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The traditional view of the lexical system stipulates word-speci�c
representations and separate pathways for regular and exception words. An
alternative approach views lexical knowledge as developing from general
learning principles applied to mappings among distributed representations of
written and spoken words and their meanings. On this distributed account,
distinctions among words, and between words and nonwords, are not rei�ed in
the structure of the system but re�ect the sensitivity of learning to the relative
systematicity in the various mappings. Two computational simulations address
�ndings that have seemed problematic for the distributed approach. Both
involve a consideration of the role of semantics in normal and impaired lexical
processing. The �rst simulation accounts for patients with impaired
comprehension but intact reading in terms of individual differences in the
division of labour between the semantic and phonological pathways. The
second simulation demonstrates that a distributed network can reliably
distinguish words from nonwords based on a measure of familiarity de�ned
over semantics. The results underscore the importance of relating function to
structure in the lexical system within the context of an explicit computational
framework.
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INTRODUCTION

Word reading is one of the most extensively investigated areas within
cognitive psychology. A tremendous amount of data has been gathered on
how various properties of a written word (frequency of occurrence, age of
acquisition, numbers of letters and phonemes, orthographic neighbourhood,
spelling–sound regularity and consistency, imageability, meaningfulness ,
prior context, etc.) in�uence the speed and accuracy with which a word is
understood and pronounced by normally and abnormally developing
readers, skilled readers and brain-damaged patients with selective reading
impairments. Developing a comprehensive theory of lexical processing that
can account for this full range of �ndings is a considerable challenge, one
that has yet to be met.

A natural way of accounting for the effects of some variable or distinction
on performance is to build the distinction directly into the structure of a
model. A good example is the status of a letter string as a word. Few
researchers would argue against the relevance to understanding human
language performance of the distinction between letter strings that are
words and those that are not. The fact that, in most contexts, skilled readers
are fast and accurate at discriminating written words from nonwords with
relatively little practice indicates that there must be some difference in how
the reading system responds to words and nonwords. The simplest way of
incorporating this distinction is to introduce words as explicit structures in a
model. Well-known examples of such structures are Morton’s (1969)
logogens and McClelland and Rumelhart’s (1981) word units in the
Interactive Activation model. In a model with word-speci�c representations,
words can be distinguished from nonwords simply by whether one of them
reaches threshold or becomes fully active. Moreover, it becomes
straightforward to account for effects of lexical variables by manipulat-
ing the word representations to re�ect the variable explicitly. For
example, effects of word frequency can be incorporated directly by setting
the resting level of the logogen or word unit to be proportional to
frequency.

Distinctions among words also lead researchers to postulate additional
structure in the lexical system. The classic example is the distinction between
regular words and exception words. Many researchers assume that
knowledge of spelling–sound correspondences is encoded in terms of an
explicit set of rules. The rules need to be general—for example, based on
grapheme–phoneme correspondence—to support effective pronunciation
of unfamiliar word-like letter strings (e.g. M AVE, RIN T). However, in a
language like English, in which spelling–sound correspondences are only
partially systematic, such rules will apply to only a subset of words—so-
called regular words (e.g. GAVE, H INT). The remaining exception words (e.g.
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HAVE, PIN T) are mispronounced—regularised —by the rules. Given that
skilled readers can pronounce such words correctly, they must be using some
other mechanism with word-speci�c knowledge, like the logogens or word
units. In this way, a given set of spelling–sound correspondences rules
de�nes a sharp dichotomy between the items which obey the rules and the
items which violate them; theories that reify this dichotomy as two separate
processing mechanisms are thus termed “dual-route” theories (e.g. Besner
& Smith, 1992; Coltheart, 1978, 1985; Coltheart, Curtis, Atkins, & Haller,
1993; Marshall & Newcombe, 1973; Meyer, Schvaneveldt , & Ruddy, 1974;
Morton & Patterson, 1980; Paap & Noel, 1991). Note that most such theories
further subdivide the lexical mechanism into semantic and non-semantic
components to account for the conditions under which normal and impaired
word reading is (or is not) in�uenced by word meaning. Thus, despite the
name, the essence of a dual-route theory is not that it has exactly two
pathways from print to sound; rather, it is the claim that the mechanism that
pronounces nonwords is functionally distinct from, and operates according
to different principles than, the mechanism that pronounces exception
words.

Instead of accounting for effects of lexical variables by manipulating the
structure of a model directly, an alternative theoretical approach is to start
with a set of general assumptions on the nature of representation, processing
and learning in the cognitive system, and to show how, when instantiated to
perform speci�c tasks, these assumptions give rise to the relevant
behavioural effects. This is the perspective adopted by researchers
employing connectionist/parallel distributed processing (PDP) models of
lexical processing (e.g. Plaut, McClelland, Seidenberg, & Patterson, 1996;
Seidenberg & McClelland, 1989; Van Orden, Pennington, & Stone, 1990;
Van Orden & Goldinger, 1994). For example, in the framework proposed by
Seidenberg and McClelland (1989; see Fig. 1), orthographic, phonological
and semantic information is represented in terms of distributed patterns of
activity over separate groups of simple neuron-like processing units. Within
each domain, similar words are represented by similar patterns of activity.
Lexical tasks involve transformations between these representations; for
example, oral reading requires the orthographic pattern for a word to
generate the appropriate phonological  pattern. Such transformations are
accomplished via the cooperative and competitive interactions among units,
including additional hidden units that mediate between the orthographic,
phonological and semantic units. In processing an input, units interact until
the network as a whole settles into a stable pattern of activity—termed
an attractor—corresponding to its interpretation of the input. Unit
interactions are governed by weighted connections between them, which
collectively encode the system’s knowledge about how the different types
of information are related. Weights that give rise to the appropriate
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FIG. 1. A connectionist framework for lexical processing, based on that of Seidenberg and
McClelland (1989).

transformations are learned on the basis of the system’s exposure to written
words, spoken words and their meanings.

As Fig. 1 makes clear, the distributed connectionist approach does not
entail a complete lack of structure within the lexical system. But the
distinctions that are relevant relate to the different types of information that
must be coordinated: orthographic, phonological  and semantic. Given that
such information may be based on input from different modalities (at least
for the surface forms), it is natural to assume that the corresponding
representations—and hence the pathways between them—are
neuroanatomically distinct. In fact, such divisions play an important role in
accounting for data on the selective effects of brain damage on reading.
However, irrespective of these distinctions among types of representations,
there is a uniformity in the processing mechanisms by which they are derived
and interact. In this way, the distributed connectionist approach is
fundamentally at odds with the core tenet of dual-route theories.

Seidenberg and McClelland (1989) provided computational support for
the claim that word-speci�c representations and separate rule-based versus
lexical processing routes are unnecessary to account for skilled oral reading.
They trained a connectionist network (corresponding to the bottom portion
of Fig. 1, termed the phonological pathway) to map from the orthography of
2897 monosyllabic English words—both regular and exception—to their
phonology. After training, the network pronounced 97.7% of the words
correctly, including most exception words. The network also exhibited the
standard empirical pattern of an interaction of frequency and consistency in
naming latency (Andrews, 1982; Seidenberg, Waters, Barnes, & Tanenhaus,
1984; Taraban & McClelland, 1987; Waters & Seidenberg, 1985) if its
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real-valued accuracy in generating correct responses was taken as a proxy
for reaction time.

The theoretical impact of Seidenberg and McClelland’s model is,
however, undermined by certain inadequacies  in its match to human
performance, particularly in three respects. First, the model was much worse
than skilled readers at pronouncing orthographically legal nonwords
(Besner, Twilley, McCann, & Seergobin, 1990). Secondly, it was unable to
perform lexical decision accurately under many conditions (Besner et al.,
1990; Fera & Besner, 1992). Thirdly, it failed to exhibit central aspects of
�uent surface dyslexia when damaged (Patterson, Seidenberg, &
McClelland, 1989); speci�cally, the frequency 3 consistency interaction in
naming accuracy, the high regularisation rates and (again) the near-perfect
nonword reading (see Patterson, Coltheart, & Marshall, 1985).

More recently, Plaut et al. (1996) demonstrated that network
implementations of the phonological pathway can learn to pronounce
regular and exception words, and yet also pronounce nonwords as well as
skilled readers, if they use more appropriately structured orthographic and
phonological representations (based on graphemes and phonemes and
embodying phonotactic and graphotactic constraints). Plaut and colleagues
also provided a more adequate account of surface dyslexia based on the
notion that semantics plays an important role in skilled reading. Speci�cally,
the support for word pronunciations from the semantic pathway relieves the
phonological pathway from having to master low-frequency exception
words by itself. The combination of the two pathways is fully competent in
skilled readers but, following damage to the semantic pathway, the limited
competence of the isolated phonological  pathway manifests as surface
dyslexia.

