech
errors (e.g. Ingram, 1976).

In summary, Plaut and Kello (1999) developed a connec-
tionist framework in which phonology is a learned internal
representation mediating both comprehension and produc-
tion, and in which comprehension provides production with
error feedback via a learned articulatory-acoustic forward
model. An implementation of the framework, in the form
of a simple recurrent network, learned to comprehend, im-
itate, and intentionally name a corpus of 400 monosyllabic
words. Moreover, the speech errors produced by the network
showed similar tendencies as those of young children. Al-
though only a first step, the results suggest that the approach
may ultimately form the basis for a comprehensive account
of phonological development.

Inflectional Morphology:
Joanisse and Seidenberg (1998)

The second example of a connectionist model of language
processing is from recent work by Joanisse and Seidenberg
(1998) in the domain of English inflectional morphology.
The past-tense system of English verbs is a classic exam-
ple of a quasi-regular domain, in which the relationship be-
tween inputs and outputs is systematic but admits many ex-
ceptions. Thus, there is a single regular “rule” (add –ed; e.g.,
walk � “walked”) and only about 150 exceptions, grouped
into several clusters of similar items that undergo a similar
change (e.g., sing � “sang”, drink � “drank”) along with a
very small number of very high-frequency, arbitrary forms
(e.g., go � “went”; Bybee & Slobin, 1982).

The traditional view of the language system (e.g., Pinker,
1984, 1991) is that the systematic aspects of language are
represented and processed in the form of an explicit set of
rules. Given that most domains are only partially systematic,
however, this approach posits a separate mechanism (e.g.,
an associative network; Pinker, 1991) to handle the excep-
tions. The distinction between a rule-based mechanism and
an exception mechanism, each operating according to differ-
ent computational principles, forms the central tenet of so-
called “dual-route” theories of language.

Rumelhart and McClelland (1986) argued for an alterna-
tive view of language in which all items coexist within a sin-
gle system whose representations and processing reflect the
relative degree of consistency in the mappings for different
items (also see Seidenberg & McClelland, 1989; Plaut, Mc-
Clelland, Seidenberg, & Patterson, 1996). They developed a
connectionist model that learned a direct association between
the phonology of all types of verb stems and the phonology
of their past-tense forms. However, Pinker and Prince (1988)
and Lachter and Bever (1988) pointed out numerous defi-
ciencies in the model’s performance and in some of its spe-
cific assumptions, and argued more generally that the appli-
cability of connectionist mechanisms in language is funda-
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mentally limited (also see Fodor & Pylyshyn, 1988). Subse-
quent simulation work has addressed many of the specific
limitations of the Rumelhart and McClelland model (Cot-
trell & Plunkett, 1991, 1995; Daugherty & Seidenberg, 1992;
Hoeffner, 1992; MacWhinney & Leinbach, 1991; Plunkett
& Marchman, 1991, 1993, 1996) and has extended the ap-
proach to address language disorders (Hoeffner & McClel-
land, 1993; Marchman, 1993) and language change (Hare &
Elman, 1995).

More recently, proponents of dual-route theories have
identified neuropsychological dissociations in processing
regular versus irregular inflectional morphology, both in the
performance of brain-damaged patients (Marslen-Wilson &
Tyler, 1997; Ullman et al., 1997) and in the regional cere-
bral blood flow of normal subjects (Jaeger et al., 1996, al-
though see ; Seidenberg & Hoeffner, 1998, for criticism).
These dissociations have been interpreted by these authors
as supporting the existence of separate mechanisms for rule-
governed versus exceptional items. For example, Ullman
et al. (1997) found that patients with Alzheimer’s disease
were relatively impaired in generating the past tense of irreg-
ular verbs (60% correct) compared with regular verbs (89%
correct) and novel verbs (e.g., cug–cugged; 84% correct).
By contrast, patients with Parkinson’s disease were relatively
impaired on the novel verbs (65% correct) compared with
both the regular and irregular verbs (80 and 88% correct,
respectively). A similar contrast in performance on novel
versus irregular verbs held among aphasic patients with ei-
ther posterior lesions (novel 85%; irregular 71%) or anterior
lesions (novel 5%; irregular 69%). Ullman and colleagues
interpreted these findings as implicating two separate neu-
ral mechanisms for the processing of the verb inflection—a
posterior system that contains a “mental dictionary” needed
to retrieve irregular inflections, and an anterior system (with
connections to the subcortical structure of the basal ganglia)
that provides for a grammatical rule system needed to inflect
novel verbs (see Saffran, this volume, for a longer discussion
of differences between anterior and posterior brain systems
in language).

