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A connectionist approach to processing in quasi-regular domains, as exemplified by English word 
reading, is developed. Networks using appropriately structured orthographic and phonological rep- 
resentations were trained to read both regular and exception words, and yet were also able to read 
pronounceable nonwords as well as skilled readers. A mathematical analysis of a simplified system 
clarifies the close relationship of word frequency and spelling-sound consistency in influencing nam- 
ing latencies. These insights were verified in subsequent simulations, including an attractor network 
that accounted for latency data directly in its time to settle on a response. Further analyses of the 
ability of networks to reproduce data on acquired surface dyslexia support a view of the reading 
system that incorporates a graded division of labor between semantic and phonological processes, 
and contrasts in important ways with the standard dual-route account. 

Many aspects of language can be characterized as quasi-reg- 
ular--the relationship between inputs and outputs is systematic 
but admits many exceptions. One such task is the mapping be- 
tween the written and spoken forms of English words. Most 
words are regular (e,g., GAVE, MINT ) in that their pronuncia- 
tions adhere to standard spelling-sound correspondences. 
There are, however, many irregular or exception words (e.g., 
HAVE, PINT ) whose pronunciations violate the standard corre- 
spondences. To make matters worse, some spelling patterns have 
a range of pronunciations with none clearly predominating 
(e.g., _OWN in DOWN, TOWN, BROWN, CROWN vS. KNOWN, 
SHOWN, GROWN, THROWN, or _OUGH in COUGH, ROUGH, 
BOUGH, THOUGH, THROUGH). Nonetheless, in the face of this 
complexity, skilled readers pronounce written words quickly 
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and accurately and can also use their knowledge of spelling- 
sound correspondences to read pronounceable nonwords (e.g., 
MAVE, RINT ). 

An important debate within cognitive psychology is how best 
to characterize knowledge and processing in quasi-regular do- 
mains in order to account for human language performance. 
One view (e.g., Pinker, 1984, 1991) is that the systematic as- 
pects of language are represented and processed in the form of 
an explicit set of rules. A rule-based approach has considerable 
intuitive appeal because much of human language behavior can 
be characterized at a broad scale in terms of rules. It also pro- 
vides a straightforward account of how language knowledge can 
be applied productively to novel items (Fodor & Pylyshyn, 
1988). However, as illustrated above, most domains are only 
partially systematic; accordingly, a separate mechanism is re- 
quired to handle the exceptions. This distinction between a 
rule-based mechanism and an exception mechanism, each op- 
erating according to fundamentally different principles, forms 
the central tenet of so-called "dual-route" theories of language. 

An alternative view comes out of research on connectionist or 
parallel distributed processing networks, in which computation 
takes the form of cooperative and competitive interactions 
among large numbers of simple, neuron-like processing units 
(McClelland, Rumelhart, & the PDP Research Group, 1986; 
Rumelhart, McClelland, & the PDP Research Group, 1986). 
Such systems learn by adjusting weights on connections be- 
tween units in a way that is sensitive to how the statistical struc- 
ture of the environment influences the behavior of the network. 
As a result, there is no sharp dichotomy between the items that 
obey the rules and the items that do not. Rather, all items coex- 
ist within a single system whose representations and processing 
reflect the relative degree of consistency in the mappings for 
different items. The connectionist approach is particularly ap- 
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propriate for capturing the rapid, on-line nature of  language use 
as well as for specifying how such processes might be learned 
and implemented in the brain (although still at a somewhat ab- 
stract level; see Sejnowski, Koch, & Churchland, 1989, for 
discussion). Perhaps more fundamentally, connectionist mod- 
eling provides a rich set of  general computational principles 
that can lead to new and useful ways of thinking about human 
performance in quasi-regular domains. 

Much of the initial debate between these two views of the lan- 
guage system focused on the relatively constrained domain of En- 
glish inflectional morphology--specifically, forming the past tense 
of verbs. Past-tense formation is a rather simple quasi-regular task: 
There is a single regular "rule" (add -ed; e.g., WALK ~ "walked") 
and only about 100 exceptions, grouped into several dusters of 
similar items that undergo a similar change (e.g., SrNG ~ "sang~" 
DRINK ~,  "drank") along with a very small number of very high- 
frequency, arbitrary forms (e.g., GO ~ "went"; Bybee & Slobin, 
1982). Rumelhart and McClelland (1986) attempted to reformu- 
late the issue away from a sharp dichotomy between explicit rules 
and exceptions toward a view that emphasizes the graded struc- 
ture relating verbs and their inflections. They developed a connec- 
tionist model that learned a direct association between the phonol- 
ogy of all types of verb stems and the phonology of their past-tense 
forms. Pinker and Prince (1988) and Lachter and Bever (1988), 
however, pointed out numerous deficiencies in the model's actual 
l~a'formance and in some of its specific assumptions, and they ar- 
gued more generally that the applicability of connectionist mech- 
anisms in language is fundamentally limited (also see Fodor & 
Pylyshyn, 1988). However, many of the specific limitations of the 
Rumelhart and McClelland model have been addressed in subse- 
quent simulation work (Cottrell & Plunkett, 1991; Daugherty & 
Seidenberg, 1992; Hoeffner, 1992; MacWhinney & Leinbach, 
1991; Marchman, 1993; Plunkett & Marchman, 1991, 1993)~ 
Thus, the possibility remains strong that a connectionist model 
could provide a full account of past-tense inflection. Furthermore, ~ 
some recent applications to aspects of language disorders 
(Hoetfner & McClelland, 1993; Marchman, 1993) and language 
change (Hare & Elman, 1992, 1995 ) demonstrate the ongoing ex- 
tension of the approach to account for a wider range of language 
phenomena. 

Very similar issues arise in the domain of oral readin~ where 
there is a much richer empirical database with which to make 
contact. As in the domain of inflectional morphology, many re- 
searchers assume that aecotinting for the wealth of existing data 
on both normal and impaired word reading requires postulating 
multiple mechanisms. In particular, dual-route theorists (e.g., 
Besner & Smith, 1992; Coltheart, 1978, 1985; Coltheart, Curtis, 
Atkins, & Hailer; 1993; Coltheart & Rastle, 1994; Marshall & 
Newcombe, 1973; Meyer; Schvaneveldt, & Ruddy, 1974; Morton 
& Patterson, 1980; Paap & Noel, 1991 ) have claimed that pro- 
nouncing exception words requires a lexical lookup mechanism 
that is separate from the sublexical spelling-sound correspon- 
dence rules that apply to regular words and nonwords (also see 
Humphreys & Evett, 1985, and the accompanying commentaries 
for discussion of the properties of dual-route theories). The sepa- 
ration of lexical and sublexical procedures is motivated primarily 
by evidence that they can be independently impaired, either by 
abnormal reading acquisition (developmental dyslexia) or by 
brain damage in a previously literate adult (acquired dyslexia). 

Thus, phonological dyslexics, who can read words but not non- 
words, appear to have a selective impairment of the sublexical pro- 
cedure, whereas surface dyslexics, who can read nonwords but 
who "regularize" exception words (e.g., SEW ~ "sue"), appear to 
have a selective impairment of the lexical procedure. 

Seidenberg and McClelland (1989), hereafter SM89, challenged 
the central claim of dual-route theories by  developing a connec- 
tionist simulation that learned to map representations of the writ- 
ten forms of words (orthography) to representations of  their spo- 
ken forms (phonology). The network successfully pronounces 
both regular and exception words and yet is not an implementa- 
tion of two separate mechanisms (see Seidenberg & McClelland, 
1992, for a demonstration of this last point). The simulation was 
put forward in support of a more general framework for lexical 
processing in which orthographic, phonological, and semantic in- 
formation interact in gradually settling on the best representations 
for a given input (see Stone & Van Orden, 1989, 1994; Van Orden 
& Golding~, 1994; Van Orden, Pennington, & Stone, 1990, for 
a similar perspective on word reading). A major strength of the 
approach is that it provides a natural account of  the graded effects 
of spelling-sound consistency among words (Glushko, 1979; 
Jared, McRae, & Seidenberg, 1990) and how this consistency in- 
teracts with word frequency (Andrews, 1982; Seidenberg, 1985; 
Seidenberg, Waters, Barnes, & Tanenhaus, 1984; Taraban & 
McClelland, 1987; Waters & Seidenberg, 1985). 1 Furthermore, 
SM89 demonstrated that undertrained versions of the model ex- 
hibit some aspects of  developmental surface dyslexia, and Patter- 
son (1990; Patterson, Seidenberg, & McClelland, 1989) showed 
how damaging the normal model can reproduce some aspects of 
acquired surface dyslexia. The SM89 model also contributes to 
the broader enterprise of connectionist modeling of cognitive pro- 
cesses in which a common set of general computational principles 
are being applied successfully across a wide range of cognitive 
domains. 

However, the SM89 work has a serious empirical limitation that 
undermines its role in establishing a viable connectionist alterna- 
tive to dual-route theories of word reading in particular and in 
providing a satisfactory formulation of the nature of knowledge 
and processing in quasi-regular domains more generally. Specifi- 
cally, the implemented model is significantly worse than skilled 
readers at pronouncing nonwords (Besner, TwiUey, McCann, & 
Seergobin, 1990). This limitation has broad implications for the 
range of empirical phenomena that can be accounted for by the 
model (Coltheart et al., 1993). Poor nonword reading is exactly 
what would be predicted from the dual-route claim that no single 
system---connectionist or otherwise---can read both exception 
words and pronounceable nonwords adequately. Under this inter- 
pretation, the model had simply approximated a lexical lookup 
procedure: It could read both regular and exception words but 
had not separately mastered the sublexical rules necessary to read 
nonwords. An alternative interpretation, however, is that the em- 
pirical shortcomings of the SM89 simulation stem from specific 
aspects of  its design and not from inherent limitations on the abil- 
ities of  connectionist networks in quasi-regular domains. In par- 
ticular, Seidenberg and McClelland (1990) suggested that the 

The findings of these studies have often been cast as effects of regu- 
larity rather than consistency--we address this distinction in the next 
section. 
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model's nonword reading might be improved--without adversely 
affecting its other properties---by using either a larg~ training cor- 
pus or different orthographic and phonological representations. 

A second limitation of the SM89 work is that it did not pro- 
vide a very extensive examination of underlying theoretical is- 
sues. The main emphasis was on demonstrating that a network 
that operated according to fairly general connectionist princi- 
ples could account for a wide range of  empirical findings on 
normal and developmentally impaired reading. Relatively little 
attention was paid in that article to articulating the general 
principles themselves or to evaluating their relative importance. 
Thus, much of the underlying theoretical foundation of the 
work remained implicit. Despite subsequent efforts at explicat- 
ing these principles (Seidenberg, 1993), considerable confusion 
remains with regard to the role of  connectionist modeling in 
contributing to a theory of word reading (or of any other cogni- 
tive process). Thus, some researchers (e.g., Forster, 1994; Mc- 
Closkey, 1991 ) have claimed that the SM89 demonstration, 
while impressive in its own right, has not extended our under- 
standing of word reading because the operation of the model 
itself--and of connectionist networks more generally--is too 
complex to understand. Consequently, "connectionist networks 
should not be viewed as theories of  human cognitive functions, 
or as simulations of theories, or even as demonstrations of spe- 
cific theoretical points" (McCloskey, 1991, p. 387; also see Mas- 
saro, 1988; Olsen & Caramazza, 1991 ). Although we reject the 
claim that connectionist modeling is atheoretical (see Seiden- 
berg, 1993) and that there are no bases for analyzing and under- 
standing networks (see, e.g., Hanson & Burr, 1990), we agree 
that the theoretical principles and constructs for developing 
connectionist explanations of  empirical phenomena are in need 
of  further elaboration. 

In this article we develop a connectionist account of knowl- 
edge representation and cognitive processing in quasi-regular 
domains in the specific context of  normal and impaired word 
reading. We draw on an analysis of the strengths and weaknesses 
of the SM89 work, with the dual aim of providing a more ade- 
quate account of the relevant empirical phenomena and of  ar- 
ticulating in a more explicit and formal manner the theoretical 
principles that underlie the approach. We explore the use of 
alternative representations that make the regularities between 
written and spoken words more explicit. In  the first simulation 
experiment, a network using the new representations learned to 
read both regular and exception words, including low-fre- 
quency exception words, and yet was still able to read pro- 
nounceable nonwords as well as skilled readers. The results 
open up the range of possible architectures that might plausibly 
underlie human word reading. A mathematical analysis of the 
effects of word frequency and spelling-sound consistency in a 
simpler but related system serves to clarify the close relation- 
ship of these factors in influencing naming latencies. These in- 
sights were verified in a second simulation. In a third simulation 
we developed an attractor network that reproduces the naming 
latency data directly in its time to settle on a response and thus 
obviates the need to use error as a proxy for reaction time. The 
implication of the semantic contribution to reading was consid- 
ered in our fourth and final simulation in the context of ac- 
counting for the impaired reading behavior of  acquired surface 
dyslexic patients with brain damage. Damage to the attractor 

network provides only a limited account of the relevant 
nomena; a better account is provided by the performance 
network that learns to map orthography to phonology i~ 
context of  support from semantics. Our findings lead to a 
of the reading system that incorporates a graded division 
bor between semantic and phonological processes. Such a 
is consistent with the more general SM89 framework an¢ 
some similarities with--but  also important differences fro 
the standard dual-route account. In the General Discussio 
articulate these differences and clarify the implications o 
current work for a broader range of empirical findings, in~ 
ing those raised by Coltheart et ai. (1993) as challenges tl 
connectionist approach. 

We begin with a brief critique of  the SM89 model in 
we try to distinguish its central computational properties 1 
less central aspects of  its design. An analysis of  its repre~ 
tions led to the design of new representations that we used 
series of  simulations analogous to the SM89 simulation. 

The  Seidenberg and McClel land Model  

The General Framework 

Seidenberg and McCleUand's (1989) general framewor 
lexical processing is shown in Figure 1. Orthographic, ph 
logical, and semantic information is represented in terms o 
tributed patterns of  activity over separate groups of simple 
ron-like processing units. Within each domain, similar 
are represented by similar patterns of activity. Lexical task 
volve transformations among these representations--for e~ 
pie, oral reading requires the orthographic pattern for a wo 
generate the appropriate phonological pattern. Such tran 
mations are accomplished via the cooperative and compel 
interactions among units, including additional hidden unit~ 
mediate among the orthographic, phonological, and sem.' 

MAKE freak/ 

Figure 1. Seidenberg and McClelland's (1989) general framewo: 
lexieal processing. Each oval represents a group of units, and each ," 
represents a group of connections. The implemented model is sho 
bold. From "A Distributed, Developmental Model of Word Re¢ 
tion and Naming," by M. S. Seidenberg and J. L. MeClelland, 
Psychological Review, 96, p. 526. Copyright 1989 by the Americat 
chological Association. Adapted with permission. 
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units. Unit interactions are governed by weighted connections 
between them, which collectively encode the system's knowl- 
edge about how the different types of  information are related. 
The specific values of the weights are derived by an automatic 
learning procedure on the basis of  the system's exposure to 
written words, spoken words, and their meanings. 

The SM89 framework is broadly consistent with a more gen- 
eral view of information processing that has been articulated by 
McClelland (1991, 1993) in the context of  GRAIN networks. 
These networks embody the following general computational 
principles: 

Graded: Propagation of activation is not all-or-none but rather 
b'uiids uP gradually over time. 

Random: Unit activations are subject to intrinsic stochastic 
variability. 

Adaptive: The system gradually improves its performance by ad- 
justing weights on connections between units. 

Interactive: Information flows in a bidirectional manner between 
groups of units, allowing their activity levels to constrain each other 
and to be mutually consistent. 

Nonlinear: Unit outputs are smooth, nonlinear functions of their 
~tal inputs, significantly extending the computational power of the 
entire network beyond that of purely linear networks. 

The acronym GRAIN is also intended to convey the notion that 
cognitive processes are expressed at a finer grain of analysis, in 
terms of  interacting groups of  neuronlike units, than is typical 
of most "box-and-arrow" information-processing models. Ad- 
ditional computational principles that are central to the SM89 
framework but not captured by the acronym are the following: 

Distributed Representations: Items in the domain are represented 
by patterns of activity over groups of units that participate in rep- 
resenting many other items. 

Distributed Knowledge: Knowledge about the relationship be- 
tween items is encoded across large numbers of connection weights 
that also encode many other mappings. 

Much of  the controversy surrounding the SM89 framework, 
and the associated implementation, stems from the fact that it 
breaks with traditional accounts of  lexical processing (e.g., 
Coltheart, 1985; Morton & Patterson, 1980) in two fundamen- 
tal ways. The first is in the representational status of  words. Tra- 
ditional accounts assume that words are represented in the 
structure of  the reading systemwin its architecture. Morton's 
(1969) "logogens" are well-known instances of  this type of  
word representation. By contrast, within the SM89 framework 
the lexical status of  a string of letters or phonemes is not re- 
flected in the structure of  the reading system. Rather, words are 
distinguished from nonwords only by functional properties of  
the systemwthe way in which particular orthographic, phono- 
logical, and semantic patterns of  activity interact (also see Van 
Orden et al., 1990). 

The SM89 framework's second major break with tradition con- 
cerns the degree of uniformity in the mechanism(s ) by which or- 
thographic, phonological, and semantic representations interact. 
Traditional accounts assume that pronouncing exception words 
and pronouncing nonwords require separate lexical and sublexical 

mechanisms, respectively. By contrast, the SM89 framework em- 
ploys far more homogeneous processes in oral reading. In partic- 
u l~  it eschews separate mechanisms for pronouncing nonwords 
and exception words. Rather, all of the system's knowledge of  
spelling-sound correspondences is brought to bear in pronounc- 
ing all types of  letter strings. Conflicts among possible alternative 
pronunciations of a letter string are resolved not by structurally 
distinct mechanisms, but by cooperative and competitive interac- 
tions based on how the letter string relates to all known words and 
their pronunciations. Furthermore, the semantic representation of  
a word participates in oral reading in exactly the same manner as 
do its orthographic and phonological representations, although the 
framework leaves open the issue of how important these semantic 
influences are in skilled oral readir~ 

Regularity versus consistency. An issue that is intimately re- 
lated to the tension between the SM89 framework and traditional 
dual-route theories concerns the distinction between regularity 
and consistency. Broadly spealdn~ a word is regular if its pronun- 
ciation can be generated "by rule," and it is consistent if its pro- 
nunciation agrees with those of similarly spelled words. Of course, 
to be useful these definitions must be eperationalized in more spe- 
cific terms. The most commonly proposed pronunciation rules are 
based on the most frequent grapheme-phoneme correspondences 
(GPCs) in the language, although such GPC rules must be aug- 
mented with considerable context-sensitivity to operate adequately 
(see Coltheart et al., 1993; Seidenberg, Plant, Petersen, McClel- 
land, & McRae, 1994, for discussion). Consistency, on the other 
hand, has typically been defined with respect to the orthographic 
body and the phonological rime (i.e., the vowel plus any following 
consonants). This choice can be partly justified on the grounds of 
empirical data: For example, Treiman, Mullennix, Bijeljac-Babic, 
and Richmond-Welty (1995) have recently demonstrated that, in 
naming data for all 1,329 monosyllabic words in English with a 
consonant-vowel-consonant (CVC) pronunciation, the consis- 
tency of the body (VC) accounts for significantly more variance 
in naming latency than the consistency of the onset plus vowel 
(CV). There are also pragmatic reasons for restricting consider- 
ation to body-level consistencymbodies constitute a manageable 
manipulation in the design of experimental fists. If experimenters 
had to consider consistency across orthographic neighborhoods at 
all possible levels, from individual graphemes up to the largest sub- 
word-sized chunks, their selection of stimulus words would be an 
even more agonizing process than it already is. Nonetheless, the 
general notion of consistency is broader than a speofic instantia- 
tion in terms of body consistency, just as the general notion of 
regularity is broader than that defined by any particular set of 
spelling-sound correspondence rules. 

On the basis of  the frequent observation (e.g., Coltheart, 
1978; Parkin, 1982; Waters & Seidenberg, 1985) that words 
with regular or typical spelling-sound correspondences (such 
as MINT ) produce shorter naming latencies and lower error 
rates than words with exceptional correspondences (such as 
PINT ), regularity was originally considered to be the critical 
variable. In 1979, however, Glushko argued that consistency 
provided a better account of empirical results. Although MINT 
may be a regular word according to GPC rules, its spelling- 
sound relationship is inconsistent with that of  its orthographic 
neighbor, PINT. To the extent that the process of  computing 
phonology from orthography is sensitive to the characteristics 
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of the neighborhood, performance on a regular but inconsistent 
word like MINT may also be adversely affected. Glushko (1979) 
did indeed demonstrate longer naming latencies for regular in- 
consistent words than for regular words from consistent body 
neighborhoods, though this result was not always obtained in 
subsequent experiments (e.g., Stanhope & Parkin, 1987 ). 

In 1990, Jared, McRae, and Seidenberg offered a more so- 
phisticated hypothesis that captures aspects of results not han- 
dled by previous accounts referring solely to either regularity or 
consistency. According to Jared and colleagues, the magnitude 
of the consistency eff6ct for a given word depends on the 
summed frequency of that word's friends (words with a similar 
spelling pattern and similar pronunciation) and of its enemies 
(words with a similar spelling pattern but a discrepant 
pronunciation). For example, an inconsistent word like MINT 
has a number of friends (e.g., LINT, TINT, PRINT) and just a 
single enemy, PINT. Against the strength of friends, the single 
enemy cannot exert a marked influence (especially when, as is 
true of PINT, the enemy is of relatively low frequency); its nega- 
tive impact on the computation of the pronunciation of MINT 
will thus be small and perhaps undetectable. By contrast, an 
inconsistent word like GOWN, with many enemies (e.g., BLOWN, 
SHOWN, GROWN) as well as friends (e.g., DOWN, BROWN, 
TOWN), gives rise to a more substantial effect. Such words, with 
roughly balanced support from friends and enemies, have been 
termed ambiguous (with respect to the pronunciation of their 
body; Backman, Bruck, H6bert, & Seidenberg, 1984; Seiden- 
berg et al., 1984). 

The commonly observed effect of regularity also finds a nat- 
ural explanation within Jared et al.'s (1990) account, because 
most regular words (as defined by GPC rules) have many 
friends and few if any enemies, whereas words with irregular 
spelling-sound correspondences (such as PINT or SEW) typi- 
cally have many enemies and few if any friends. Given this cor- 
respondence, and following Glushko (1979) and Taraban and 
McClelland (1987), we will refer to words with many enemies 
and few if any friends as exception words, acknowledging that 
this definition excludes many words that would be considered 
exceptional according to GPC rules (e.g., many ambiguous 
words). Jared et al:s hypothesis and supporting data also mesh 
well with other results demonstrating the inadequacy of a sim- 
ple regular-irregular dichotomy, such as the "degrees of regu- 
larity" effect observed in acquired surface dyslexia (Shallice, 
Warrington, & McCarthy, 1983, also see Patterson & Behr- 
mann, 1995; Plaut, Behrmann, Patterson, & McClelland, 1993, 
for more direct evidence of consistency effects in surface 
dyslexia). 

It must be kept in mind, however, that a definition of consis- 
tency based solely on body neighborhoods, even if frequency- 
weighted, can provide only a partial account of the consistency 
effects that would be expected to operate over the full range of 
spelling-sound correspondences. Thus, for example, the word 
CHEF could not be considered inconsistent on a body-level anal- 
ysis because all of the words in English with the body ..-EF (i.e., 
CLEF, REF) agree with its pronunciation. On a broader defini- 
tion of consistency, however, CHEF is certainly inconsistent, be- 
cause the overwhelmingly most common pronunciation of CH 
in English is the one appropriate to CHIEF, not CHEF. This broad 
view of consistency is also important when considering what 

might be called irregular consistent words--that is, words such 
as FOND, BOLD, and TOOK that have highly consistent body 
neighborhoods but that are nonetheless irregular according to 
GPC rules such as those of Coltheart et al. (1993). The process- 
ing of such items would be expected to be sensitive to the con- 
flict between consistency at the body-rime level and inconsis- 
tency at the grapheme-phoneme level. In all of what follows, 
therefore, although we adept the standard practice of using 
body-level manipulations for empirical tests, this should be in- 
terpreted as providing only an approximation of the true range 
of consistency effects. 

Relationship to other approaches. A cursory inspectionof Fig- 
ure 1 might suggest that the SM89 framework is, in fact, a dual- 
route system: Orthography can influence phonology either di- 
rectly or via semantics. To clarify this possible source of confusion, 
we must be more explicit about typical assumptions in dual-route 
theories concerning the structure and operation of the different 
procedures. As described earlier, the central distinction in such 
theories is between lexical and sublexical procedures. The sublex- 
ical procedure applies GPC rules to produce correct pronuncia- 
tions for regular words, reasonable pronunciations for nonwords, 
and incorrect, "regularized" pronunciations for exception words. 
The lexical procedure produces correct pronunciations for all 
words and no response for nonwords. When the outputs of the two 
procedures conflict, as they do for exception words, some models 
(e.g., Paap & Noel, 1991 ) assume a "horse race;' with the faster 
(typically lexical ) procedure generating the actual response. Oth- 
ers (e.g., Monsell, Patterson, Graham, Hughes, & Milroy, 1992) 
suggest that output from the two procedures is pooled until a pho- 
nological representation sufficient to drive articulation is achieved 
(although the specific means by which this pooling occurs is rarely 
made explicit). The lexical procedure is often subdivided into a 
direct route that maps orthographic word representations dir~tly 
onto phonological word representations, and an indirect route that 

maps via semantics. In these formulations, the "dual-route" 
model is in a sense a three-route model, although researchers typ- 
ically assume that the indirect~ semantic route would be too slow 
to influence skilled word pronunciation (Coltheart, 1985; Patter- 
son & Morton, 1985). 

By contrast, the nonsemantic portion of the SM89 framework 
does not operate by applying GPC rules, but by the simultaneous 
interaction of units. It is also capable of pronouncing all types of 
input, including exception words, although the time it takes to do 
so depends on the type of input. Furthermore, the semantic por- 
tion of the framework does not operate in terms of whole-word 
representations, but rather in tclmS of interacting units, each of 
which participates in the processing of many words. In addition, 
nonwords may en~a~ semantics to some degree, although the ex- 
tent to which this occurs is likely to be minimal (see the discussion 
oflexical decision in the General Discussion). Thus, the structure 
and operation of the SM89 framework is fundamentally different 
from existing dual-route theories. 

It may also help to clarify the relationship between the SM89 
framework and approaches to word reading other than dual-route 
theories. The two main alternatives are lexical-analogy theories 
and multiple-levels theories. Lexical-analogy theories (Henderson, 
1982; Marcel, 1980) dispense with the sublexical procedure and 
propose that the lexical procedure can pronounce nonwords by 
synthesizing the pronunciations of orthographically similar words. 
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Unfortunately, the way in which these pronunciations are gener- 
ated and synthesized is rarely fully specified. Multiple-levels theo- 
ties (Shallice & McCarthy, 1985; Shailice et al., 1983) dispense 
with the (direct) lexical route (or rather, incorporate it into the 
sublexical route) by assuming that spelling-sound correspon- 
dences are represented for segments of all sizes, ranging from sin- 
gle graphemes and phonemes to word bodies and entire 
morphemes. 

In a way, the SM89 framework can be thought of as an integra- 
tion and more detailed specification of lexical-analogy and 
multiple-level theories (also see Norris, 1994, for a connectionist 
implementation of the latter). The pronunciations of nonwords 
are g~nerated on the basis of the combined influence of all known 
word pronunciations, with those most similar to the nonword hav- 
ing the strongest effect. In order for the system to pronounce ex- 
ception words as well as nonwords, the hidden units must learn to 
be sensitive to spelling-sound correspondences of a range of sizes. 
The framework is also broadly consistent with Van Orden et al?s 
(1990) proposal that orthography and phonology are strongly as- 
sociated via covariant learning, although the SM89 framework in- 
corporates direct interaction between orthography and semantics, 
which Van Orden and colleagues dispute. 

The Implemented Model 

The SM89 framework clearly represents a radical departure 
from widely held assumptions about lexical processing, but is it 
plausible as an account of human word reading? In the service 
of establishing the framework's plausibility, SM89 imple- 
mented a specific connectionist network that, they implicitly 
claimed, embodies the central theoretical tenets of the 
framework. 

The network, highlighted in bold in Figure 1, contains three 
groups of units: 400 orthographic units, 200 hidden units, and 
460 phonological units. The hidden units receive connections 
from all of the orthographic units and, in turn, send connec- 
tions to all of the phonological units as well as back to all of 
the orthographic units. The network contains no semantic or 
context information. 

Orthographic and phonological forms are represented as pat- 
terns of activity over the orthographic and phonological units, 
respectively. These patterns are defined in terms of context-sen- 
sitive triples of letters and phonemes (Wickelgren, 1969 ). It was 
computationally infeasible for SM89 to include a unit for each 
possible triple, so they used representations that require fewer 
units but preserve the relative similarities among patterns. In 
orthography, the letter triples to which each unit responds are 
defined by a table of 10 randomly selected letters (or a blank) 
in each of three positions. In the representation of a letter string, 
an orthographic unit is active if the string contains one of the 
letter triples than can be generated by sampling from each of 
the three positions of that unit's table. For example, GAVE would 
activate all orthographic units capable of generating _GA, GAV, 
AVE, or  VE_... 

Phonological representations are derived in an analogous 
fashion, except that a phonological unit's table entries at each 
position are not randomly selected phonemes, but rather all 
phonemes containing a particular phonemic feature (as defined 
by Rumelhart & McClelland, 1986). A further constraint is 

that the features for the first and third positions must come from 
the same phonetic dimension (e.g., place of articulation ). Thus, 
each unit in phonology represents a particular ordered triple of 
phonemic features, termed a Wickelfeature. For example, the 
pronunciation/gAv/would activate phonological units repre- 
senting the Wickelfeatures [back, vowel, front], [stop, long, 
fricative], and many others (given tha t /g /has  back and stop 
among its features,/A/has vowel and long, and /v /ha s  front 
and fricative ). On average, a word activates 81 (20.3%) of the 
400 orthographic units, and 54 ( I 1.7%) of the 460 phonological 
units. We will return to an analysis of the properties of these 
representations after summarizing the SM89 simulation 
results. 

The weights on connections between units were initialized to 
small random values. The network then was repeatedly pre- 
sented with the orthography of each of 2,897 monosyllabic 
words and trained both to generate the phonology of the word 
and to regenerate its orthography (see Seidenberg & McClel- 
land, 1989, for details). During each sweep through the training 
set, the probability that a word was presented to the network 
was proportional to a logarithmic function of its frequency 
(Ku~ra & Francis, 1967). Processing a word involved setting 
the states of the orthographic units (as defined above), comput- 
ing hidden unit states based on states of the orthographic units 
and the weights on connections from them, and then computing 
states of the phonological and orthographic units based on those 
of the hidden units. Back-propagation (Rumelhart, Hinton, & 
Williams, 1986a, 1986b) was used to calculate how to adjust 
the weights to reduce the differences between the correct pho- 
nological and orthographic representations of the word and 
those generated by the network. These weight changes were ac- 
cumulated during each sweep through the training set; at the 
end, the changes were carried out and the process was repeated. 