In the current work additional simulations are presented that further
develop the role of semantics to address two remaining problematic issues
for the distributed connectionist approach to lexical processing. The �rst
concerns a �nding that would seem to challenge the above account of surface
dyslexia; namely, that some brain-damaged patients have substantial
semantic impairments but nonetheless can read low-frequency exception
words accurately (W.L.P., Schwartz, Marin, & Saffran, 1979; M.B., Raymer
& Berndt, 1994; D.R.N., Cipolotti & Warrington, 1995; D.C., Lambon
Ralph, Ellis, & Franklin, 1995). The �rst set of simulations demonstrates that
such patients are natural consequences of expected individual differences in
the division of labour between the semantic and phonological pathways
under parametric variations, even when the majority of individuals with
semantic damage would be expected to exhibit some degree of surface
dyslexia (Graham, Hodges, & Patterson, 1994; Patterson & Hodges, 1992).
The second issue is the ability of distributed networks to perform lexical
decision accurately. A second simulation, involving a full (although
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feedforward) implementation of the framework in Fig. 1, demonstrates that
a network that maps orthography to semantics directly and via phonology
can reliably distinguish words from nonwords based on a measure of
familiarity de�ned over semantics.

As background for the current work, the next section presents a brief
overview of the approach taken by Plaut et al. (1996) in accounting for the
effects of frequency and consistency in skilled word and nonword reading
and in �uent surface dyslexia. The two simulation studies are then presented,
followed by a general discussion.

AN ACCOUNT OF FREQUENCY AND
CONSISTENCY EFFECTS IN NORMAL AND

IMPAIRED WORD READING

Seidenberg and McClelland (1989) based their orthographic and
phonological representations on context-sensitive triples of letters and
phonemic features (Wickelgren, 1969). A central insight offered by Plaut et
al. (1996) was that such representations suffer from what was termed the
dispersion problem, and that it was this problem, rather than any more
general failing of connectionist networks, that lead to the poor nonword
reading performance of Seidenberg and McClelland’s model. Speci�cally,
the triples-based representations disperse the regularities between spelling
and sound, thereby hindering generalisation. For example, in the
orthographic representation of the word GAVE, the contribution made by the
letter A depends entirely on the presence of the G and V; there is no similarity
to the contribution made by the A in SAVE or GATE, and hence no basis for the
training on the pronunciation of A in GAVE to support the same
pronunciation in SAVE or G ATE—or in a nonword like M AVE.

Plaut and colleagues hypothesised that the human reading system
generalises effectively because it uses representations that condense
spelling–sound regularities. To support this hypothesis, they designed
orthographic and phonological representations in which, within each
consonant and vowel cluster, letters and phonemes almost always activated
the same units irrespective of context. The representations were not
intended to be fully general, but rather to minimise the degree to which
spelling–sound correspondences were dispersed across different units for
different words. Plaut and colleagues found that, when networks were
trained on essentially the same corpus as Seidenberg and McClelland’s
model, but using the new representations, they were able to pronounce all
the words correctly and yet still generalise effectively to nonwords.
Moreover, the networks exhibited the empirical frequency 3 consistency
interaction pattern when trained on actual (as opposed to logarithmically
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FIG. 2. (a) The frequency 3 consistency interaction exhibited in the settling time of an
attractor network implementation of the phonological pathway in pronouncing words of
varying frequency and spelling–sound consistency (Plaut et al., 1996, simulation 3). (b) Its
explanation in terms of additive contributions of frequency and consistency subject to an
asymptotic activation function— s [ in equation (1), only the top half of which is shown. From
Plaut et al. (1996).

compressed) word frequencies, even when naming latencies were modelled
directly by the settling time of a recurrent, attractor network (see Fig. 2a).

Importantly, Plaut et al. (1996) went beyond providing only empirical
demonstrations that networks could reproduce accuracy and latency data on
word and nonword reading, to offer a mathematical analysis of the critical
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factors that govern why the networks (and, by hypothesis, subjects) behave
as they do. This analysis was based on a network that, while simpler than the
actual simulations—it had no hidden units and employed Hebbian rather
than error-correcting learning—retained many of the essential
characteristics of the more general framework. For this simpli�ed network,
Plaut and colleagues derived an expression for how the response of the
network to any input (test) pattern depended on its experience with every
pattern on which the network was trained, as a function of the pattern’s
frequency of training, its similarity with the test pattern, and the consistency
of its output with that of the test pattern. Speci�cally, the response s[t] of anyj

output unit j to a given test pattern t is given by:

(1)

in which the standard smooth, non-linear sigmoidal input–output function
for each unit, s [ , is applied to the sum of three terms: (1) the cumulative
frequency of training on the pattern t itself, F[t]; (2) the sum of the frequencies
F[f] of the “friends” of pattern t (patterns trained to produce the same
response for unit j), each weighted by its similarity (overlap) with t, O [ft]; and
(3) minus the sum of the frequencies F[e] of the “enemies” of pattern t
(patterns trained to produce the opposite response), each weighted by its
similarity to t, O [et].

Many of the basic phenomena in word reading can be seen as natural
consequences of adherence to this “frequency–consistency” equation.
Factors that increase the summed input to units (e.g. word frequency,
spelling–sound consistency) improve performance as measured by naming
accuracy and/or latency, but their contributions are subject to “diminishing
returns” due to the asymptotic nature of the activation function, s [ (see
Fig. 2b). As a result, performance on stimuli that are strong in one factor is
relatively insensitive to variation in other factors. Thus, regular words show
little effect of frequency, and high-frequency words show little effect of
consistency, giving rise to the standard pattern of interaction between
frequency and consistency in which the naming of low-frequency exception
words is disproportionately slow or inaccurate.

It is important to note, however, that equation (1) is only approximate for
networks with hidden units and trained by error-correcting algorithms like
back-propagation (Rumelhart, Hinton, & Williams, 1986a). These two
aspects of the Plaut et al. (1996) simulations are critical in that they help to
overcome interference from enemies (i.e. the negative terms in equation 1),
thereby enabling the networks to achieve correct performance on exception
words—that is, words with many enemies and few, if any, friends—as well as
on regular words and nonwords.
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Although Plaut and colleagues demonstrated that implementations of the
phonological pathway on its own can learn to pronounce words and
nonwords as well as skilled readers, a central aspect of their general theory is
that skilled reading more typically requires the combined support of both
the semantic and phonological  pathways (for similar proposals, see Hillis &
Caramazza, 1991; Van Orden & Goldinger, 1994), and that individuals may
differ in the relative competence of each pathway (Seidenberg, 1992).
Certainly, semantic involvement is necessary to pronounce homographs like
WIN D and READ correctly. Furthermore, a semantic variable—imageability—
in�uences the strength of the frequency 3 consistency interaction in the
naming latencies and errors of skilled readers (Strain, Patterson, &
Seidenberg, 1995). Moreover, brain damage that impairs lexical semantics—
typically to the left temporal lobe—can lead to surface dyslexia (see
Patterson et al., 1985). In its purest “�uent” form (e.g. M.P., Behrmann &
Bub, 1992; Bub, Cancelliere, & Kertesz, 1985; K.T., McCarthy &
Warrington, 1986; H.T.R., Shallice, Warrington, & McCarthy, 1983), surface
dyslexic patients read nonwords and regular words with normal accuracy
and latency, but exhibit an interaction of frequency and consistency in word
reading accuracy that mirrors the interaction shown by normal subjects in
latency. That is, surface dyslexic patients are disproportionately poor at
pronouncing low-frequency exception words, often giving a pronunciation
consistent with more standard spelling–sound correspondences (e.g. SEW

read as “sue”, termed a regularisation error). In fact, there can be a close
correlation for individual patients between the lack of comprehension of
exception words and their likelihood of being regularised (Funnell, 1996;
Graham et al., 1994; Hillis & Caramazza, 1991), and the surface dyslexic
pattern may emerge gradually as lexical semantic knowledge deteriorates in
patients with some types of progressive dementia, such as semantic
dementia (Graham et al., 1994; Patterson & Hodges, 1992; Schwartz et al.,
1979) or dementia of the Alzheimer’s type (Patterson, Graham, & Hodges,
1994b).

The distributed connectionist framework depicted in Fig. 1 provides a
natural formulation of how contributions from both the semantic and
phonological pathways might be integrated in oral reading. At a more
abstract level, given that phonological  units simply sum their inputs from the
two pathways, the in�uence of the semantic pathway can be incorporated
into equation (1) by adding an additional term, S[t], to the summed input of
unit j. [In fact, if it is assumed that this term scales with imageability, this can
account for the three-way interaction of frequency, consistency and
imageability  in skilled reading found by Strain et al. (1995).] When
formulated explicitly in connectionist terms, however, this integration has
important implications for the nature of learning in the two pathways.
During training, to the extent that the contribution of the semantic pathway



774 PLAUT

reduces the overall error, the phonological pathway will experience less
pressure to learn. On its own, it may master only those items it �nds easiest to
learn: words high in frequency and/or consistency (i.e. those items with large
positive terms in equation 1); low-frequency exception words may never be
learned completely. As a result, brain damage that reduced or eliminated the
semantic pathway would reveal the latent limitation of the phonological
pathway, giving rise to surface dyslexia.