An alternative account is that the double dissociation
of novel versus irregular inflectional morphology is due to
damage to different types of information within a single
mechanism that processes all types of items (also see Plaut,
1995). In particular, irregular morphology may be partic-
ularly sensitive to semantic damage whereas novel inflec-
tions may be particularly sensitive to phonological damage.
In fact, the same proposal as been made in the domain of
word reading (Patterson & Hodges, 1992; Patterson & Mar-
cel, 1992; Plaut et al., 1996) where analogous dissociations
occur: Surface dyslexic patients (see Patterson, Coltheart,
& Marshall, 1985) are impaired in pronouncing exception
words (e.g., pint) but not pseudowords (e.g., rint), whereas
phonological dyslexic patients (see Coltheart, 1996) are im-
paired in pronouncing pseudowords relative to both regular
and exception words. In fact, there is independent evidence
for semantic impairments with posterior (temporal) involve-
ment in Alzheimer’s disease (Schwartz, 1990) and in sur-
face dyslexic patients (Graham, Hodges, & Patterson, 1994),
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(162) (162)
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Figure 5. The architecture of the network used by Joanisse and
Seidenberg (1998) to model inflectional morphology. The number
of units in each layer is indicated in parentheses. The small black
arrows indicate full connectivity from one group of units to another.
The large open arrows identify groups of units that receive input
(incoming arrow) or generate output (outgoing arrow). Input and
Output Phonology are represented in terms of distributed features,
whereas Semantics encodes each concept by the activation of a sin-
gle node (plus a past-tense node when appropriate). (Adapted from
Joanisse & Seidenberg, 1998)

and for phonological impairments with frontal involvement
in Parkinson’s patients (e.g., Grossman, Carvell, Stern, Gol-
lump, & Hurtig, 1992) and in phonological dyslexic patients
(Patterson & Marcel, 1992).

Joanisse and Seidenberg (1998) developed a connection-
ist simulation of inflectional morphology in support of this
account. The architecture of their network is shown in Fig-
ure 5. Note that it is broadly similar to the framework
proposed by Plaut and Kello (1999): Spoken input (Input
Phonology in the figure) interacts via a common internal (or
hidden) representation both with Semantics and with spoken
output (Output Phonology). Here, though, the surface forms
of words are represented in more abstract form. Input and
output phonology are represented in terms of sequences of
phonemes of the form CCCVVCCVC (leaving slots empty as
necessary). Thus, the past tense of stop is -sta-pt--- and
the past tense of want is --wa-nt-Id. Within each of the
nine slots, a phoneme is coded in terms of 18 phonetic fea-
tures, yielding a total of 162 units. Verb meanings were not
encoded explicitly; rather, each verb was represented by the
activity of a single unit. An additional “past-tense” unit in
semantics indicated that the phonological output of the verb
should be the past (as opposed to present) tense. The net-
work was trained on 600 randomly selected verbs (weighted
by their frequency), including 64 irregular verbs; it thus con-
tained 601 semantic units. In addition, the network contained
two groups of 20 “clean-up” units, one interacting with se-
mantics and one with output phonology. These groups are
additional hidden units that learn to help semantics and out-
put phonology settle into correct, stable (attractor) states.

The network was trained with back-propagation through
time (Rumelhart et al., 1986) to perform four tasks (on the
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indicated proportion of trials):

Hearing (40%): Given the input phonology of a verb
(present or past), activate the corresponding semantic
unit (and the past-tense unit if it was in the past tense).

Repeating (30%): Given the input phonology of a verb, re-
produce it over output phonology. To facilitate learn-
ing English phonology, in addition to the 600 verbs in
semantics, the network was trained to repeat an addi-
tional 596 verbs in both present and past tense.