The network was considered to have named a word correctly 
when the generated phonological activity was closer to the rep- 
resentation of the correct pronunciation of the word than to 
that of any pronunciation which differed from the correct one 
by a single phoneme. For the example GAVE ~ / g A v / ,  the com- 
peting pronunciations are all those among /*Av/ , /g ,v / ,  or / 
gA*/, where /* / i s  any phoneme. After 250 training sweeps 
through the corpus, amounting to about 150,000 word presen- 
tations, the network correctly named all but 77 words (97.3% 
correct), most of which were low-frequency exception words. 

A considerable amount of empirical data on oral reading 
concerns the time it takes to name words of various types. A 
natural analogue in a model to naming latency in human read- 
ers would be the amount of computing time required to pro- 
duce an output. SM89 could not use this measure because their 
network takes exactly the same amount oftimewone update of 
each unit--to compute phonological output for any letter 
string. Instead, they approximated naming latency with a mea- 
sure of the accuracy of the phonological activity produced by 
the networkwthe phonological error score. SM89 showed that 
the network's distribution of phonological error scores for vari- 
ous words reproduces the effects of frequency and consistency 
in naming latencies found in a wide variety of empirical studies 
that used the same words. Figure 2 presents particularly illus- 
trative results in this regard, using high- and low-frequency 
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Figure 2. Me~ phonological error scores produced by the Seidenberg 
and McClelland ( 1989 ) network for words with various degrees of spell- 
ing-sound consistency (listed in Appendix A) as a function of fre- 
quency. Regenerated from Figure 16 of"A Distributed, Developmental 
Model of Word Recognition and Naming," by M. S. Seidenberg and 
J. L. McClelland, 1989, Psychological Review 96, p. 542. Copyright 
1989 by the American Psychological Association. Adapted with 
permission. 

words at four levels of consistency (listed in Appendix A and 
used in the current simulations): 

Exception words from Experiments 1 and 2 of Taraban and 
McCleUand (1987): They have an average of 0.73 friends in the 
SM89 corpus (not counting the word itself) and 9.2 enemies. 

Ambiguous words generated by SM89 to be matched in Kupera 
and Francis (1967) frequency with the exception words: They av- 
erage 8.6 friends and 8.0 enemies. 

Regular inconsistent words, also from Taraban and McClelland 
( 1987 ): These average 7.8 friends and only 2.1 enemies. 

Regular consistent words that were the control items for the excep- 
tion words in the Taraban and McClelland ( 1987 ) study: They have 
an average of 10.7 friends and 0.04 enemies (the foreign word CouP 
for the item GROUP, and one of the pronunciations of BASS for the 
item CLASS). 

The relevant empirical effects in naming latency exhibited by 
the SM89 model are, specifically, as follows: 

1. High-frequency words are named faster than low-frequency 
words (e.g., Forster & Chambers, 1973; Frederiksen & Kroll, 
1976). 

2. Consistent words are named faster than inconsistent words 
(Glushko, 1979), and latencies increase monotonically with in- 
creasing spelling-sound inconsistency (as approximated by the 
relative proportion of friends vs. enemies; Jared et al., 1990). 
Thus, regular inconsistent words like MOTH (cf. BOTH ) are slower 
to be named than regular consistent words like MUST (Glushko, 
1979), and exception words like PINT and SEW are the slowest to 
be named (Seidenberg et al., 1984). Performance on ambiguous 
words like GOWN (cf. GROWN) falls between that on regular incon- 

sistent words and that on exception words, although this has been 
investigated directly only with respect to reading acquisition 
(Backman et al., 1984). 

3. Frequency interacts with consistency (Seidenberg, 1985; 
Seidenberg et al., 1984; Waters & Seidenberg, 1985) such that the 
consistency effect is much greater among low-frequency words 
than among high-frequency words (where it may even be absent; 
see, e.g., Seidenber~ 1985), or equivalently, the frequency effect 
decreases with increasing consistency (perhaps being absent 
among regular words; see, e.g., Waters & Seidenberg, 1985). 

In considering these empirical and simulation results, it is 
important to keep in mind that the use of a four-way classifica- 
tion of  consistency is not in any way intended to imply the exis- 
tence of  four distinct subtypes of  words; rather, it is intended 
to help illustrate the effects of what is actually an underlying 
continuum of  consistency (Jared et al., 1990).2 

The model also shows analogous effects of consistency in 
nonword naming latency. In particular, nonwords derived from 
regular consistent words (e.g., NUST from MUST ) are faster to 
name than nonwords derived from exception words (e.g,, MArE 
from HAVE; Glushko, 1979; Taraban & McClelland, 1987). As 
mentioned in the Introduction, however, the model's nonword 
naming accuracy is much worse than that of skilled readers. 
Besner et al. (1990) reported that, on nonword lists from 
Glushko (1979) and McCann and Besner (1987), the model is 
only 59% and 51% correct, whereas skilled readers are 94% and 
89% correct, respectively. Seidenberg and McClelland (1990) 
pointed out that the scoring criterion used for the network was 
more strict than that used for the human readers. We will return 
to the issue of  scoring nonword reading performance--for  the 
present purposes, it suffices to acknowledge that, even taking 
differences in scoring into account, the performance of the 
SM89 model on nonwords is inadequate. 

The SM89 model replicates the effects of frequency and con- 
sistency in lexical decision (Waters & Seidenberg, 1985) when 
responses are based on orthographic error scores, which mea- 
sure the degree to which the network succeeds at recreating the 
orthography of  each input string. Again, however, the model is 
not as accurate at lexical decision under some conditions as are 
human readers (Besner et al., 1990; Fera & Besner, 1992). 

Consistency also influences the ease with which word naming 
skills are acquired. Thus, less skilled readers--whether younger 
or developmentally dyslexic--show larger consistency effects 
than do more skilled readers (Backman et al., 1984; Vellutino, 
1979). The model shows similar effects both early in the course 

2 This is particularly true with respect to the distinction between reg- 
ular inconsistent words and ambiguous words, which differ only in the 
degree of balance between friends and enemies. In fact, a number of 
previous studies, including that of Taraban and McClelland (1987), 
failed to make this distinction. As a result, some of the Taraban and 
McClelland regular inconsistent words contain bodies that we catego- 
rize as ambiguous ( e.g., DEAR, GROW ). This has the unfortunate conse- 
quence that, occasionally, words with identical bodies are assigned into 
different consistency classes. However, in the current context, we are not 
concerned with individual items but solely with using the pattern of 
means across classes to illustrate overall consistency effects. In this re- 
gard, the word classes differ in the appropriate manner in their average 
relative numbers of friends and enemies. Thus, for continuity with ear- 
lier work, we will continue to use the Taraban and McClelland stimuli. 
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of learning and when trained with limited resources (e.g., too 
few hidden units). 

Finally, damaging the model by removing units or connec- 
tions results in a pattern of errors that is somewhat similar to 
that of brain-injured patients with one form of surface dyslexia 
(Patterson, 1990; Patterson et al., 1989). Specifically, low-fre- 
quency exception words become particularly prone to being 
regularized (see Patterson, Coltheart, & Marshall, 1985). Over- 
all, however, attempts to model surface dyslexia by "lesioning" 
the SM89 model have been less than satisfactory (see Behr- 
mann & Bub, 1992; Coltheart et al., 1993, for criticism). We 
consider this and other types of developmental and acquired 
dyslexia in more detail after presenting new simulation results 
on normal skilled reading. 

Evaluation of the Model 

In evaluating the SM89 results, it is important to bear in 
mind the relationship between the implemented model and the 
more general framework for lexical processing from which it 
was derived. In many ways, the implemented network is a poor 
approximation to the general framework: It contains no seman- 
tic representations or knowledge, it was trained on a limited 
vocabulary, and its feedforward architecture severely restricts 
the way in which information can interact within the system. In 
addition, as a working implementation, the network inevitably 
embodies specific representational and processing details that 
are not central to the overall theoretical framework. Such de- 
tails include the specific orthographic and phonological repre- 
sentation schemes, the logarithmic frequency compression used 
in training, the use of error scores to model naming latencies, 
and the use of a supervised, error-correcting training procedure 
(but see Jordan & Rumelhart, 1992). Nonetheless, the imple- 
mented network is faithful to most of the central theoretical 
tenets of the general framework (see also Seidenberg, 1993 ): (a) 
The network uses distributed orthographic and phonological 
representations that reflect the similarities of words within each 
domain, (b) the computation of orthography and phonology 
involves nonlinear cooperative and competitive influences gov- 
erned by weighted connections between units, (c) these weights 
encode all of the network's knowledge about how orthography 
and phonology are related, and (d) this knowledge is acquired 
gradually on the basis of the network's exposure to written 
words and their pronunciations. It is important to note that two 
central principles are lacking in the implemented network: in- 
teractivity and intrinsic variability. We consider the implica- 
tions of these principles later. 

Before we focus on the limitations of SM89's work, it is im- 
portant to be clear about its strengths. First and foremost, the 
general framework is supported by an explicit computational 
model that actually implements the mapping from orthography 
to phonology. Of course, implementing a model does not make 
it any more correct, but it does, among other things, allow it 
to be more thoroughly and adequately evaluated (Seidenberg, 
1993). Many models of reading are no more explicit than "box- 
and-arrow" diagrams accompanied by descriptive text on how 
processing would occur in each component (a notable recent 
exception to this is the implementation ofColtheart et al. [ 1993; 
Coltheart & Rastle, 1994], which is compared in detail with the 

current approach by Seidenberg et al., 1994). In fact, the SM89 
general framework amounts to such a description. By taking the 
further step of implementing a portion of the framework and 
testing it on the identical stimuli used in empirical studies, 
SM89 enabled the entire approach to be evaluated in much 
greater detail than has been possible with previous, less explicit 
models. 

Furthermore, it should not be overlooked that the imple- 
mented model succeeds in accounting for a considerable 
amount of data on normal and impaired word reading. The 
model reproduces the quantitative effects found in over 20 em- 
pirical studies on normal reading, as well as some basic findings 
on developmental and acquired dyslexia. No other existing im- 
plementation covers anything close to the same range of results. 

Finally, it is important to bear in mind that the basic compu- 
tational properties of the SM89 framework and implementation 
were not developed specifically for word reading. Rather, they 
derive from the much broader enterprise ofconnectionist mod- 
eling in cognitive domains. The same principles of distributed 
representations, interactivity, distributed knowledge, and gra- 
dient-descent learning are also being applied successfully to 
problems in high-level vision, learning and memory, speech and 
language, reasoning and problem solving, and motor planning 
and control (see Hinton, 1991; McClelland et al., 1986; Quin- 
lan, 1991, for examples). Two distinctive aspects of the connec- 
tionist approach are its strong emphasis on general learning 
principles and its attempt to make contact with neurobiological 
as well as cognitive phenomena. Neurally plausible learning is 
particularly critical to understanding reading because it is un- 
likely that the brain has developed innate, dedicated circuitry 
for such an evolutionarily recent skill. Thus, the SM89 work 
not only makes specific contributions to the study of reading 
but also fits within a general computational approach for un- 
derstanding how cognitive processes are learned and imple- 
mented in the brain. 

The SM89 implementation does, however, have serious limi- 
tations in accounting for some empirical data. Some of these 
limitations no doubt stem from the lack ofunimplemented por- 
tions of the framework--most important, the involvement of 
semantic representations, but also perhaps visual and articula- 
tory procedures. A full consideration of the range of relevant 
empirical findings will be better undertaken in the General Dis- 
cussion in the context of the new simulation results. Consider- 
ation of the poor nonword reading performance of the SM89 
network, however, cannot be postponed. This limitation is fun- 
damental because nonword reading is unlikely to be improved 
by the addition of semantics. Furthermore, Coltheart et al. 
(1993) have argued that, primarily as a result of its poor pro- 
cessing of nonwords, the model is incapable of accounting for 
five of six central issues in normal and impaired word reading. 
More fundamental, by not reading nonwords adequately, the 
model fails to refute the claim of dual-route theorists that read- 
ing nonwords and reading exception words require separate 
mechanisms. 

Seidenberg and McClelland (1990) argued that the model's 
poor nonword reading was not an inherent problem with the 
general framework, but rather was the result of two specific lim- 
itations in the implementation. The first is the limited size of 
the training corpus. The model was exposed to only about 3,000 
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words, whereas the skilled readers with whom it is compared 
know approximately 10 times that number. Given that the only 
knowledge that the model has available for reading nonwords is 
what it has derived from words, a limited training corpus is a 
serious handicap. 

Coltheart et al. (1993) have argued that limitations of the 
SM89 training corpus cannot explain the model's poor non- 
word reading because a system that learns GPC rules using the 
same corpus performs much better. This argument is fallacious, 
however, because the effectiveness of a training corpus depends 
critically on other assumptions built into the training proce- 
dure. In fact, Coltheart and colleagues' procedure for learning 
GPC rules has built into it a considerable amount of knowledge 
that is specific to reading, concerning the possible relationships 
between graphemes and phonemes in various contexts. In con- 
trast, SM89 applied a general learning procedure to representa- 
tions that encode only ordered triples of letters and phonemic 
features but nothing of their correspondences. A demonstration 
that the SM89 training corpus is sufficient to support good non- 
word reading in the context of strong, domain-specific assump- 
tions does not invalidate the claim that the corpus may be in- 
sufficient in the context of much weaker assumptions. 

The second aspect of the SM89 simulation that contributed to 
its poor nonword reading was the use of Wickelfeatures to repre- 
sent phonology. This representational scheme has known limita- 
tions, many of which are related to how well the scheme can be 
extended to more realistic vocabularies (see Lachter & Bever, 
1988; Pinker & Prince, 1988, for detailed criticism). In the current 
context, Seidenberg and McClelland (1990) pointed out that the 
representations do not ad~uately capture phonemic structure. 
Specifically, the features of a phoneme are not bound with each 
other, but only with features of neighboring phonemes. As a result, 
the surrounding context can too easily introduce inappropriate 
features, producing many single-feature errors in nonword pro- 
nunciations (e.g., TIFE ~ / t l v / ) .  

Neither the specific training corpus nor the Wickelfeature 
representation are central to the SM89 general framework for 
lexical processing. If Seidenberg and McClelland (1990) are 
correct in suggesting that it is these aspects of  the simulation 
that are responsible for its poor nonword reading, their more 
general framework remains viable. On the other hand, the ac- 
tual performance of  an implementation is the main source, of  
evidence that SM89 put forward in support of their view of the 
reading system. As McCloskey ( 1991 ) has recently pointed out, 
it is notoriously difficult both to determine whether an imple- 
mentation's failings are due to fundamental or incidental prop- 
erties of its design, and to predict how changes to its design 
would affect its behavior. Thus, to support the SM89 connec- 
tionist framework as a viable alternative to rule-based, dual- 
route accounts, it is critical that we develop further simulations 
that account for the same range of findings as the original im- 
plementation and yet also pronounce nonwords as well as 
skilled readers do. In this article we present such simulations. 

Or thog raph i c  and  Phonologica l  Represen ta t ions  

Wickelfeatures and the Dispersion Problem 

For the purposes of supporting good nonword reading, the 
Wickelfeature phonological representation has a more funda- 

mental drawback. The problem stems from the general issue of 
how to represent structured objects, such as words composed of 
ordered strings of letters and phonemes, in connectionist net- 
works. Connectionist researchers would like their networks to 
have three properties (Hinton, 1990): 

1. All the knowledge in a network should be in connection weights 
between units. 

2. To support good generalization, the network's knowledge 
should capture the important regularities in the domain. 

3. For processing to be fast, the major constituents of an item 
should be processed in parallel. 

The problem is that these three properties are difficult to recon- 
cile with each other. 

Consider first the standard technique of using position-spe- 
cific units, sometimes called a slot-based representation (e.g., 
McClelland & Rumelhart, 1981 ). The first letter goes in the 
first slot, the second letter in the second slot, and so forth. Sim- 
ilarly for the output, the first phoneme goes in the first slot, and 
so on. With enough slots, words up to any desired length can be 
represented. 

This scheme satisfies Properties 1 and 3 above but at a cost to 
Property 2. That is, processing can be done in parallel across letters 
and phonemes using weighted connections, but at the cost of dis- 
persing the regularities of how letters and phonemes are related. 
The reason is that there must be a separate copy of each letter ( and 
phoneme) for each slot, and because the relevant knowledge is 
embedded in connections that are specific to these units, this 
knowledge must be replicated in the connections to and from each 
slot. To some extent this is useful in the domain of oral reading 
because the pronunciation of a letter may depend on whether it 
occurs at the beginning, middle, or end of  a word. However, the 
slot-based approach carries this to an extreme, with unfortunate 
consequences. Consider the words LOG, GLAD, and SPLIT. The fact 
that the letter L corresponds to the phoneme/1 / in  these words 
must be learned and stored three separate times in the system. 
There is no generalization of what is learned about letters in one 
position to the same letter in other positions. The problem can be 
alleviated to some degree by aligning the slots in various ways ( e.g., 
centered around the vowel; Daugherty & Seidenberg, 1992), but 
it is not eliminated completely (see Table 1 ). Adequate generaliza- 
tion still requires learning the regularities separately across several 
slots. 

An alternative scheme is to apply the network to a single letter 
at a time, as in Sejnowski and Rosenberg's (1987) NETtalk 
model. 3 Here, the same knowledge is applied to pronouncing a 
letter regardless of where it occurs in a word, and words of arbi- 
trary length can be processed. Unfortunately, Properties I and 2 
are now being traded offagalnst Property 3. Processing becomes 
slow and sequential, which may be satisfactory in many do- 
mains but not in word reading. Note that the common finding 

3 Bullinaria (1995) has recently developed a series of networks of this 
form that exhibit impressive performance in reading nonwords, al- 
though only very weak effects of word frequency. Coltheart et al. (1993) 
also took a sequential approach to solving the dispersion problem in 
that a correspondence learned from one position is applied to all posi- 
tions unless a different correspondence is learned elsewhere. 
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Table 1 
The Dispersion Problem 

Slot-based representations 

Left-justified Vowel-centered 

1 2 3 4 5 - 3  - 2  - 1  0 1 Context-sensitive triples ("Wickelgraphs") 

L O G S U 
G L A D S W A 
S P L I T S P L I 

N LOG: _LO LOG OG_ 
M GLAD: _GL GLA LAD AD_ 
T SPLIT: " __SP SPL PLI LIT IT_ 
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of small but significant effects of  word length on naming latency 
(e.g., Butler & Hains, 1979; Frederiksen & Kroll, 1976; Rich- 
ardson, 1976) does not imply that the computation from or- 
thography to phonology operates sequentially over letters; a par- 
allel implementation of this mapping may also exhibit small 
length effects (as will be demonstrated in Simulation 3 of  this 
article). 

The representations used by SM89 were an attempt to avoid 
the specific limitations of the slot-based approach, but in the 
end they turn out to have a version of  the same problem. Ele- 
ments such as letters and phonemes are represented, not in 
terms of  their absolute spatial position, or relative position 
within the word, but in terms of the adjacent elements to the 
left and right. This approach, which originated with Wickelgren 
(1969), makes the representation of  each element context sen- 
sitive without being rigidly tied to position. Unfortunately, how- 
ever, the knowledge of spelling-sound correspondences is still 
dispersed across a large number of  different contexts, and ade- 
quate generalization still requires that the training effectively 
cover them all. Returning to Table 1, one can see that although the 
words LOG, GLAD, and SPLIT share the correspondence L 
/1/, they have no triples of  letters in common. A similar prow 
erty holds in phonology among triples of  phonemes or phone- 
mic features. Thus, as in the slot-based approach, although the 
same correspondence is present in these three cases, different 
units are activated. As a result, the knowledge that is learned in 
one context--encoded as connection weights--does not apply 
in other contexts, which thus hinders generalization. 

Notice that the effect of  dispersing regularities is much like 
the effect of limiting the size of  the training corpus. The contri- 
bution that an element makes to the representation of  the word 
is specific to the context in which it occurs. As a result, the 
knowledge learned from one item is beneficial only to other 
items which share that specific context. When representations 
disperse the regularities in the domain, the number of  trained 
mappings that support a given pronunciation is effectively re- 
duced. As a result, generalization to novel stimuli, as in the pro- 
nunciation of nonwords, is based on less knowledge and suffers 
accordingly. In a way, Seidenberg and McClelland's (1990) two 
suggestions for improving their model's nonword reading per- 
formance--enlarge the training corpus and improve the repre- 
sen ta t ions -amount  to the same thing. Using improved repre- 
sentations that minimize the dispersion problem increases the 
effective size of  the training corpus for a given pronunciation. 

Condensing Spelling-Sound Regularities 
The hypothesis guiding the current work was the idea that the 

dispersion problem prevented the SM89 network from exploit- 

ing the structure of  the English spelling-to-sound system as fully 
as human readers do. We set out, therefore, to design represen- 
tations that minimize this dispersion. 

The limiting case of our approach would be to have a single set 
of letter units, one for each letter in the alphabet, and a single set 
of  phoneme units, one for each phoneme. Such a scheme satisfies 
all three of Hinton's ( 1990 ) desired properties: All of  the letters in 
a word map to all of  its phonemes simultaneously via weighted 
connections (and presumably hidden units), and the spelling- 
sound regularities are condensed because the same units and con- 
nections are involved whenever a particular letter or phoneme is 
present. Unfortunately, this approach has a fatal flaw:" It does not 
preserve the relative order of letters and phonemes. Thus, it cannot 
distinguish TOP from POT or SALT from SLAT. 

It turns out, however, that a scheme involving only a small 
amount of replieation is sufficient to provide a unique representa- 
tion of virtually every uninflected monosyllabic word. By defini- 
tion, a monosyllable contains only a single vowel, so only one set 
of vowel units is needed. A monosyllable may contain both an 
initial and a final consonant cluster, and almost every consonant 
can occur in either cluster, so separate sets of  consonant units are 
required for each of these clusters. The remarkable thing is that 
this is nearly all that is necessary. The reason is that within an 
initial or final consonant duster, there are strong phonotactic con- 
straints that arise in large part from the structure of the articula- 
tory system. At both ends of the syllable, each phoneme can occur 
only once, and the order of phonemes is strongly constrained. For 
example, if the p h o n e m e s / s / , / t / ,  a n d / r / a l l  occur in the onset 
cluster, they must be in that order; /s tr / .  Given this, all that is 
required to specify a pronunciation is which phonemes are present 
in each cluster--the phonotactic constraints uniquely determine 
the order in which these phonemes occur. 

The necessary phonotactic constraints can be expressed sim- 
ply by grouping phonemes into mutually exclusive sets and or- 
dering these sets from left to right in accordance with the left- 
to-right ordering constraints within consonant clusters. Once 
this is done, reading out a pronunciation involves simply con- 
catenating the phonemes that are active in sequence from left to 
right, including at most one phoneme per mutually exclusive set 
(see Table 2). 

There are a few cases in which two phonemes can occur in either 
order within a consonant cluster ( e . g . , / p / a n d / s / i n  CLASP and 
LAPSE). To handle such cases, it is necessary to add units to dis- 
ambiguate the order ( e.g., / ps/) .  The convention is that if / s / and  
/ p / a r e  both active, they are taken in that order unless t h e / p s /  
unit is active, in which case the order is reversed. To cover the 
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pronunciations in the SM89 corpus, only three such units are 
required: /ps/ ,  /ks/ ,  a n d / t s / .  Interestingly, these combina- 
tions are sometimes written with single letters (e.g., English x, 
German z )  and are closely related to other stop-fricative com- 
binations, such a s / C / ( / t S / )  a n d / j / ( / d Z / ) ,  that are typically 
considered to be single phonemes called affricates. In fact , / ts/  
is often treated as an affricate and, across languages, is among 
the most common (see Maddieson, 1984), and postvocalic/ps/ 
and /ks/behave similarly to affricates (Lass, 1984). 

This representational scheme applies almost as well to or- 
thography as it does to phonology because English is an alpha- 
betic language (i.e., parts of  the written form of a word corre- 
spond to parts of  its spoken form). However, the spelling units 
that correspond to phonemes are not necessarily single letters. 
Rather, they are what Venezky (1970) termed relational units, 
sometimes called graphemes, that can consist of from one to 
four letters (e.g., L, TH, TCH, EIGH). Because the spelling-sound 
regularities of English are primarily grapheme-phoneme cor- 
respondences, the regularities in the system are captured most 
elegantly if the orthographic units represent the graphemes 
present in the string rather than simply the letters that make up 
the word. 

Unfortunately, it is not always clear what graphemes are pres- 
ent in a word. Consider the word SHEPHERD. In this case, there 
is a P next to an H, so we might suppose that the word contains 
a PH grapheme, but in fact it does not; if it did it would be pro- 
nounced "she-ferd?' It is apparent that the input is ambiguous 
in such cases. Because of this, there is no simple procedure for 
translating letter strings into the correct sequence ofgraphemes. 
It is, however, completely straightforward to translate a letter 
sequence into a pattern of activity representing all possible 
graphemes in the string. Thus, whenever a multiletter grapheme 
is present, its components are also activated. This procedure is 

also consistent with the treatment o f / p s / , / k s / ,  a n d / t s / i n  
phonology. 

To this point, the orthographic and phonological representa- 
tions have been motivated purely by computational considera- 
tions: to condense spelling-sound regularities in order to im- 
prove generalization. Before turning to the simulations, how- 
ever, it is important to be clear about the empirical assumptions 
that are implicit in the use of  these representations. Certainly, a 
full account of reading behavior would have to include a speci- 
fication of how the representations themselves develop prior to 
and during the course of reading acquisition. Such a demon- 
stration is beyond the scope of the current work. In fact, unless 
we are to model everything from the eye to the mouth, we can- 
not avoid making assumptions about the reading system's in- 
puts and outputs, even though, in actuality, these are learned, 
internal representations. The best we can do is ensure that these 
representations are at least broadly consistent with the relevant 
developmental and behavioral data. 

The relevant assumptions about the phonological representa- 
tions are that they are segmental (i.e., they are composed of  
phonemes) and that they are strongly constrained by phonotac- 
tics. We presume that this phonological structure is learned, for 
the most part, prior to reading acquisition, on the basis of 
speech comprehension and production. This is not to deny that 
phonological representations may become further refined over 
the course of  reading acquisition, particularly under the influ- 
ence of  explicit phoneme-based instruction (see, e.g., Morais, 
Bertelson, Cary, & Alegria, 1986; Morals, Cary, Alegria, & Ber- 
telson, 1979). For simplicity, however, our modeling work uses 
fully developed phonological representations from the outset of 
training. 

Analogous assumptions apply with regard to the ortho- 
graphic representations. We assume that they are based on let- 

Table 2 
Phonological and Orthographic Representations Used in the Simulations 

onset 
vowel 
coda 

Phonology a 

sSC z Z j f v T D p b t d k g m n h  l rwy  
a e i o u @ A A E I O U W Y  
r 1 m n N  bgd psksts sz f v p k  t S Z T D C j  

onset 
vowel 
coda 

Orthography 

Y S P T  K Q C B D G F V  J Z L  M N R W  H CH G H G N  PH P S R H S H  T H T S W H  

E I O U A Y AI AU AW AY EA EE El EU EW EY 1E OA OE Ol OO OU OW OY UE UI UY 

H R L M N B D G C X F V J S Z P T K Q B B C H C K D D D G F F G G G H G N K S L L N G  
NN PH PP PS RR SH SL SS TCH TH TS TT ZZ U E ES ED 

Note. The notation for vowels is slightly different from that used by Seidenberg and McClelland (1989). 
Also, the representations differ slightly from those used by Plaut and McClelland (1993; Seidenberg, Plaut, 
Petersen, McClelland, & McRae, 1994). In particular,/C/and/j/have been added for/tS/and/dZ/, the 
ordering of phonemes is somewhat different, the mutually exclusive phoneme sets have been added, and the 
consonantal graphemes u, GU, and Qu have been eliminated. These changes capture the relevant phonotac- 
tic constraints better and simplify the encoding procedure for converting letter strings into activity patterns 
over grapheme units. 
"/a/in POT,/@/in CAT,/e/in BED, /i/in HIT, /0/in DOG, /u/in GOOD,/A/in MAKE,/E/in KEEP, /I/ in 
BIKE,/O/in HOPE,/U/in BOOT,/W/in NOW,/Y/in BOY,/A/in COP,/N/in RING,/S/in SHE,/C/in CHIN 
/Z/in BEIGE,/T/in THIN,/D[ in THIS. All other phonemes are represented in the conventional way (e.g., 
/b/in BAT). The groupings indicate sets of mutually exclusive phonemes. 
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ters and letter combinations and that the ordering of these obeys 
graphotactic constraints (although in English such constraints 
are generally weaker than those in phonology). Although these 
properties are not particularly controversial per se, ortho- 
graphic representations must develop concurrently with read- 
ing acquisition. Thus, the use of fully articulated orthographic 
representations from the outset of reading acquisition is cer- 
tainly suspect. 

Again, a complete account of how orthographic representa- 
tions develop from more primitive visual representations is be- 
yond the scope of the current work. Here we provide only a gen- 
eral characterization of such an account. We suppose that chil- 
dren first learn visual representations for individual letters, 
perhaps much like those of other visual objects. In learning to 
read, they are exposed to words that consist of these familiar 
letters in various combinations. Explicit representations grad- 
ually develop for letter combinations that occur often or have 
unusual consequences (see Mozer, 1990). In the context of oral 
reading, many of these combinations are precisely those whose 
pronunciations are not predicted by their components (e.g., TH, 
PH), corresponding to Venezky's (1970) relational units. Of 
course, explicit representations may develop for other, regularly 
pronounced letter combinations. In the limit, the orthographic 
representation might contain all the letter combinations that 
occur in the language. Expanding our orthographic representa- 
tion with multiletter units for all of these additional combina- 
tions would have little consequence because there would be little 
pressure for the network to learn anything about them, given 
that the correspondences of their components are already 
learned. In this way, the particular set of multiletter graphemes 
we use can be viewed as an efficient simplification of a more 
general orthographic representation that would be expected to 
develop through exposure to letter combinations in words. 

To be dear, we do not claim that the orthographic and phonolog- 
ical representations we use are fully ~-naeml. Some of their idiosyn- 
crasies stem from the fact that their design took into account spe- 
cific aspects of the SM89 corpus. Nonetheless, we do claim that the 
principles on which the representations were derived--in particu- 
lar, the use ofphonotactic and graphotactic constraints to condense 
spelling-sound regularities--are g~neral. 

S imula t ion  1: Feedforward Network 

The first simulation was intended to test the hypothesis that 
the use of representations that condensed the regularities be- 
tween orthography and phonology would improve the nonword 
reading performance of a network trained on the SM89 corpus 
of monosyllabic words. Specifically, the issue is whether a single 
mechanism, in the form of a connectionist network, can learn 
to read a reasonably large corpus of words, including many ex- 
ception words, and yet also read pronounceable nonwords as 
well as skilled readers. If such a network can be developed, it 
would undermine the claims of dual-route theorists that skilled 
word reading requires the separation of lexical and sublexical 
procedures for mapping print to sound. 