In further simulations, Plaut and colleagues explored the possibility that
the surface dyslexic reading pattern might re�ect the natural limitations of
an intact but isolated phonological pathway that had learned to rely partially
on semantic support. Given that a full implementation of the semantic
pathway was beyond the scope of their work, they approximated the
contribution that such a pathway would make to the oral reading of each
word during training by providing the output (phoneme) units of the
implemented phonological pathway with external input that pushed them
towards their correct values for each word during training. Semantic
damage, then, was modelled by weakening or removing this external input.
Plaut and colleagues found that, indeed, a phonological pathway trained in
the context of support from semantics exhibited the central phenomena of
surface dyslexia when semantics was impaired. Figure 3 shows how different
degrees of semantic impairment provide a reasonably good quantitative �t
to the performance levels of individual surface dyslexic patients.

In summary, Plaut et al. (1996) provided connectionist simulations and
mathematical analyses supporting a view of lexical processing in which the
distinctions between words and nonwords, and between regular and
exception words, are not re�ected in the structure of the system, but rather in
functional aspects of its behaviour as it brings all its knowledge to bear in
processing an input. An important insight that emerges from the approach is
that semantic and phonological processing are intimately related, over the
course of reading acquisition, in normal skilled performance, and in the
effects of brain damage. The following two simulation experiments aim to
elaborate and clarify the role of semantics in oral reading and other lexical
tasks. Although it might be more natural to consider normal performance
(in lexical decision) before impaired performance (in surface dyslexia), we
begin with the latter issue as the relevant simulations are more closely
related to existing work.

SIMULATION 1: INDIVIDUAL DIFFERENCES IN
DIVISION OF LABOUR

Plaut and co-workers’ (1996) account of surface dyslexia involves a causal
relationship between an impairment in semantic input to phonology and the
occurrence of (regularisation) errors in reading low-frequency exception
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FIG. 3. (a) The effect of gradual elimination of semantics on the correct performance of Plaut
and co-workers’ (1996) network after 2000 epochs of training with semantics, for Taraban and
McClelland’s (1987) high-frequency (HF) and low-frequency (LF) regular consistent words
(Reg) and exception words (Exc), and for Glushko’s (1979) nonwords, and approximate
percentage of errors on the exception words that are regularisations. (b) Performance of two
surface dyslexic patients (M.P., Behrmann & Bub, 1992; Bub et al., 1985; K.T., McCarthy &
Warrington, 1986) and the network with different amounts of semantic damage. From Plaut et
al. (1996).
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words. Note that such an impairment might arise from damage to semantics
itself or from damage to the mapping from semantics to phonology in which
semantics is spared. Thus, it is perfectly consistent with this account that
some surface dyslexic patients have intact comprehension (see Graham,
Patterson, & Hodges, 1995; Watt, Jokel, & Behrmann, 1997). Nonetheless,
the semantics-to-phonology impairment should manifest in non-reading
tasks, such as picture naming. Consistent with this expectation,  all known
surface dyslexic patients are anomic. In fact, when the anomia is restricted to
abstract concepts, as in patient D.R.B. (Franklin, Howard, & Patterson,
1995), reading errors correspondingly occur only on exception words with
abstract meanings.

Although Plaut and co-workers’ account does not require that surface
dyslexic patients have impaired comprehension, it does seem to imply that
patients who do have a semantic impairment should exhibit some degree of
surface dyslexia. Thus, the account is challenged by the �nding that there are
patients with semantic impairments who nonetheless read low-frequency
exception words with normal or near-normal accuracy. The two clearest
cases of this are D.R.N. (Cipolotti & Warrington, 1995) and D.C. (Lambon
Ralph et al., 1995) (see also Coslett, 1991; Cummings, Houlihan, & Hill,
1986; Friedman, Ferguson, Robinson, & Sunderland, 1992; Raymer &
Berndt, 1994; Schwartz et al., 1979).

Cipolotti and Warrington (1995) presented data on patient D.R.N., a
67-year-old biological scientist with focal atrophy of the temporal lobes
(more pronounced on the left), most likely due to Pick’s disease.
Behavioural ly he exhibited what is known as semantic dementia or
progressive �uent aphasia (Hodges, Patterson, Oxbury, & Funnell, 1992;
Snowden, Goulding, & Neary, 1989). Semantic dementia is a relatively pure
impairment in semantic memory, as re�ected by severe anomia and word
comprehension dif�culties, with relatively few other cognitive impairments.
Cipolotti and Warrington compared D.R.N.’s ability to give de�nitions to
words and to read them aloud, for sets of words that varied in frequency and
spelling–sound consistency. We focus here on his performance on low-
frequency exception words, as these items provide the most sensitive
measure of surface dyslexia. In keeping with his semantic dementia, D.R.N.
showed a substantial impairment in generating de�nitions for low-frequency
exception words, producing 39% correct (11/28) and 14% correct (3/21) for
two sets of words, using a very lenient scoring criterion. By contrast, his oral
reading of low-frequency exception words was essentially intact; he
produced 95% correct (46/48 and 20/21) on each of two lists.

Lambon Ralph et al. (1995) described the performance of patient D.C.,
who had attended school only until the age of 14. At the time of testing, D.C.
was 85 years old and exhibited the clinical symptoms of dementia of the
Alzheimer’s type (see Schwartz, 1990), including very poor episodic memory



MODELS OF WORD READING AND LEXICAL DECISION 777

with �uent, well-structured speech and occasional word-�nding dif�culties.
Like D.R.N., D.C. was impaired at de�ning low-frequency exception words
but was within the normal range at reading them aloud. In generating
de�nitions for the low-frequency exception words on Patterson and Hodges’
(1992) “surface” list, D.C. was 31% correct (13/42) by a lax criterion and
57% correct (24/42) by a very lax criterion. By contrast, she was 95% correct
(40/42) in reading the words aloud. Similar dissociations between generating
de�nitions and pronunciations were observed for the object labels from the
PALPA (Kay, Lesser, & Coltheart, 1992) and for word lists from Shallice et
al. (1983) and from Strain et al. (1995).

One possible explanation for the lack of surface dyslexia in patients like
D.R.N. and D.C. is that the task of generating de�nitions is far more
sensitive to semantic or semantics-to-phonology damage than is the task of
reading low-frequency exception words, and that surface dyslexia emerges
only with very severe semantic damage. In fact, inspection of the results from
progressive deterioration of semantics in Plaut and co-workers’ (1996)
simulation (Fig. 3a) indicates that low-frequency exception word reading is
affected only when semantic strength is reduced to a level of 1.5 (from a
maximum of 5.0). Consistent with this idea, patient W.L.P. (Schwartz et al.,
1979) became impaired at reading exception words only when her semantic
deterioration became very severe (Schwartz, Saffran, & Marin, 1980).
Moreover, many �uent surface dyslexia patients show evidence of
comprehension impairments and/or anomia that seem more severe than
those of D.R.N. and D.C. As examples, M.P. (Bub et al., 1985) was at chance
at word–word and picture–word semantic categorisation, only very slightly
above chance at semantic category sorting, and exhibited no semantic
priming in word naming, and K.T. (McCarthy & Warrington, 1986) scored 0
on the WAIS Vocabulary test, could not perform the Peabody Picture
Vocabulary test (Dunn, 1965), could name only 11% (14/130) of a subset of
the Snodgrass and Vanderwart (1980) pictures, and was only slightly above
chance at picture–word matching. By comparison, on object naming, D.R.N.
was 25% correct (5/20) and D.C. was 58% correct (128/220). However, some
patients are no more anomic than D.R.N. and D.C. but show severe surface
dyslexia. For example, G.C. (Patterson, Graham, & Hodges, 1994a) was
correct in naming 45% (118/260) of the Snodgrass and Vanderwart pictures
but could pronounce correctly only 38% (16/42) of low-frequency exception
words (cf. 95% for both D.R.N. and D.C.). Thus, the severity of semantic
impairment alone does seem to provide a full account of the differences in
reading performance among all of the relevant patients.

An additional hypothesis is that individual differences in the severity
of surface dyslexia can arise, not only from differences in the degree of
semantic damage, but also from premorbid differences in the division of
labour and overall competence of the reading system. Recall that the
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simulations of Plaut et al. (1996) demonstrate that the phonological pathway
on its own can, if necessary, master the entire training corpus, including
low-frequency exception words, but that support from the semantic pathway
relieves it from having to do so. Thus, the ultimate competence of the
phonological pathway is a function both of its own learning properties—its
sensitivity to frequency and consistency as expressed by equation (1)—and
of the strength of the semantic contribution to phonology. Both of these
factors are matters of degree that would be expected to vary across
individuals. More generally, Plaut and co-workers pointed out that the
competence and division of labour of the reading system would be expected
to be in�uenced by a wide variety of factors, including the nature of reading
instruction, the sophistication of preliterate phonological representations,
the overall amount of reading practice, relative experience in reading aloud
versus silently, the computational resources devoted to each pathway, and
the reader’s more general skill levels in visual pattern recognition and in
spoken word comprehension and production. Broadly speaking, the overall
competence of the phonological  and semantic pathways together would be
expected to improve gradually with reading experience, but that factors that
aided the development of one pathway would be expected to limit the
competence of the other.