Speaking (20%): Given the semantics of a verb (possibly
including the past-tense unit), generate the correct out-
put phonology.

Transforming (10%): Given the input phonology of a verb
in present tense and activation of the past-tense unit in
semantics, generate the past-tense output phonology of
the verb.

After extensive training, the network was 99.5% correct
on hearing, 98.2% correct on repetition, 99.8% correct on
speaking, and 99.3% correct on transforming present to past.
In addition, the network was 85% correct when tested for its
ability to transform the phonology of the novel verbs from
the Ullman et al. (1997) study. Thus, although the network
did not contain separate mechanisms for regular versus irreg-
ular morphology, it nonetheless was capable of highly accu-
rate processing of both types of verbs, as well as reasonably
accurate generalization in transforming novel verbs.

Joanisse and Seidenberg then tested their network’s per-
formance after either semantic or phonological lesions. Each
type of lesion involved removing a random proportion of the
connections from the corresponding clean-up units, as well
as distorting unit activations directly with a moderate amount
of noise. Both removing connections and adding noise to
unit activations have been used in prior connectionist mod-
eling work to approximate the detrimental effects of brain
damage on processing (see, e.g., Hinton & Shallice, 1991).
Indeed, a major advantage of applying connectionist model-
ing to neuropsychological phenomena is that the framework
has a natural, theoretically neutral instantiation of damage;
other frameworks often require researchers to explicitly spe-
cific the functional effects of damage.

Figure 6 shows the average performance of the model fol-
lowing either semantic or phonological lesions, in transform-
ing the present to past tense of regular, irregular, and novel
verbs. Also included are Ullman et al.’s (1997) data for the
corresponding patient groups. As with Alzheimer’s patients,
semantic lesions in the model have a much more detrimen-
tal effect on irregular verbs than on regular or novel verbs.
By contrast, in Parkinson’s patients and for the model af-
ter phonological lesions, novel verbs are the most impaired
(although the dissociation is not as strong as for semantic
lesions).

In the model, semantic damage impairs irregulars (e.g.,
take) the most because interactions with semantics are re-
quired to override the strong consistency in the regular in-
flection for these items. In contrast, phonological damage
impairs novel verbs (e.g., dake) the most because, unlike
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Figure 6. The effects of lesions to semantics (top) or to phonology
(bottom) on the performance of the Joanisse and Seidenberg (1998)
network in transforming regular, irregular, and novel verbs, and the
corresponding data for patients with Alzheimer’s disease (AD) or
Parkinson’s disease (PD) from Ullman et al. (1997). (Adapted from
Joanisse & Seidenberg, 1998)

both irregular and regular verbs (e.g., bake), such verbs re-
ceive no support from interactions with semantics, as they are
novel and have not been associated with meaning. Thus, due
to these learned specializations, lesions to semantics versus
phonology in the model replicate the empirical double dis-
sociation of performance in inflecting irregular versus novel
verbs that Ullman and colleagues observed among the pa-
tients. Consequently, the dissociations do not provide sup-
port for dual-route theories of language processing, and can
be accounted for naturally by a distributed connectionist sys-
tem in which multiple sources of information interact in pro-
cessing all types of items.

Sentence Comprehension:
St. John and McClelland (1990)

Having discussed connectionist models that have been ap-
plied to issues in phonology and morphology, we now con-
sider how the approach can provide important insights at
the level of the syntax and semantics of sentences. Tradi-
tional linguistic theory has focused on grammar as the essen-
tial element of linguistic knowledge, abstracting away from
the influences of semantic and pragmatic knowledge on per-
formance (Chomsky, 1957, 1965, 1985, 1995). This view
has spawned psychological models (e.g., Ferreira & Clifton,
1986; Frazier, 1986; Marcus, 1980) that assume that a sen-
tence is represented in terms of a syntactic skeleton or frame
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(e.g., [Subject] [Verb] [Object]) that is insensitive to actual
words that go into that frame (e.g., [the dog] [ate] [the bone]
or [the cat] [chased] [the mouse]). And yet, from a com-
putational point of view, a parser divorced from real-world
knowledge runs into a number of difficult problems. Con-
sider the following examples (from McClelland et al., 1989):

1. The spy saw the policeman with a revolver.
2. The spy saw the policeman with binoculars.
3. The bird saw the birdwatcher with binoculars.