M e t h o d  

Network architecture. The architecture of the network, shown in 
Figure 3, consisted of three layers of units. The input layer of the net- 

work contained 105 grapheme units, one for each grapheme in Table 2. 
Similarly, the output layer contained 61 phoneme units. Between these 
two layers was an intermediate layer of 100 hidden units. Each unit j  
had a real-valued activity level or state, sj, that ranged between 0 and 1 
and was a smooth, nonlinear (logistic) function, tr(. ), of the unit's total 
input, xj. 

xj= ~ &w#+bj (1) 
i 

and 

1 
sj = ~(xj) 1 + exp (-xj) ' (2) 

where wij is the weight from unit i to unit j, bj is the real-valued bias of 
unit j, and exp(. ) is the exponential function. 

Each hidden unit received a connection from each grapheme unit 
and in turn sent a connection to each phoneme unit. In contrast to the 
Seidenberg and McClelland (1989) network, the grapheme units did 
not receive connections back from the hidden units. Thus, the network 
mapped only from orthography to phonology, not also from orthogra- 
phy to orthography (also see Phillips, Hay, & Smith, 1993). Weights on 
connections were initialized to small, random values, uniformly distrib- 
uted between +0.1. The bias terms for the hidden and phoneme units 
can be thought of as the weight on an additional connection from a unit 
whose state was always 1.0 (and so could be learned in the same way as 
other connection weights). Including biases, the network had a total of 
17,061 connections. 

Training procedure. The training corpus consisted of the 2,897 
monosyllabic words in the SM89 corpus, augmented by 101 monosyl- 
labic words missing from that corpus but used as word stimuli in various 
empirical studies, for a total of 2,998 words. 4 Among these were 13 sets 
of homographs (e.g., READ ~ / r E d / a n d  READ :=*/red/)--for these, 
both pronunciations were included in the corpus. Most of the words 
were uninflected, although there were a few inflected forms that had 
been used in some empirical studies (e.g., ROLLED, DAYS). Although 
the orthographic and phonological representations are not intended to 
handle inflected monosyllables, they happen to be capable of represent- 
ing those in the training corpus, and so these were left in. It should be 
kept in mind, however, that the network's exposure to inflected forms 
was extremely impoverished relative to that of skilled readers. 

A letter string was presented to the network by clamping the states of 
the grapheme units representing graphemes contained in the string to 
l, and the states of all other grapheme units to 0. In processing the input, 
hidden units computed their states based on those of the grapheme units 
and the weights on connections from them (according to Equations 1 
and 2), and then phoneme units computed their states based on those 
of the hidden units. The resulting pattern of activity over the phoneme 
units represented the network's pronunciation oftbe input letter string. 

After each word was processed by the network during training, back- 
propagation (Rumelhart et al., 1986a, 1986b) was used to calculate 
how to change the connection weights so as to reduce the discrepancy 
between the pattern of phoneme activity generated by the network and 
the correct pattern for the word (i.e., the derivative of the error with 
respect to each weight). A standard measure of this discrepancy, and 
the one used by SM89, is the summed squared error, E, between the 
generated and correct output (phoneme) states: 

* The Plaut and McClelland ( 1993; Seidenberg et al., 1994) network 
was also trained on 103 isolated GPCs, as an approximation to the ex- 
plicit instruction many children receive in learning to read. These cor- 
respondences were not included in the training of any of the networks 
reported in this article. 
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. 1 O0 hidden units ) 

, 105 grapheme units ) 

Figure 3. The architecture of the feedforward network. Ovals repre- 
sent groups of units, and arrows represent complete connectivity from 
one group to another. 

E = ~, (si - ti) 2, (3) 
i 

where s~ is the state of phoneme unit i and t~ is its correct (target) value. 
However, in the new representation of phonology, each unit can be in- 
terpreted as an independent hypothesis that a particular phoneme is 
present in the output pronunciation. 5 In this case, a more appropriate 
error measure is the cross-entrop£ C,  between the generated and correct 
activity patterns (see Hinton, 1989; Rumelhart, Durbin, Golden, & 
Chauvin, 1995), which is also termed the asymmetr ic  divergence or the 
Kullback-Leibler distance (KuUback  & Leibler, 1951 ): 

C = - Z t~ log2(si ) + ( l - tt) log:( l - s, ). (4) 
i 

Notice that the contribution to cross-entropy of a given unit i is simply 
-log2(sl) if its target is 1 and -Iog2(l - &) if its target is 0. From a 
practical point of view, cross-entropy has an advantage over summed 
squared error when it comes to correcting output units that are com- 
pletely incorrect (i.e., on the opposite fiat portion of the logistic 
function). This is a particular concern in tasks in which output units 
are offfor most inputs---the network can eliminate almost all of its error 
on the task by turning all of the output units off regardless of the input, 
including those few that should be on for this input. The problem is that 
when a unit's state falls on a flat portion of the logistic function, very 
large weight changes are required to change its state substantially. As a 
unit's state diverges from its target, the change in cross-entropy increases 
much faster than the change in summed squared error (exponentially 
vs. linearly) so that cross-entropy is better able to generate sufficiently 
large weight changes. 6 

During training, we also gave weights a slight tendency to decay to- 
ward zero by augmenting the cross-entropy error function with a term 
proportional (with a constant of 0.0001 in the current simulation) to 
the sum of the squares of each weight, Et<j w~. Although not critical, 
weight decay tends to aid generalization by constraining weights to grow 
only to the extent that they are needed to reduce the error on the task 
(Hinton, 1989). 

In the SM89 simulation, the probability that a word was presented to 
the network for training during an epoch was a logarithmic function of 
its written frequency (Kuqera & Francis, 1967). In the current simula- 
tion, we used the same compressed frequency values instead to scale 
the error derivatives calculated by back-propagation. This manipulation 
had essentially the same effect: More frequent words had a stronger im- 
pact than less frequent words on the knowledge learned by the system. 
In fact, using frequencies in this manner is exactly equivalent to updat- 
ing the weights after each sweep through an expanded training corpus 
in which the number of times a word is presented is proportional to 
its (compressed) frequency. The nowprocedure was adopted for two 
reasons. First, by presenting the entire training corpus every epoch, 
learning rates on each connection could be adapted independently 

(Jacobs, 1988; but see Sutton, 1992, for a recently developed on-line 
version). 7 Second, by implementing frequencies with multiplication 
rather than sampling, we could use any range of frequencies; later we 
will investigate the effects of using the actual Ku~era and Francis (1967) 
frequencies in simulations. SM89 was constrained to use a logarithmic 
compression because less severe compressions would have meant that 
the lowest frequency words might never have been presented to their 
network. 

The actual weight changes administered at the end of an epoch were 
a combination of the accumulated frequency-weighted error derivatives 
and a proportion of the previous weight changes: 

/ 0C  "t 11 \ Aw~] = ~ ~ U / - -  + aawg-  / ,  (5) 
\ Ow~j / 

where t is the epoch number, ~ is the global learning rate (0.001 in the 
current simulation), ~# is the connection-specific learning rate, C is the 
cross-entropy error function with weight decay, and a is the contribution 
of past weight changes, sometimes termed momen tum (0.9 after the first 
10 epochs in the current simulation). We introduced momentum only 
after the first few initial epochs to avoid magnifying the effects of the 
initial weight gradients, which were very large because, for each word, 
any activity of all but a few phoneme units---those that should be ac- 
t ive-produced a large amount oferror (Plaut & Hinton, 1987 ). 

Testingprocedure. The network, as described above, learned to take 
activity patterns over the grapheme units and produce corresponding 
activity patterns over the phoneme units. The behavior of human read- 
ers, however, is better described in terms of producing phoneme strings 
in response to letter strings. Accordingly, for a direct comparison of the 
network's behavior with that of human readers, we needed one proce- 
dure for encoding letter strings as activity patterns over the grapheme 
units and another procedure for decoding activity patterns over the pho- 
neme units into phoneme strings. 

The encoding procedure we used was the same one that generated the 
input to the network for each word in the training corpus. To convert a 
letter string into an activity pattern over the grapheme units, the string is 
parsed into onset consonant cluster, vowel, and final (coda) consonant 
cluster. This involved simply locating in the string the leftmost contigu- 
ous block composed of the letters A, E, I, O, U, or (non-initial) Y. This 
block of letters was encoded using vowel graphemes listed in Table 2 - -  
any grapheme contained in the vowel substring was activated; all others 
were left inactive. The substrings to the right and left of the vowel 
substring were encoded similarly using the onset and coda consonant 

This is not precisely true because the procedure for determining the 
pronunciation based on phoneme unit activities, soon to be described, 
does not consider these units independently, and their states are not 
determined independently but are based on the same set of hidden unit 
states. Nonetheless, the approximation is sufficient to make cross-en- 
tropy a more appropriate error measure than summed squared error. 

The derivative of cross-entropy with respect to an output unit 's total 
input is simply the difference between the unit's state and its target: 

OC aC dsj ( l - tj tj) 
Oxj Os2 dx  j \ ~ -  sj - ~ sj( l - sj) = sj - tj. 

7 The procedure for adjusting the connection-specific learning rates, 
called delta-bar-delta (Jacobs, 1988), works as follows. Each connec- 
tion's learning rate is initialized to 1.0. At the end of each epoch, the 
error derivative for that connection calculated by back-propagation is 
compared with its previous weight change. If they are both in the same 
direction (i.e., have the same sign), the connection's learning rate is 
incremented (by 0.1 in the current simulation); otherwise, it is de- 
creased multiplicatively (by 0.9 in the current simulation). 
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graphemes, respectively. For example, the word SCHOOL activated the 
onset units s, c, H, and CH, the vowel units o and oo, and the coda unit 
L. Notice that in words like GUEST, QUEEN, and SUEDE, the u is parsed 
as a vowel although it functions as a consonant (cf. GUST, QUEUE, and 
SUE; Venezky, 1970). This is much like the issue with PH in SHEP- 
HERD---such ambiguity was left for the network to cope with. The anal- 
ogous encoding procedure for phonemes used to generate the training 
patterns for words was even simpler because monosyllabic pronuncia- 
tions must contain exactly one vowel. 

The decoding procedure for producing pronunciations from pho- 
neme activities generated by the network was likewise straightforward. 
As shown in Table 2, phonemes are grouped into mutually exclusive 
sets, and these sets are ordered left to right (and top to bottom in the 
table). This grouping and ordering encode the phonotactic constraints 
that are necessary to disambiguate pronunciations. The response of the 
network was simply the ordered concatenation of all active phonemes 
(i.e., with state above 0.5) that were the most active in their set. There 
were only two exceptions to this rule. The first was that, because mono- 
syllabic pronunciations must contain a vowel, the most active vowel was 
included in the network's response regardless of its activity level. The 
second exception relates to the affricate-like units/ps/,/ks/,  and/ts/. 
As described earlier, if one of these units was active along with its com- 
ponents, the order of those components in the response was reversed. 

The simplicity of these encoding and decoding procedures is a sig- 
nificant advantage of the current representations over those used by 
SM89. In the latter case, reconstructing a unique string of phonemes 
corresponding to a pattern of activity over triples of phonemic features 
is exceedingly difficult, and sometimes impossible (also see Mozer, 
1991; Rumelhart & McClelland, 1986). In fact, SM89 did not confront 
this problem--rather, they simply selected the best among a set of al- 
ternative pronunciations on the basis of their error scores. In a sense, 
the SM89 model does not produce explicit pronunciations; it enables 
another procedure to select among alternatives. In contrast, the current 
decoding procedure does not require externally generated alternatives; 
every possible pattern of activity over the phoneme units corresponds 
directly and unambiguously to a particular string of phonemes. None- 
theless, it should be kept in mind that the encoding and decoding pro- 
cedures are external to the network and, hence, constitute additional 
assumptions about the nature of the knowledge and processing involved 
in skilled reading, as discussed earlier. 

Results 

Word reading. After 300 epochs of training, the network 
correctly pronounced all of the 2,972 nonhomographic words 
in the training corpus. For each of the 13 homographs, the net- 
work produced one of the correct pronunciations, although typ- 
ically the competing phonemes for the alternatives were about 
equally active. For example, the network pronounced LEAD as 
/ lEd/ ;  the activation of the /E /was  0.56, whereas the activation 
of /e /was  0.44. These differences reflect the relative consistency 
of the alternatives with the pronunciations of other words. 

Given the nature of the network, this level of performance on 
the training corpus is optimal. Because the network is determin- 
istic, it always produces the same output for a given input. Thus, 
in fact, it is impossible for the network to learn to produce both 
pronunciations of any of the homographs. Note that this deter- 
minacy is not an intrinsic limitation ofconnectionist networks 
(see, e.g., Movellan & McClelland, 1993 ). It merely reflects the 
fact that the general principle of intrinsic variability was not 
included in the present simulation for practical reasons--to 
keep the computational demands of the simulation reasonable. 

For the present purposes, the important finding is that the 

trained network reads both regular and exception words cor- 
rectly. We were also interested in how well the network repli- 
cates the effects of frequency and consistency on naming la- 
tency. However, we will return to this issue after we consider the 
more pressing issue of the network's performance in reading 
nonwords. 

Nonword reading. We tested the network on three lists of 
nonwords from two empirical studies. The first two lists came 
from an experiment by Glushko (1979), in which he compared 
subjects, reading of 43 nonwords derived from regular words 
(e.g., HEAN from DEAN) with their reading of 43 nonwords de- 
rived from exception words (e.g., HEAF from DEAF). Although 
Glushko originally termed these regular nonwords and excep- 
tion nonwords, respectively, they are more appropriately char- 
acterized in terms of whether their body neighborhood is con- 
sistent or not, and hence we will refer to them as consistent or 
inconsistent nonwords. The third nonword list came from a 
study by McCann and Besner (1987) in which they compared 
performance on a set of 80 pseudohomophones (e.g., BRANE) 
with a set of 80 control nonwords (e.g., FRANE). We used only 
their control nonwords in the present investigation because we 
believe pseudohomophone effects are mediated by aspects of the 
reading system, such as semantics and the articulatory system, 
that were not implemented in our simulation (see the General 
Discussion). 

As nonwords are, by definition, novel stimuli, exactly what 
constitutes the "correct" pronunciation of a nonword is a 
matter of considerable debate (see, e.g., Masterson, 1985; 
Seidenberg et al., 1994). The complexity of this issue will be- 
come apparent momentarily. For the purposes of an initial com- 
parison, we considered the pronunciation of a nonword to be 
correct if it was regular, as defined by adhering to the GPC rules 
outlined by Venezky (1970). 

Table 3 presents the correct performance of skilled readers 
reported by Glushko (1979) and by McCann and Besner 
(1987) on their nonword lists and the corresponding perfor- 
mance of the network. Table 4 lists the errors made by the net- 
work on these lists. 

First consider Glushko's (1979) consistent nonwords. The 
network made only a single minor mistake on these items, just 
failing to introduce the t r ans i t i ona l /y / in  MUNE. In fact, this 
inclusion varies across dialects of English (e.g., DUNE = * / d U n /  
vs . / dyUn/ ) .  In the training corpus, the four words ending in 
--UNE (DUNE, JUNE, PRUNE, TUNE) are all coded without the 
/ y / .  In any case, overall both the network and human readers 
have no difficulty on these relatively easy nonwords. 

The situation is rather different for the inconsistent non- 
words. Both the network and the human readers produced non- 

Table 3 
Percentages of Regular Pronunciations of Nonwords 

Glushko (1979) 
McCann and Besner (1987) 

Consistent Inconsistent 
Reader nonwords nonwords Control nonwords 

Humans 93.8 78.3 88.6 
Network 97.7 72.1 85.0 
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Table 4 
Errors by the Feedforward Network in Pronouncing Nonwords 

Glushko(1979) McCann and Besner (1987) 

Nonword Correct Response Nonword Correct Response 

Consistent Nonwords ( 1/43) Control Nonwords (12/80) 
MUNE /myUn/ /m(y 0.43)Un/ *PHOYCE /fYs/ /(f0.42)Y(s 0.00)/ 

Inconsistent Nonwords (12/43) *TOLPH /toll'/ /tOl(f 0.12)/ 
BILD /bild/ /blld *ZUPE /zUp/ /zyOp/ 
BOST /bost/ /bOst/ SNOCKS /snaks/ /snask(ks 0.31)/ 
COSE /kOz/ /kOs/ *LOKES /lOks/ /1Osk(ks 0.02)/ 
GROOK /grUk/ /gruk/ *YOWND /yWnd/ /(y 0.47)and/ 
tOME /IOm/ /1/Xm/ KOWT /kWt/ /kOt/ 
NONE /mOn/ /mAn/ FAIJE /fAj/ /fA0 0.00)/ 
PILD /pild/ /plid/ *ZUTE /zUt/ /zyUt/ 
PLOVE /plOv/ /pl/Xv/ *VEEZE /vEz/ (v 0.40)Ez/ 
POOT /pUt/ /put/ *PRAX /pr@ks/ /pr@sk(ks 0.33)/ 
SOOD /sUd/ /sud/ JINJE /jinj/ /jln(j 0.00)/ 
SOST /sost/ /smst/ 
WEAD /wEd/ /wed/ 

Note. /a/in IOT,/@/in CAT, /el in BED, / i / in  HIT, 101 in DOG, /u/ in  GOOD,/A/in MAKE,/El in KEEP, / I / in  BIKE, /O/in HOPE,/U/in Boor, 
/W/in NOW,/Y/in BOY,/A/in CUP,/N/in RING,/S/in SHE,/C/in CHIN,/Z/in BEIGE,/T/in THIN,/D/in THIS. The activity levels of correct but 
missing phonemes are listed in parentheses. In these cases, the actual response is what falls outside the parentheses. Words marked with "*" remain 
errors after properties of the training corpus are considered (as explained in the text). 

regular pronunciations for a significant subset of these items, 
with the network being slightly more prone to do so. However, a 
closer examination of the responses in these cases reveals why. 
Consider the nonword GROOK. The grapheme oo  most fre- 
quently corresponds t o / U / ,  as in BOOT, and so the correct 
(regular) pronunciation of GROOK is /grUk/ .  However, the 
body _OOK is almost always pronounced/u / ,  as in TOOK. The 
only exception to this among the 12 words ending in _OOK in 
the training corpus is SPOOK ~ /spUk/ .  This suggests that 
/gruk/should be the correct pronunciation. 

Actually, the issue of whether the network's pronunciation is 
correct or not is less relevant than the issue of whether the net- 
work behaves similarly to human readers. In fact, both the hu- 
man readers and the network were sensitive to the context in 
which vowels occur, as is evidenced by their much greater ten- 
dency to produce irregular pronunciations for inconsistent 
nonwords compared with consistent nonwords. Glushko 
(1979) found that 80% of readers' irregular responses to incon- 
sistent nonwords were consistent with some other pronuncia- 
tion of the nonword's body in the Ku~era and Francis (1967) 
corpus, which left only 4. 1% of all responses as actual errors. In 
the network, all of the irregular responses to inconsistent non- 
words matched some other pronunciation in the training corpus 
for the same body, with half of these being the most frequent 
pronunciation of the body. None of the network's responses to 
inconsistent nonwords were actual errors. Overall, the network 
performed as well if not slightly better than skilled readers on 
the Glushko nonword lists. Appendix B lists all of the pronun- 
ciations accepted as correct for each of the Glushko nonwords. 

Both the human readers and the network found McCann and 
Besner's (1987) control nonwords more ditficult to pronounce, 
which is not surprising because the list contains a number of 
orthographically unusual nonwords (e.g., JINJE, VAWX ). Over- 
all, the network's performance was slightly worse than that of 
the human readers. However, many of the network's errors can 

be understood in terms of specific properties of the training cor- 
pus and network design. First, although there is no word in the 
training corpus with the body _OWT, medial ow is often pro- 
nounced /O/ ( e .g . ,  BOWL ~ /bO1/) and so KOWT ~ /kOt /  
should be considered a reasonable response. Second, two of the 
errors were on inflected forms, SNOCKS and LORES, and as pre- 
viously acknowledged, the network had minimal experience 
with inflections and was not designed to apply to them. Finally, 
there are no instances in the training corpus of words contain- 
ing the grapheme J in the coda, and so the network could not 
possibly have learned to map it t o / j  / in phonology. In a way, for 
a nonword like JINJE, the effective input to the network is JINE, 
to which the network's r e s p o n s e / j l n / i s  correct. This also ap- 
plies to the nonword FAIJE. Excluding these and the inflected 
forms from the scoring, and considering KOWT ~ / kOt /cor -  
rect, the network performed correctly on 69/76 (90.8%) of the 
remaining control nonwords, which is slightly better than the 
human readers. Most of the remaining errors of the network 
involved correspondences that were infrequent or variable in 
the training corpus (e.g., PH ~ / f / ,  u =* /yU/ ) .  

It must be acknowledged that the failure of the model on in- 
flected forms and on those with J in the coda are real shortcom- 
ings that would have to be addressed in a completely adequate 
account of word reading. Our purpose in separating out these 
items in the  above analysis simply acknowledges that the 
model's limitations are easily understood in terms of specific 
properties of the training corpus. 

Is it a dual-route model? One possibility, consistent with 
dual-route theories, is that, over the course of learning the net- 
work partitioned itself into two subnetworks, one that reads reg- 
ular words and another that reads exception words. If this were 
the case, some hidden units would contribute to exception 
words but not to nonwords, whereas others would contribute to 
nonwords but not to exception words. To test this possibility, we 
measured the contribution a hidden unit makes to pronouncing 
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Figure 4. The numbers of exception words and nonwords (n = 48 for 
each, listed in Appendix A) to which each hidden unit makes a signifi- 
cant contribution, as indicated by an increase in cross-entropy error of 
at least 0.2 when the unit is removed from the network. Each circle 
represents one or more hidden units, and the size of the circle is propor- 
tional to the number of hidden units making significant contributions 
to the indicated numbers of exception words and nonwords. 

a letter string by the amount of  increase in cross-entropy error 
when the unit is removed from the network. If the network had 
partitioned itself, there would be a negative correlation across 
hidden units between the number of  exception words and the 
number of  nonwords to which each hidden unit makes a sub- 
stantial contribution (defined as greater than 0.2). In fact, for 
the Taraban and McClelland (1987) exception words and a set 
of  orthographically matched nonwords (listed in Appendix A),  
there was a moderate positive correlation between the numbers 
of  exception words and nonwords to which hidden units con- 020 
tributed, r = .25, t (98)  = 2.59, p = .011 (see Figure 4). Thus, 
some units were more important  for the overall task and some 
were less important, but the network had not partitioned itself 
into one system that learned the rules and another system that 0.15 
learned the exceptions. 

Frequency and consistency effects. It is important to verify .~ 
that in addition to producing good nonword reading, the new ,- = 

model replicates the basic effects of frequency and consistency m 0.10 
in naming latency. Like the SM89 network, the current network 
takes the same amount of  time to compute the pronunciation 
of any letter string. Hence, we must also resort to using an error 0.05 
score as an analogue of  naming latency. In particular, we used 
the cross-entropy between the network's generated pronuncia- 
tion of  a word and its correct pronunciation, because this is the 
measure that the network was trained to minimize. Later we 0.0o 
examine the effects of frequency and consistency directly in the 
settling time of an equivalently trained recurrent network when 
pronouncing various types of  words. 

Figure 5 shows the mean cross-entropy error of  the network 
in pronouncing words of varying degrees of  spelling-sound con- 

sistency as a function of  frequency. Overall, high-frequency 
words produced less error than low-frequency words, F (  1, 184) 
= 17.1, p < .001. However, frequency interacted significantly 
with consistency, F (  3, 184 ) = 5.65, p = .001. Post hoe compar- 
isons within each word type separately revealed that the effect 
of  frequency reached significance at the .05 level only for excep- 
tion words (although the effect for regular inconsistent words 
was significant at .053). The effect of  frequency among all reg- 
ular words (consistent and inconsistent)just failed to reach sig- 
nificance, F (  1, 94) = 3.14,p = .08. 

There was also a main effect of  consistency in the error made 
by the network in pronouncing words, F(3 ,  184) = 24.1, p < 
.001. Furthermore, collapsed across frequency, all post hoc 
pairwise comparisons of word types were significant. Specifi- 
cally, regular consistent words produced less error than regular 
inconsistent words, which in turn produced less error than am- 
biguous words, which in turn produced less error than excep- 
tion words. Interestingly, the effect of  consistency was signifi- 
cant when only high-frequency words are considered, F(3 ,  92) 
= 12.3, p < .001. All pairwise comparisons were also significant 
except between exception words and ambiguous words. This 
contrasts with the performance of  normal human readers, who 
typically show little or no effect of  consistency among high-fre- 
quency words (e.g., Seidenberg, 1985; Seidenberg et al., 1984). 

Summary 

A feedforward connectionist network, which used ortho- 
graphic and phonological representations that condense the reg- 
ularities between these domains, was trained on an extended 
version of the SM89 corpus of  monosyllabic words. After train- 
ing, the network read regular and exception words flawlessly 
and yet also read pronounceable nonwords (Glushko, 1979; 
McCann & Besner, 1987) essentially as well as skilled readers. 
Minor discrepancies in performance could be ascribed to 
nonessential aspects of the simulation. Critically, the network 

iO___O Exceptio ~ [12----El Ambiguous I0-----0 Regular Inconsistent ~ s t s t ~ t  

ZX A 

Low High 
Frequency 

Figure 5. Mean cross-entropy error produced by the feedforward net- 
work for words with various degrees of spelling-sound consistency 
(listed in Appendix A) as a function of frequency. 
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did not segregate itself over the course of training into separate 
mechanisms for pronouncing exception words and nonwords. 
Thus, the performance of  the network directly refutes the 
claims of dual-route theorists that skilled word reading requires 
the separation of lexical and sublexical procedures for mapping 
print to sound. 

Furthermore, the error produced by the network on various 
types of words, as measured by the cross-entropy between the 
generated and correct pronunciations, replicates the standard 
findings of frequency, consistency, and their interaction in the 
naming latencies of human readers (Andrews, 1982; Seiden- 
berg, 1985; Seidenberg et al., 1984; Taraban & McClelland, 
1987; Waters & Seidenberg, 1985). A notable exception, how- 
ever, is that, unlike human readers and the SM89 network, the 
current network exhibited a significant effect of  consistency 
among high-frequency words. 

Analytic Account  o f  Frequency and Consistency Effects 

The empirical finding that naming latencies for exception 
words are slower and far more sensitive to frequency than those 
for regular words has often been interpreted as requiring ex- 
plicit lexical representations and grapheme-phoneme corre- 
spondence rules. By recasting regularity effects in terms of spell- 
ing-sound consistency (Glushko, 1979; Jared et al., 1990), the 
SM89 network and the one presented in the previous section 
reproduce the empirical phenomena without these properties. 
What, then, are the properties of these networks (and of the 
human language system, by our account) that give rise to the 
observed pattern of  frequency and consistency effects? 

The relevant empirical pattern of  results can be described in 
the following way. In general, high-frequency words are named 
faster than low-frequency words, and words with greater spell- 
ing-sound consistency are named faster than words with less 
consistency. However, the effect of frequency diminishes as con- 
sistency is increased, and the effect of consistency diminishes as 
frequency is increased. A natural interpretation of  this pattern 
is that frequency and consistency contribute independently to 
naming latency but that the system as a whole is subject to what 
might be termed a gradual ceiling effect: The magnitude of in- 
crements in performance decreases as performance improves. 
Thus, if either the frequency or the consistency of a set of words 
is sufficiently high on its own to produce fast naming latencies, 
increasing the other factor will yield little further improvement. 

A close analysis of the operation of connectionist networks re- 
veals that these effects are a direct consequence of properties of the 
processing and learning in these networks---specifically, the prin- 
ciples of nonlinearity, adaptivity, and distributed representations 
and knowledge referred to earlier. In a connectionist network, the 
weight changes induced by a word during training serve to reduce 
the error on that word (and hence, by definition, its naming 
latency). The frequency of a word is reflected in how often it is 
presented to the network (or, as in the previous simulation, in the 
explicit scaling of the weight changes it induces). Thus, word fre- 
quency directly amplifies weight changes that are helpful to the 
word itself. 

The consistency of the spelling-sound correspondences of two 
words is reflected in the similarity of the orthographic and phono- 
logical units that they activate. Furthermore, two words will in- 

duce similar weight changes to the extent that they activate similar 
units. Given that the weight changes induced by a word are super- 
imposed on the weight changes for all other words, a word will 
tend to be helped by the weight changes for words whose spelling- 
sound correspondences are consistent with its own (and, con- 
versely, hindered by the weight changes for inconsistent words). 
Thus, frequency and consistency effects contribute independently 
to naming latency because they both arise from similar weight 
changes that are simply added together during training. 

Over the course of training, the magnitudes of the weights in the 
network increase in proportion to the accumulated weight 
changes. These weight changes result in corresponding increases 
in the summed input to output units that should be active, and 
decreases in the summed input to units that should be inactive. 
However, because of the nonlinearity of the input-output function 
of units, these changes do not translate directly into proportional 
reductions in error. Rather, as the magnitude of the summed in- 
puts to output units increases, their states gradually asymptote 
toward 0 or 1. As a result, a given increase in the summed input to 
a unit yields progressively smaller decrements in error over the 
course of training. Thus, although frequency and consistency each 
contribute to the weights, and hence to the summed input to units, 
their effect on error is subjected to a gradual ceiling effect as unit 
states are driven toward extremal values. 

T h e  F r e q u e n c y - C o n s i s t e n c y  E q u a t i o n  

To see the effects of frequency and consistency in connection- 
ist networks more directly, it will help to consider a network that 
embodies some of the same general principles as the SM89 and 
feedforward networks but that is simple enough to permit a 
closed-form analysis (following Anderson, Silverstein, Ritz, & 
Jones, 1977; also see Stone, 1986). In particular, consider a 
nonlinear network without hidden units and trained with a cor- 
relational (Hebbian) rather than an error-correcting learning 
rule (see Figure 6). Such a network is a specific instantiation 
of Van Orden et al.'s (1990) covariant learning hypothesis. To 
simplify the presentation, we will assume that input patterns are 
composed of 1 s and 0s, output patterns are specified in terms of 
+ 1 s and - 1 s, connection weights are all initialized to zero, and 
units have no bias terms. We will derive an equation that ex- 
presses in concise form the effects of frequency and consistency 
on the response of this network to any given input. 

A learning trial involves setting the states of the input units 
to the input pattern (e.g., orthography) for a word, setting the 
output units to the desired output pattern (e.g., phonology) for 
the word, and adjusting the weight from each input unit to each 
output unit according to 

Awij = ~sisj, (6) 

where ~ is a learning rate constant, sl is the state of input unit i, 
sj is the state of  output unit j ,  and w o is the weight on the con- 
nection between them. After each input-output training pat- 
tern is presented once in this manner, the value of each connec- 
tion weight is simply the sum of the weight changes for each 
individual pattern: 

wij = ~ ~, slPlstPl, j , (7) 
P 

where p indexes individual training patterns. 
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Figure 6. A simple network for analyzing frequency and consistency 
effects and the sigmoidal input-output function of its units. 