In Plaut and co-workers’ (1996) simulation of surface dyslexia, this trading
relation between the semantic and phonological  pathways depends
primarily on two speci�c parameters. The �rst is the asymptotic strength
over training of the external correct input provided to phoneme units,
termed semantic strength, which corresponds directly to the competence of
the putative semantic pathway. The second parameter is the magnitude of
the pressure to keep weights in the phonological  pathway small, termed
weight decay. Weight decay is standardly used in connectionist modelling to
improve generalisation (i.e. nonword reading) by preventing the network
from developing arbitrarily large weights in learning the training data. With
weight decay, the magnitude of each weight becomes proportional to its
importance in reducing training error (Hinton, 1989). Weights can still grow
large, however, if aspects of the task demand it. In fact, this property is
critical in the current context if the network is to master exception words.
Because the pronunciations of such words violate standard spelling–sound
correspondences, they typically require the involvement of larger weights to
override the standard mapping. Thus, the higher the amount of weight
decay, the more dif�cult it is for the network to learn to pronounce exception
words, particularly those of low frequency. In this way, the magnitude of
weight decay controls the base level of competence that can be achieved by
the phonological pathway in isolation. There are a number of possible
neurophysiological analogues of weight decay that would be expected to
vary across individuals. For instance, if a connection weight corresponds to
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the number and strength of synapses between neurons, then the magnitude
of weight decay can be thought of as the level of metabolic activity that can
be supported for maintaining synapses. Low values of weight decay
correspond to high levels of metabolic activity and thus a high level of
competence in the network.

Under this view of individual differences as parametric variations of Plaut
and co-workers’ (1996) simulation, patients such as D.R.N. and D.C. may
correspond to parameter combinations that lead to a high degree of
competence in the phonological pathway. The goal of the current simulation
was to determine the effects of parametric variations of semantic strength
and weight decay on the severity of surface dyslexia exhibited by network
implementations of the phonological pathway following semantic
impairment.

Method

The method used in the simulation follows that used by Plaut et al. (1996,
simulation 4), and readers are referred to that paper for additional details. A
feedforward network was trained to map from orthographic representations
of 2998 monosyllabic words to their phonological representations. The
orthographic representations consisted of 108 grapheme units that code
single- and multi-letter graphemes for the onset, vowel and coda of the
written form of each word. The phonological  representations were
structured in an analogous fashion over 61 phoneme units. Each of the
grapheme units was connected to each of 100 hidden units, which, in turn,
was connected to each phoneme unit. Each of the hidden and phoneme units
also had a bias weight that determined its “resting” state in the absence of
other input. This bias is equivalent to the weight on a connection from a unit
whose state is always equal to 1.0, and was learned in the same way as other
weights.

During training, a word was presented to the network by clamping the
states of units representing graphemes contained in the word to 1 and all
others to 0. The hidden and phoneme units then computed their states based
on this input. The state sj of each unit j varied between 0 and 1 as a smooth,
real-valued function of the summed weighted input from other units:

(2)

where wij is the weight on the connection from unit i to unit j; bj is the bias
weight of j; and exp [ is the exponential function. This is the standard
sigmoid function, s [ , referred to in the frequency–consistency equation
(equation 1).
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FIG. 4. The magnitude of the additional external input supplied to phoneme units by the
putative semantic pathway as a function of training epoch, for different values of semantic
strength (g in equation 3) for a frequency f 5 5.33 corresponding to the average Kucera and
Francis (1967) frequency of the Patterson and Hodges (1992) low-frequency words.

The summed input to phoneme units was augmented with an additional
term, S, corresponding to the frequency-weighted contribution of the
semantic pathway to phonology:

(3)

where f is the Kucera and Francis (1967) frequency of the word, and t
indexes the training epoch (i.e. number of presentations of the training cor-
pus). The parameter g, termed semantic strength, determined the asymptotic
level of input from semantics and was varied from 1.0 to 5.0 in the current
simulation. Figure 4 shows the magnitude of this input over time for each
value of g using f 5 5.33, the average Kucera and Francis (1967) frequency of
the Patterson and Hodges (1992) low-frequency words. The sign of this
external input was set to drive phoneme units towards their correct states.

The error, E, of the network was measured by the sum of two terms: (1)
the cross-entropy (see Hinton, 1989) between the generated phoneme states
sj and the correct or target phoneme states tj for the word; and (2) a
proportion of the sum of the squares of the weights:

(4)

where l is the weight decay parameter and was varied between 0.00005 and



MODELS OF WORD READING AND LEXICAL DECISION 781

1Note that this manipulation is equivalent, in the limit of small weight changes, to the more
natural procedure of sampling words for training as a function of their frequency.

2This level of correct performance was calculated over only the 14 pairings of semantic
strength and weight decay giving rise to non-perfect performance on the low-frequency
exception words (see Fig. 5).

0.001 in the current simulation. Back-propagation (Rumelhart, Hinton, &
Williams, 1986b) was used to calculate the derivative of this error with
respect to each weight in the network. This derivative was scaled by a factor
re�ecting the frequency of occurrence of the word, proportional to the
square-root of its Kucera and Francis (1967) frequency.1 Each of the 2998
words was presented in turn and their scaled derivatives were accumulated.
At the end of each epoch, the weights were changed in proportion to the sum
of the current accumulated derivatives and the past weight step (scaled by a
momentum parameter of 0.9). The weight change was scaled both by a global
learning rate of 0.001 and by a connection-speci�c learning rate that was
initialised to 1.0 and adapted using the delta-bar-delta procedure (Jacobs,
1988) with an additive increment of 0.1 and a multiplicative decrement of
0.9.

For each combination of semantic strength and weight decay, the network
was initialised with the same set of random weights (sampled uniformly
between 6 0.1) and trained for 2000 epochs. At this point, it was subjected to
a complete semantic “lesion” by removing the external input to the
phoneme units. The network was then tested for its pronunciations of the
high- and low-frequency regular and exception words from Patterson and
Hodges’ (1992) “surface” list, and 86 nonwords from Glushko (1979; see
Plaut et al., 1996, for details on scoring).

Results and Discussion

Figure 5 displays the number of errors to the Patterson and Hodges words
made by the network after the elimination of semantics, as a function of the
semantic strength (g in equation 3) and weight decay ( l in equation 4) used
during training. These error scores were entered into an ANOVA over items
with frequency and consistency as between-item factors and semantic
strength and weight decay as within-item factors.

As is apparent from Fig. 5, the network exhibited a strong frequency 3
consistency interaction in accuracy [F(1,164) 5 17.6, P , 0.001]. Moreover,
86.6% (174/201) of the errors to exception words were regularisations, and
98.5% (1186/1204)2 of presentations of the Glushko nonwords were
pronounced correctly. Thus, overall, the network exhibited the hallmark
characteristics of surface dyslexia.

However, as is also apparent from Fig. 5, the effects of frequency and
consistency depended strongly on the levels of semantic strength and weight
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FIG. 5. Numbers of errors produced by the network to Patterson and Hodges’ (1992) (a)
high-frequency regular words, (b) low-frequency regular words, (c) high-frequency exception
words and (d) low-frequency exception words, when semantics is removed completely after
2000 epochs of training, as a function of the semantic strength (g in equation 3) and weight
decay ( l in equation 4) used during training.
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decay. In fact, there was a four-way interaction among these factors
[F(16,2624) 5 4.25, P , 0.001]. In general, accuracy on low-frequency
exception words improves if either semantic strength or weight decay is
reduced, reaching perfect or near-perfect levels if either of these factors is
extreme or if both are moderate (e.g. g 5 3.0 and l 5 0.0002).

Thus, patients like D.R.N. and D.C., who have semantic impairments but
no surface dyslexia, can be understood as falling at one end of a continuum
of performance levels that would be expected under different divisions of
labour within the reading system. Note that this perspective provides an
account of how these two patients can exhibit qualitatively similar
performance even though their educational backgrounds—and hence,
presumably, their reading experience—differ so dramatically. D.R.N., with
a high degree of education, may have a highly developed phonological
pathway, corresponding to low levels of weight decay (e.g. l 5 0.00005).
Even with a strong semantic pathway (e.g. g 5 5.0), complete semantic
damage yields 90.5% correct (38/42) on low-frequency exception words,
which is comparable to D.R.N.’s performance of 95% on such words. By
contrast, D.C., with little formal education, may have developed semantic
and phonological pathways that are both weak (e.g. g 5 1.0 and l 5 0.001).
This combination also yields 90.5% correct (38/42) on low-frequency
exception words, which is comparable to the 95% correct performance of
D.C.