As these sentences are structurally identical, the attachment
of the prepositional phrase depends solely on the meanings
of the words and the relative adequacy of alternative inter-
pretations. In (1) versus (2), only the binoculars are a plau-
sible instrument of seeing, whereas a revolver is more likely
to belong to a policeman. In (3), the fact that birdwatchers
but not birds often possess and use binoculars reverses the
attachment in (2). Indeed, every constituent in a sentence
can potentially influence the role assigned to a prepositional
phrase (Oden, 1978).

Conversely, just as word meaning is needed to influence
syntactic processes, so sentence-level syntax and semantics
must be used to determine word meanings. This can be seen
clearly in considering ambiguous words, as in

4. The pitcher threw the ball.

Here, every content word has multiple meanings in isolation
but an unambiguous meaning in context. It also applies to
vague or generic words, such as container, which can refer
to very different types of objects in different contexts (An-
derson & Ortony, 1975), as in these sentences:

5. The container held the apples.
6. The container held the cola.

Finally, at the extreme end of context dependence are im-
plied constituents which are not even mentioned in the sen-
tence but nonetheless are an important aspect of its meaning.
For example, from “The boy spread the jelly on the bread,”
most people infer that the instrument was a knife (McKoon
& Ratcliff, 1981).

These and other considerations have led a number of re-
searchers to question claims for the autonomy of syntax. In-
stead, sentence comprehension is envisioned as a constraint
satisfaction process in which multiple sources of information
from both syntax and semantics are simultaneously brought
to bear in constructing the most plausible interpretation of
a given utterance (see, e.g., MacDonald, Pearlmutter, & Sei-
denberg, 1994; McClelland & Kawamoto, 1986; Seidenberg,
1997; Tanenhaus & Trueswell, 1995).

(St. John & McClelland, 1990; McClelland et al., 1989)
developed a connectionist model of sentence comprehension
which instantiates this key idea and which, at least in limited
form, addresses the challenges raised above. The architec-
ture of the model, in the form of a simple recurrent network,
is shown in Figure 7. The task of the network was to take as
input a single-clause sentence as a sequence of constituents
(e.g., the-busdriver ate the-steak with-a-knife) and to derive
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Figure 7. The architecture of the simple recurrent network used by
St. John and McClelland (1990) to model sentence comprehension.
The number of units in each layer is shown in parentheses. The
large arrows identify which layers receive input (incoming arrow)
or produce output (outgoing arrow). The dashed arrow indicates a
projection from “context” units (omitted for clarity) whose states
are copied from the Sentence Gestalt layer for the previous time
step. The indicated content of representations is midway through
the sentence The busdriver ate the steak with a knife. (Adapted
from St. John & McClelland, 1990).

an internal representation of the event described by the sen-
tence, termed the Sentence Gestalt. Critically, this represen-
tation was not predefined but was learned from feedback on
its ability to generate appropriate thematic role assignments
for the event given either a role (e.g., Agent, Patient, Instru-
ment) or a constituent that fills a role (e.g., busdriver, steak,
knife) as a probe.

Events were organized around actions and had a proba-
bilistic structure. Specifically, each of 14 actions had a speci-
fied set of thematic roles, each of which was filled probabilis-
tically by one of the possible constituents. In this process,
the selection of fillers for certain roles biased the selection
for other roles. For example, for eating events, the busdriver
most often ate steak whereas the teacher most often ate soup,
although occasionally the reverse occurred. These proba-
bilistic biases in the construction of events were intended to
approximate the variable but non-random structure of real-
world events: some things are more likely than others to play
certain roles in certain activities.

The choice of words in the construction of a sentence de-
scribing the event was also probabilistic. The event of a bus-
driver eating a steak with a knife might be rendered as the-
adult ate the-food with-a-utensil, the-steak was-consumed-by
the-person, someone ate something, and so on (where the hy-
phenated phrases are constituents). This variability captures
the fact that, in real life, the same event may be described in
many different ways and yet understood similarly. Overall,
given the probabilistic event structures and the lexical and
syntactic options for describing events as sentences, there
were a total of 120 different events (of which some were
much more likely than others) and 22,645 different sentence-
event pairs.
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Figure 8. Performance of the St. John and McClelland (1990) network in thematic role assignment for four classes of sentences: active
syntactic (e.g., the busdriver kissed the teacher), passive syntactic (e.g., the teacher was kissed by the busdriver), regular semantic (e.g., the
busdriver ate the steak), and irregular semantic (e.g., the busdriver ate the soup). (Reprinted from St. John & McClelland, 1990).