After training, the network's performance on a given test pat- 
tern is determined by setting the states of the input units to the 
appropriate input pattern and having the network compute the 
states of the output units. In this computation, the state of each 
output unit is assumed to be a nonlinear, monotonically in- 
creasing function of  the sum, over input units, of the state of the 
input unit times the weight on the connection from it: 

st/= ~(X s!']wo), (8) 
i 

where t is the test pattern and a(.)  is the nonlinear input-uni t  
function. An example of  such a function, the standard logistic 
function commonly used in connectionist networks, is shown 
in Figure 6. The input-output  function of  the output units need 
not be this particular function, but it must have certain of  its 
properties: It must vary monotonically with input, and it must 
approach its extreme values (here, _+ 1 ) at a diminishing rate 
as the magnitude of  the summed input increases (positively or 
negatively). We call such functions sigmoid functions. 

We can substitute the derived expression for each weight w o 
from Equation 7 into Equation 8, and pull the constant term 
out of the summation over i to obtain 

s}'] = ~(, Z s!'] Z s!'ls~']). (9) 
i p 

This equation indicates that the activation of each output unit 
reflects a sigmoid function of the learning rate constant ~ times 
a sum of terms, each consisting of  the activation of one of  the 
input units in the test pattern times the sum, over all training 
patterns, of the activation of the input unit times the activation 
of  the output unit. In our present formulation, where the input 
unit 's activation is 0 or 1, this sum reflects the extent to which 
the output unit 's activation tends to be equal to 1 when the in- 
put unit 's activation is equal to 1. Specifically, it will be exactly 
equal to the number of  times the output unit is equal to 1 when 
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the input unit is equal to 1, minus the number of  times the 
output unit is equal to - 1  when the input unit is equal to I. 
We can see from Equation 9 that if, over an entire ensemble of  
training patterns, there is a consistent value of  the activation of  
an output unit when an input unit is active, then the connection 
weights between them will come to reflect this. If the training 
patterns come from a completely regular environment, such 
that each output's activation depends on only one input unit 
and is completely uncorrelated with the activation of  every 
other input unit, then all the weights to each output unit will 
equal 0 except the weight from the particular input unit on 
which it depends. ( I f  the training patterns are sampled ran- 
domly from a larger space of patterns, the sample will not reflect 
the true correlations exactly but will be scattered approximately 
normally around the true value.) Thus, the learning procedure 
discovers which output units depend on which input units and 
sets the weights accordingly. For our purposes in understanding 
quasi-regular domains, in which the dependencies are not so 
discrete in character, the weights will come to reflect the degree 
of  consistency between each input unit and each output unit 
over the entire ensemble of  training patterns. 

Equation 9 can be written a different way to reflect a relation- 
ship that is particularly relevant to the word reading literature, 
in which the frequency of  a particular word and the consistency 
of  its pronunciation with the pronunciations of  other, similar 
words are known to influence the accuracy and latency of  pro- 
nunciation. The rearrangement expresses a very revealing rela- 
tionship between the output at test and the similarity of  the test 
pattern to each input pattern: 

S} tl = a(~ Z S} pl • S!PIs~tl). ( 1 0 )  
p i 

This expression shows the relationship between the state of  an 
output unit at test as a function of  its states during training and 
the similarity between the test input  pattern and each training 
input pattern, measured in terms of  their dot product,  
Y~i s!P]s~ tl. For input patterns consisting of  ls and 0s, this mea- 
sure amounts to the number of  1 s the two patterns have in com- 
mon, which we refer to as the overlap of training pattern p and 
test pattern t and designate O tpt] . Substituting into the previous 
expression, we find that the state of  an output unit at test reflects 
the sum over all training patterns of  the unit 's output for that 
pattern times the overlap of the pattern with the test pattern: 

s~ '! = a( ~ Z S~ [pl O[Pd)- ( 1 1 ) 
P 

Notice that the product s) p] 0 [m is a measure of  the input-out-  
put consistency of the training and test patterns. To see this, 
suppose that the inputs for the training and testing patterns have 
considerable overlap. Then the contribution of  the training pat- 
tern depends on the sign of  the output unit 's state for that pat- 
tern. If this sign agrees with that of  the appropriate state for the 
test pattern (i.e., the two patterns are consistent), the training 
pattern will help to move the state of  the output unit toward the 
appropriate extreme value for the test pattern. However, if  the 
signs of  the states for the training and test patterns disagree (i.e., 
the patterns are inconsistent), performance on the test pattern 
will be worse for having learned the training pattern. As the in- 
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put for the training pattern becomes less similar to that of the 
test pattern, reducing O tptl, the impact of their consistency on 
test performance diminishes. 

To clarify the implications of Equation 11, it will help if we 
consider some simple cases. First, suppose that the network is 
trained on only one pattern and tested with a variety of patterns. 
Then the state of  each output unit during testing will be a mono- 
tonic function of  its value in the training pattern times the over- 
lap of the training and test input patterns. As long as there is any 
overlap in these patterns, the test output will have the same sign 
as the training output, and its magnitude will increase with the 
overlap between the test pattern and training pattern. Thus, the 
response of each output unit varies with the similarity of the 
test pattern to the pattern used in training. 

As a second example, suppose we test only on the training 
pattern itself but vary the number of training trials on the pat- 
tern. In this case, the summation over the p training patterns 
in Equation 11 reduces to a count of the number of training 
presentations of the pattern. Thus, the state of the output unit 
on this pattern will approach its correct asymptotic value of___ 1 
as the number of training presentations increases. 

Finally, consider the more general case in which several 
different input-output  patterns are presented during training, 
with each one presented some number of times. Then, elaborat- 
ing on Equation 1 l ,  we  can write the state of an output unit at 
test as 

s~ t] = cr( ~ ~ FO'Is~PIOIPt]), (12) 
P 

where F tpl is the number (frequency) of training presentations 
of pattern p. 

We will refer to Equation 12 as the frequency-consistency 
equation. Relating this equation to word and nonword reading 
simply involves identifying the input to the network with a rep- 
resentation of the spelling of a word, and the output of the net- 
work with a representation of  its pronunciation. Given the as- 
sumption that stronger activations correspond to faster naming 
latencies, we can use the frequency-consistency equation to de- 
rive predictions about the relative naming latencies of different 
types of words. In particular, the equation provides a basis for 
understanding why naming latency depends on the frequency 
of a word, F tpl, and the consistency of  its spelling-sound corre- 
spondences with those of other words, sJ pl 0 tin1. It also accounts 
for the fact that the effect of  consistency diminishes as the fre- 
quency of the word increases (and vice versa), because high- 
frequency words push the value of the sum out into the tail of 
the input-output  function, where influences of other factors are 
reduced (see Figure 7 ). 

Quantitative Results With a Simple Corpus 

To make the implications of  the frequency-consistency equa- 
tion more concrete, suppose a given output unit should have a 
value o f +  1 i fa  word's pronunciation contains the v o w e l / I / ( a s  
in DIVE) and - 1  if it contains the v o w e l / i / ( a s  in GIVE). Sup- 
pose further that we have trained the network on a set of  words 
ending in ._lye which all contain e i t h e r / I / o r / i / a s  the vowel. 
Then the frequency-consistency equation tells us immediately 
that the response to a given test input should reflect the influ- 

Figure 7. A frequency by consistency interaction arising out of apply- 
ing an asymptotic output activation function to the additive input con- 
tributions of frequency (solid arrows) and consistency (dashed 
arrows). Notice in particular that the identical contribution from con- 
sistency has a much weaker effect on high-frequency words than on low- 
frequency words. Only the top half of the logistic activation function is 
shown. HF = high frequency; LF = low frequency; RC = regular con- 
sistent; E = exception. 

ence of every one of  these words to some degree. If all else is 
held constant, the higher the frequency of the word, the more 
closely the output will approach the desired value. If the fre- 
quency of  the word itself is held constant, the more other similar 
words agree with its pronunciation (and the higher their 
frequency), the more closely the output will approach the cor- 
rect extreme value. The distance from the desired value will 
vary continuously with the difference between the total influ- 
ence of  the neighbors that agree with the word and the neighbors 
that disagree, with the contribution of  each neighbor being 
weighted by its similarity to the word and its frequency. When 
the word itself has a high frequency, it will tend to push the 
activation close to the correct extreme. Near the extremes, the 
slope of the function relating the summed input to the state of  
the output unit becomes relatively shallow, so the influence of 
the neighbors is diminished. 

To illustrate these effects, Figure 8 shows the cross-entropy 
error for a particular output unit as we vary the frequency of the 
word being tested and its consistency with 10 other, overlapping 
words (also see Van Orden, 1987). For simplicity, we assume 
that all 10 words have a frequency of 1.0 and an overlap of  0.75 
with the test word-- th is  would be true, for example, if input 
units represented letters and words differed in a single letter out 
of four. Four degrees of consistency are examined: (a) exception 
words (e.g., GIVE), for which all but one of the 10 neighbors 
disagree with the test word on the value of  the output unit; (b) 
ambiguous words (e.g., PLOW), for which the neighbors are split 
evenly between those that agree and those that disagree; (c) reg- 
ular inconsistent words (e.g., DIVE), for which most neighbors 
agree but two disagree (namely GIVE and LIVE); and (d)  regular 
consistent words (e.g., DUST ), for which all neighbors agree on 
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Figure 8. The effects of frequency and consistency in a network with- 
out hidden units trained with correlational (Hebbian) learning (~ = 0.2 
in Equation 12). 

value of the output unit. In the present analysis, these different 
cases are completely characterized in terms of  a single variable: 
the consistency of the pronunciation of  the vowel in the test 
word with its pronunciation in other words with overlapping 
spellings. The analysis clearly reveals a graded effect of consis- 
tency that diminishes with increasing frequency. 

Error Correction and Hidden Units 

It should be noted that the Hebbian approach described here 
does not, in fact, provide an adequate mechanism for learning 
the spelling-sound correspondences in English. For this, we re- 
quire networks with hidden units trained using an error-cor- 
recting learning rule such as back-propagation. In this section 
we take some steps in the direction of  extending the analyses to 
these more complex cases. 

First we consider the implications of  using an error-correcting 
learning rule rather than Hebbian learning, still within a net- 
work with no hidden units. Back-propagation is a generalization 
of  one such rule, known as the delta rule (Widrow & Hoff, 
1960). The first observation is that, when the delta rule is used, 
the change in weight w~ that is due to training on pattern p is 
proportional to the state of  the input unit, s! pl, times the partial 
derivative of  the error on pattern p with respect to the summed 
input to the output unit j ,  ~jtp], rather than simply times the 
correct state of  unit j ,  sJ p! (cf. Equation 6). As a result, Equa- 
tion 12 becomes 

SJ t] = f f ( ~  ~ Ftp]~Jr]Otptl). (13) 
P 

Matters are more complex here because 6}r] depends on the ac- 
tual performance of  the network on each trial. However, ~JP] will 
always have the same sign as sJ pl, because an output unit 's error 
always has the same sign as its target as long as the target is an 
extreme value of  the activation function ( _+ 1 here), and because 
only unit j is affected by a change to its input. Thus, as in the 

Hebbian case, training on a word that is consistent with the test 
word will always help unit i to be correct, and training on an 
inconsistent word will always hurt, thereby giving rise to the 
consistency effect. 

The main difference between the Hebb rule and the delta rule 
is that, with the latter, if a set of  weights exists that allows the 
network to produce the correct output for each training pattern, 
the learning procedure will eventually converge to it. 8 This is 
generally not the case with Hebbian learning, which often re- 
sults in responses for some cases that are incorrect. To illustrate 
this, we consider applying the two learning rules to a training 
set for which a solution does exist. The solution is found by the 
delta rule and not by the Hebb rule. 

The problem is posed within the framework we have already 
been examining. The specific network consists of  11 input units 
(with values of  0 and 1 ) representing letters of  a word. The in- 
put units send direct connections to a single output unit that 
should be +1 if the pronunciation of  the word contains the 
v o w e l / I / b u t  - 1  if  it contains the vowel / i / .  Table 5 shows the 
input patterns and the target output for each case, as well as the 
net inputs and activations that result from training with each 
learning rule. There are 10 items in the training set, six with the 
body __INT and four with the body -..INE. The _..INE words all 
take the vowe l / I / ,  so for these the vowel has a target activation 
of  + 1; five of  the ._INT words t a k e / i / ,  so the vowel has a target 
of - 1 .  The _._INT words also include the exception word PINT 
that takes the vowel / I / .  For this analysis, each word is given an 
equal frequency of  1. 

Table 6 lists the weights from each input unit to the output 
unit that are acquired after training with each learning rule. 
For the Hebb rule, this involved five epochs of  training using a 
learning rate ~ = 0.1. The resulting weights are equal to 0.5 (the 
number of epochs times the learning rate) times the number of 
training items in which the letter is present and the vowel i s / I / ,  
minus the number of  items in which the letter is present and the 
vowel i s / i / .  Specifically, the letters L and M occur once w i t h / I /  
and once w i t h / i / ,  so their weights are 0; the letters I and N 
occur five times w i th / I  / and five times w i t h / i / ,  so their weights 
are also 0. Final E and final T have the largest magnitude 
weights; E is strongly positive because it occurs four times with 
/ I / a n d  never w i t h / i / ,  and T is strongly negative because it 
occurs five times w i t h / i / a n d  only once w i t h / I / .  F is weakly 
positive because it occurs once w i t h / I / ,  and D, H, and onset 
T are weakly negative because each occurs once w i t h / i / .  P is 
moderately positive, because it occurs twice w i t h / I / - - o n c e  in 
PINE and once in PINT. Thus, these weights directly reflect the 
co-occurrences of  letters and phonemes. 

The outputs of the network when the weights produced by the 

8 Actually, given the use of extreme targets and an asymptotic activa- 
tion function, no set of finite weights will reduce the error to zero. In 
this case, a "solution" consists of a set of weights that produces outputs 
that are within some specified tolerance (e.g., O. 1 ) of the target value 
for every output unit in every training pattern. Ifa solution exists that 
produces outputs that all have the correct sign (i.e., tolerance of l.O, 
given targets of_+ 1 ), then a solution also exists for any smaller tolerance 
because multiplying all the weights by a large enough constant will push 
the output of the sigmoid arbitrarily close to its extreme values without 
affecting its sign. 
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Table 5 
Input Patterns, Targets, and Activations After Training With 
the Hebb Rule and the Delta Rule 

Letter inputs Hebb rule 

Word D F H L M P T 1 N E T Target Net Act 

Delta rule 

Net Act 

DINT 1 0 0 0 0 0 0 1 I 0 1 --1 --2.5 --0.85 --2.35 --0.82 
HINT 0 0 1 0 0 0 0 1 1 0 1 -- 1 --2.5 --0.85 --2.29 --0.82 
LINT 0 0 0 1 0 0 0 1 1 0 1 -- 1 --2.0 --0.76 -- 1.70 --0.69 
MINT 0 0 0 0 1 0 0 1 1 0 1 --1 --2.0 --0.76 --1.70 --0.69 

PINT 0 0 0 0 0 1 0 1 1 0 1 + 1 -- 1.0 --0.46 0.86 0.41 

TINT 0 0 0 0 0 0 1 1 1 0 1 --1 --2.5 --0.85 --2.25 --0.81 
FINE 0 1 0 0 0 0 0 1 1 1 0 +1 2.5 0.85 3.31 0.93 
LINE 0 0 0 1 0 0 0 1 1 1 0 +1 2.0 0.76 2.52 0.85 
MINE 0 0 0 0 1 0 0 I 1 1 0 +1 2.0 0.76 2.52 0.85 
PINE 0 0 0 0 0 1 0 1 1 1 0 + 1 3.0 0.91 5.09 0.98 

Note. "Net" is the net input of the output unit; "Act" is its activation. 

Hebb rule are used, shown in Table 5, illustrate the consistency 
effect, both in net inputs and in activations. For example, the net 
input for FINE is stronger than for LINE because  LINE is more sim- 
ilar to the inconsistent LINT; and the net input for PINE is s t ronger  

than for LINE because PINE benefits from its similarity with PINT, 
which has the same correspondence. However, the weights do not 
completely solve the task: For the word PINT, the net input is - 1.0 
( 1.0 from the P minus 2.0 from the T ), and passing this through 
the logistic function results in an activation o f - 0 . 4 6 ,  which is 
quite different from the target value of + 1. What has happened is 
that PINT'S neighbors have cast slightly more votes f o r / i / t h a n  
fo r / I / .  

Now consider the results obtained using the delta rule. In this 
case, we trained the network for 20 epochs, again with a learning 
rate of 0.1. The overall magnitude of the weights is comparable to 
the Hebb rule case with only 5 epochs because, with the delta rule, 
the weight changes get smaller as the error gets smaller, and so 
the cumulative effect generally tends to be less. More important, 
though, when the delta rule is used, the same general effects of 
consistency are observed, but now the response to PINT, t hough  

weaker than other responses, has the right sign. The reason for this 
is that the cumulative weight changes caused by PINT are actually 
larger than those caused by other items, because after the first el> 
och, the error is larger for PINT than for other items. Error-correct- 
ing learning eventually compensates for this but, before learning 
has completely converged, the effects of consistency are still 
apparent. 

The error-correcting learning process causes an alteration in the 

relative weighting of the effects of neighbors by assigning greater 
relative weight to those aspects of each input pattern that differ- 
entiate it from inconsistent patterns (see Table 6). This is why the 
weight tends to accumulate on P, which distinguishes P1NT from 
the inconsistent neighbors DINT, HINT, LINT, MINT, and TINT. f o r  o 

respondingly, the weights for D, H, and T are slightly more negative 
(relative to the Hebb weights) to accentuate the differentiation of 
DINT, HINT, and TINT from PINT. The  effect of  consistency, then, is 
still present when the delta rule is used but, precisely because it 
makes the biggest changes where the errors are greatest, the delta 
rule tends to counteract the consistency effect. 

A related implication of using error-correcting learning con- 
cerns the degree to which an output unit  comes to depend on 
different parts of the input. Ifa particular input-output  correspon- 
dence is perfectly consistent (e.g., onset B ~ / b / ) ,  so that the state 
of a given output unit  is predicted perfectly by the states of partic- 
ular input units, the delta rule will set the weights from all other 
input units to 0, even if they are partially correlated with the out- 
put unit. By contrast, when a correspondence is variable (e.g., 
vowel I ~ / i / v s . / I / ) ,  so that no input unit  on its own can predict 
the state of the output unit, the delta rule will develop significant 
weights from the other parts of the input (e.g., consonants) that 
disambiguate the correspondence. Thus, if there is a componential 
correspondence, as for most consonants, other partial corresIxm- 
dences will not be exploited; however, when componentiality 
breaks down, as it often does with vowels, there will be a greater 
reliance on context and therefore a greater consistency effect. 

For some tasks, including English word reading, no set of 

Table 6 
Weights From Letter Units to Output Unit After Training With the Hebb Rule and the Delta Rule 

Letter units 

Rule D F H L M P T I N E T 

Hebb -0.50 0.50 -0.50 0.00 0.00 1.00 -0.50 0.00 0.00 2.00 -2.00 
Delta -0.84 0.59 -0.77 -0.19 -0.18 2.37 -0.73 0.24 0.24 2.23 - 1.99 
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weights in a two-layer network that maps letters to phonemes will 
work for all of the training patterns (see Minsky & Papert, 1969 ). 
In such cases, hidden units that mediate between the input and 
output units are needed to achieve adequate performance? Things 
are considerably more complex in networks with hidden units, but 
Equation 13 still provides some guidance. The complexity comes 
from the fact that, for an output unit, 0 t~1 reflects the similarities 
of the patterns of activation for training pattern p and test pattern 
t over the hidden units rather than over the input units. Even so, 
hidden units have the same tendency as output units to give similar 
output to similar inputs, because they use the same activation 
function. In fact, Equation 13 applies to them as well if ~jtpl is 
interpreted as the partial derivative of the error over all output 
units with respect to the summed input to the hidden unit j.  The 
values of particular weights and the nonlinearity of the activation 
function can make hidden units relatively sensitive to some dimen- 
sions of similarity and relatively insensitive to others and cart even 
allow hidden units to respond to particular combinations of inputs 
and not to other, similar combinations. Thus, from the perspective 
of the output units, hidden units re-represent the input patterns so 
as to alter their relative similarities. This is critical for learning 
complex mappings like those in the English spelling-to-sound sys- 
tem. Phoneme units respond on the basis of hidden-layer sim- 
ilarity, and they must respond quite differently to exception words 
than to their inconsistent neighbors in order for all of them to be 
pronounced correctly. Thus, by altering the effective similarities 
among input patterns, a network with hidden units can overcome 
the limitations of one with only input and output units. The pro- 
cess of learning to be sensitive to relevant input combinations oc- 
curs relatively slowly, however, because it goes against the net- 
work's inherent tendency toward making similar responses to sim- 
ilar inputs. 

The fact that hidden units can be sensitive to higher order com- 
binations of input units has important implications for under- 
standing body-level consistency effects. In a one-layer network 
without hidden units, the contribution of an input unit to the total 
signal received by an output unit summed over all its input is un- 
conditional; that is, the contribution of each input unit is indepen- 
dent of the state of the other input units. As mentioned earlier, 
however, the pronunciations of vowels cannot typically be pre- 
dicted from individual letters or graphemes. Ratho; the corre- 
lations between vowel graphemes and phonemes are highly condi- 
tional on the presence of  particular consonant graphemes. For ex- 
ample, the mapping from I t o / i / i s  inconsistent, but the mapping 
from I t o / i / i s  perfectly reliable in the context of a coda consisting 
only of the letter N (e.g., PIN, WaN, THIN). In English, the predic- 
tiveness of vowels conditional on codas is generally greater than 
that of vowels conditional on onsets (Treiman et al., 1995). Con- 
sequently, a multilayer network will be aided in generating appro- 
priate vowel pronunciations by developing hidden units that re- 
spond to particular combinations of orthographic vowels and co- 
das (i.e., word bodies). Even when the coda is taken into account, 
however, its correlation with the vowel pronunciation may be less 
than perfect (e.g., I in the context of  NT in Mi~rr vs. PINT). In this 
case, the choice of vowel must be conditioned by both the onset 
and coda for the correspondence to be reliable. Because of the fact 
that hidden units tend to make similar responses to similar inputs, 
hidden units that respond to an entire input pattern and contrib- 
ute to a nonstandard vowel pronunciation (e.g., I ==~/I/in the 

context of  P._NT ) will tend to be partially active when similar 
words are presented (e.g., MINT ). These will tend to produce in- 
terference at the phoneme level, giving rise to a consistency effect. 
It is important to note, howev~ that a multilayer network will 
exhibit consistency effects only when trained on tasks that are at 
least partially inconsistent--that is, quasi-regular; as in one-layer 
networks that use the delta rule, if the training environment in- 
volves only componential correspondences, hidden units will learn 
to ignore irrelevant aspects of  the input. 

In summary, a broad range of connectionist networks, when 
trained in a quasi-regular environment, exhibit the general trends 
that have been observed in human experimental data: robust con- 
sistency effects that tend to diminish with experience, both with 
speofic items (i.e., frequency) and with the entire ensemble of 
patterns (i.e., practice ). These factors are among the most impor- 
tant determinants of the speed and accuracy with which people 
read words aloud. 

Balancing Frequency and Consistency 

The results of these analyses concur with the findings in em- 
pirical studies and in the SM89 and feedforward network simu- 
lations: There is an effect of  consistency that diminishes with 
increasing frequency. Furthermore, details of  the analytic re- 
sults are also revealing. In particular, the extent to which the 
effect of  consistency is eliminated in high-frequency words de- 
pends on just how frequent they are relative to words of  lower 
frequency. In fact, this effect may help to explain the discrep- 
ancy between the findings in the feedforward network and those 
in the SM89 network--namely, the existence of  consistency 
effects among high-frequency words in the former but not in the 
latter (and not generally in empirical studies). At first glance, 
it would appear that the pattern observed in the feedforward 
network matches one in which the high-frequency words are 
of  lower frequency relative to the low-frequency words (e.g., a 
frequency of  10 in Figure 8) than in the SM89 network (e.g., a 
frequency of 20). This is not literally true, of  course, because 
the same (logarithmically compressed) word frequencies were 
used in the two simulations. 

A better interpretation is that, in the feedforward network, 
the effect of  consistency is stronger than in the SM89 network 
and, relative to this, the effect of  frequency appears weaker. 
As described earlier, the orthographic and phonological rep- 
resentations used by SM89, based on context-sensitive triples 
of  letters and phonemes, disperse the regularities between the 
written and spoken forms of  words. This has two relevant 
effects in the current context. The first is to reduce the extent 
to which the training on a given word improves performance 
on other words that share the same spelling-sound corre- 

9 An alternative strategy for increasing the range of tasks that can 
be solved by a two-layer network is to add additional input units that 
explicitly code relevant combinations of the original input units (see 
Gluck & Bower, 1988; Marr, 1969; Rumelhart et al., 1986a, for 
examples). In the domain of word reading, such higher order units have 
been hand-specified by the experimenter as input units (Norris, 1994 ), 
hand-specified but activated from the input units as a separate pathway 
(Reggia, Marsland, & Berndt, 1988), or learned as hidden units in a 
separate pathway (Zorzi, Houghton, & Butterworth, 1995 ). 
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spondences and impairs performance on words that violate 
those correspondences. As illustrated earlier with the words 
LOG, GLAD, and SPLIT, even though a correspondence may be 0.6 
the same in a set of words, it may activate different ortho- 
graphic and phonological units for each of  them. As men- 0.5 
tioned above, the weight changes induced by one word will 
help another only to the extent that they activate similar units ~ ~ 0.4 
(i.e., as a function of  their overlap O [ptl). This effect is partic- 
ularly important for low-frequency regular words, for which ~ 0.3 
performance depends primarily on support from higher fie- ~9 

0.2 quency words rather than from training on the word itself. In 
contrast, the new representations condense the regularities 
between orthography and phonology, so that weight changes 0.1 
for high-frequency words also improve performance on low- 

0.0 frequency words with the same spelling-sound correspon- 
dences to a greater extent. Thus, there is an effect of  fre- 
quency among regular words in the SM89 network but not in 
the feedforward network. For the same reason, in the SM89 
network, performance on an exception word is less hindered 

1.4 
by training on regular words that are inconsistent with it. It 
is almost as if regular words in the SM89 network behave like 1.2 
regular inconsistent words in the feedforward network, and 
exception words behave like ambiguous words: The support 1.0 
or interference they receive from similar words is somewhat ~ 
reduced (see Figure 9). ~ 0.8 

The SM89 representations also reduce the effect of  consis- 
tency in an indirect manner by improving performance on ~ 0.6 
exception words. This arises because the orthographic repre- 
sentations contain units that explicitly indicate the presence o.4 
of context-sensitive triples of  letters. Some of these triples 
correspond to onset-vowel combinations and to word bodies o.2 
(e.g., PIN, INT ) that can directly contribute to the pronunci- 
ation of exception words (PINT). In contrast, although the 0.0 
new orthographic representations contain multiletter graph- 
emes, none of  them include both consonants and vowels or 
consonants from both the onset and coda. Thus, for example, 
the orthographic units for P, I, N, and T contribute indepen- 
dently to the hidden representations. It is only at the hidden 
layer that the network can develop context-sensitive represen- 
tations in order to pronounce exception words correctly, and 
it must learn to do this only on the basis of  its exposure to 
words of  varying frequency. 

Nonetheless, it remains true that the pattern of frequency and 
consistency effects in the SM89 network reproduces the find- 
ings in empirical studies better than does the pattern in the feed- 
forward network. Yet the same skilled readers exhibit a high 
level of proficiency at reading nonwords that is not matched in 
the SM89 network, but only in a network that uses alternative 
representations that better capture the spelling-sound regulari- 
ties. How can the effect of frequency and consistency be recon- 
ciled with good nonword reading? 

The answer may lie in the fact that both the SM89 and the 
feedforward networks were trained using word frequency val- 
ues that are logarithmically compressed from their true fre- 
quencies of occurrence in the language. Thus, the SM89 net- 
work replicates the empirical naming latency pattern because it 
achieves the appropriate balance between the influence of fre- 
quency and that of consistency, although both factors are sup- 
pressed relative to the effects in human readers. This suppres- 

0 - - - - ~  Ambiguous 
Regular Inconsistent 

1 10 
Frequency 

0 , ~  ]O---OExcepti°n istent ] 

1 10 
Frequency 

Figure 9. Data from the frequency-consistency equation (Equation 
12 and Figure 8) for test words of frequencies 1 and 10, plotted sepa- 
rately for regular inconsistent and ambiguous words ( upper graph) and 
regular consistent and exception words (lower graph). The upper pat- 
tern is similar to that found for regular and exception words in the 
Seidenberg and McClelland (1989) network (see Figure 2), whereas the 
lower one is similar to the pattern for the feedforward network (see Fig- 
ure 5). The correspondences are only approximate because of the sim- 
plifying assumptions of the frequency--consistency equation. 

sion is revealed when nonword reading is examined, because on 
this task it is primarily the network's sensitivity to consistency 
that dictates performance. In contrast, by virtue of the new rep- 
resentations, the feedforward network exhibits a sensitivity to 
consistency that is comparable to that of human readers, as ev- 
idenced by its good nonword reading. But now, with logarith- 
mic frequencies, the effects of frequency and consistency are 
unbalanced in the network and it fails to replicate the precise 
pattern of naming latencies of human readers. 

This interpretation leads to the prediction that the feedfor- 
ward network should exhibit both good nonword reading and 
the appropriate frequency and consistency effects if it is trained 
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on words according to their actual frequencies of  occurrence. 
In the next simulation we tested this prediction. 

S imula t ion  2: Feed fo rward  Ne twork  W i t h  Actual  
F requenc ies  

The most frequent word in the Ku~era and Francis (1967) 
list, THE, has a frequency of  69,971 per million, whereas the 
least frequent words have a frequency of 1 per million. In the 
training procedure used by SM89 the probability that a word 
was presented to the network for training was proportional to 
the logarithm of  its frequency rather than its actual frequency. 
This compresses the effective frequency range from about 
70,000:1 to about 16:1. Thus, the network experienced much 
less variation in the frequency of occurrence of  words than do 
normal readers. 

SM89 put forward a number of  arguments in favor of using 
logarithmically compressed frequencies rather than actual fre- 
quencies in training their network. Beginning readers have yet 
to experience enough words to approximate the actual fre- 
quency range in the language. Also, low-frequency words dis- 
proportionately suffer from the lack of  inflectional and deriva- 
tional forms in the training corpus. However, the main reason 
for compressing the frequency range was a practical consider- 
ation based on limitations of  the available computational re- 
sources. If the highest frequency word was presented every ep- 
och, the lowest frequency words would be presented on average 
only about once every 70,000 epochs. Thus, if actual frequen- 
cies had been used, SM89 could not have trained their network 
long enough for it to have had sufficient exposure on low-fre- 
quency words. 