It should be kept in mind that the current demonstration involves the
simplifying assumptions that the patients’ brain damage completely
eliminates the contribution of the semantic pathway and completely spares
the phonological pathway. In general, the network’s performance improves
with partial sparing of the semantic pathway (see Fig. 3a) and degrades with
partial impairment of the phonological pathway (see Plaut et al., 1996, �g. 20
and table 9, pp. 94–95). Thus, the performance of individual patients may
also re�ect a balance of these two factors. In particular, partial phonological
pathway damage would seem to be implicated in patients in the later stages
of semantic dementia. Such patients become impaired at pronouncing
regular words as well as exception words, although an advantage for regular
words remains (see Patterson et al., 1996). Interestingly, apart from visual
errors (which occur equally often to regular and exception words), errors on
regular words are predominantly what Patterson terms LARC errors—or
Legitimate Alternative Reading of Components. The classic LARC error is
a regularisation of an exception word, but such errors also occur to regular
words with inconsistent bodies. As examples (from Patterson & Hodges,
1992), P.B. named HO OT to rhyme with “foot”, YEAST like “breast”, HEAR like
“bear”; F.M. pronounced BROWN like “blown”, HEAT like “threat”, COST like
“post”, etc. Thus, although errors to regular and exception words differ in
quantity, they do not seem to differ in nature, suggesting that they have a
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common cause (see Patterson et al., 1996, for further discussion). On the
Plaut et al. (1996) account, LARC errors to both regular and exception
words derive from the sensitivity of learning in the phonological pathway
to graded degrees of frequency and consistency, as re�ected in equation
(1).

In summary, the patterns of performance of patients like D.R.N. and D.C.
indicate that low-frequency exception word reading does not always depend
on semantic support. Nonetheless, the current simulation demonstrates that
such patients fall within the distribution of performance patterns expected
from parametric variations within a system in which the division of labour
and mutual support of the semantic and phonological pathways play a
critical role. Thus, the role of semantics in skilled reading, and the effects of
semantic impairment on dyslexic reading, remain of central importance in
understanding the organisation and function of the reading system. At a
more general level, the simulation results also underscore the importance of
considering, not just the performance of individual patients, but also the full
distribution of performance patterns that can arise following brain damage
(see Plaut, 1995a, for additional results and discussion).

We now turn to issues in normal reading that have seemed problematic for
the distributed connectionist account—speci�cally, how skilled readers
distinguish words from nonwords, and how this process is in�uenced by the
nature of the stimuli in the task. Just as with the performance of
brain-damaged patients, a consideration of the contribution of semantics
will prove crucial in understanding the performance of normal subjects.

SIMULATION 2: LEXICAL DECISION

As mentioned in the Introduction, the distinction between words and
nonwords is of fundamental importance to the lexical system, and many
researchers incorporate this distinction into their models by representing
words as explicit structural entities such as logogens or localist word units.
Such units provide a natural account of how skilled readers can accurately
distinguish written words from nonwords in lexical decision (LD) tasks.
Given that the current distributed connectionist approach to lexical
processing does not contain word-speci�c representations, it becomes
important to establish that distributed models can, in fact, perform lexical
decision accurately and that, in doing so, they are in�uenced by properties of
the words and nonwords in the same way as human readers.

Seidenberg and McClelland (1989) attempted to demonstrate that
distributed representations can provide a suf�cient basis for lexical decision.
They assumed that subjects make word/nonword decisions based on some
measure of the “familiarity” of the stimulus (Atkinson & Juola, 1973; Balota
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& Chumbley, 1984). This familiarity measure could potentially be computed
from a variety of types of information derived by the lexical system—
orthographic, phonological  and semantic. Subjects are assumed to adopt a
speci�c strategy and decision criterion that allows fast responding with
acceptable error rates depending on the composition of the word and
nonword stimuli. Given that orthographic information is provided directly
in the input, subjects rely on orthographic familiarity when this provides a
suf�cient basis for distinguishing words from nonwords—for example, if the
nonwords are orthographically illegal consonant strings (e.g. PSLR). If the
nonword stimuli include very word-like, orthographically legal nonwords
(e.g. NUST), subjects may consider phonological familiarity—whether the
stimulus sounds like a word. If the nonwords include so-called
“pseudohomophones” (e.g. BRANE) that have the same pronunciation as a
word, subjects may have to base their decision on whether the orthography
generates a familiar meaning.

Although Seidenberg and McClelland’s general framework includes
semantics, their speci�c implemented network did not. Accordingly, they
focused on demonstrating that, under some conditions, lexical decision can
be performed by a distributed network using only orthographic and/or
phonological information. In their simulation, the orthographic familiarity
of a stimulus was measured by the discrepancy between the orthographic
pattern presented to the network and the one regenerated by the network
from its hidden representation. Seidenberg and McClelland showed that this
orthographic error score tended to be smaller for trained stimuli (words)
than for novel stimuli (nonwords), although there was some overlap in the
distributions. Moreover, the degree of overlap depended on properties of
the words and nonwords in a way that corresponded to the effects of these
properties on LD accuracy and latency in empirical studies. For example, the
overlap is increased and, hence, lexical decision is slower and less accurate
when the words are of lower frequency (e.g. Gordon, 1983) or include
so-called “strange” words with unusual spelling patterns (e.g. AISLE , G AUG E;
Waters & Seidenberg, 1985), or when the nonwords include pseudo-
homophones (e.g. Coltheart, Davelaar, Jonasson, & Besner, 1977; McCann,
Besner, & Davelaar, 1988). Seidenberg and McClelland assumed that, as the
overlap in orthographic error scores for words and nonwords increases, the
network (and subjects) would have to turn to phonological  and/or semantic
information to perform lexical decision accurately. In particular, the
presence of strange words causes subjects to rely on phonological
information, giving rise to effects of spelling–sound consistency in lexical
decision (Waters & Seidenberg, 1985).

However, Besner and colleagues (Besner et al., 1990; Fera & Besner,
1992) challenged the claim that Seidenberg and McClelland’s model
provides an adequate account of LD performance, even under conditions in
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which orthographic information is deemed suf�cient (i.e. in the absence of
strange words). Besner et al. (1990) reported that, when a decision criterion
over orthographic error scores is set to yield an error rate on words of 5.2%
(as observed by Waters & Seidenberg, 1985, experiment 2), the false-
positive rate on nonwords exceeded 28%. Although Waters and Seidenberg
did not report nonword error rates, this value is certainly higher than would
be expected of subjects, especially if given unlimited time to respond.
Moreover, Fera and Besner (1992) demonstrated that, for human subjects,
the degree of overlap in orthographic error scores for words and nonwords
had no effect on LD accuracy and latency, nor on the magnitude of a
pseudohomophone effect among nonwords. These negative �ndings
concerning Seidenberg and McClelland’s implemented model and its
predictions call into question the more general claim that words can be
distinguished from nonwords by a distributed system lacking word-speci�c
representations.

The goal of the current simulation was to demonstrate that lexical decision
can be performed accurately when based on a familiarity measure applied to
semantics and that, moreover, such a measure exhibits the appropriate
sensitivity to properties of the words and nonwords in the task. It is
important to be clear at the outset that this demonstration should not be
interpreted as implying that lexical decision always relies on semantics. The
perspective taken is exactly that of Seidenberg and McClelland (1989)—
subjects performing lexical decision may adopt a variety of strategies,
including those that depend only on orthographic and/or phonological
information, as a function of the composition of the stimuli. In fact, subjects
are assumed to rely on these more surface representations as much as
possible. It is acknowledged, however, that in some contexts, orthographic
and phonological  representations will not support suf�ciently accurate LD
performance on their own. The current work aimed to establish that
semantic familiarity provides a suf�cient basis for lexical decision
within a distributed lexical system, and supports the hypothesis that
subjects can perform lexical decision accurately by relying on semantics
when necessary.

Method

A feedforward network was trained to map from the orthographic
representations of the 2998 monosyllabic words in Plaut et al.’s (1996)
corpus to their phonological  representations and to newly created semantic
representations. The architecture of the network, shown in Fig. 6, cor-
responded to an instantiation of the full framework for lexical processing
in Fig. 1, except that the depicted hidden units between orthography and
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3This alteration was introduced only to reduce the time required to train the network—it is
not intended as an important theoretical claim about the organisation of the semantic pathway.
In fact, a network with two separate sets of 500 hidden units was developed subsequently and
replicated the current results.

4Note that the portion of the network that maps to semantics still has fewer hidden units (n 5
1000) than words on which it is trained (n 5 2998), so the network cannot solve the task by
devoting a single hidden unit to each word (i.e. by developing word-speci�c representations). In
fact, networks with sigmoidal units and trained with error-correcting procedures like
back-propagation do not develop this “localist” solution even when given far more hidden units
than training examples .

FIG. 6. The network architecture used to model naming and lexical decision. Large arrows
represent full connectivity between layers except where indicated. Small arrows indicate input
units (incoming arrow) or output units (outgoing arrow).

semantics and between phonology and semantics were combined.3

Speci�cally, 108 grapheme units were connected to 100 hidden units, which,
in turn, were connected to 61 phoneme units. The grapheme and phoneme
units were also connected to a second group of 1000 hidden units, which
were then connected to 200 semantic units such that each hidden unit had a
probability of 0.5 of being connected to each semantic unit. A much larger
number of hidden units was needed to map to semantics than to map from
orthography to phonology because there is no systematicity between the
surface forms of words and their meanings, and connectionist networks �nd
unsystematic mappings particularly dif�cult to learn (see Hinton,
McClelland, & Rumelhart, 1986, for discussion).4 Including bias weights, the
network contained a total of 283,998 connections.