During training, sentence-event pairs were generated suc-
cessively and the constituents of each sentence were pre-
sented one at a time over the Current Constituent units (see
Figure 7). For each constituent, the network updated its Sen-
tence Gestalt representation and then attempted to use this
representation as input to generate the full set of role/filler
pairs for the event. Specifically, with the Sentence Gestalt
fixed and given either a role or a filler over the Probe units,
the network had to generate the other element of the pair
over the Role/Filler units. For example, after the presenta-
tion of the-steak in the sentence the-steak was-eaten-by the-
busdriver, the network was trained to output, among other
things, the agent (busdriver), the patient (steak), the action
(eating), and the instrument (fork). It was, of course, impos-
sible for the network to do this with complete accuracy, as
these role assignments depend on constituents that have yet
to occur or are only implied. Even so, the network could do
better than chance; it could attempt to predict missing infor-
mation based on its experience with the probabilistic depen-
dencies in the event structures. More specifically, it could
(and, in fact, did) generate distributions of activity over roles
and fillers that approximated their frequency of occurrence
over all possible events described by sentences that start with
the-steak. Note that these distributions could, in many cases,
be strongly biased towards the correct responses. For exam-
ple, steaks typically fill the patient role in events about eating
and (in the environment of the network) steaks are most com-
monly eaten by busdrivers using a fork. In this way, the train-
ing procedure encouraged the network to extract as much in-
formation as possible as early as possible, in keeping with the
principle of immediate update (Eberhard, Spivey-Knowlton,
& Tanenhaus, 1995; Marslen-Wilson & Tyler, 1980; Dijk &
Kintsch, 1983). Of course, the network also had to learn to
revise the Sentence Gestalt appropriately in cases where its
predictions were violated, as in the-steak was-eaten-by the-
teacher.

The network was trained on a total of 630,000 sentence-
event pairs, in which some pairs occurred frequently and

others—particularly those with atypical role assignments—
were very rare. Figure 8 shows the performance of the model
on sentences of various types as a function of training expe-
rience. In general, active voice was learned before passive
voice, and syntactic constraints (implied by word order) were
learned before semantic constraints (implied by probabilistic
biases). By the end of training, when tested on 55 randomly
generated sentence-event pairs with unambiguous interpre-
tations, the network was correct in 1699 of 1710 role/filler
assignments (99.4% correct).

St. John and McClelland also carried out a number of
more specific analyses intended to establish that the network
could handle more subtle aspects of sentence comprehen-
sion. In general, the network succeeded at using both seman-
tic and syntactic context 1) to disambiguate word meanings
(e.g., for the pitcher hit the bat with the bat, assigning flying
bat as patient and baseball bat as instrument); 2) to instantiate
vague words (e.g., for the teacher kissed someone, activating
a male of unknown age as patient), and 3) to elaborate im-
plied roles (e.g., for the teacher ate the soup, activating spoon
as the instrument; for the schoolgirl ate), activating a range of
foods as possible patients). The network also demonstrated
the ability to recover from semantic “garden paths,” in which
early predictions had to be revised in light of later evidence
(see Figure 9).

In summary, St. John and McClelland (1990) present a
connectionist model in which semantic and syntactic con-
straints are integrated to support online sentence comprehen-
sion. Although there are significant limitations in the com-
plexity of the language on which the model was trained, it
nonetheless instantiates and provides support for a theory of
sentence comprehension in which multiple weak constraints
are brought to bear simultaneously to determine the best in-
terpretation of the input (MacDonald et al., 1994; Seiden-
berg, 1997). This perspective stands in sharp contrast to
traditional linguistic theories (Chomsky, 1965) and many
psycholinguistic theories (Ferreira & Clifton, 1986; Frazier,
1986) which espouse a clear separation of grammar from the
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Figure 9. The activations (as black bars) of possible fillers for
selected roles generated by the St. John and McClelland (1990) net-
work after processing each of the four constituents in the sentence
the-adult#1 ate#2 the-steak#3 with-daintiness#4. After processing
the-steak, the network instantiates the-adult as the busdriver, but
when with-daintiness is encountered, the network must reinterpret
the-adult to mean the teacher (given the statistics for eating events).
(Reprinted from St. John & McClelland, 1990).

rest of cognition.