To compound matters, as SM89 pointed out, basic properties of  
the network and training procedure already serve to progressively 
weaken the impact of frequency over the course of training. In an 
error-correcting training procedure like back-propagation, weights 
are changed only to the extent that doing so reduces the mismatch 
between the generated and correct output. As high-frequency 
words become mastered, they produce less mismatch and so in- 
duce progressively smaller weight changes. This effect is magnified 
by the fact that, because of the asymptotic nature of  the unit in- 
put--output function, weight changes have smaller and smaller im- 
pact as units approach their correct extreme values. As a result, 
learning becomes dominated mostly by lower frequency words 
that are still inaccurate, effectively compressing the range of fre- 
quency that is driving learning in the network. 

Thus, SM89 considered it important to verify that their re- 
sults did not depend critically on the use of  such a severe fre- 
quency compression. They trained a version of  the network in 
which the probability that a word was presented during an ep- 
och was based on the square root of  its frequency rather than on 
the logarithm (resulting in a frequency range of  about 265:1 
rather than 16:1 ). They found the same basic pattern of  fre- 
quency and consistency effects in naming latency for the Tara- 
ban and McClelland (1987) words, although there was a larger 
effect of  frequency among regular words and virtually no effect 
of consistency among high-frequency words even early in train- 
ing. This shift corresponds predictably to a pattern in which the 
influence of  frequency is stronger relative to the influence of 

consistency. However, SM89 presented no data on the network's 
accuracy in reading words or nonwords. 

In the current simulation, we trained a version of  the feedfor- 
ward network (with the new representations) using the actual 
frequencies of  occurrence of  words. The training procedure in 
the current work avoids the problem of  sampling low-frequency 
words by using frequency directly to scale the magnitude of  the 
weight changes induced by a word-- th is  is equivalent to sam- 
pling in the limit of a small learning rate, and it allows any range 
of  frequencies to be used. The goal is to test the hypothesis that 
by balancing the strong influence of  consistency that arises from 
the use of  representations that better capture spelling-sound 
regularities with a realistically strong influence of  frequency, the 
network should exhibit the appropriate pattern of  frequency 
and consistency effects in naming latency while also producing 
accurate performance on word and nonword pronunciation. 

Method 

Network architecture. The architecture of the network was the same 
as in Simulation 1 (see Figure 3 ). 

Training procedure. The only major change in the training proce- 
dure from Simulation 1 was that, as described above, the values used to 
scale the error derivatives computed by back-propagation were propor- 
tional to the actual frequencies of occurrence of the words (Ku~era & 
Francis, 1967) rather than to a logarithmic compression of their fre- 
quencies. Following SM89 we assigned the 82 words in the training cor- 
pus that are not listed in Ku~era and Francis (1967) a frequency of 2, 
and all others, their listed frequency plus 2. We then divided these values 
by the highest value in the corpus (69,973 for THE) to generate the scal- 
ing values used during training. Thus, the weight changes produced by 
the word THE were unscaled (i.e., scaling value of 1.0). For comparison, 
AND, the word with the next highest frequency (28,860 occurrences per 
million), had a value of 0.412. By contrast, the relative frequencies of 
most other words were extremely low. The mean scaling value across the 
entire training corpus was 0.0020 and the median value was 0.00015. 
Taraban and McClelland's (1987) high-frequency exception words had 
an average value of 0.014, and their low-frequency exception words av- 
eraged 0.00036. Words not in the Ku~era and Francis (1967) list had a 
value just under 0.00003. 

In addition, we modified two parameters of the training procedure to 
compensate for the changes in word frequencies. First, the global learn- 
ing rate, ~ in Equation 5, was increased from 0.001 to 0.05 to compen- 
sate for the fact that the summed frequency for the entire training cor- 
pus was reduced from 683.4 to 6.05 because actual rather than logarith- 
mic frequencies were used. Second, we removed the slight tendency for 
weights to decay toward zero to prevent the very small weight changes 
induced by low-frequency words (due to their very small scaling factors) 
from being overcome by the tendency of weights to shrink toward zero. 

Other than for these modifications, the network was trained in the 
same way it was in Simulation 1. 

Testing procedure. The procedure for testing the network's proce- 
dure on words and nonwords was the same as in Simulation 1. 

Results 

Word reading. Because the weight changes caused by low- 
frequency words are so small, considerably more training is re- 
quired to reach approximately the same level of  performance as 
when logarithmically compressed frequencies are used. After 
1,300 epochs of  training, the network mispronounced only 
seven words in the corpus: BAS, BEAU, CACHE, CYST, GENT, TSAR, 
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and YEAH (99.8% correct, where homographs were considered 
correct if they elicited either correct pronunciation). These 
words have rather inconsistent spelling-sound correspondences 
and have very low frequencies (i.e., an average scaling value of 
0.00009). Thus, the network mastered all of the exception 
words except a few of the very lowest in frequency. 

Nonword reading. Table 7 lists the errors made by the net- 
work in pronouncing the lists of nonwords from Glushko 
(1979) and from McCann and Besner (1987). The network 
produced "regular" responses to 42 / 43 (97.7%) of Glushko's 
consistent nonwords, 29/43 (67.4%) of the inconsistent non- 
words, and 66/80 (82.5%) of  McCann and Besner's control 
nonwords. Using a criterion that more closely corresponds to 
that used with human readers--considering a response correct 
if it is consistent with the pronunciation of a word in the train- 
ing corpus (and not considering inflected nonwords or those 
with J in the coda ) - - the  network achieved 42 / 43 ( 97.7% ) cor- 
rect on both the consistent and inconsistent nonwords and 68/  
76 (89.5%) correct on the control nonwords. Thus, the net- 
work's performance on these sets of nonwords is comparable to 
that of skilled readers and to that of the network trained on 
logarithmic frequencies. 

Frequency and consistency effects. Figure l0 shows the 
mean cross-entropy error of the network in pronouncing words 
of varying degrees of spelling-sound consistency as a function 
of frequency. There was a main effect of  frequency, F(  l, 184) = 
22. l, p < .00 l, a main effect of consistency, F (  3, 184) = 6.49, p 
< .001, and an interaction of frequency and consistency, F (  l, 
184) = 5.99, p < .001. Post hoc comparisons showed that the 
effect of frequency was significant at the .05 level among words 
of each level of consistency when considered separately. 

The effect of consistency was significant among low-fre- 
quency words, F(  3, 92) = 6.25, p = .001, but not among high- 

frequency words, F(  3, 92) = 2.48, p = .066. Post hoc compari- 
sons among low-frequency words revealed that the difference 
in error between exception words and ambiguous words was 
significant, F (  1, 46) = 4.09, p -- .049, the difference between 
regular consistent and inconsistent words was marginally sig- 
nificant, F (  l, 46) = 3.73, p = .060, but the difference between 
ambiguous words and regular inconsistent words failed to reach 
significance, F(  1, 46) = 2.31, p = .  135. 

Overall, this pattern of  results matches the one found in em- 
pirical studies fairly well. Thus, with a training regime that bal- 
ances the influence of frequency and consistency, the network 
replicates the pattern of interaction of these variables on nam- 
ing latency while also reading words and nonwords as accu- 
rately as skilled readers. 

Training With a Moderate Frequency Compression 

As SM89 argued, training with the actual frequencies of 
monosyllabic words might not provide the best approximation 
to the experience of readers. For example, because many multi- 
syllabic words have consistent spelling-sound correspon- 
d e n c e s - b o t h  in their base forms and with their various inflec- 
tions and derivations--training with only monosyllabic words 
will underestimate a reader's exposure to spelling-sound regu- 
larities. Training with a compressed frequency range compen- 
sates for this bias because exception words tend to be of higher 
frequency than regular words and, thus, are disproportionately 
affected by the compression. 

We have seen that a very severe (logarithmic) compression 
reduces the effect of frequency to such an extent that a network 
using representations that amplify consistency effects fails to 
exhibit the exact pattern of naming latencies found in empirical 

Table 7 
Errors by the Feedforward Network Trained With Actual Frequencies in Pronouncing Nonwords 

Glushko (1979) McCann and Besner(1987) 

Nonword Correct Response Nonword Correct Response 

Consistent Nonwords (1/43) Control Nonwords (14/80) 
*WOSH /waS/ /woS/ TUNCE It Ans/ /tUns/ 

Inconsistent Nonwords (14/43) *TOLPH /tolf/ /tOl(f 0.13)/ 
BEEAD /blEd/ /bled/ *ZUPE /zUp/ /(z 0.09)yUp/ 
BOST /bost/ /bOst/ SNOCKS /snaksl /snask(ks 0.31)/ 
COSE /kOz/ /kOs/ *GOPH /gaf/ /gaT/ 
GROOK /grUk/ /gruk/ *VmCK /vurk/ /(v 0.13)urk/ 

*HEAF /hEf/ /h@f/ LOKES /1Oks/ /IOsk(ks 0.00)/ 
HOVE /hOv/ /hAv/ *YOWND /yWnd/ /(y 0.04)and/ 
EOME /lOre/ /l A m/ KOWT /kWt/ /kOt/ 
PIED /pild/ /pIld/ *FUES /fyUz/ /fyU(z 0.45)/ 
PEOVE /plOv/ /plAv/ *HANE /hArt/ /h@n/ 
POOT /pUt/ /put/ FADE /fAj/ /fA(j 0.00)/ 
POVE /pOv/ /pAy/ *ZUTE /zUt/ /(z 0.0 l)yUt/ 
SOOD /sLid/ /sud/ JINJE /jinj/ /jln(j 0.00)/ 
WEAD /wEd/ /wed/ 
WONE /wOn/ /wAn/  

Note. /a / in  POT, /@/in CAT, /el in BED, /i/ in HIT, /O/ in DOG, /U/ in GOOD,/A/ in MAKE, /El in KEEP, Ill in BIKE, /O/ in HOPE, /E l  in Boor, 
/W/in NOW,/Y/in BOY,/A/in CUP,/N/in RING,/S/in SHE,/C/in CHIN,/Z/in BEIGE,/T/in THIN,/D/in THIS. The activity levels of correct but 
missing phonemes are listed in parentheses. In these cases, the actual response is what falls outside the parentheses. Words marked with "*" remain 
errors after properties of the training corpus are considered (as explained in the text). 



UNDERSTANDING NORMAL AND IMPAIRED WORD READING 81 

0.20 

0.15 

0.10 

0.05 

0.00 

[ ~  EB~c/k~b~ig~u°~Z sistent 

A R e g u l a r  Consistent 

Low H~h 
Frequency 

Figure 10. Mean cross-entropy error produced by the feedforward 
network trained on actual frequencies for words with various degrees 
of spelling-sound consistency (listed in Appendix A) as a function of 
frequency. 

studies. Nonetheless, it would seem appropriate to test whether 
a less severe compression results in a better match to the empir- 
ical findings. As mentioned earlier, SM89 found that presenting 
words during training with a probability proportional to the 
square root of  their frequency replicated the basic frequency 
and consistency effects in their network, but they presented no 
data on the accuracy of  the network's performance. Accord- 
ingly, it seemed worthwhile for comparison purposes for us to 
train a network with the new representations also using a 
square-root compression of  word frequencies. 

Analogous to the use of  actual frequencies, the scaling value 
for each word was the square root of its Ku~era and Francis 
(1967) frequency plus 2, divided by the square root of  the fre- 
quency of THE plus 2 (264.5). The value for AND Was 0.642. 
The mean for the corpus was 0.023 and the median was 0.012. 
Taraban and McClelland's (1987) high-frequency exception 
words averaged 0.097, whereas the low-frequency exception 
words averaged 0.017. Words not in the Kuqera and Francis 
(1967) list had a value of  0.0053. Thus, the compression of  fre- 
quency was much less severe than when logarithms were used, 
but it was still substantial. 

The summed frequency of  the training corpus was 69.8; ac- 
cordingly, the global learning rate, ~, was adjusted to 0.01. The 
training procedure was otherwise identical to that used when 
training on the actual word frequencies. 

Word reading. After 400 epochs, the network pronounced 
correctly all words in the training corpus except for the homo- 
graph HOUSE, for which the states of both the final / s / a n d  the 
final / z / just failed to be active ( /s  / :  0.48, / z / :  0.47 ). Thus, the 
network's word reading was essentially perfect. 

Nonword reading. The network made no errors on 
Glushko's (1979) consistent nonwords. On the inconsistent 
nonwords, 14 of  the network's responses were irregular, but all 
but one of  these (POVE ~ /pay/)  were consistent with some 
word in the training corpus (97.7% correct). The network mis- 
pronounced 13 of  McCann and Besner's (1987) control non- 

words. However, only 7 of  these remained as errors when the 
same scoring criterion as was used with human readers was used 
and when inflected forms and those with J in the coda (90.8% 
correct) were ignored. Thus, the network trained with square- 
root frequencies pronounced nonwords as well, if not slightly 
better, than the network trained with actual frequencies. 

Frequency and consistency effects. Figure 11 shows the 
mean cross-entropy error of  the network in pronouncing words 
of varying degrees of spelling-sound consistency as a function 
of  frequency. Overall, there was a significant effect of  frequency, 
F( 1, 184) = 47.7, p < .001, and consistency, F( 1, 184) = 14.9, 
p < .001, and an interaction of  frequency and consistency, F(3, 
184) -- 8.409, p < .001. The effect of  frequency was also sig- 
nificant at the .05 level among words of  each level of  consistency 
when considered separately. Among high-frequency words, reg- 
ular inconsistent, ambiguous, and exception words were sig- 
nificantly different from regular consistent words but not from 
each other. Among low-frequency words, the difference between 
regular inconsistent words and ambiguous words was not sig- 
nificant, F( 1, 46) = 1.18, p = .283, but all other pairwise com- 
parisons were. Thus, this network also replicated the basic em- 
pirical findings of the effects of frequency and consistency on 
naming latency. 

S u m m a r y  

The SM89 simulation replicated the empirical pattern of  fre- 
quency and consistency effects by appropriately balancing the 
relative influences of  these two factors. Unfortunately, both 
were reduced relative to their strength in skilled readers. The 
fact that the orthographic and phonological representations dis- 
perse the regularities between spelling and sound served to di- 
minish the relative impact of consistency. Likewise, the use of  a 
logarithmic compression of  the probability of word presenta- 
tions served to diminish the impact of  frequency. As a result of  
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Figure 1t. Mean cross-entropy error produced by the feedforward 
network trained on square-root frequencies for words with various de- 
grees of spelling-sound consistency (listed in Appendix A) as a function 
of frequency. 
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the reduced effectiveness of consistency, nonword reading 
suffered. 

The current work uses representations that better capture 
spelling-sound regularities, thereby increasing the relative in- 
fluence of consistency. One effect of this is to improve nonword 
reading to a level comparable to that of skilled readers. How- 
ever, if a logarithmic frequency compression continues to be 
used, the relative impact of  frequency is too weak and the net- 
work exhibits consistency effects among high-frequency words 
not found in empirical studies. 

The appropriate relative balance of frequency and consis- 
tency can be restored, while maintaining good nonword read- 
ing, by using the actual frequencies of words during training. In 
fact, a square-root frequency compression that is much more 
moderate than a logarithmic one also reproduced the empirical 
naming latency pattern, although a consistency effect among 
high-frequency words began to emerge. In this way, the three 
networks presented thus far--trained on logarithmic frequen- 
cies, square-root frequencies, or actual frequencies--provide 
clear points of comparison of the relative influences of  word 
frequency and spelling-sound consistency on naming latency. 
Together with the analytical results from the previous section, 
these findings suggest that the central empirical phenomena in 
word and nonword reading can be interpreted naturally in 
terms of the basic principles of operation of connectionist net- 
works that are exposed to an appropriately structured training 
corpus. 

Simulation 3: Interactivity, Component ia l  Attractors,  
and General izat ion 

As outlined earlier, the current approach to lexical processing 
is based on a number of general principles of  information pro- 
cessing, loosely expressed by the acronym GRAIN (for Graded, 
Random, Adaptive, Interactive, and Nonlinear). Together with 
the principles of distributed representations and knowledge, the 
approach constitutes a substantial departure from traditional 
assumptions about the nature of language knowledge and pro- 
cessing (e.g., Pinker, 1991 ). It must be noted, however, that the 
simulations presented so far involve only deterministic, feed- 
forward networks and thus fail to incorporate two important 
principles: interactivity and randomness (intrinsic variability). 
In part, this simplification has been necessary for practical rea- 
sons; interactive, stochastic simulations are far more demand- 
ing of computational resources. More important, including 
only some of the relevant principles in a given simulation en- 
ables more detailed analysis of the specific contribution that 
each makes to the overall behavior of the system. This has been 
illustrated most clearly in the current work with regard to the 
nature of the distributed representations used for orthography 
and phonology and the relative influences of frequency and con- 
sistency on network learning (adaptivity). Nonetheless, each 
such network constitutes only an approximation or abstraction 
of a more complete simulation that would incorporate all of the 
principles. The methodology of considering sets of principles 
separately relies on the assumption that there are no unfore- 
seen, problematic interactions among the principles such that 
the findings with simplified simulations would not generalize to 
more comprehensive ones. 

The current simulation investigates the implications of inter- 
activity for the process of pronouncing written words and non- 
words. Interactivity plays an important role in connectionist ex- 
planations of a number of cognitive phenomena (McClelland, 
1987; McClelland & Elman, 1986; McClelland & Rumelhart, 
1981 ) and constitutes a major point of contention with alterna- 
tive theoretical formulations (Massaro, 1988, 1989). Process- 
ing in a network is interactive when units can mutually con- 
strain each other in settling on the most consistent interpreta- 
tion of the input. For this to be possible, the architecture of 
the network must be generalized to allow feedback or recurrent 
connections among units. For example, in the interactive acti- 
vation model of  letter and word perception (McClelland & 
Rumelhart, 1981; Rumelhart & McCleUand, 1982), letter 
units and word units are bidirectionally connected so that the 
partial activation of a word unit can feed back to support the 
activation of letter units with which it is consistent. 

A common way in which interactivity has been used in net- 
works is in making particular patterns of  activity into stable 
attractors. In an attractor network, units interact and update 
their states repeatedly in such a way that the initial pattern of 
activity generated by an input gradually settles to the nearest 
attractor pattern. A useful way of  conceptualizing this process 
is in terms of a multidimensional state  space in which the activ- 
ity of each unit is plotted along a separate dimension. At any 
instant in time, the pattern of  activity over all of  the units corre- 
sponds to a single point in this space. As units change their states 
in response to a given input, this point moves in state space, 
eventually arriving at the point (attractor) corresponding to the 
network's interpretation. The set of  initial patterns that settle 
to this same final pattern corresponds to a region around the 
attractor, called its basin of attraction. To solve a task, the net- 
work must learn connection weights that cause units to interact 
in such a way that the appropriate interpretation of  each input 
is an attractor whose basin contains the initial pattern of  activity 
for that input. 

In the domain of word reading, attractors have played a criti- 
cal role in connectionist accounts of  the nature of normal and 
impaired reading via meaning (Hinton & Sejnowski, 1986; 
Hinton & Shallice, 1991; Plaut & Shallice, 1993). According to 
these accounts, the meanings of words are represented in terms 
of patterns of  activity over a large number of  semantic features. 
These features can support structured, frame-like representa- 
tions (e.g., Minsky, 1975) if units represent conjunctions of 
roles and properties of  role fillers (Derthick, 1990; Hinton, 
1981 ). Because only a small fraction of  the possible combina- 
tions of  features correspond to the meanings of actual words, it 
is natural for a network to learn to make these semantic patterns 
into attractors. Then, in deriving the meaning of a word from 
its orthography, the network need only generate an initial pat- 
tern of activity that falls somewhere within the appropriate se- 
mantic attractor basin; the settling process will clean up this 
pattern into the exact meaning of  the word. l° If, however, the 

i o This characterization of the derivation of word meanings is neces- 
sarily oversimplified. Words with multiple, distinct meanings would 
map to one of a number of separate semantic attractors. Shades of 
meaning across contexts could he expressed by semantic attractors that 
are regions in semantic space instead of single points. Notice that these 
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system is damaged, the initial activity for a word may fall within 
a neighboring attractor basin, typically corresponding to a se- 
mantically related word. The damaged network will then settle 
to the exact meaning of that word, resulting in a semantic error 
(e.g., CAT read as "dog").  In fact, the occurrence of  such errors 
is the hallmark symptom of  a type of acquired reading disorder 
known as deep dyslexia (see Coltheart, Patterson, & Marshall, 
1980, for more details on the full range of  symptoms of deep 
dyslexia, and Plaut & Shallice, 1993, for connectionist simula- 
tions replicating these symptoms).  In this way, attractors obvi- 
ate the need for word-specific units in mediating between or- 
thography and semantics (see Hinton, McClelland, & Rumel- 
hart, 1986, for discussion). 

When applied to the mapping from orthography to phonology, 
however, the use ofinteractivity to form attractors appears prob- 
lematic. In particular, the correct pronunciation of a nonword 
typically does not correspond to the pronunciation of some word. 
If the network develops attractors for word pronunciations, one 
might expect that the input for a nonword would often be cap- 
tured within the attractor basin for a similar word, resulting in 
many incorrect lexicalizations. More generally, attractors seem 
to be appropriate only for tasks, such as semantic categorization 
or object recognition, in which the correct response to a novel 
input is a familiar output. By contrast, in oral reading, the correct 
response to a novel input is typically a novel output. If it is true 
that attractors cannot support this latter sort of generalization, 
their applicability in reading specifically, and cognitive science 
more generally, would be fundamentally limited. 

The current simulation demonstrates that these concerns 
are ill-founded and that, with appropriately structured repre- 
sentations, the principle ofinteractivity can operate effectively 
in the phonological pathway as well as in the semantic pathway 
(see Figure 1 ). The reason is that, in learning to map orthog- 
raphy to phonology, the network develops attractors that are 
componential--they have substructure that reflects common 
sublexical correspondences between orthography and phonol- 
ogy. This substructure applies not only to most words but also 
to nonwords, enabling them to be pronounced correctly. At 
the same time, the network develops attractors for exception 
words that are far less componential. Thus, rather than being 
a hindrance, attractors are a particularly effective style of  com- 
putation for quasi-regular tasks such as word reading. 

A further advantage of  an attractor network over a feedfor- 
ward network in modeling word reading is that the former pro- 
vides a more direct analogue of  naming latency. Thus far, we 
have followed SM89 in using an error measure in a feedforward 
network to account for naming latency data from skilled read- 
ers. SM89 offered two justifications for this approach. The first 
is based on the assumption that the accuracy of the phonologi- 
cal representation of a word would directly influence the execu- 
tion speed of the corresponding articulatory motor program 
(see Lacouture, 1989, and Zorzi, Houghton, & Butterworth, 
1995, for simulations embodying this assumption). This as- 

two conditions can be seen as ends of a continuum involving various 
degrees of similarity and variability among the semantic patterns gener- 
ated by a word across contexts (also see McClelland, St. John, & Tara- 
ban, 1989). 

100 hidden units ) 

105 grapheme units 

Figure 12. The architecture of the attractor network. Ovals represent 
groups of units, and arrows represent complete connectivity from one 
group to another. 

sumption is consistent with the view that the time required by 
the orthography-to-phonology computation itself does not vary 
systematically with word frequency or spelling-sound consis- 
tency. If this were the case, a feedforward network of  the sort 
SM89 and we have used, which takes the same amount of  time 
to process any input, would be a reasonable rendition of  the 
nature of the phonological pathway in skilled readers. 

An alternative justification for the use of error scores to 
model naming latencies, mentioned only briefly by SM89, is 
based on the view that the actual computation from orthogra- 
phy to phonology involves interactive processing such that the 
time to settle on an appropriate phonological representation 
does vary systematically with word type. The naming latencies 
exhibited by skilled readers are a function of  this settling time, 
perhaps in conjunction with articulatory effects. Accordingly, a 
feedforward implementation of the mapping from orthography 
to phonology should be viewed as an abstraction of a recurrent 
implementation that would more accurately approximate the 
actual word reading system. Studying the feedforward imple- 
mentation is still informative because many of its properties, 
including its sensitivity to frequency and consistency, depend on 
computational principles of  operation that would also apply to 
a recurrent implementation--namely,  adaptivity, distributed 
representations and knowledge, and nonlinearity. These princi- 
ples merely manifest themselves differently: Influences that re- 
duce error in a feedforward network serve to accelerate settling 
in a recurrent network. Thus, error in a feedforward network is 
a valid approximation of  settling time in a recurrent network 
because they both arise from the same underlying causes: addi- 
tive frequency and consistency effects in the context of  a non- 
linear gradual ceiling effect. Nonetheless, even given these argu- 
ments, it is important to verify that a recurrent implementation 
that reads words and nonwords as accurately as skilled readers 
also reproduces the relevant empirical pattern of  naming laten- 
cies directly in the time it takes to settle in pronouncing words. 

Method 

Network architecture. The architecture of the attractor network is 
shown in Figure 12. The numbers of grapheme, hidden, and phoneme 
units were the same as in the feedforward networks, but the attractor 
network had some additional sets of connections. Each input unit was 
still connected to each hidden unit, which, in turn, was connected to 
each phoneme unit. In addition, each phoneme unit was connected to 
each other phoneme unit (including itself), and each phoneme unit sent 
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Figure 13. The state over time of a continuous unit, initialized to 0.5 
and governed by Equation 14, when presented with fixed external input 
from other units of various magnitudes. The curves of state values for 
negative external input are the exact mirror images of these curves, ap- 
proaching 0 instead of 1. 

a connection back to each hidden unit. The weights on the two connec- 
tions between a pair of units (e.g., a hidden unit and a phoneme unit) 
were trained separately and did not have to have identical values. In- 
eluding the biases of the hidden and phoneme units, the network had a 
tota I of 26,582 connections. 

The states of units in the network change smoothly over time in re- 
sponse to influences from other units. In particular, the instantaneous 
change over time t of the input x~ to un i t j  is proportional to the differ- 
ence between its current input and the summed contribution from other 
units: 

dxj = ~ siwo + bj - x i. ( t 4 )  
dt 

The state sj of un i t j  is a(xj), the standard logistic function of its inte- 
grated input, which ranges between 0 and i (see Equation 2). For clar- 
ity, we will call the summed input from other units i (plus the bias) the 
external input to each unit, to distinguish it from the integrated input 
x, that governs the unit 's state. 

According to Equation 14, when a unit's integrated input is perfectly 
consistent with its external input (i.e., xj = Zi s~w~ + bj), the derivative 
is zero and the unit 's integrated input, and hence its state, ceases to 
change. Notice that its activity at this point, a( Z~ s~w o + by), is the same 
as it would be if it were a standard unit that computes its state from 
the external input instantaneously (as in a feedforward network; see 
Equations 1 and 2). To illustrate this, and to provide some sense of the 
temporal dynamics of units in the network, Figure 13 shows the activity 
over time of a single unit, initialized to 0.5 and governed by Equation 
14, in response to external input of various magnitudes. Notice that, 
over time, the unit state gradually approaches an asymptotic value equal 
to the logistic function applied to its external input. 

For the purposes of simulation on a digital computer, it is convenient 
to approximate continuous units with finite difference equations in 
which time is discretized into ticks of some duration ~-: 

AXj = r ( Z s ~ w  U + b~- xj), 
t 

where Axj = x~ ° - xJ t-'l. Using explicit superscripts for discrete time, 
we can rewrite this as 

xJtl = r( ~ slt-'lwo + bj) + ( l - r )xJ '-'1. (15) 
i 

According to this equation, a unit's input at each time tick is a weighted 
average of its current input and that dictated by other units, where r is 
the weighting proportion, u Notice that, in the limit (as r --~ 0), this 
discrete computation becomes identical to the continuous one. Thus, 
adjustments to r affect the accuracy with which the discrete system ap- 
proximates the continuous one but do not alter the underlying compu- 
tation being performed. This is of considerable practical importance, 
because the computational time required to simulate the system is in- 
versely proportional to r. A relatively larger r can be used during the 
extensive training period (0.2 in the current simulation), when mini- 
mizing computation time is critical, whereas a much smaller r can be 
used during testing ( e.g., 0.01 ), when a very accurate approximation is 
desired. As long as r remains suflleiently small for the approximations 
to be adequate, these manipulations do not fundamentally alter the be- 
havior of the system. 

Training procedure. The training corpus for the network was the 
same as that used with the feedforward network trained on actual word 
frequencies. As in that simulation, the frequency value of each word was 
used to scale the weight changes induced by the word. 

The network was trained with a version of back-propagation designed 
for recurrent networks, known as back-propagation through time 
(Rumelhart et at., 1986a, 1986b; Williams & Peng, 1990), and further 
adapted for continuous units (B. Pearlmutter, 1989). In understanding 
back-propagation through time, it may help to think of the computation 
in standard back-propagation in a three-layer feedforward network as 
occurring over time. In the forward pass, the states of input units are 
clamped at time t = 0. Hidden unit states are computed at t = 1 from 
these input unit states, and then output unit states are computed at t = 
2 from the hidden unit states. In the backward pass, error is calculated 
for the output units based on their states (t  = 2). Error for the hidden 
units and weight changes for the hidden-to-output connections are cal- 
culated based on the error of the output units ( t = 2) and the states of 
hidden units (t = I ). Finally, the weight changes for the input-to-hidden 
connections are calculated based on the hidden unit error (t = 1 ) and 
the input unit states (t = 0). Thus, feedforwaxd back-propagation can 
be interpreted as involving a pass forward in time to compute unit 
states, followed by a pass backward in time to compute unit error and 
weight changes. 

Back-propagation through time has exactly the same form, except 
that, because a recurrent network can have arbitrary connectivity, each 
unit can receive contributions from any unit at any time, not just from 
those in earlier layers (for the forward pass) or later layers (for the back- 
ward pass). This means that each unit must store its state and error at 
each time tick so that these values are available to other units when 
needed. Inaaddition, the states of noninput units affect those of other 
units immediately, so they need to be initialized to ~ome neutral value 
(0.5 in the current simulation). In all other respects, back-propagation 
through time is computationally equivalent to feedforward back-prop- 
agation. In fact, back-propagation through time can be interpreted as 
"unfolding" a recurrent network into a much larger feedforward net- 
work with a layer for each time tick composed of a separate copy of all 
the units in the recurrent network (see Minsky & Papert, 1969; Rumel- 
hart et al., 1986a, 1986b). 

~ These temporal dynamics are somewhat different from those of the 
Plaut and McClelland ( 1993; Seidenberg et al., 1994) network. In that 
network, each unit 's input was set instantaneously to the summed ex- 
ternal input from other units; the unit 's state was a weighted average of 
its current state and the one dictated by its instantaneous input. 
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In order to apply back-propagation through time to continuous units, 
one must make the propagation of error in the backward pass continu- 
ous as well ( B. Pearlmutter, 1989 ). If we use #j to designate the derivative 
of the error with respect to the input of unit j ,  then, in feedforward 
back-propagation 

OC , b j= ~ ( x j ) ,  

where C is the cross-entropy error function and a '( .  ) is the derivative of 
the logistic function. In the discrete approximation to back-propagation 
through time with continuous units, this becomes 

~},~ = o c  ~,(xj,+, b + ( l  - r)~J'*'J. 
r Osj,.-----'--Sj 

Thus, ~j is a weighted average backward in time of its current value and 
the contribution from the current error of the unit. In this way, as in 
standard back-propagation, ~, in the backward pass is analogous to xj in 
the forward pass (cf. Equation 15 ). 