The fact that the network has a feedforward architecture should not be
interpreted as a theoretical claim about the structure of the human reading
system. The underlying theory incorporates interactivity, and its use in
forming attractors, as an important computational principle. Thus, the
current feedforward network should be thought of as an approximation to a
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5Training the feedforward network took just under 10 days of CPU time on a Silicon Graphics
R4400 (150 MHz) processor. Based on prior experience, training a fully recurrent version would
have taken approximately 20 times this amount of processing, or about 6 months.

fully recurrent one. Training a recurrent version of the network was,
however, infeasible due to limitations in the available computational
resources.5 Nonetheless, there are certain aspects of the feedforward
approximation that are important to point out. In particular, processing is
unidirectional from phonology to semantics, so that phonological
representations (derived from orthography) in�uence semantics in
performing lexical decision, but semantic representations cannot in�uence
phonology in naming. As a result, unlike the �rst simulation, the naming
performance of the current network does not re�ect a contribution of
semantics, and thus constitutes only a coarse approximation of human
performance. Even so, Plaut et al. (1996) demonstrated that, with regard to
normal performance, networks trained without semantics produce patterns
of accuracy and latency results that are very similar to those of networks
trained with semantics.

The semantic representations for words were designed to capture only the
most abstract characteristics of word meanings—namely, that they cluster
into categories and are arbitrarily related to orthographic and phonological
representations. They were created in the following way. First, 120 random
prototype patterns were generated over 200 semantic features such that each
feature had a probability Pa 5 0.1 of being active. Then each prototype was
used to generate 25 exemplars that cluster around it by regenerating each
semantic feature (using Pa 5 0.1) with a probability Pr 5 0.05, under the
constraint that each exemplar had to differ from every other exemplar by at
least three features. This procedure created 3000 semantic exemplars, each
with an average number of active features of 20.12 (SD 1.712, range 14–26;
the mean is slightly greater than 20 due to the constraint on the minimum
difference between semantic patterns). Fifteen of these exemplars were
chosen at random and discarded, and the remaining 2985 patterns were
assigned randomly to the words in the training corpus (to avoid the
dif�culties involved in learning one-to-many mappings from orthography-
to-semantics, the 13 pairs of homographs in the corpus, such as W IN D and
READ, were assigned only one meaning). The orthographic and phonological
representations for the words were the same as used in Simulation 1 and by
Plaut et al. (1996).

Although the semantic patterns used in the simulation do not re�ect the
relative similarities among the actual meanings of these words, their random
assignment to words ensures that there is no systematic relationship between
the written and spoken form of each word and its meaning. On the current
approach, it is only this property that is critical for demonstrating that
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semantics can support lexical decision. In fact, abstract semantic
representations like those used in the current simulation have been used
successfully to model empirical phenomena in a number of psycholinguistic
domains, including word learning (Chauvin, 1988), in�ectional morphology
(Cottrell & Plunkett, 1991; Hoeffner, 1992), lexical ambiguity resolution
(Joordens & Besner, 1994; Kawamoto, 1988, 1993; Kawamoto, Farrar, &
Kello, 1994), semantic and associative priming (Masson, 1995; Plaut, 1995b)
and rehabilitation  of impaired reading via meaning (Plaut, 1996).

Given that the number of incoming connections to units varied widely in
parts of the network, some sets of connections were initialised differently
than others. Speci�cally, weights in the network were initialised to random
values drawn uniformly between 6 1, except that hidden-to-phoneme
weights were initialised between 6 0.2, hidden-to-semantics weights were
initialised between 6 0.1, and the bias weights for phoneme and semantic
units were pre-set to 2 2.94444 (the magnitude of input producing an initial
state of 0.05). These conditions ensured effective learning at the very outset
of training, but are otherwise irrelevant to the results reported below.

The network was trained with back-propagation using a learning rate of
0.0001, momentum of 0.9 (set to 0.0 for the �rst 10 epochs), adaptive
connection-speci�c learning rates (Jacobs, 1988, increment of 0.1,
decrement of 0.9), and the cross-entropy error function without weight
decay (see equation 4). During training, each presentation of a word
generated both a phonological  pattern and a semantic pattern as output. The
error computed over the phoneme units was back-propagated to the
grapheme units and used to calculate derivatives for weights in the
orthography-to-phonology pathway, exactly as in Simulation 1. The error
computed over the semantic units was back-propagated both to the
grapheme units and to the phoneme units and used to calculate derivatives
for the orthography-to-semantics and phonology-to-semantics weights.
Semantic error was not back-propagated through the phoneme units to
in�uence the derivatives for the orthography-to-phonology weights,
however, to prevent the network from trading off phonological  accuracy for
semantic accuracy. These error derivatives were scaled by a factor
proportional to the logarithm of the word’s Kucera and Francis (1967)
frequency and accumulated for each word before being used to change the
weights at the end of each epoch.

After 1300 epochs of training, the network was tested for its performance
both at naming and at lexical decision, using the words in the training corpus
and two lists of nonwords. The �rst list consists of 591 pronounceable
nonwords created by Seidenberg et al. (1994) from each unique body in
Seidenberg and McClelland’s (1989) corpus, and is referred to below as the
“body-matched” nonword list. It was used by Seidenberg and colleagues to
compare the nonword reading performance of 24 human subjects with the
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performance of Plaut and McClelland’s (1993) network (a precursor to the
simulations of Plaut et al., 1996) and the performance of the pronunciation
rules in Coltheart and co-workers’ (1993) Dual Route Cascaded model. This
list was chosen because its size and diversity allows a thorough evaluation of
overall LD accuracy. The second list of nonwords (Seidenberg, Petersen,
MacDonald, & Plaut, 1996) contains 64 pseudohomophones and 64
nonpseudohomophone control nonwords, and is referred to below as the
“PH/nonPH” nonword list. The two sets of items are very closely matched
orthographically because they were constructed in groups of four by
exchanging onsets and bodies (e.g. pseudohomophones JOAK and HOAP,
nonpseudohomophones HOAK and JOAP). Thus, these nonwords provide a
stringent test for the existence of pseudohomophone effects in the absence
of orthographic confounds (see Seidenberg et al., 1996, for discussion).

Lexical decision was based on a measure of the familiarity of the semantic
pattern generated by a word or nonword. A commonly used measure of
familiarity in distributed networks is the negative of the “energy”, S i , jsisjwij

(Hop�eld, 1982), and a number of researchers (e.g. Besner & Joordens,
1995; Borowsky & Masson, 1996; Joordens & Becker, 1997; Masson &
Borowsky, 1995; Rueckl, 1995) have proposed recently that it may be
possible to perform lexical decision in distributed models on the basis of
differences in the energy for words versus nonwords. A serious drawback of
this measure, however, is that it requires decision processes to have explicit
access to the weights between units (analogous to the size and number of
synapses between neurons), which is far less neurobiologically plausible
than a procedure that need only access unit states.

An appropriate alternative measure, termed stress, is based only on the
states of units. Speci�cally, the stress Sj of unit j is a measure of the
information content (entropy) of its state sj, corresponding to the degree to
which it differs from rest:

(5)

The stress of a unit is 0 when its state is 0.5 and approaches 1 as its state
approaches either 0 or 1. The target semantic patterns for words are binary,
and thus have maximal stress. Because, over the course of training, the
semantic patterns generated by words increasingly approximate their target
patterns, the average stress of semantic units approaches 1 for words. By
contrast, nonwords are novel stimuli that share graphemes with words that
have con�icting semantic features. As a result, nonwords will typically fail to
drive semantic units as strongly as words do, producing semantic patterns
with much lower average stress. Accordingly, the average stress of semantic
units, here termed simply semantic stress, should provide an adequate basis
for performing lexical decision. We assume that LD responses are actually
generated by a stochastic decision process (e.g. Ratcliff, 1978; Usher
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& McClelland, 1995) in which a decision criterion is adopted such that
stimuli with stress values farther from this criterion are responded to more
quickly.

Results and Discussion

Naming. After the 1300 epochs of training, the network pronounced all
of the 2998 words in the training corpus correctly (where homographs were
considered correct if they elicited either correct pronunciation). Moreover,
the cross-entropy error the network produced when tested on Patterson and
Hodges’ (1992) high- and low-frequency regular and exception words
replicated the standard empirical �nding of a frequency 3 consistency
interaction in naming latency [means: high-frequency regular 5 0.0022,
low-frequency regular 5 0.0051, high-frequency exception 5 0.0051,
low-frequency exception 5 0.0203; F(1,164) 5 20.56, P , 0.001].

With regard to nonword reading, 91.4% (540/591) of body-matched
nonwords were given a pronunciation that either matched the pronunciation
given by at least one of Seidenberg and co-workers’ (1994) 24 human
subjects, or was consistent with the pronunciation of a word in the training
corpus with the same body. For the PH/nonPH nonwords, the network’s
pronunciations of 96.9% (62/64) of the pseudohomophones and 95.3%
(61/64) of the nonpseudohomophones matched that of some word in the
training corpus with the same body.

Thus, overall, the network exhibited the appropriate pattern of skilled
performance in naming words and nonwords.