Summary and Conclusions

Connectionist modeling is attractive as a framework for
understanding cognition in general, and language in particu-
lar, because it provides an account of the flexibility and pro-
ductivity of human performance through the development of
internal representations that capture the underlying structure
in a domain, and because it suggests how such representa-
tions and processes might actually be learned and carried out
by the brain. The current paper discusses three examples
of connectionist models, each applied to a different level of
language structure. At the phonological level, the Plaut and
Kello (1999) model provides an account of how comprehen-
sion and production are coordinated in phonological devel-
opment, and how production can be trained by feedback from
the comprehension system via a learned articulatory-acoustic
forward model. At the morphological level, the Joanisse and
Seidenberg (1998) model demonstrates that neuropsycholog-
ical dissociations in inflecting regular (and novel) versus ir-
regular English verbs do not implicate separate rule-based
and associative mechanisms, but arise naturally from damage
to semantic versus phonological processes within a single,
distributed system that processes all types of items. At the

sentence level, the St. John and McClelland (1990) model il-
lustrates how a system can learn both semantic and syntactic
knowledge from its experience with sentences and the events
they describe, and bring this knowledge to bear in an online
integrated fashion to construct the most plausible interpreta-
tion of a given sentence.

Each of these models has important limitations in its the-
oretical scope and empirical adequacy. The Plaut and Kello
model has been applied only to isolated monosyllables which
were assigned very abstract distributed semantic represen-
tations. Moreover, the articulatory and acoustic represen-
tations, and the equations that relate them, provide only a
coarse approximation to the richness of the information and
constraints in these domains. The Joanisse and Seidenberg
model similarly employed a limited vocabulary of isolated
verbs, highly restrictive phonological representations, and
made no attempt to capture similarities among verb mean-
ings. The St. John and McClelland model was trained on sen-
tences restricted to single clauses without embeddings and
pre-parsed into syntactic constituents. The use of event struc-
tures composed of probabilistic assignment to fixed thematic
roles was also highly simplified.

A more general limitation that spans all three models is the
approximation of temporal processing in terms of discrete
sequences of events. Although networks with continuous-
time processing have been applied in language-related do-
mains (e.g., Harm & Seidenberg, 1999; Plaut et al., 1996),
typically these networks have been trained only to settle to
a stable (attractor) pattern given a fixed input. An important
goal for future work is to establish that such networks can
learn to carry out more sophisticated temporal processing,
such as interpreting continuously varying acoustic input in
speech comprehension, and producing continuous articula-
tory trajectories in speech production.

Another important goal for future work is to develop mod-
els that span linguistic levels. Currently, the most connec-
tionist models of language are restricted to processing single
(often monosyllabic) words, whereas models that processes
sentences adopt highly simplified representations for the sur-
face forms of words (see also Elman, 1993; Rohde & Plaut,
1999). In principal, the phonological model of Plaut and
Kello could be extended to processes multi-word utterances,
and the sentence-level model of St. John and McClelland
could be elaborated with more phonologically structured in-
puts.

It should be clear that none of the three models described
in the current paper, nor any other existing connectionist
model, accounts for all of the relevant empirical findings in
its domain. In considering this, it is important to think of
a model as a demonstration of key theoretical principles in
the service of supporting an underlying theory, rather than
as a proposal for exactly how the human cognitive system
operates in every detail. In this respect, the three models
are quite successful, although much work remains in refining
the principles and in applying them to increasingly realistic
tasks.

Connectionist models provide the means of exploring the
implications of a set of computational principles that are
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closely tied to neurophysiology and yet have important im-
plications for cognition. In this way, the approach offers a
computational bridge between mind and brain.
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