Because output units can interact with other units over the course of 
processing a stimulus, they can indirectly affect the error for other out- 
put units. As a result, the error for an output unit becomes the sum of 
two terms: the error that is due to the discrepancy between its own state 
and its target and the error back-propagated to it from other units. The 
first term is often referred to as error that is injeetedinto the network by 
the training environment, whereas the second term might be thought of 
as error that is internal to the network, 

Given that the states of output units vary over time, they can have 
targets that specify what states they should be in at particular points in 
time. Thus, in back-propagation through time, error can be injected at 
any or all time ticks, not just at the last one as in feedforward back- 
propagation. Targets that vary over time define a trajectory that the out- 
put states will attempt to follow ( see B. Pearlmutter, 1989, for a demon- 
stration of this type of learning). If the targets remain constant over 
time, however, the output units will attempt to reach their targets as 
quickly as possible and remain there. In the current simulation, we used 
this technique to train the network to form stable attractors for the pro- 
nunciations of words in the training corpus. 

It is possible for the states of units to change quickly if they receive a 
very large summed input from other units (see Figure 13). However, 
even for rather large summed input, units typically require some 
amount of time to approach an extreme value, and they may never 
reach it completely. As a result, it is practically impossible for units to 
achieve targets of 0 or 1 immediately after a stimulus has been pre- 
sented. For this reason, in the current simulation, a less stringent train- 
ing regime was adopted. Although the network was run for 2.0 units of 
time, error was injected only for the second unit of time; units received 
no direct pressure to be correct for the first unit of time (although back- 
propagated internal error caused weight changes that encouraged units 
to move toward the appropriate states as early as possible). In addition, 
output units were trained to targets of 0.1 and 0.9 rather than 0 and 1, 
although no error was injected ira unit exceeded its target (e.g., reached 
a state of 0.95 for a target of 0.9 ). This training criterion can be achieved 
by units with only moderately large summed input (see the curve for 
input = 4 in Figure 13). 

As with the feedforward network using actual frequencies, the attrac- 
tor network was trained with a global learning rate e = 0.05 (with adap- 
tive connection-specific rates)and momentum a = 0.9. Furthermore, 
as mentioned above, the network was trained using a discretization r = 
0.2. Thus, units updated their states 10 times (2.0/0.2) in the forward 
pass, and they back-propagated error 10 times in the backward pass. As 
a result, the computational demands of the simulation were about 10 
times that of one of the feedforward simulations. In an attempt to re- 
duce the training time, we increased momentum to 0.98 after 200 ep- 

ochs. To improve the accuracy of the network's approximation to a con- 
tinuous system near the end of training, we reduced r from 0.2 to 0.05 
at Epoch 1,800, and reduced it further to 0.01 at Epoch 1,850 for an 
additional 50 epochs of training. During this final stage of training, each 
unit updated its state 200 times over the course of processing each input. 

Testing procedure. A fully adequate characterization of response 
generation in distributed connectionist networks would involve sto- 
chastic processing ( see McClelland, 1991 ) and thus is beyond the scope 
of the present work. As an approximation in a deterministic attractor 
network, we used a measure of the time it takes the network to compute 
a stable output in response to a given input. Specifically, the network 
responds when the average change in the states of the phoneme units 
falls below some criterion (0.00005 with r = 0.01 for the results 
below). 12 At this point, the network's naming latency is the amount of 
continuous time that has passed in processing the input, and its naming 
response is generated on the basis of the current phoneme states using 
the same procedure as for the feedforward networks. 

R e s u l t s  

Word reading. After 1,900 epochs  of  t raining,  the ne twork 
p r o n o u n c e d  correct ly all bu t  25 of  the  2,998 words in the  t ra in-  
ing corpus  (99.2% correct ) .  Abou t  ha l f  o f  these errors  were reg- 
ular izat ions  o f  low-frequency except ion words (e.g., SIEVE 
/ s E v / ,  SUEDE ~ / s w E d / ,  and  TOW ~ / t W / ) .  Most  of  the re- 
maining errors would be  classified as visual errors (e.g., FALL ==~ 
/ foIt / ,  GORGE ~ / g r O r j / ,  and  HASP ~ / h@ps / ) ,  a l though four 
merely had  consonan ts  tha t  failed to reach  threshold  (ACHE ==, 
/ h / ,  BEIGE = ~ / b A / ,  TZAR ~ / a r / ,  and  WOUND ==~ 
/ U n d / ) .  All in all, the network came  close to mas ter ing  the  
t ra in ing  corpus, a l though its pe r fo rmance  was slightly worse 
than  tha t  of  the  equivalent  feedforward network.  

Even though  the ne twork settles to a representa t ion  o f  the 
phonemes  of  a word in parallel, the  t ime  it takes to  do so in- 
creases with  the length of  the word. To demons t r a t e  this, we 
entered the n a m i n g  latencies o f t h e  ne twork for the 2,973 words 
it p ronounces  correct ly in to  a mult iple  l inear  regression, using 
as predictors  ( a )  o r thograph ic  length (i.e., n u m b e r  o f  let ters) ,  
( b )  phonological  length ( i.e., n u m b e r  o f  p h o n e m e s ) ,  (c )  loga- 
r i thmic  word frequency, and  (d )  a measure  o f  spe l l ing-sound 
consistency equal  to  the n u m b e r  o f  fr iends ( inc luding  the word 
itself) divided by the total  n u m b e r  of  fr iends and  enemies;  thus,  
highly consis tent  words have values near  1 and  except ion words 
have values near  0. Collectively, the  four factors accounted  for 
15.9% of  the var iance  in the  latency values, F (4 ,  2 ,968)  = 
139.92, p < .001. More  impor t an t ,  all four factors accounted  
for significant un ique  var iance  after we factored out  the other  
three  (9.9%, 5.6%, 0.8%, and  0.1% for consistency, log-fre- 
quency, o r thograph ic  length, and  phonological  length, respec- 
tively, p < .05 for each) .  In particular,  o r thographic  length was 
positively corre la ted with n a m i n g  latency (semipar t ia l  r = 
.089) and  accounted  uniquely  for 0.8% of  its variance,  F (  1, 
2 ,968)  = 40.0, p < .001. To conver t  this  corre la t ion  in to  an  
increase in react ion t ime  ( R T )  per  letter, we regressed the net-  
work 's  mean  RTs for the Taraban  and  McCiel land (1987)  high- 
and  low-frequency except ion words and  thei r  regular  consis tent  

12 This specific criterion was chosen because it gives rise to mean re- 
sponse times that are within the 2.0 units of time over which the net- 
work was trained; other criteria produce qualitatively equivalent results. 
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controls against the means for skilled readers reported by Tara- 
ban and McClelland; this resulted in a scaling of 188.5 ms per 
unit of  simulation time (with an intercept of  257 ms).  Given 
this scaling, the effect of  orthographic length in the network is 
4.56 ms/letter based on its semipartial correlation with RT 
(after factoring out the other predictors) and 7.67 ms/let ter  
based on its direct correlation with RT (r  = .139). Length 
effects of this magnitude are at the low end of the range found 
in empirical studies, although such effects can vary greatly with 
reading skill (Butler & Hains, 1979) and with the specific stim- 
uli and testing conditions used (see Henderson, 1982 ). 

Nonword reading. Table 8 fists the errors made by the network 
in pronouncing the lists of nonwords from Glushko (1979) and 
from McCann and Besner (1987). The network produced "regu- 
lar" pronunciations to 40/43 (93.0%) of Glushko's consistent 
nonwords, 27/43 (62.8%) of the inconsistent nonwords, and 69/ 
80 (86.3%) of M ~ n n  and Besner's control nonwords. If we ac- 
cept as correct any pronunciation that is consistent with that of a 
word in the training corpus with the same body (and ignore in- 
flected words and those with j in the coda), the network pro- 
nounced correctly 42/43 (97.7%) of the inconsistent nonwords 
and 68 / 76 (89.5%) of the control nonwords. Although the perfor- 
mance of the network on the consistent nonwords was somewhat 
worse than that of the feedforward networks, it is about equal to 
the level of performance Glushko (1979) reported for subjects 
(93.8%; see Table 3). Thus, overall, the ability of the attractor net- 
work to pronounce nonwords is comparable to that of skilled 
readers. 

Frequency and consistency effects. Figure 14 shows the mean 
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Figure 14. Naming latency of the attractor network trained on act 
frequencies for words with various degrees of spelling-sound con 
tency (listed in Appendix A) as a function of frequency. 

latencies of the network in pronouncing words of various degr 
of spelling-sound consistency as a function of frequency. One 
the low-frequency exception words from the Taraban and McC 
land (1987) list was withheld from this analysis because it 
pronounced incorrectly by the network (SPOOK ~ / s p u k  
Among the remaining words, there were significant main effee~ 

Table 8 
Errors by the Attractor Network in Pronouncing Nonwords 

Glushko (1979) McCann and Besner (1987) 

Nonword Correct Response Nonword Correct Respons 

Consistent Nonwords (3/43) Control Nonwords ( 11/80) 
*HODE /hOd/ /hOdz/ *KAlZE /kAz/ /skwAz/ 
*SWEAt /swEl/ /swel/ *ZUPE /zUp/ /zyUp/ 
*WOSH /waS/ /wuS/ *JAUL /jo1/ /jO1/ 

Inconsistent Nonwords (16/43) *VOLE /vO1/ /vOln/ 
BLEAD /blEd/ /bled/ *YOWND /yWnd/ /(y 0.04)Ox 
BOST /bost/ /bOst/ KOWT /kWt/ /kOt/ 
COSt /kOz/ /kOs/ *VAWX /voks/ /voNks/ 
COTH /koT/ /kOT/ FAIJE /fAj/ /fA(j 0.00)j 
GROOK /grUk/ /gruk/ *ZUTE /zUt/  /zyUt/ 
tOME /lOre/ /IAm/ *rOME /yOm/ /yam/ 
MONE /mone/ /mAn/ JINJE /jinj/ /jln0 0.00) 
PLOVE /plOv/ /plUv/ 
POOT /pUt/ /put/ 

*POVE /pOv/ /pav/ 
SOOD /sUd/ /sud/ 
sosT /sost/ /sOst/ 
SULL /sAI/ /sul/ 
WEAD /wEd/ /wed/ 
WONE /wOn/ /wAn/ 
wusn /wAS/ /wuS/ 

Note. /a/ in POT, /@/in CAT,/el in BED, / i / in HIT, /o/ in DOG, /U/ in GOOD,/A/in MAKE, /El in KEEP, 1I/in BIKE, /O/ in HOPE,/U/in BC 
/W/in NOW,/Y/in BOY,/A/in CUP,/N/in RING,/S/in SHE,/C/in CHIN,/Z/in BEIGE,/T/in THIN,/D/in THIS. The activity levels of correct 
missing phonemes are listed in parentheses. In these cases, the actual response is what falls outside the parentheses. Words marked with "*" rem 
errors after properties of the training corpus are considered (as explained in the text). 
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frequency, F(3, 183) = 25.0, p < .001, and consistency, F(3, 183) 
= 8.21, p < .00 I, and a significant interaction of frequency and 
consistency, F(3, 183) = 3.49, p = .017. These effects also ob- 
tained in a comparison of only regular and exception words: fre- 
quency, F( 1, 91 ) = 10.2, p = .002; consistency, F( 1, 91 ) = 22.0, 
p < .001; frequency by consistency, F( 1, 91 ) = 9.31, p = .003. 
Considering each level of consistency separately, the effect of fre- 
quency was significant for exception words, F( 1, 45 ) = 11.9, p = 
.001, and for ambiguous words, F( 1, 46) = 19.8, p = .001, and 
was marginally significant for regular inconsistent words, F(1,46) 
= 3.51, p = .067. There was no effect of  frequency among regular 
words (F  < 1 ). 

The naming latencies of  the network showed a significant 
effect of consistency for low-frequency words, F(3, 91 ) = 6.65, 
p < .001, but not for high-frequency words, F(3, 91 ) = 1.71, p 
= .  170. Among low-frequency words, regular consistent words 
were significantly different from each of the other three types 
(at p < .05), but regular inconsistent, ambiguous, and excep- 
tion words were not significantly different from each other 
(although the comparison between regular inconsistent and ex- 
ception words was significant at p = .075). Among high-fre- 
quency words, none of the pairwise comparisons was significant 
except between regular and exception words, F( 1, 46) = 4.87, 
p = .032. Thus, overall, the naming latencies of the network 
replicate the standard effects of frequency and consistency 
found in empirical studies. 

Network Analyses 

The network's success at word reading demonstrates that, 
through training, it developed attractors for the pronunciations 
of words. How then is it capable of reading nonwords with novel 
pronunciations? Why isn't the input for a nonword (e.g., MAVE) 
captured by the attractor for an orthographically similar word 
(e.g., GAVE, MOVE, MAKE)? We carried out a numbeLof analy- 
ses of the network to gain a better understanding of its ability to 
read nonwords. Because nonword reading involves recombin- 
ing knowledge derived from word pronunciation, we were pri- 
marily concerned with how separate parts of  the input contrib- 
ute to (a) the correctness of parts of the output and (b) the 
hidden representation for the input. As with naming latency, 
the item SPOOK was withheld from these analyses because it was 
mispronounced by the network. 

Componential attractors. In the first analysis we measured 
the extent to which each phonological cluster (onset, vowel, 
coda) depends on the input from each orthographic cluster. 
Specifically, for each word, we gradually reduced the activity of 
the active grapheme units in a particular orthographic cluster 
until, when the network was rerun, the phonemes in a particular 
phonological cluster were no longer correct. 13 This boundary 
activity level measures the importance of  input from a particu- 
lar orthographic cluster for the correctness of  a particular pho- 
nological cluster; a value of  I means that the graphemes in that 
cluster must be completely active; a value of  0 means that the 
phonemes are completely insensitive to the graphemes in that 
cluster. In state space, the boundary level corresponds to the 
radius of the word's attractor basin along a particular direction 
(assuming state space includes dimensions for the grapheme 
units). 

This procedure was applied to the Taraban and McClelland 
(1987) regular consistent, regular inconsistent, and exception 
words, as well as to the corresponding set of  ambiguous words 
(see Appendix A). Words were excluded from the analysis if 
they lacked an orthographic onset or coda (e.g., ARE, DO). The 
resulting boundary values for each combination of  ortho- 
graphic and phonological clusters were subjected to an analysis 
of  variance (ANOVA) with frequency and consistency as be- 
tween-items factors and orthographic cluster and phonological 
cluster as within-item factors. 

With regard to frequency, high-frequency words had lower 
boundary values than low-frequency words (0.188 vs. 0.201, 
respectively), F( 1, 162) = 6.48, p = .012. However, frequency 
did not interact with consistency, F(3, 162) = 2.10, p = .  102, 
nor did it interact with orthographic or phonological cluster, 
F(2, 324) = 1.49, p = .227, and F(2, 324) = 2.46, p = .087, 
respectively. Thus, we will consider high- and low-frequency 
words together in the remainder of  the analysis. 

There was a strong effect of  consistency on the boundary val- 
ues, F( 3, 162) = 14.5, p < .001, and this effect interacted both 
with orthographic cluster, F(6, 324) = 16.1, p < .001, and with 
phonological cluster, F(6, 324) = 20.3, p < .001. Figure 15 pre- 
sents the average boundary values of  each orthographic cluster 
as a function of phonological cluster, separately for words of 
each level of  consistency. Thus, for each type of  word, the set of  
bars for each phonological cluster indicates how sensitive that 
cluster is to input from each orthographic cluster. If  we consider 
regular consistent words first, the figure shows that each phono- 
logical cluster depends almost entirely on the corresponding or- 
thographic cluster and little, if at all, on the other clusters. For 
instance, the vowel and coda graphemes can be completely re- 
moved without affecting the network's pronunciation of  the on- 
set. There is a slight interdependence among the vowel and 
coda, consistent with the fact that word bodies capture impor- 
tant information in pronunciation (see, e.g., Treiman & Cha- 
fetz, 1987; Treiman et al., 1995). Nonetheless, neither the pho- 
nological vowel nor the coda cluster depends on the ortho- 
graphic onset cluster. Thus, for a regular word like MUST, an 
alternative onset (e.g., N) can be substituted and pronounced 
without depending on or affecting the pronunciation of  the body 
(producing the correct pronunciation of  the nonword NUST ). 

Similarly, for regular inconsistent, ambiguous, and exception 
words, the correctness of the phonological onset and coda was 
relatively independent of  noncorresponding parts of  the ortho- 
graphic input. The pronunciation of  the vowel, by contrast, was 
increasingly dependent on the orthographic consonants as con- 
sistency decreased: F(3, 166) = 47.7, p < .001 for the main 
effect of consistency; p < .05 for all pairwise comparisons. In 
fact, most spelling-sound inconsistency in English involves un- 
usual vowel pronunciations. Interestingly, for exception words, 
the vowel pronunciation was less sensitive to the orthographic 
vowel itself than it was to the surrounding (consonant) context: 
F( 1, 41 ) = 8.39, p = .006 for orthographic onset versus vowel; 
F( 1, 41 ) = 6.97, p = .012 for coda versus vowel. This makes 
sense, because the orthographic vowel in an exception word is a 
misleading indicator of the phonological vowel. Thus, in con- 

~a Final E was considered to be part of the orthographic vowel duster. 
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tractor basins exist where the sub-basins for parts of  words over- 
lap (see Figure 16). Each of  these combinations corresponds 
to a pronounceable nonword that the network will pronounce 
correctly if presented with the appropriate orthographic input. 
This componentiality arises directly out of the degree to which 
the network's representations make explicit the structure of the 
task. By minimizing the extent to which information is repli- 
cated, the representations condense the regularities between or- 
thography and phonology. Only small portions of the input and 
output are relevant to a particular regularity, which allows it to 
operate independently of other regularities. 

The attractor basins for exception words, by contrast, are far 
less componential than those for regular words (unfortunately, 
this cannot be depicted adequately in a two-dimensional dia- 
gram such as Figure 16). In this way, the network can pro- 
nounce exception words and yet still generalize well to non- 
words. It is important to note, however, that the attractors for 
exception words are noncomponential only in their exceptional 
aspects---not in a monolithic way. In particular, whereas the 
consonant dusters in (most)  exception words combine compo- 
nentially, the correct vowel phoneme depends on the entire or- 
thographic input. Thus, a word like PiNT is in some sense three- 
quarters regular in that its consonant correspondences contrib- 
ute to the pronunciations of regular words and nonwords just 
like those of  other items. The traditional dual-route character- 
ization of a lexical "lookup" procedure for exception words 
fails to do justice to this distinction. 

The development of componentiality in learning. We can 
gain insight into the development of  this componentiality by 
returning to the simple, two-layer Hebbian network that formed 

Figure 15. The degree of activity in each orthographic duster required 
to activate each phonological duster correctly, for words of various 
spelling-sound consistency (listed in Appendix A ). Words lacking ei- 
ther an onset or coda consonant cluster in orthography were excluded 
from the analysis. 

trast to regular consistent words, words with ambiguous or ex- 
ceptional vowel pronunciations depend on the entire ortho- 
graphic input to be pronounced correctly. 

These effects can be understood in terms of  the nature of  the 
attractors that develop when training on different types of  
words. The relative independence of  the onset, vowel, and coda 
correspondences indicates that the attractor basins for regular 
words consist of  three separate, orthogonal sub-basins (one for 
each cluster). When a word is presented, the network settles 
into the region in state space where these three sub-basins over- 
lap, which corresponds to the word's pronunciation. However, 
each sub-basin can apply independently, so that "spurious" at- 

Figure 16. A depiction of how componential attractors for words can 
recombine to support pronunciations ofnonwords. The attractor basins 
for words consist of orthogonal sub-basins for each of its clusters (only 
two are depicted here). Spurious attractors for nonwords exist where 
the sub-basins for parts of words overlap. To support the noncompo- 
nential aspects of attractors for exception words (e.g., DO), the sub- 
basins for vowels in the region of the relevant consonant clusters must 
be distorted somewhat (into dimensions in state space other than the 
ones depicted). 
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the basis for the frequency-consistency equation (see Figure 6; 
also see Van Orden et al., 1990, for related discussion). As ex- 
pressed by Equation 7, the value of  each weight wv in the net- 
work is equal to the sum over training patterns, weighted by the 
learning rate, of  the product of  the state of input unit i and the 
state of  output unit j .  Patterns for which the input state is 0 do 
not contribute to the sum, and those for which it is 1 contribute 
the value of the output state, which is either + 1 or -1  in this 
formulation. Thus, the value of the weight can be re-expressed 
in terms of two counts: the number of  consistent patterns, 
NtCo ], in which the states of  units i andj  are both positive, and 
the number of inconsistent patterns, N[i~ ], in which i is positive 
but j  is negative: 

w o = e ( N l C o  ] - Ntld). 

If patterns differ in their frequency of  occurrence, these counts 
simply become cumulative frequencies (see Equation 12); for 
clarity of presentation, we leave this out here (see Reggia, Mars- 
land, & Berndt, 1988, for a simulation based directly on these 
frequencies). 

Now consider a word like PINT ~ / p l n t / .  Over the entire set 
of words, the onset P and / p / typically co-occur (but not always; 
cF. PHONE), SO that N[C01 is large and N[~fl is small, and the 
weight between these two units becomes strongly positive. By 
contrast, / p / n e v e r  co-occurs with, for example, an onset K 
(i.e., N { %  ] = 0 and N[tJ I is large), which leads to a strongly 
negative weight between them. For onset letters that can co-oc- 
cur w i t h / p / a n d  P, such as L, NtC01 is positive and the resulting 
weight is therefore less negative. Going a step further, onse t /p /  
can co-occur with virtually any orthographic vowel and coda, 
so N[Co l for each relevant connections is larger and the weight 
is closer to zero. Actually, given that each phoneme is inactive 
for most words, its weights from graphemes in noncorrespond- 
ing clusters will tend to become moderately negative when Heb- 
bian learning is used. With error-correcting learning, however, 
these weights remain near zero because the weights between 
corresponding clusters are sufficient--and more effective, be- 
cause of  the higher unit correlations--for eliminating the error. 
These same properties hold f o r / n / a n d / t / i n  the coda. Thus, 
the unit correlations across the entire corpus give rise to a com- 
ponential pattern of  weights for consonant phonemes, with sig- 
nificant values only on connections from units in the corre- 
sponding orthographic cluster (see Brousse & Smolensky, 1989, 
for additional relevant simulations). 

The situation is a bit more complicated for vowels. First, 
there is far more variability across words in the pronunciation 
of  vowels compared with consonants (see Venezky, 1970). Con- 
sequently, generally NICo I is smaller and Nttd is larger for con- 
nections between vowel graphemes and phonemes than for the 
corresponding onset and coda connections. The more critical 
issue concerns exceptional vowel pronunciations in words like 
PINT. Here, for the 1 - / I /  correspondence, the small N[Co ] is 
overwhelmed by the large N[tJ ] that comes from the much more 
common I-/i /correspondence (in which / I /has  a state o f -  1 ). 
Furthermore, with Hebbian learning, the correlations o f / i /  
with the consonants P, N, and T are too weak to help. Error- 
correcting learning can compensate to some degree by allowing 
the weights from these consonant units to grow larger than dic- 

tate~ by correlation under the pressure to eliminate error. Note 
that this reduces the componentiality of  the vowel phoneme 
weights. Such cross-cluster weights cannot provide a general so- 
lution to pronouncing exception words, however, because, in a 
diverse corpus, the consonants must be able to co-exist with 
many other vowel pronunciations (e.g., PUNT, PANT ). In order 
for a network to achieve correct pronunciations of  exception 
words while still maintaining the componentiality for regular 
words (and nonwords), error correction must be combined 
with the use of  hidden units in order to re-represent the similar- 
ities among the words in a way that reduces the interference 
from inconsistent neighbors (as discussed earlier). 

I n t e r n a l  represen ta t ions .  In the first analysis we established 
the componentiality of  the attractors for regular words behav- 
iorally, and in the second we showed how it arises from the na- 
ture of  learning in a simpler, related system. We know that si- 
multaneously supporting the less componential aspects of word 
reading in the same system requires hidden units and error cor- 
rection, but we have yet to characterize how this is accom- 
plished, The most obvious possibility would be the one raised 
for the feedforward networks--that the network had parti- 
tioned itself into two subnetworks: a fully componential one for 
regular words (and nonwords), and a much less componential 
one for exception words. As before, however, this does not seem 
to be the case. If we apply the criterion that a hidden unit is 
important for pronouncing an item if its removal increases the 
total error on the item by more than 0.1, then there is a signifi- 
cant positive correlation between the numbers of  exception 
words and the numbers of  orthographically matched nonwords 
(listed in Appendix A) for which hidden units are important, r 
= .71 and t(98) = 9.98, p < .001. Thus, the hidden units have 
not become specialized for processing particular types of  items. 

The questions remains, then, as to how the attractor network-- 
as a single mechanism--implements componential attractors for 
regular words (and nonwords) and less componential attractors 
for exception words. In a third analysis we attempted to character- 
ize the degree to which hidden representations for regular versus 
exception words reflect the differences in the compenentiality of 
their attractors. Specifically, we attempted to determine the extent 
to which the contribution that an orthographic cluster makes to 
the hidden representation depends on the context in which it oc- 
curs--this should be less for words with more componential rep- 
resentations. For example, consider the onset P in an exception 
word like prrcr. When presented by itself, the onset need only gen- 
erate its own pronunciation. When presented in the context of 
_ANT, the P must also contribute to altering the vowel f r o m / i / t o  
/ I / .  By contrast, in a regular word like PINE, the onset P plays the 
same role in the context of--rNE as when presented in isolation. 
Thus, if the hidden representations of regular words are more 
componential than those of exception words, the contribution of 
an onset (P) should be affected more greatly by the presence of an 
exception context (_rNX) than by a regular context (_INE). 

We measured the contribution of an orthographic cluster in a 
particular context by first computing the hidden representation 
generated by the cluster with the context (e.g., PINT ), and sub- 
tracting from this (unit by unit) as a baseline condition the hidden 
representation generated by the context alone (e.g., ~ ). The 
contribution of a cluster in isolation was computed similarly, ex- 
cept that the baseline condition in this case was the representation 
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generated by the network when presented with no input (i.e., with 
all grapheme units set to 0). The correlation between these two 
vector differences was used as a measure of the similarity of the 
contribution of the cluster in the two conditions. A high correla- 
tion indicates that the contribution of a duster to the hidden rep- 
resentation is independent of the presence of other clusters, and 
hence reflects a high degree of componentiality. 

These contribution correlations were computed separately 
for the onset, vowel, and coda clusters of  the Taraban and 
McClelland (1987) exception words and their frequency- 
matched regular consistent control words. Words lacking either 
an onset or a coda were withheld from the analysis. The corre- 
lations for the remaining words were subjected to an ANOVA 
with frequency and consistency as between-items factors and 
orthographic cluster as a within-item factor. There was no main 
effect of frequency, F( 1, 85) = 2.19, p = .  143, nor was there any 
significant interaction of frequency with consistency or ortho- 
graphic cluster (F  < 1 for both) so this factor was not considered 
further. Figure 17 shows the average correlations for regular and 
exception words as a function of orthographic cluster. 

There was no significant interaction of consistency with or- 
thographic cluster (F  < 1 ). There was, however, a significant 
main effect of cluster, F(2, 170) = 16.1, p < .001, with the vowel 
cluster producing lower correlations than either consonant clus- 
ter: F( I, 88) = 26.8, p < .001 for vowel versus onset; F( 1, 88) 
= 21.0, p < .001 for vowel versus coda. More important, regular 
words (M = .828, SD = .0506) had higher correlations than 
exception words (M = .795, SD = .0507), F( 1, 85) = 20.7, p 
< .001. Thus, the contributions of orthographic clusters to the 
hidden representations were more independent of context in 
regular words than in exception words. In this sense, the repre- 
sentations of regular words were more componential. What is 
surprising, however, is that the average correlations for excep- 
tion words, though lower than those of regular words, were still 

Figure 17. The similarity (correlations) of the contribution that each 
orthographic cluster makes to the hidden representation in the context 
of the remaining clusters versus in isolation, for the Taraban and 
McClelland ( 1987 ) exception words and their regular consistent control 
words. 

quite high, and there was considerable overlap between the dis- 
tributions. Furthermore, the representations for regular words 
were not completely componential in that their correlations 
were significantly less than 1.0. 

Apparently, the hidden representations of  words reflect their 
spelling-sound consistency only slightly. An alternative possi- 
bility is that these representations capture predominantly or- 
thographic information across a range of levels of structure 
(from individual graphemes to combinations of clusters; cf. 
Shallice & McCarthy, 1985). If this were the case, the low-order 
orthographic structure about individual graphemes and clusters 
could support componential attractors for regular words. The 
presence of higher order structure would make the representa- 
tion of clusters in both regular and exception words somewhat 
sensitive to the context in which they occur. More important, 
this higher order structure would be particularly useful for pro- 
nouncing exception words by overriding at the phonological 
layer the standard spelling-sound correspondences of individ- 
ual clusters. In this way, noncomponential aspects of the attrac- 
tors for exception words could co-exist with componential at- 
tractors for regular words. 

To provide evidence bearing on this explanation, we carried out 
a final analysis to determine the extent to which the hidden repre- 
sentations are organized on the basis of orthographic (as opposed 
to phonological) similarity. The hidden representations for a set of 
items are organized orthographically (or phonologically) to the 
extent that pairs of items with similar hidden representations have 
similar orthographic (or phonological) representations. Put more 
generally, the sets' representations over two groups of units have 
the same structure to the extent that they induce the same relative 
similarities among items. 

To control for the contribution of orthography as much as 
possible, the analysis involved 48 triples, each consisting of a 
nonword, a regular inconsistent word, and an exception word 
that all shared the same body (e.g., PHINT, MINT, PINT; listed 
in Appendix A). For each item in a triple, we computed the 
similarity of its hidden representation with the hidden repre- 
sentations of  all of the other items of  the same type (measuring 
similarity by the correlation of  unit activities). The similarities 
among orthographic representations and among phonological 
representations were computed analogously. The orthographic, 
hidden, and phonological similarity values for each item were 
then correlated in a pairwise fashion (i.e., orthographic-pho- 
nological, hidden-orthographic, and hidden-phonological). 
Figure 18 presents the means of  these correlation values for 
nonwords, regular words, and exception words, as a function of 
each pair of representation types. 

First consider the correlation between the orthographic and 
phonological similarities. These values reflect the relative 
amounts of structure in the spelling-sound mappings for 
different types of items. All of the values were relatively high 
because of the systematicity of English word pronunciations; 
even within exception words, the consonant clusters tended to 
map consistently. Nonetheless, the mappings for exception 
words were less structured than those for nonwords or regular 
words: paired t(47) = 5.48, p < .001; and t(47) = 5.77, p < 
.001, respectively. In other words, orthographic similarity is less 
related to phonological similarity for exception words than for 
the other items. In a sense, this is the defining characteristic of 
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graphic information at a range of  levels of  structure. In this way, 
attractors provide an effective means of  capturing both the reg- 
ularities and the exceptions in a quasi-regular task. 