Lexical Decision. Semantic stress values were calculated using equation
(5) for the body-matched nonwords and for sets of high-, medium- and
low-frequency words. The words sets consisted of the 600 words in the
training corpus with the highest Kucera and Francis (1967) frequency (mean
653.4, median 158), the 600 with median frequency (mean 8.807, median 9)
and the 600 with the lowest frequency (mean 0.6298, median 1). Figure 7
displays the distributions of semantic stress for these words and nonwords.

As Fig. 7 shows, there is very little overlap between the semantic stress
values for words and those for nonwords. In fact, if a decision criterion is
adopted such that a stimulus is accepted as a word if it generates semantic
stress in excess of 0.955, then the network produces error rates of 1.5% on
both words (27/1800) and nonwords (9/591) and a d 9 value of 4.33.
Considering only low-frequency words, a criterion of 0.95 yields 2.5% misses
(15/600) and 4.4% false-alarms (26/591) and a d 9 of 3.67. For high-frequency
words, a criterion of 0.965 yields 0.167% misses (1/600) and false-alarms
(1/591) and a d 9 of 5.87. These very high levels of discriminability between
words and nonwords should be interpreted as re�ecting asymptotic
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FIG. 7. Distributions of semantic stress values for the body-matched nonwords (n 5 591;
Seidenberg et al., 1994) and for high-, medium- and low-frequency words from the training
corpus (n 5 600 for each).

performance in the absence of time pressure. We assume that subjects can
trade accuracy for reduced latency under conditions in which they are
encouraged to respond as quickly as possible while keeping error rates
acceptably low (e.g. by adjusting the response threshold in Ratcliff’s, 1978,
diffusion model).

Moreover, Fig. 7 illustrates that the distributions of stress values for words
vary systematically as a function of their frequency. Speci�cally, the overlap
with nonwords increases as word frequency decreases. This property
provides an account of the frequency blocking effect in lexical decision.
Gordon (1983; see also Glanzer & Ehrenreich, 1979) compared LD latency
to high-, medium- and low-frequency words when presented in mixed blocks
versus when blocked by frequency. The blocking manipulation did not
in�uence the error rates for words in each frequency band, nor the latencies
to low-frequency words. By contrast, LD latencies to medium- and
high-frequency words were faster (by 19 and 40 msec, respectively) when
presented in pure blocks than when mixed with low-frequency words. These
�ndings make sense in the context of the distributions of semantic stress
values shown in Fig. 7 if subjects adjust their decision criterion to optimise
their performance within each block given the composition of the stimuli. A
conservative criterion is required to achieve acceptable levels of accuracy
when low-frequency words are present in the block (either mixed or pure).
However, when only higher-frequency words are present, a more aggressive
criterion can be adopted that, for the same error rate, produces faster
responding.

The network also produced reliably higher semantic stress values for the
pseudohomophones in the PH/nonPH list compared with their non-
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pseudohomophone control nonwords [means: PH 5 0.9246, nonPH 5
0.9184; paired t(63) 5 2.408, P 5 0.019]. The network tends to produce
greater semantic stress for a pseudohomophone (e.g. H OAP) compared with a
control nonword (e.g. JOAP) because the pronunciation it derives for the
pseudohomophone (H OPE) was trained to help drive semantic units to
extreme value—speci�cally, the (binary) semantic representation of the
base word. Given that higher stress values for nonwords decrease their
discriminability from words, this result corresponds to the empirical �nding
of increased latency and/or error rates to pseudohomophones compared
with control nonwords in lexical decision under time pressure (e.g. Coltheart
et al., 1977; McCann et al, 1987). Nonetheless, in the absence of time
pressure, both types of nonwords are easily discriminated from even the
lowest-frequency words. For example, a decision criterion of 0.95 produces
2.5% errors to words (15/600), 6.25% errors to pseudohomophones (4/64)
and no errors to nonpseudohomophones (0/64), corresponding to a d 9 of
3.82.

In summary, a network that maps orthography to semantics both directly
and via phonology performed lexical decision accurately if word/nonword
decisions were based on a measure of semantic familiarity, termed stress,
that re�ects the degree to which generated semantic patterns are binary.
Moreover, the distributions of stress values for different types of words and
nonwords accounted for empirical �ndings concerning the effects of word
frequency and nonword pseudohomophony on LD performance. In this
way, the �ndings establish clearly that words can be distinguished from
nonwords based on the functional properties of distributed semantic
representations without recourse to word-speci�c structural
representations.

GENERAL DISCUSSION

The traditional view of the lexical system stipulates rather complicated and
domain-speci�c structures and processes, including those that apply to
individual words but not to nonwords, or to some words (regulars) but not to
others (exceptions). The current article adopts an alternative view in which
lexical knowledge and processing develop through the operation of general
learning principles as applied to distributed representations of written and
spoken words and their meanings. Distinctions between words and
nonwords, and among different types of words, are not rei�ed in the
structure of the system, but rather re�ect the functional implications of the
statistical structure relating orthographic, phonological  and semantic
information. The structural divisions within the system are assumed to arise
from the neuroanatomic localisation of input and output modalities, not
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from differences in representational content (for similar arguments, see
Farah, 1994; Farah & McClelland, 1991).

This distributed view of lexical processing has been championed most
explicitly by Van Orden et al. (1990) and by Seidenberg and McClelland
(1989). Seidenberg and McClelland supported the view with an explicit
computational model, but this support was limited by inadequacies in the
model’s ability to account for skilled performance in nonword reading and in
lexical decision (Besner et al., 1990) and impaired performance in �uent
surface dyslexia (Patterson et al., 1989). Plaut et al. (1996) provided a more
adequate account of nonword reading and of surface dyslexia by improving
the orthographic and phonological representations and by incorporating an
in�uence of semantics on word reading. However, the claimed role of
semantics in reading, as re�ected in the account of surface dyslexia, has been
challenged by the performance of patients whose word reading is unaffected
by semantic impairment (e.g. Cipolotti & Warrington, 1995; Lambon Ralph
et al., 1995). Moreover, the limitations of Seidenberg and McClelland’s
model in performing lexical decision remained unaddressed.

The current simulations provide additional support for a distributed
theory of lexical processing by addressing these two challenges. The
approach taken to both involves a reconsideration and elaboration of the
role of semantics in naming and lexical decision.

Semantics in Word Naming: Individual Differences

The �rst simulation demonstrated that parametric variations within reading
models give rise to individual differences in the overall competence and
division of labour between the semantic and phonological pathways, such
that individuals who are able to pronounce low-frequency exception words
without semantic support fall at one end of a continuum. In particular, the
semantic and phonological  pathways together learn to support skilled word
reading, but the speci�c division of labour between the two—particularly for
low-frequency exception words—depends on factors that either improve the
competence of the semantic pathway or impede the competence of the
phonological pathway. Two factors were investigated.  The �rst, the
asymptotic strength of semantic support for phonology, summarises a
variety of factors that would be expected to in�uence learning in the
semantic pathway, particularly the mapping from orthography to semantics.
The second factor, weight decay in the phonological  pathway, can be
thought of as re�ecting the degree to which the underlying physiology can
support large numbers of synapses and, hence, strong interactions between
neurons. Simulations demonstrated that the phonological pathway can
pronounce low-frequency exception words without semantics if either
semantic strength or weight decay is particularly low during training, but
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that, in general, semantic damage leads to some degree of reading
impairment (surface dyslexia).

On the one hand, this explanation would seem to be at odds with claims
advanced by Patterson and colleagues (Graham et al., 1994, 1995; Patterson
et al., 1994a, b; Patterson and Hodges, 1992) that semantic support is critical
to the integrity of phonological representations. The current �ndings suggest
that this property may still hold for most individuals but not for those with
highly developed phonological pathways. On the other hand, the
explanation for individual differences in division of labour relies critically on
the supposition that the semantic and phonological pathways combine to
support skilled reading, and that the semantic contribution to phonology has
important implications for the nature of learning in the phonological
pathway. In this way, even though the current account allows for the
possibility that semantics plays a minimal role in the skilled reading
performance of some individuals (and, hence, the preservation of reading
performance despite semantic damage), it nonetheless incorporates the
fundamental insight of Patterson and colleagues—that a consideration of
semantic–phonological interactions is critical for a general under-
standing of the organisation and operation of the reading system. The
account also retains the ability to explain why, in individuals who do exhibit
surface dyslexia following semantic damage, there is a close relationship
between the comprehension and correct pronunciation of individual
exception words (Funnell, 1996; Graham et al., 1994; Hillis & Caramazza,
1991).

The introduction of individual differences into the current explanation
raises the question of whether Plaut and co-workers’ (1996) account of
surface dyslexia is underconstrained. After all, a variety of types and degrees
of impairment to the models give rise to the qualitative pattern of surface
dyslexia. It should be pointed out, though, that the approach is no different
than the traditional dual-route model in this respect (see Coltheart &
Funnell, 1987). To be clear, what is in question about the current account is
the speci�c claim regarding the relationship between premorbid differences
in division of labour and the quantitative severity of surface dyslexia
following semantic or semantic-to-phonological damage. More extensive
testing of the non-reading capabilities of surface dyslexic patients is needed
to address this concern to establish independent patterns of performance
that predict the severity of their reading impairment.

What is not left underspeci�ed by the approach is the computational basis
for the surface dyslexia pattern itself. This pattern arises directly from the
intrinsic sensitivity of learning in distributed networks to word frequency
and spelling–sound consistency, as expressed by the frequency–consistency
equation (equation 1) for a two-layer Hebbian network. In the normal
system, this sensitivity manifests as a frequency 3 consistency interaction in
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naming latency. Low-frequency exception words (e.g. PINT) are named
disproportionately slowly because their vowel pronunciations (I Þ /aI/) have
the least support from friends and suffer the greatest competition from
enemies (e.g. I Þ /I/ in PRIN T, HINT, M IN T, etc.). However, when the
performance of the system is limited (e.g. by weight decay and/or strong
semantic support during learning, or by direct damage), these weakly
supported vowels may now lose the competition to their enemies, resulting
in regularisation errors (PINT Þ “pihnt”). High-frequency exceptions (e.g.
HAVE) are more immune to these in�uences because their own frequency
(F[t] in equation 1) counterbalances the effect of enemies (e.g. G AVE, SAVE,
etc.). However, with greater impairment, the vowels in these items also
begin to lose the competition and are regularised (HAVE Þ “haive”). With
still greater impairment, low-frequency regular words (e.g. SO UR) begin to
elicit errors. If they have inconsistent bodies, they are also subject to
competition from enemies (e.g. POUR , FOU R) and their errors re�ect this
competition (SOUR Þ “sore”)—so-called LARC errors (Patterson et al.,
1996). Thus, on the current account, the errors made by surface dyslexic
patients to all types of words and the pattern of naming latencies exhibited
by skilled readers have a common underlying cause: the inherent sensitivity
of distributed networks to frequency and consistency. This is why the
simulations of surface dyslexia, in particular, account for the full pattern of
performance across a range of levels of severity of impairment, even when
the speci�c factors that lead to a particular level of impairment in a speci�c
patient may be in need of further speci�cation.

It is important to emphasise that the postulated individual differences in
division of labour do not give rise to all possible patterns of reading
impairment following semantic damage, allowing any observed pattern to be
explained. For instance, no parametric variation in the network will cause it
to be severely impaired on low-frequency exception words without also
showing some impairment on high-frequency exception words (see Fig. 5),
or to be completely unable to read exception words while remaining
unimpaired on regular words. (Note that the standard dual-route theory has
no dif�culty exhibiting either of these patterns.) Rather, the patterns of
performance that result from semantic impairment are highly constrained.
That is, they all correspond to the speci�c pattern of �uent surface
dyslexia—a frequency 3 consistency interaction in accuracy with poor
reading of low-frequency exception words, high rates of regularisations, and
normal nonword reading. Individual differences serve only to locate patients
along a single continuum—severity of reading impairment—with the
possibility that some, like D.R.N. and D.C., fall at one end of the continuum
and are essentially unimpaired. This extreme pattern, however, belies the
commonality of the effects that are observed when the full distribution of
patients is considered. This commonality derives, on the current account,
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from inherent properties of connectionist learning applied to distributed
representations. Essentially, the effects of word frequency and spelling–
sound consistency are inextricably related because they have the same
underlying cause: frequency-weighted sensitivity to input–output similarity,
with frequency re�ecting the most similar item (the stimulus itself) and
consistency re�ecting the less similar items (its friends and enemies).

Semantics in Lexical Decision: Stress as a
Measure of Familiarity

The second simulation addressed a further challenge to a distributed theory
of lexical processing, by demonstrating that, in a network that mapped
orthography to semantics directly and via phonology, a measure of
familiarity derived from semantic activation—termed semantic stress—
provide a suf�cient basis for distinguishing words from nonwords.
Moreover, this measure was shown to account for some aspects of how
lexical decision performance is in�uenced by the nature of the words and
nonwords in the task; namely, the frequency blocking effect (Gordon, 1983)
and the pseudohomophone effect (Coltheart et al., 1977; McCann et al.,
1988).

The stress measure re�ects the strength with which semantic units are
driven from their “resting” activation level (0.5) towards an extreme value (0
or 1). The reason why semantic stress distinguishes words from nonwords
stems from the lack of systematicity in the mapping from orthography to
semantics. This lack of systematicity means that orthographic similarity is
unpredictive of semantic similarity. Thus, during training, the network must
learn to map visually similar words (e.g. HAVE, GAVE, SAVE) to completely
unrelated sets of semantic features. The presentation of a nonword (e.g.
M AVE) partially engages the mappings for visually similar words, but because
these mappings are inconsistent with each other, they generate con�icting
input to the semantic units, resulting in only weak (non-binary) semantic
activation. By contrast, the considerable systematicity between orthography
and phonology enables the mappings for visually similar words to cooperate
and collectively produce strongly active, correct pronunciations for
nonwords.

Other researchers (e.g. Besner & Joordens, 1995; Borowsky & Masson,
1996; Joordens & Becker, 1997; Masson & Borowsky, 1995; Rueckl, 1995)
have proposed performing lexical decision in distributed networks based on
the negative of the “energy” in the network ( S i , jsisjwij; Hop�eld, 1982). The
current stress measure has the advantage of being based entirely on unit
activations rather than requiring decision processes to have access to weights
on connections between other units. However, it should be pointed out that
the two measures are closely related: To the extent that unit states are on the
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6What is meant by “appropriate” here is that both unit states should be on the same side of
“rest” if the weight between them is positive and on opposite sides if the weight is negative,
assuming that unit states are normalised relative to the rest value (i.e. 0.5 for standard [0,1]
units) before entering into the energy equation.

appropriate side of “rest” given the sign of the weight between them,6 then
increasing stress (by moving states towards their extreme values) will also
decrease energy. Thus, the present results would also be expected to hold, at
least qualitatively, if lexical decision were based on the negative of energy.

Although the simulation establishes that lexical decision can be
performed accurately based on semantics, it should not be interpreted as
implying that subjects always do so. In fact, following Seidenberg and
McClelland (1989), we assume that subjects can base their decisions on any
available information in the lexical system, and that they adopt a strategy
that optimises their performance given the composition of the stimuli. We
also assume that subjects will rely on orthographic information when this
suf�ces, given that such information is more reliable and more rapidly
available than either phonological  or semantic information. Thus, the
simulation is not intended as a fully adequate account of lexical decision
under all conditions. In particular, it is not intended to account for the
in�uence of orthographic factors, such as neighbourhood density, on lexical
decision (see, e.g. Andrews, 1992; Sears, Hino, & Lupker, 1995). However,
the simulation does serve to demonstrate that subjects can fall back on
semantic information when necessary—for example, when orthographically
strange words like AISLE and GAUGE or highly word-like pseudohomophones
like HOAP and JO AK are included among the stimuli.

An important aspect of LD performance that is not treated in detail in the
current work is a speci�cation of the actual processing mechanism that
computes semantic stress and uses it to make word/nonword decisions in real
time. One of the advantages of stress over an alternative measure of
familiarity like energy (Hop�eld, 1982) is that the computation of stress does
not require access to the values of connection weights between units (which
are presumably inaccessible to other units). It is fairly straightforward for a
decision process to compute semantic stress if it has access to the semantic
units as input. Moreover, Usher and McClelland (1995) have demonstrated
recently that competition between linear, stochastic, time-averaging units
representing alternative responses gives rise to a number of basic properties
of empirical �ndings in standard choice reaction time tasks, including the
shapes of time-accuracy functions, latency-probability functions, hazard
functions and reaction-time distributions. Their approach could be applied
to generate LD latencies in the current context by creating a “yes” unit
whose input is the current level of semantic stress and a “no” unit whose
input constitutes a decision criterion that is adjusted to optimise
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performance, and having the network respond when one of the units exceeds
a response criterion.

CONCLUSION

The simulations described in this article, in conjunction with those
developed previously (Plaut et al., 1996; Seidenberg & McClelland, 1989),
illustrate how connectionist computational principles—distributed
representation, structure-sensitive learning, and interactivity—can provide
insight into central empirical phenomena in normal and impaired lexical
processing. Moreover, they make it clear that distinctions in the function of
the lexical system—as manifest in the behaviour of experimental subjects—
need not re�ect corresponding distinctions in the structure of the system.
Thus, networks exhibit word-frequency effects and word/nonword
discrimination without word representations, and spelling–sound
consistency effects without separate mechanisms for regular and exception
items. In this way, gaining insight into the structure and function of the
cognitive system by observing its normal and impaired behaviour —the
central goal of cognitive psychology and neuropsychology—may depend
critically on developing theories and explicit simulations in the context of a
speci�c computational framework that relates structure to function.

The current work demonstrates how the distributed connectionist
approach can provide an effective theoretical framework for understanding
word naming and lexical decision. This is not to say that the existing
distributed models are fully adequate and account for all of the relevant data
in suf�cient detail—this is certainly not the case. In fact, given that they are
models, they are abstractions from the actual processing system and are
certainly wrong in their details. Nonetheless, their relative success at
reproducing key patterns of data in the domain of word reading, and the fact
that the very same computational principles are being applied successfully
across a wide range of linguistic and cognitive domains, suggests that these
models capture important aspects of representation and processing in the
human language and cognitive system.
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