A further advantage of  an attractor network in this domain is 
that its temporal dynamics in settling to a response provide a 
more direct analogue of  readers' naming latencies than does er- 
ror in a feedforward network. In fact, the time it took the net- 
work to settle to a stable pronunciation in response to words 
of  varying frequency and consistency reproduced the standard 
pattern found in empirical studies. 

Figure 18. The correlations among orthographic (Orth), hidden, and 
phonological (Phon) similarities for body-matched nonwords, regular 
inconsistent words, and exception words (listed in Appendix A ). 

exception words, and thus this finding simply verifies that the 
representations used in the simulations have the appropriate 
similarity structure. 

The more interesting comparisons are those that involve the 
hidden representations. As Figure 18 shows, the similarities 
among the hidden representations of  all types of  items were 
much more highly correlated with their orthographic similari- 
ties than with their phonological similarities (p < .001 for all 
pairwise comparisons). The representations of  nonwords and 
regular words behave equivalently in this regard. The represen- 
tations of  exception words showed the effect even more strongly, 
having significantly less phonological structure than the other 
two item types: paired t(47) = 2.81, p = .007 for exception 
versus nonword; paired t(47) = 3.22, p = .002 for exception 
versus regular. This may be due to the reliance of  these words 
on higher-order orthographic structure to override standard 
spelling-sound correspondences. Overall, consistent with the 
explanation offered above, the hidden representations are orga- 
nized more orthographically than phonologically. 

S u m m a r y  

Interactivity, and its use in implementing attractors, is an im- 
portant computational principle in connectionist accounts of  a 
wide range of  cognitive phenomena. Although the tendency of 
attractors to capture similar patterns might appear to make 
them inappropriate for tasks in which novel inputs require 
novel responses, such as pronouncing nonwords in oral reading, 
the current simulation showed that using appropriately struc- 
tured representations led to the development of  attractors with 
componential structure that supported effective generalization 
to nonwords. At the same time, the network also developed less 
componential attractors for exception words that violate the 
regularities in the task. A series of  analyses suggested that both 
the componential and noncomponential aspects of attractors 
were supported by hidden representations that reflect ortho- 

Simulat ion 4: Surface Dyslexia and the Division o f  
Labor  Between the Phonological  and Semant ic  Pathways 

A central theme of the current work is that the processing of 
words and nonwords can coexist within connectionist networks 
that use appropriately structured orthographic and phonological 
representations and that operate according to certain computa- 
tional principles. It must be kept in mind, however, that the SM89 
general lexical framework---on which the current work is based-- 
contains two pathways by which orthographic information can 
influence phonological information: a phonological pathway and a 
semantic pathway (see Figure 1 ). Thus far, we have ignored the 
semantic pathway in order to focus on the principles that govern 
the operation of  the phonological pathway. However, in our view, 
the phonological and semantic pathways must work together to 
support normal skilled reading. For example, semantic involve- 
ment is dearly necessary for correct pronunciation of homographs 
like WIND and READ. Furthermore, a semantic variable--imagea- 
bility--influences the strength of the frequency by consistency in- 
teraction in the naming latencies and errors of skilled readers 
(Strain, Patterson, & Seidenberg, 1995 ). Even in traditional dual- 
route theories (see, e.g., Coltheart et al., 1993; Coltheart & Rastle, 
1994), the lexical procedure must influence the output of the 
sublexical procedure to account for consistency effects among reg- 
ular words and nonwords (Glushko, 1979 ). 

The SM89 framework (and the implied computational 
principles) provides a natural formulation of  how contributions 
from both the semantic and phonological pathways might be inte- 
grated in determining the pronunciation of a written word. Criti- 
cally, when formulated in connectionist terms, this integration also 
has important implications for the nature of  learning in the two 
pathways. In most connectionist systems, learning is driven by 
some measure of the discrepancy or error between the correct re- 
sponse and the one generated by the system. To the extent that the 
contribution of one pathway reduces the overall error, the other 
pathway will experience less pressure to learn. As a result, on its 
own, it may master only those items it finds easiest to learn. Spe- 
cifically, if the semantic pathway contributes significantly to the 
pronunciation of words, then the phonological pathway need not 
master all of  the words by itself. Rather, it will tend to learn best 
those words high in frequency, consistency, or both; low-frequency 
exception words may never be learned completely. This is espe- 
cially true if there is some intrinsic pressure within the network to 
prevent overleaming--for example, if weights have a slight bias 
toward staying small. Of course, the combination of the semantic 
and phonological pathways ~ be fully competent. But readers of  
equivalent overt skill may differ in their division of  labor between 
the two pathways (see, e.g., Baron & Strawson, 1976). In fact, if 
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the semantic pathway continues to improve with additional read- 
ing experience, the phonological pathway would become increas- 
ingly specialized for consistent spelling-sound mappings at the ex- 
pense of higher frequency exception words. At any point, brain 
damage that impaired or eliminated the semantic pathway would 
lay bare the latent inadequacies of the phonological pathway. In 
this way, a detailed consideration of the division of labor between 
the phonological and semantic pathways is critical to understand- 
ing the specific patterns of impaired and preserved abilities of 
brain-damaged patients with acquired dyslexia. 

Of particular relevance in this context is the finding that brain 
damage can selectively impair either nonword reading or excep- 
tion word reading while leaving the other (relatively) intact. Thus, 
phonological dyslexic patients (Beauvois & Derouesn6, 1979) 
read words (both regular and exception) much better than non- 
words, whereas surface dyslexic patients (Marshall & Newcombe, 
1973; Patterson et ai., 1985) read nonwords much better than 
(exception) words. 

Phonological dyslexia has a natural interpretation within the 
SM89 framework in terms of selective damage to the phonological 
pathway (or perhaps within phonology itself; see Patterson & Mar- 
eel, 1992), so that reading is accomplished primarily (perhaps 
even exclusively in some patients) by the semantic pathway. This 
pathway can pronounce words but is unlikely to provide much 
useful support in pronouncing nonwords because, by definition, 
these items have no semantics. Along these lines, as mentioned in 
the previous section, Plant and Shallice ( 1993; also see Hinton & 
ShaUice, 1991 ) used a series of implementations of the semantic 
route to provide a comprehensive account of deep dyslexia 
(Coltheart et al., 1980; Marshall & Newcombe, 1966), a form of 
acquired dyslexia similar to phonological dyslexia but also involv- 
ing the production of semantic errors (see Friedman, 1996; Glos- 
ser & Friedman, 1990, for arguments that deep dyslexia is simply 
the most severe form of phonological dyslexia). The question of 
the exact nature of the impairment that gives rise to reading via 
semantics in phonological dyslexia, and whether this interpreta- 
tion can account for all of the relevant findings, is taken up in the 
General Discussion. 

Surface dyslexia, on the other hand, seems to involve reading 
primarily via the phonological pathway because of an impairment 
of the semantic pathway. In its purest, fluent form (e.g., Patient 
MP, Behrmann & Bub, 1992; Bub, Cancelliere, & Kertesz, 1985; 
Patient KT, McCarthy & Warrington, 1986; Patient HTR, Shal- 
lice et al., 1983), patients exhibit normal accuracy and latency in 
reading words with consistent spelling-sound correspondences 
and in reading nonwords but often misread exception words, par- 
ticularly those of low frequency, by giving a pronunciation consis- 
tent with more standard correspondences (e.g., SEW ~ "sue"). 
Although we ascribe such errors to influences of consistency, they 
are conventionally termed regularizations (Coltheart, 1981 ), and 
we have retained this terminology. Thus, there is a frequency by 
consistency interaction in accuracy that mirrors the interaction 
in latency exhibited by normal skilled readers (Andrews, 1982; 
Seidenberg, 1985; Seidenberg et al., 1984; Taraban & McClelland, 
1987; Waters & Seidenberg, 1985). The relevance of the semantic 
impairment in surface dyslexia is supported by the finding that, in 
some cases of semantic dementia (Graham, Hodges, & Patterson, 
1994; Patterson & Hodges, 1992; Schwartz, Marin, & Saffran, 
1979) and of Alzheimer's type dementia (Patterson, Graham, & 

Hodges, 1994), the surface dyslexic reading pattern emerges as 
lexical semantic knowledge progressively deteriorates. 

The previous simulations of the phonological pathway, along 
with that of SM89, are similar to surface dyslexic patients in that 
they read without the aid of semantics. The simulations do not 
provide a direct account of surface dyslexia, however, because they 
all read exception words as well as skilled readers. One possibility 
is that surface dyslexia arises from partial impairment of the pho- 
nological pathway in addition to severe impairment of the seman- 
tic pathway. A more interesting possibility, based on the division- 
of-labor ideas mentioned above, is that the development and oper- 
ation of the phonological pathway are shaped in an important way 
by the concurrent development of the semantic pathway and that 
surface dyslexia arises when the intact phonological pathway oper- 
ates in isolation because of an impairment of the semantic 
pathway. 

We used two sets of simulations to test the adequacy of these two 
accounts of surface dyslexia. The first set investigated the effects of 
damage to the attractor network developed in the previous simula- 
tion. The second involved a new network trained in the context of 
support from semantics. 

Phonological Pathway Lesions 

Patterson et al. (1989) investigated the possibility that sur- 
face dyslexia might arise from damage to an isolated phonolog- 
ical pathway. They lesioned the SM89 model by removing 
different proportions of units or connections, and they mea- 
sured its performance on regular and exception words of vari- 
ous frequencies. The damaged network's pronunciation of a 
given word was compared with the correct pronunciation and 
with a plausible alternative--for exception words, this was the 
regularized pronunciation. Patterson and colleagues found that, 
after damage, regular and exception words produced about 
equal amounts of error, and there was no effect of frequency 
in reading exception words. Exception words were much more 
likely than regular words to produce the alternative pronuncia- 
tion, but a comparison of the phonemic features in errors re- 
vealed that the network showed no greater tendency to produce 
regularizations than other errors that differ from the correct 
pronunciation by the same number of features. Thus, the dam- 
aged network failed to show the frequency by consistency in- 
teraction and the high proportion of regularization errors on 
exception words characteristic of surface dyslexia. 

Using a more detailed procedure for analyzing responses, Pat- 
terson (1990) found that removing 20% of the hidden units pro- 
duced better performance on regular versus exception words and 
a (nonsignificant) trend toward a frequency by consistency in- 
teraction. Figure 19 shows analogous data from 100 instances of 
lesions to a replication of the SM89 network, in which each hidden 
unit had a probability of either .2 or .4 of being removed. Plotted 
for each severity of damage are the network's percentage correct 
on Taraban and McClelland's (1987) high- and low-frequency ex- 
ception words and their regular consistent control words, percent- 
age of errors on the exception words that are regularizations, and 
percentage correct on Glushko's (1979) nonwords; any pronunci- 
ation consistent with that of some word with the same body in the 
training corpus was counted as correct. Also shown in the figure 
are the corresponding data for two surface dyslexic patients, MP 
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(Behrmann & Bub, 1992;Bubet al., 1985) and KT (McCarthy & 
Warrington, 1986). 

The milder lesions (p = .2) produced a good match to MP's 
performance on the Taraban and McClelland (1987) words. 
However, the more severe lesions (p = .4) failed to simulate the 
more dramatic effects shown by KT. Instead, while the damaged 
network and KT performed about equally well on the high-fre- 
quency exception words, the network was not as impaired on 
the low-frequency exception words and was much more im- 
paired on both high- and low-frequency regular words. In addi- 
tion, with the less severe damage, only about a third of the net- 
work's errors to exception words were regularizations, and only 
just above half of the nonwords were pronounced correctly; for 
more severe damage, these figures were even lower. By contrast, 
both MP and KT produced regularization rates around 85- 
90% and were near perfect at nonword reading. Overall, the at- 
tempts to account for surface dyslexia by damaging the SM89 
model have been less than satisfactory (see Behrmann & Bub, 
1992; Coltheart et al., 1993, for further criticisms). 

One possible explanation of this failing parallels our explana- 
tion of the SM89 model's poor nonword reading: It is due to the 
use of representations that do not make the relevant structure 
between orthography and phonology sufficiently explicit. In es- 
sence, the influence of spelling-sound consistency in the model 
is too weak. This weakness also seems to be contributing to its 
inability to simulate surface dyslexia after severe damage: Reg- 
ular word reading, nonword reading, and regularization rates 
were all too low. This interpretation leads to the possibility that 
a network trained with more appropriately structured repre- 
sentations would, .when damaged, successfully reproduce the 
surface dyslexic reading pattern. 

Method. We lesioned the attractor network either by removing each 
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hidden unit or each connection between two groups of units with some 
probability p, or by adding normally distributed noise to the weights on 
connections between two groups of units. In the latter case, the severity 
of the damage depends on the standard deviation of the noiseba higher 
standard deviation constitutes a more severe impairment. This form 
of damage has the advantage over the permanent removal of units or 
connections of reducing the possibility of idiosyncratic effects from le- 
sions to particular units or connections. As Shallice (1988) has pointed 
out, such effects in a network simulation are of little interest to the study 
oftbe cognitive effects of damage to the brain given the vast difference 
in scale between the two systems (also see Plaut, 1995). In general, 
simulation studies comparing the effects of adding noise to weights with 
the effects of removing units or connections (e.g., Hinton & Shallice, 
1991 ) have found that the two procedures yield qualitatively equivalent 
results.14 

Fifty instances of each type of lesion of a range of severities were 
administered to each of the main sets of connections in the attractor 
network (graphemes-to-hidden, hidden-to-phonemes, phonemes-to- 
hidden, and phonemes-to-phonemes connections) and to the hidden 
units. After a given lesion, the operation of the network when presented 
with an input and the procedure for determining its response were the 
same as those in Simulation 3. 

To evaluate the effects of lesions, we tested the network on Taraban 
and McClelland's (1987) high- and low-frequency regular consistent 
words and exception words and on Glushko's (1979) nonwords. For the 
words, in addition to measuring correct performance, we calculated the 
percentage of errors on the exception words that corresponded to a reg- 
ularized pronunciation. The full list of responses that were accepted as 
regularizations is given in Appendix C. Because the undamaged net- 
work mispronounces the word SPOOK, this item was not included in the 
calculation of regularization rates. For the nonwords, a pronunciation 
was accepted as correct if it was consistent with the pronunciation of 
some word in the training corpus with the same body (see Appendix B ). 

Results and discussion. Figure 20 shows the data from the 
attractor network after the weights of each of the four main sets 
of connections were corrupted by noise of varying severities. 
The milder lesions to the graphemes-to-hidden connections (on 
the top left of the figure) produce clear interactions of frequency 
and consistency in correct performance on word reading. For 
instance, after noise with a standard deviation of 0.4 was added, 
the network pronounced correctly over 96% of regular words 
and 93% of high-frequency exception words but only 77% of 
low-frequency exception words. In addition, for these lesions, 
68% of errors on exception words were regularizations, and 89% 
of the nonwords were pronounced correctly. Compared with 
the results from lesions to 20% of the hidden units in the SM89 
network, these showed a stronger effect of consistency and were 
a better match to the performance of MP (although the regular- 
ization rate was somewhat low; see Figure 19). Thus, as pre- 
dicted, the use of representations that better capture spelling- 
sound structure produces a stronger frequency by consistency 
interaction, more regularizations, and better nonword reading. 

Figure 19. Performance of two surface dyslexic patients, MP 
(Behrmann & Bub, 1992; Buh, Cancelliere, & Kertesz, 1985) and KT 
(McCarthy & Warrington, 1986), and of a replication of the Seidenberg 
and McClelland (1989) model (SM89) when lesioned by removing 
each hidden unit with probability p = .2 or .4 (results are averaged 
over 100 such lesions). Correct performance is given for Taraban and 
McClelland's ( 1987 ) high-frequency (HF) and 10w-frequency (LF) reg- 
ular consistent words (Reg) and exception words (Exc) and for 
Glushko's (1979) nonwords. "Reg's" is the approximate percentage of 
errors on the exception words that were regularizations. 

14 To see why this should be the case, imagine a much larger network 
in which the role of each weight in a smaller network is accomplished 
by the collective influence of a large set of weights. For instance, we 
might replace each connection in the small network by a set of connec- 
tions whose weights are both positive and negative and sum to the weight 
of the original connection. Randomly removing some proportion of the 
connections in the large network will shift the mean of each set of 
weights; this will have the same effect as adding a random amount of 
noise to the value of the corresponding weight in the small network. 
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Figure 20. Performance of the attractor network after lesions of various severities to each of the main sets 
of connections, in which weights are corrupted by noise with M = 0 and SDs as indicated. Correct perfor- 
mance is given for Taraban and McClelland's ( 1987 ) high-frequency ( HF ) and low-frequency (LF) regular 
consistent words (Reg) and exception words (Exc), and for Glushko's ( t 979) nonwords. "'Reg's" is the 
percentage of errors on the exception words that were regularizations. 

As found for the SM89 network, however, more severe lesions 
did not reproduce the pattern shown by KT. Lesions that re- 
duced correct performance on high-frequency exception words 
to equivalent levels (SD = 1.0; network, 46%; KT, 47%)did not 
impair performance on low-frequency exception words suffi- 
ciently (network, 38%; KT, 26%) and, unlike KT, showed im- 
paired performance on both high- and low-frequency regular 
words (network, 65% and 60%; KT, 100% and 89%, 
respectively). Furthermore, and even more unlike KT's perfor- 
mance, there was a substantial drop in both the regularization 
rate (network, 32%; KT, 85%) and in performance on nonwords 
(network, 60%; KT, 100%). 

Lesions to the other sets of connections produced broadly 
similar but even weaker results: The frequency by consistency 
interactions were weaker (especially for severe lesions), the im- 
pairment of regular words was more severe (except for pho- 
neme-to-hidden lesions), and the regularization rates were 
much lower (note that a different range of lesion severities was 
used for the hidden-to-phonemes connections because they are 
much more sensitive to noise). Thus, in summary, mild graph- 
eme-to-hidden lesions in the attractor network could account 

for MP's behavior, but more severe lesions could not reproduce 
KT's behavior. 

These negative findings are not specific to the use of noise in 
lesioning the network; removing units or connections produced 
qualitatively equivalent results, except that the regularization 
rates were even lower. To illustrate this, Table 9 presents data for 
the two patients and for the attractor network after either mild 
or severe lesions of the graphemes-to-hidden connections, the 
hidden units, or the hidden-to-phonemes connections. The lev- 
els of severity were chosen to approximate the performance of 
MP and KT on low-frequency exception words. 

In summary, some types of lesion to a network implementa- 
tion of the phonological pathway were able to approximate the 
less impaired pattern of performance shown by MP but were 
unable to account for the more dramatic pattern of results 
shown by KT. These findings suggest that impairment to the 
phonological pathway may play a role in the behavior of some 
surface dyslexic patients, but they seem unlikely to provide a 
complete explanation of some patients--particularly those with 
normal nonword reading and severely impaired exception word 
reading. 
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Table 9 
Performance of Two Patients and of the Attractor Network After 
Lesions of Units or Connections 

Reader 

Correct performance 

HF reg LF reg HF exc LF exc Reg's Nonwords 

Patient MP ~ 95 98 93 73 90 c 95.5 
Patient KT b 100 89 47 26 85 c 100 
Attractor network after lesions to: 

Graphemes-to-hidden connections 
p = .05 95.8 94.4 88.9 75.8 65.6 89.6 
p = .3 49.0 42.8 37.8 27.9 26.0 45.3 

Hidden units 
p = .075 93.9 93.5 85.6 75.8 51.4 85.6 
p = .3 54.5 49.4 45.3 31.7 18.0 48.4 

Hidden-to-phonemes connections 
p = .02 89.0 89.2 81.0 70.0 48.3 82.4 
p = .l 36.3 31.8 26.4 24.8 13.3 35.5 

Note. p is the probability that each of the specified units or connections is removed from the network for 
a lesion; results are averaged over 50 instances of such lesions. Correct performance is given for Taraban 
and McClelland's (I 987) high-frequency (HF) and low-frequency (LF) regular consistent words (reg) and 
exception words (exc), and for Glushko's (1979) nonwords. "Reg's,' is the percentage of errors on the ex- 
ception words that are regularizations. 
"From Bub, Cancelliere, and Kertesz (1985; also see Behrmann & Bub, 1992). bFrom Patterson (1990, 
based on McCarthy & Warrington, 1986). ¢ Approximate (from Patterson, 1990). 
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Phonological and Semantic Division of  Labor 

We now consider an alternative view of surface dyslexia: that 
it reflects the behavior of an undamaged but isolated phonolog- 
ical pathway that had learned to depend on support from se- 
mantics in normal reading. All of the previous simulations of 
the phonological pathway were trained to be fully competent on 
their own. Thus, if this explanation for surface dyslexia holds, it 
entails a reappraisal of the relationship between those simula- 
tions and the word reading system of normal skilled readers. 

The current simulation involved training a new network in 
the context of an approximation to the contribution of seman- 
tics. Including a full implementation of the semantic pathway 
is, of course, beyond the scope of the present work. Rather, we 
will characterize the operation of this pathway solely in terms 
of its influence on the phoneme units within the phonological 
pathway. Specifically, to the extent that the semantic pathway 
has learned to derive the meaning and pronunciation of a word, 
it provides additional input to the phoneme units, pushing them 
toward their correct activations. Accordingly, we can approxi- 
mate the influence of the semantic pathway on the development 
of the phonological pathway by training the latter in the pres- 
ence of some amount of appropriate external input to the pho- 
neme units. 

A difficult issue arises immediately in the context of this ap- 
proach, concerning the time-course of development of the se- 
mantic contribution during the training of the phonological 
pathway. Presumably, the mapping between semantics and pho- 
nology develops, in large part, prior to reading acquisition, as 
part of speech comprehension and production. By contrast, the 
orthography-to-semantics mapping, like orthography-to-pho- 
nology mapping, obviously can develop only while learning to 
read. In fact, it is likely that the semantic pathway makes a sub- 

stantial contribution to oral reading only once the phonological 
pathway has developed to some degree--in part because of the 
phonological nature of typical reading instruction and in part 
because, in English, the orthography-to-phonology mapping is 
far more structured than the orthography-to-semantics map- 
ping. The degree of learning within the semantic pathway is also 
likely to be sensitive to the frequency with which words are en- 
countered. Accordingly, as a coarse approximation, we will as- 
sume that the strength of the semantic contribution to phonol- 
ogy in reading increases gradually over time and is stronger for 
high-frequency words. 

It must be acknowledged that this characterization of seman- 
tics fails to capture a number of properties of the actual word 
reading system that are certainly important in some contexts: 
other lexical factors, such as imageability, that influence the 
contribution of semantics to phonology, interactivity between 
phonology and semantics, and the relative time-course of pro- 
cessing in the semantic and phonological pathways. Nonethe- 
less, the manipulation of external input to the phoneme units 
allows us to investigate the central claim in the proposed expla- 
nation of surface dyslexia: that partial semantic support for 
word pronunciations alleviates the need for the phonological 
pathway to master all words such that, when the support is elim- 
inated by brain damage, the surface dyslexic reading pattern 
emerges. 

Method. As will become apparent below, the necessary simulation 
requires from four to five times more training epochs than the corre- 
sponding previous simulation. Thus, an attractor network trained on 
actual word frequencies could not be developed because of the limita- 
tions of available computational resources. Rather, the simulation in- 
volved training a feedforward network using a square-root compression 
of word frequencies. Such a network produces a pattern of results in 
word and nonword reading that is quite similar to the attractor network 
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Figure 21. The magnitude of the additional external input supplied to 
phoneme units by the putative semantic pathway, as a function of train- 
ing epoch, for the Taraban and McCleUand ( 1987 ) high- and low-fre- 
quency words. 

(see Simulation 2). More important, there is nothing specific about the 
feedforward nature of the network that is necessary to produce the re- 
sults we report below; an attractor network trained under analogous 
conditions would be expected to produce qualitatively equivalent 
results. 

The network was trained with the same learning parameters as the 
corresponding network from Simulation 2 except for one change: A 
small amount of weight decay was reintroduced, such that each weight 
experienced a slight pressure to decay toward zero, proportional (with 
constant 0.001 ) to its current magnitude. As mentioned in the context 
of Simulation t, this provides a bias toward small weights that prevents 
the network from overleaming and thereby encourages good generaliza- 
tion (see Hinton, 1989). As is demonstrated below, the introduction of 
weight decay does not alter the ability of the network to replicate the 
patterns of normal skilled performance on words and nonwords. 

Over the course of training the magnitude S of the input to phoneme 
units from the (putative) semantic pathway for a given word was set to be 

log(f+2)t , 
S = glog(f+ 2)t + k (t6) 

where f is the Ku~ra and Francis ( 1967 ) frequency of the word and t 
is the training epoch. The parameters g and k determine the asymptotic 
level of input and the time to asymptote, respectively. Their values (g = 
5, k = 2,000 in the current simulation) and, more generally, the specific 
analytic function used to approximate the development of the semantic 
pathway affect the quantitative but not the qualitative aspects of the 
results reported below. Figure 21 shows the mean values of this function 
over training epochs for the Taraban and McClelland (1987) high- and 
low-frequency words• If, for a given word, the correct state of a phoneme 
unit was 1.0, then its external input was positive; otherwise it was the 
same magnitude but negative. 

For the purposes of comparison, we trained a second version of the 
network without semantics, using the same learning parameters and ini- 
tial random weights. 

Results and discussion. Learning in the network trained 
without semantics reached asymptote by Epoch 500, at which 
point it pronounced correctly all but 9 of the 2,998 words in the 
training corpus (99.7% correct). Figure 22 shows the perfor- 
mance of the network on Taraban and McClelland's (1987) 
high- and low-frequency exception words and their regular con- 
sistent control words and on Glushko's (1979) nonwords over 

the course of training. Performance on regular words and on 
nonwords improved quite rapidly over the first 100 epochs, 
reaching 97.9% for the words and 96.5% for the nonwords at 
this point. Performance on high-frequency exception words im- 
proved somewhat more slowly. By contrast, performance on the 
low-frequency exception words improved far more slowly, only 
becoming perfect at Epoch 400. At this point, all of the words 
were read correctly. Even so, there were significant main effects 
of frequency, F( 1, 92) = 35.9, p < .001, and consistency, F( 1, 
92) = 64.3, p < .001, and a significant interaction of frequency 
and consistency, F( 1, 92) = 26.4, p < .001, in the cross-entropy 
error produced by the words: The means were 0.031 for the 
high-frequency regular (HFR) words, 0.057 for the low-fre- 
quency regular (LFR) words, 0.120 for the high-frequency ex- 
ception (HFE) words, and 0.465 for the low-frequency excep- 
tion (LFE) words. Thus, the network exhibited the standard 
pattern of normal skilled readers; the use of weight decay during 
training did not substantially alter the basic influences of fre- 
quency and consistency in the network. 

In the current context, the network that was trained with a 
concurrently increasing contribution from semantics (as shown 
in Figure 21 ) is the more direct analogue of a normal reader. 
Not surprisingly, overall performance improved more rapidly 
in this case. All of the regular words and the high-frequency 
exception words were pronounced correctly by Epoch 110, and 
the low-frequency exception words were 70.8% correct. By Ep- 
och 200, all of the low-frequency exception words were correct, 
and nonword reading was 95.4% correct (where we assume 
nonwords receive no contribution from semantics). At this 
point, the network with semantics exhibited the standard effects 
of frequency and consistency in cross-entropy error (means: 
HFR = 0.021, LFR = 0.025, HFE = 0.102, LFE = 0.382): for 

Figure 22. Correct performance of the network trained without se- 
mantics, as a function of training epoch, on Taraban and McClelland's 
(t987) high-frequency (HF) and low-frequency (LF) regular consistent 
words (Reg) and exception words (Exe), and on Glushko's (1979) 
nonwords. 
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frequency, F( 1, 92) = 19.0, p < .001; for consistency, F( 1, 92 ) 
= 45.0, p < .001; and for' the frequency by consistency interac- 
tion, F(1, 92) = 17.8, p < .001. Even after a considerable 
amount of  additional training (Epoch 2,000), during which the 
division of  labor between the semantic and phonological path- 
ways changed considerably (as shown below), the overt behav- 
ior of the normal "combined" network showed the same pattern 
of effects (nonword reading: 97.7% correct; word cross-entropy 
error means: HFR = 0.013, LFR = 0.014, HFE = 0.034, LFE 
= 0.053): for frequency, F(  1, 92) = 13.6, p < .001; for consis- 
tency, F ( I ,  92) = 125.1, p < .001; and for the frequency by 
consistency interaction, F( 1, 92) = 9.66, p = .003. 

This last finding may help explain why, as in previous simu- 
lations, networks that are trained to be fully competent on their 
own replicate the effects of frequency and consistency in nam- 
ing latency, even though, from the current perspective, such 
simulations are not fully adequate characterizations of  the iso- 
lated phonological pathway in skilled readers. The reason is that 
when performance is near asymptote--because of  either ex- 
tended training or semantic support--word frequency and 
spelling-sound consistency affect the relative effectiveness of  
processing different words in the same way. This asymptotic be- 
havior follows from the frequency-consistency equation (see 
Equation 12 and Figure 8 ). Increasing training (by increasing 
each F tpl in the equation) or adding an additional semantic 
term to the sum serves equally to drive units further toward 
their extreme values (also see the General Discussion). 

Figure 23 shows the performance of  the network at each 
point in training when the contribution from semantics was 
eliminated--that is, after a complete semantic "lesion" These 
data reflect the underlying competence of  the phonological 
pathway when trained in the context of  a concurrently develop- 
ing semantic pathway. First notice that the simulation involves 
training for 2,000 epochs, even though the bulk of"overt" read- 
ing acquisition occurs in the first 100 epochs. Thus, the effects 
in the network should be thought of  as reflecting the gradual 
improvement of skill from reading experience that, in the hu- 
man system, spans perhaps many decades. 

Initially, performance on nonwords and all types of words 
improved as the phonological pathway gained competence in 
the task, much as when the network was trained without seman- 
tics (see Figure 22). But as the semantic pathway increased in 
strength (as characterized by the curves in Figure 21 ), the ac- 
curacy of  the combined network's pronunciations of  words im- 
proved even faster (recall that the combined network was per- 
fect on the Taraban and McClelland, 1987, words by Epoch 
200). The pressure to continue to learn in the phonological 
pathway was thereby diminished. Eventually, at about Epoch 
400, this pressure was balanced by the bias for weights to re- 
main small. At this point, most of  the error that remained came 
from low-frequency exception words. This error was reduced as 
the semantic pathway continued to increase its contribution to 
the pronunciation of  these (and other) words. As a result, the 
pressure for weights to decay was no longer balanced by the er- 
ror, and the weights became smaller. This caused a deterioration 
in the ability of  the phonological pathway to pronounce low- 
frequency exception words by itself. With further semantic im- 
provement, the processing of  high-frequency exception words 
in the phonological pathway also began to suffer. Virtually all of  

Figure 23. Performance of the network trained with semantics after a 
semantic "lesion," as a function of the training epoch at which seman- 
tics was eliminated, for Taraban and McClelland's (1987) high-fre- 
quency (HF) and low-frequency (LF) regular consistent words (Reg) 
and exception words (Exc), and for Glushko's (1979) nonwords, and 
the approximate percentage of errors on the exception words that were 
regularizations. 

the errors on exception words that resulted from this process 
were regularizations (plotted as asterisks in Figure 23). Larger 
weights were particularly important for exception words be- 
cause they had to override the standard spelling-sound corre- 
spondences that were implemented by many smaller weights. 
Furthermore, high-frequency words were less susceptible to 
degradation because any decrement in overt performance in- 
duced much larger weight changes to compensate. By contrast, 
the processing of  regular words and nonwords was relatively un- 
affected by the gradual reduction in weight magnitudes. Low- 
frequency regular words just began to be affected at Epoch 
1,900. 

Thus, with extended reading experience, there was a redistri- 
bution of  labor within the model between the semantic and pho- 
nological pathways. As the semantic pathway gained in compe- 
tence, the phonological pathway increasingly specialized for 
consistent spelling-sound correspondences at the expense of  ex- 
ception words. Notice, however, that even with extended train- 
ing, the phonological pathway continued to be able to read some 
exception words--particularly those of  high frequency. In this 
way it is quite unlike the sublexical procedure in a traditional 
dual-route theory, which can read only regular words and no 
exception words. It is also important to keep in mind that nor- 
mal overt performance--as supported by the combination of 
the phonological and semantic pathways--became fully accu- 
rate very early on and continued to improve in naming latency 
(as reflected indirectly by error). Finally, we should emphasize 
that, although the only factor we manipulated in the current 
simulation was extent of reading experience, we envision that a 



98 PLAUT, McCLELLAND, SEIDENBERG, AND PATTERSON 

Figure 24. Performance of two surface dyslexic patients, MP 
(Behrmann & Bub, 1992; Bub, Cancelliere, & Kertesz, 1985) and KT 
(McCarthy & Warrington, 1986), and of the network at different points 
in training when semantics was eliminated. Correct performance is 
given for Taraban and McClelland's (1987) high-frequency (HF) and 
low-frequency (LF) regular consistent words (Reg) and exception 
words (Exc), and for Glushko's (1979) nonwords. "Reg's" is the ap- 
proximate percentage of errors on the exception words that were 
regularizations. 

wide variety of factors may influence the division of  labor and 
overall competence of  an individual's reading system, including 
the nature of reading instruction, the sophistication of  preli- 
terate phonological representations, relative experience in read- 
ing aloud versus silently, the computational resources devoted 
to each pathway, and the reader's more general skill levels in 
visual pattern recognition and in spoken word comprehension 
and production. 

According to this interpretation of surface dyslexia, differ- 
ences among patients in their ability to read exception words 
may not reflect differences in the severities of their brain dam- 
age. Rather, they may reflect differences in their premorbid di- 
vision of labor between pathways, with the patients exhibiting 
the more severe impairment being those who had relied to a 
greater extent on semantic support. To illustrate this more di- 
rectly, Figure 24 presents data from MP and KT as well as data 
from the network at two different points in training, when se- 
mantics was eliminated. Overall, the network at Epoch 400 pro- 
vided a close match to MP's performance, whereas the network 
at Epoch 2,000 matched KT's performance. The only substan- 
tial discrepancy was that, in both conditions, the network's rate 
of regularizations was higher than that of the corresponding pa- 
tient (although the patient data are only approximate; see Pat- 
terson, 1990). 

Thus far, we have assumed that surface dyslexic patients, at 
least those of the fluent type, have a lesion that completely elim- 
inates any contribution of  the semantic pathway in reading. 
This assumption may be reasonable for MP and KT because 
both patients had very severe impairments in written word 
comprehension. MP was at chance at selecting which of four 
written words was semantically related to a given word or pic- 
ture (Bub et al., 1985; also see Bub, Black, Hampson, & Ker- 
tesz, 1988). KT's severe word comprehension deficit prevented 

him from scoring on either the Vocabulary or Similarities sub- 
tests of the Wechsler Adult Intelligence Scale (WAIS; e.g., "Bed, 
bed, I do not know what a bed is"; McCarthy & Warrington, 
1986, p. 361 ). 

However, some patients with fluent surface dyslexia appear 
to have only a partial impairment in the semantic pathway. In 
particular, among patients with semantic dementia whose read- 
ing has been tested in detail, the large majority also exhibit a 
surface dyslexic pattern such that severity of the reading disor- 
der is correlated with the degree of  semantic deterioration 
(Graham et al., 1994; Patterson & Hodges, 1992; but see Cipo- 
lotti & Warrington, 1995). A similar finding applies among pa- 
tients with Alzheimer's type dementia (Patterson et al., 1994). 
Such cases have a natural interpretation in the current context 
in terms of the performance of the network with partial rather 
than complete elimination of the contribution of the putative 
semantic pathway. To illustrate this effect, Figure 25 shows the 
performance of the network trained with semantics to Epoch 
2,000, as the strength of the semantic contribution to the pho- 
neme units--the parameter g in Equation 16--was gradually 
reduced. As semantics degraded, performance on the low-fre- 
quency exceptions was the first to be affected, followed by the 
high-frequency exceptions. By contrast, performance on regu- 
lar words and nonwords was relatively unaffected by semantic 
deterioration, although performance on low-frequency regular 
words was somewhat impaired as semantics was completely 
eliminated (for g = 0.0, the data are identical to those in Figure 
23 for Epoch 2,000). In fact, semantic dementia patients also 
exhibit a drop in performance on low-frequency regular words 
when their semantic impairment becomes very severe 
( Patterson & Hodges, 1992). Of course, a patient with progres- 
sive dementia may also have some amount of  deterioration 
within the phonological pathway itself. As Figure 20 and Table 
9 illustrate, such impairment would tend to degrade perfor- 

Figure 25. The effect of gradual elimination of semantics on the cor- 
rect performance of the network after 2,000 epochs of training with 
semantics, for Taraban and McClelland's (1987) high-frequency (HF) 
and low-frequency (LF) regular consistent words (Peg) and exception 
words (Exc), and for Glushko's (1979) nonwords, and the approximate 
percentage of errors on the exception words that were regularizations. 
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mance on exception words even further but would also affect 
performance on regular words and nonwords to some degree. 

The observation of surface dyslexic reading in association with 
either degraded semantics or a disrupted mapping from semantics 
to phonology (which, by our account, should have the same effect ) 
is common and indeed has been reported in several langua_L, es 
other than English, including Dutch (Diesfeldt, 1992), Italian 
(Miceli & CaramazTa 1993), and Japanese ( P a ~ ,  Suzuki, 
Vtydell, & Sasanuma, 1995). It is important to note, however, that 
there are cases that suggest there may be individual differences in 
the extent to which the pronunciation of low-frequency exception 
words depends on contributions from semantics. The first is pa- 
tient WLP (Schwartz, Saffran, & Marin, 1980), one of the most 
thoroughly studied cases of neurodegenerative disease in the his- 
tory of cognitive neuropsychology. Although WLP began to make 
regularization errors on low-frequency exception words at a later 
stage of her disease, there was a period of testing at which her se- 
mantic disorder was already marked but her exception-word read- 
ing was still largely intact. Even more dramatically, Cipolotti and 
Warrington (1995) recently reported a patient, DRN, with a sub- 
stantial loss of meaning for low-frequency words, though his com- 
prehension of high-frequency words (as measured by tl~ difficult 
task of producing word definitions ) was still intact. DRN's perfor- 
mance in reading low-frequency exception words was, however, 
almost perfectly intact, with only two or three reported regulariza- 
tion errors (CANOE ==* "kano", SHOE =* "show"). By our account, 
these observations suggest that, in these individuals, the phonolog- 
ical pathway had developed a relatively high degree of competence 
without assistance from semantics; but this post hoc interpretation 
clearly requires some future, independent source of evidence. 

One final comment with respect to phonological dyslexia 
seems appropriate. Recall that phonological dyslexic patients 
are able to read words much better than nonwords. In the cur- 
rent simulation, the external input to the phoneme units that 
represents the contribution of the semantic pathway was suffi- 
cient, on its own, to support accurate word reading (but not 
nonword reading). On the other hand, severe damage to the 
phonological pathway certainly impaired nonword reading (see 
Figure 20 and Table 9). In the limit of a complete lesion be- 
tween orthography and phonology, nonword reading would be 
impossible. Thus, a lesion to the network that severely impaired 
the phonological pathway while leaving the contribution of se- 
mantics to phonology (relatively) intact would replicate the ba- 
sic characteristics of phonological dyslexia (although we do not 
claim that such a lesion provides the correct account of all pho- 
nological dyslexic patients--see the General Discussion). 

Summary 

The detailed patterns of behavior of acquired dyslexic pa- 
tients provide important constraints on the nature of the nor- 
mal word reading system. The most relevant patients in the cur- 
rent context are those with (fluent) surface dyslexia, because, 
like the networks, they seem to read without the aid of seman- 
tics. These patients read nonwords normally but exhibit a fre- 
quency by consistency interaction in word reading accuracy 
such that low-frequency exception words are particularly error 
prone and typically produce regularization errors. Patterson et 
al. ( 1989; Patterson, 1990) were relatively unsuccessful in rep- 

licating the surface dyslexia reading pattern by damaging the 
SM89 model. Although the current simulations used more ap- 
propriately structured representations, when damaged they too 
failed to produce surface dyslexia--particularly the more se- 
vere form exhibited by KT (McCarthy & Warrington, 1986). 
These findings call into question the interpretation of surface 
dyslexia as arising from a partial impairment of the phonologi- 
cal pathway in addition to extensive impairment of the semantic 
pathway. Rather, a better match to the surface dyslexic reading 
pattern--in both its mild and severe forms--was produced by 
the normal operation of an isolated phonological pathway that 
developed in the context of support from the semantic pathway. 
This finding supports a view of the normal word reading system 
in which there is a division of labor between the phonological 
and semantic pathways such that neither pathway alone is com- 
pletely competent and the two must work together to support 
skilled word and nonword reading. 

General  Discussion 

The current work develops a connectionist approach to pro- 
cessing in quasi-regular domains as exemplified by English 
word reading. The approach derives from the general computa- 
tional principles that processing is graded, random, adaptive, 
interactive, and nonlinear and that representations and knowl- 
edge are distributed (McClelland, 1991, 1993 ). When instanti- 
ated in the specific domain of oral reading, these principles lead 
to a view in which the reading system learns gradually to be 
sensitive to the statistical structure among orthographic, pho- 
nolo#ca/, and semantic representations and in which these rep- 
resentations simultaneously constrain each other in interpret- 
ing a given input. 

In support of this view, we have presented a series ofconnec- 
tionist simulations of normal and impaired word reading. A 
consideration of the shortcomings of a previous implementa- 
tion (Seidenberg & MeClelland, 1989) in reading nonwords led 
to the development of orthographic and phonological represen- 
tations that better capture the relevant structure among the 
written and spoken forms of words. In Simulation 1, a feedfor- 
ward network that used these representations learned to pro- 
nounce all of a large corpus of monosyllabic words, including 
the exception words, and yet also pronounced nonwords as well 
as skilled readers. 

An analysis of the effects of word frequency and spelling- 
sound consistency in a related but simpler system formed the 
basis for understanding the empirical pattern of naming laten- 
cies as reflecting an appropriate balance between these factors. 
In Simulation 2, a feedforward network trained with actual 
word frequencies exhibited good word and nonword reading 
and also replicated the frequency by consistency interaction in 
the amount of error it produced for words of various types. 

In Simulation 3, a recurrent network replicated the effects of 
frequency and consistency on naming latency directly in the 
time required to settle on a stable pronunciation. More criti- 
cally, the attractors that the network developed for words over 
the course of training had componential structure that also sup- 
ported good nonword reading. 

Finally, in Simulation 4, the role of the semantic pathway in 
oral reading was considered in the context of acquired surface 
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dyslexia, in which patients read nonwords well but exhibit a 
frequency by consistency interaction in naming accuracy, typi- 
cally regularizing low-frequency exception words. The view that 
these symptoms--part icularly in their most severe f o r m b r e -  
flect the operation of a partially impaired phonological pathway 
was not supported by the behavior of  the attractor network after 
a variety of types of  damage. A further simulation supported an 
alternative interpretation of  surface dyslexia: that it reflects the 
normal operation of  a phonological pathway that is not fully 
competent on its own because it learned to rely on support from 
the semantic pathway (which is subsequently impaired by brain 
damage). 

Alternat ive Perspectives on Word  R e a d i n g  

We can now raise, and then consider in the light of  the results 
summarized above, several issues concerning the nature of the 
reading process. There is general agreement that (at  least) two 
pathways contribute to reading words and'nonwords aloud, but 
this still leaves open a number of fundamental questions. What  
are the underlying explanatory principles that determine the 
existence and the character of  these different pathways? How 
does the operation of each arise from the fundamental princi- 
ples, and what are the particular principles to which each path- 
way adheres? How do the different pathways combine to con- 
tribute to word and nonword reading? We consider here two 
very different approaches to these questions. 

One view--the so-called dual-route view--holds that the 
fundamental explanatory principle in the domain of  word read- 
ing is that distinctly different mechanisms are necessary for 
reading nonwords on the one hand and exception words on the 
other. The two mechanisms operate in fundamentally different 
ways. One assembles pronunciations from phonemes generated 
by the application ofgrapheme-phoneme correspondence rules. 
The other maps whole (orthographic) inputs to whole 
(phonological) outputs, using either a lexical lookup procedure 
or, in more recent formulations, an associative network (Pinker, 
1991 ) or McClelland and Rumelhart 's  ( 1981 ) interactive acti- 
vation model (Coltheart et al., 1993; Coltheart & Rastle, 1994 ). 

The alternative view--our  connectionist approach--holds  
that the fundamental explanatory principle in the domain of  
word reading is that the underlying mechanism uses a nonlin- 
ear, similarity-based activation process in conjunction with a 
frequency-sensitive connection weight adjustment process. Two 
pathways are necessary in reading, not because different prin- 
ciples apply to items of different types, but because different 
tasks must be performed. One pathwaywhere termed the pho- 
nological pathwaywperforms the task of transforming ortho- 
graphic representations into phonological representations di- 
rectly. The other-- the semantic pathway--actually performs 
two tasks. The first is specific to reading, namely, the transfor- 
mation of orthographic representations into semantic represen- 
tations. The second is a more general aspect of language, 
namely, the transformation of  semantic representations into 
phonological representations. 

At first glance, these two views may appear so similar that 
deciding between them hardly seems worth the effort. After all, 
both the lexical procedure in the dual-route account and the 
semantic pathway in the connectionist account can read words 

but not nonwords, and both the sublexical procedure and the 
phonological pathway are critical for nonword reading and 
work better for regular words than for exception words. It is 
tempting to conclude that these two explanatory perspectives 
are converging on essentially the same processing system. Such 
a conclusion, however, neglects subtle but important differences 
in the theoretical and empirical consequences of the two 
approaches. 

As a case in point, the sublexical GPC procedure in the dual- 
route account cannot be sensitive to whole-word frequency, be- 
cause it eschews storage of whole lexical items. By contrast, in 
the connectionist approach, the phonological pathway main- 
tains an intrinsic and incontrovertible sensitivity to both word 
frequency and spelling-sound consistency (also see Monsell, 
1991 ). This sensitivity is captured in approximate form by the 
frequency-consistency equation (Equation 12), which ex- 
presses the strength of the response of  a simple two-layer net- 
work to a given test pattern in terms of  the frequency and over- 
lap of the training patterns. The connectionist approach, as re- 
fleeted by this equation, predicts that there can never be a 
complete dissociation of frequency and consistency effects; the 
phonological pathway must always exhibit sensitivity to both. 
This sensitivity takes a specific form, however: Items that are 
frequent, consistent, or both will have an advantage over items 
that are neither frequent nor consistent, but items that are fre- 
quent and consistent may not enjoy a large additional advantage 
over those that are only frequent or only consistent; as either 
frequency or consistency increases, sensitivity to differences in 
the other decreases.t s 

This relationship, as we have previously discussed, is approx- 
imately characterized by the frequency-consistency equation, 
which we reproduce here in a form that is elaborated to include 
a term for the contribution of  the semantic pathway, and by 
separating out the contributions of  training patterns whose out- 
puts are consistent with that of  the test pattern (i.e., so-called 
friends; Jared et al., 1990) from those whose outputs are incon- 
sistent (i.e., enemies).  Accordingly, the state s} 'l of an output 
(phoneme) unit j that should be on in test pattern t can be writ- 
ten as 16 

s} *l = o(S  ttl + e ( F  t'l + ~ F [ f l o  tftl - ~_, F l e l o l e q ) ) ,  (17) 
f e 

in which the logistic activation function #(.) is applied to the 
contribution of  the semantic pathway, S ttl, plus the contribu- 
tion of the phonological pathway, which itself is the sum of three 
terms (scaled by the learning rate, ~): (a) the cumulative fre- 

15 Recently, Balota and Ferraro ( 1993 ) reported an apparent dissoci- 
ation of frequencY and consistency in the naming latencies of patients 
with Alzheimer's type dementia over increasing levels of severity of im- 
pairment. However, these patients made'substantial numbers of errors, 
and the usual relationship of frequency and consistency held in their 
accuracy data (also see Patterson et al.~ 1994). Furthermore, the disso- 
ciation was not found in the naming latencies of younger or older nor- 
mal readers. 

t6 For a unit with a target of - 1, the signs would simply be reversed. 
Alternatively, the equation can be interpreted as reflecting the correla- 
tion of the activation of output unit j with its target, which may in that 
case be either + 1 or - 1. 
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quency of training on the pattern itself, (b) the sum of the fre- 
quencies of the friends (indexed by f )  times their overlap with 
the test pattern, and (c) the sum of the frequencies of the ene- 
mies (indexed by e) times their overlap with the test pattern. It 
must be kept in mind, however, that this equation is only ap- 
proximate for networks with hidden units and trained by error 
correction. These two aspects of the implemented networks are 
critical in that they help to overcome interference from enemies 
(i.e., the negative terms in Equation 17), thereby enabling the 
networks to achieve correct performance on exception words-- 
that is, words with many enemies and few if any friends--as 
well as on regular words and nonwords. 

Many of the basic phenomena in the domain of word reading 
can be seen as natural consequences of adherence to this fre- 
quency-consistency equation. In general, any factor that serves 
to increase the summed input to the activation function, ~(. ) in 
Equation 17, improves performance, as measured by naming 
accuracy, latency, or both. Thus, more frequent words are read 
better (e.g., Forster & Chambers, 1973; Frederiksen & Kroll, 
1976) because they have higher values of F ttl, and words with 
greater spelling-sound consistency are read better (Glushko, 
1979; Jared et al., 1990) because the positive sum from friends 
outweighs the negative sum from enemies. The nonlinear, as- 
ymptotic nature of the activation function, however, dictates 
that the contributions of these factors are subject to "diminish- 
ing returns" as performance improves. Thus, as reading experi- 
ence accumulates--thereby increasing F [tl, F [fl, and F [el pro- 
portionally or, equivalently, increasing , - - the absolute magni- 
tudes of the frequency and consistency effects diminish (see, 
e.g., Backman et al., 1984; Seidenberg, 1985). The same prin- 
ciple applies among different types of stimuli for a reader at a 
given skill level: Performance on stimuli that are strong in one 
factor is relatively insensitive to variation in other factors. Thus, 
regular words show little effect of frequency, and high-frequency 
words show little effect of consistency (as shown in Figure 7). 
The result is the standard pattern of interaction between fre- 
quency and consistency, in which the naming of low-frequency 
exception words is disproportionately slow or inaccurate 
(Andrews, 1982; Seidenberg, 1985; Seidenberg et al., 1984; Tar- 
aban & McClelland, 1987; Waters & Seidenberg, 1985). 

The elaborated version of the frequency-consistency equa- 
tion also provides a basis for understanding the effects of seman- 
tics on naming performance. In the approximation expressed 
by Equation 17, the contribution of the semantic pathway for a 
given word, SIt], is simply another term in the summed input 
to each output (phoneme) unit. Just as with frequency and con- 
sistency, then, a stronger semantic contribution moves the over- 
all input further along the asymptotic activation function, 
thereby diminishing the effects of other factors. As a result, 
words with a relatively weak semantic contribution (e.g., ab- 
stract or low-imageability words; Jones, 1985; Satfran, Bogyo, 
Schwartz, & Marin, 1980) exhibit a stronger frequencyby con- 
sistency interaction--in particular, naming latencies and error 
rates are disproportionately high for items that arc weak on all 
three dimensions: abstract, low-frequency exception words 
(Strain et al., 1995). 

Of course, as the simulations demonstrate, networks with 
hidden units that are trained with error correction can learn to 
pronounce correctly all types of words without any help from 

semantics. In the context of the more general framework, how- 
ever, full competence is required only from the combination of 
semantic and phonological influences. Thus, as the semantic 
pathway develops and S °l increases, the contribution required 
from the other, phonological terms in Equation 17 to achieve 
the same level of performance is correspondingly reduced. With 
the additional assumption that the system has an intrinsic bias 
against unnecessary complexity (e.g., by limiting its effective 
degrees of freedom with weight decay), extended reading expe- 
rience leads to a redistribution of labor. Specifically, as the se- 
mantic pathway improves, the phonological pathway gradually 
loses its ability to process the words it learned most weakly: 
those that are low in both frequency and consistency. 

If, in this context, the contribution from semantics is severely 
weakened or eliminated (by brain damage), the summed input 
to each output unit will be reduced by as much a s  S [tl. For 
output units with significant negative terms in their summed 
input--that is, for those in words with many enemies---this ma- 
nipulation may cause their summed input (and hence their 
output) to change sign. The result is an incorrect response. Such 
errors tend to be regularizations because the reduced summed 
input affects only those output units whose correct activations 
are inconsistent with those of the word's neighbors. Further- 
more, because frequency makes an independent positive contri- 
bution to the summed inputs, errors are more likely for low- 
than for high-frequency exception words. By contrast, a reduc- 
tion in the contribution from semantics has little if any effect 
on correct performance on regular words because the positive 
contribution from their friends is sufficient on its own to give 
output units the appropriately signed summed input. The re- 
suiting pattern of behavior, corresponding to fluent surface dys- 
lexia (Bub et al., 1985; McCarthy & Warrington, 1986; Shallice 
et al., 1983), can thus be seen as an exaggerated manifestation 
of the same influences of frequency and consistency that give 
rise to the normal pattern of naming latencies. 

The pattern of joint, nonlinear sensitivity to the combined 
effects of frequency and consistency in the connectionist ac- 
count, along with assumptions about the contribution of se- 
mantics, leads to a number of predictions not shared by tradi- 
tional dual-route accounts. First, frequency and consistency 
can trade off against each other, so that the detrimental effects 
of spelling-sound inconsistency can always be overcome by 
sufficiently high word frequency. Consequently, the connection- 
ist account makes a strong prediction: There cannot be an 
(English-language) surface dyslexic patient who reads no ex- 
ception words; if regular words can be read normally, there must 
also be some sparing of performance on high-frequency excep- 
tions. By contrast, a dual-route framework could account for 
such a patient quite easily in terms of damage that eliminates 
the lexical route(s) while leaving the GPC route in operation. 
In fact, given the putative separation of these routes, the frame- 
work would seem to predict the existence of such patients. The 
connectionist account also differs from the dual-route account 
in claiming that consistency rather than regularity per se (i.e., 
adherence to GPC rules) is the determining variable in "regu- 
larization" errors (where, as formulated here, consistency de- 
pends on all types of orthographic overlap rather than solely 
on word bodies; cf. Glushko, 1979). Finally, the connectionist 
account predicts a close relationship between impairments in 
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the contribution of  semantics to phonology and the surface dys- 
lexic reading pattern (Graham et al., 1994; Patterson & Hodges, 
1992), although this relationship will be subject to premorbid 
individual differences in reading skill and division of labor be- 
tween the semantic and phonological pathways. Thus, patients 
with highly developed phonological pathways may not exhibit 
the pattern unless the semantic impairment is very severe 
(Cipolotti & Warrington, 1995; Schwartz et al., 1980). By con- 
trast, dual-route theories that include a lexical, nonsemantic 
pathway (e.g., Coltheart, 1978, 1985; Coltheart et al., 1993) 
predict that selective semantic damage should never affect nam- 
ing accuracy. 

Our connectionist account, we believe, also has an important 
advantage of simplicity over the dual-route approach. This ad- 
vantage goes well beyond the basic point that it provides a single 
set of computational principles that can account for exception 
word and nonword reading whereas the dual-route model must 
rely on separate sets of  principles. The additional advantage lies 
in the fact that the boundary between regular and exception 
words is not clear, and all attempts to draw such boundaries 
lead to unfortunate consequences. First, the marking of  items 
as exceptions that must be looked up as wholes in the lexicon 
ignores the fact that most of  the letters in these items will take 
their standard grapheme-phoneme correspondences. Thus, in 
PINT, three quarters of the letters take their regular correspon- 
dence. Second, the marking of  such items as exceptions ignores 
the fact that even the parts that are exceptional admit of  some 
regularity, so that, for example, the exceptional pronunciation 
of the I in PINT also OCCUrs in many other words containing an I 
(e.g., most of  those ending in __a.E, _._IND or __ILD, where the 
"*" represents any consonant). Third, exceptions often come 
in clusters that share the same word body. Special word-body 
rules may be invoked to capture these clusters, but then any 
word that conforms to the more usual correspondence becomes 
exceptional. Thus, we could treat o o  = * / u / w h e n  followed by 
K as regular, but this would make SPOOK, which takes the more 
common correspondence o o  ~ / U / ,  an exception. The explicit 
treatment of virtually any word as an exception, then, neglects 
its partial regularity and prevents the word both from benefiting 
from this partial regularity and from contributing to patterns of  
consistency it enters into with other items. Our connectionist 
approach, by contrast, avoids the need to impose such unfortu- 
nate divisions and leaves a mechanism that exhibits sensitivity 
to all these partially regular aspects of so-called exception 
words. 

The fact that exceptions are subject to the same processes as 
all other items in our system allows us to explain why there 
are virtually no completely arbitrary exceptions. On the other 
hand, the dual-route approach leaves this fact of  the spelling- 
sound system completely unexplained. Nor, in fact, do some 
dual-route models even provide a basis for accounting for effects 
of consistency in reading words and nonwords. Recent dual- 
route theorists (e.g., Coltheart et al., 1993; Coltheart &Rastle, 
1994) have appealed to partial activation of  other lexical items 
as a basis for such effects. Such an assumption moves partway 
toward our view that consistency effects arise from the influence 
of all lexical items. We would only add that our connectionist 
model exhibits these effects as well as the requisite sensitivity to 
general grapheme-phoneme correspondences, without stipulat- 

ing a separate rule system over and above the system that exhib- 
its the broad range of consistency effects. 

Additional Empirical Issues 

Proponents of dual-route theories have raised a number of 
empirical issues that they believe challenge our connectionist 
account of normal and impaired word reading. For example, 
Coltheart et al. ( 1993; also see Besner et al., 1990) raise six 
questions concerning the reading process, all but one of 
which---exception word reading--they deem problematic for 
the SM89 framework. Two of  the remaining five--nonword 
reading and acquired surface dyslexia--have been addressed 
extensively in the current work. Here we discuss how the re- 
maining three issues--acquired phonological dyslexia, develop- 
mental dyslexia, and lexical decision--may be accounted for in 
light of  these findings. We also consider three other empirical 
findings that have been interpreted as providing evidence 
against the current approach--pseudohomophone effects 
(Buchanan & Besner, 1993; Fera & Besner, 1992; McCann & 
Besner, 1987; Pugh, Rexer, & Katz, 1994), stimulus blocking 
effects (Baluch & Besner, 1991; Coltheart &Rastle,  1994; 
Monsell et al., 1992), and the recent finding that naming laten- 
cies for exception words are influenced by the position of  the 
exceptional correspondence (Coltheart &Rastle, 1994). 

Acquired phonological dyslexia. As mentioned earlier, the 
SM89 framework is straightforward in accounting for the cen- 
tral characteristic of  acquired phonological dyslexia--substan- 
tially better word reading than nonword reading--in terms of a 
relatively selective impairment of the phonological pathway. 
The apparent difficulty arises when patients are considered who 
(a) are virtually unable to read nonwords, which suggests a 
complete elimination of  the phonological pathway, and (b) have 
an additional semantic impairment that seems to render the se- 
mantic pathway insufficient to account for the observed profi- 
ciency at word reading. Two such patients have been described 
in the literature: WB (Funnell, 1983 ) and WT (Coslett, 1991 ). 
To explain the word reading of these patients, dual-route theo- 
rists claim that it is necessary to introduce a third route that is 
lexical but nonsemantic. 

In point of  fact, Coltheart et al. ( 1993) explicitly considered 
an alternative explanation and (we think too hastily) rejected 
it: 

Perhaps a patient with an impaired semantic system, who therefore 
makes semantic errors in reading comprehension and who also has 
a severely impaired nonsemantic reading system, could avoid mak- 
ing semantic errors in reading aloud by making use of even very 
poor information about the pronunciation of a word yielded by the 
nonsemantic reading system. The semantic system may no longer 
be able to distinguish the concept orange from the concept lemon; 
however, to avoid semantic errors in reading aloud, all the nonse- 
mantic route needs to deliver is just the first phoneme of the written 
word, not a complete representation of its phonology. (p. 596) 

Coltheart and colleagues argued against this account entirely on 
the basis of two findings of Funnell (1983): WB did not pro- 
nounce correctly any of a single list of 20 written nonwords, and 
he did not give the correct phonemic correspondence to any of 
12 single printed letters. Thus, Coltheart et al. ( 1993 ) claimed, 
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"WB's nonsemantic reading route was not just severely im- 
paired, it was completely abolished" (p. 596). 

This argument is unconvincing. First, it seems unwise to base 
such a strong theoretical claim on so few empirical observa- 
tions, especially given how little information is required of the 
phonological pathway in the above account. To pronounce a 
nonword correctly, by contrast, all of its phonemes must be de- 
rived accurately. Thus, WB's inability to read 20 nonwords can- 
not be taken as definitive evidence that his phonological path- 
way is completely inoperative. Furthermore, WB did, in fact, 
make semantic errors in oral reading (e.g., TRAIN ~ "plane", 
GIRL ~ "boy"; see Appendix 1 of Funnell, 1983). Although 
such errors were relatively rare, comprising only 7.5% (5/67) 
of all lexical error responses, there were no error responses that 
were completely unrelated to the stimulus. Thus, the effect of 
semantic relatedness in errors is difficult to ascribe to chance 
responding (see Ellis & Marshall, 1978; ShaUice & McGill, 
1978). More generally, fully 38.8% (26/67) of WB's lexical er- 
rors had a semantic component, typically in combination with 
visual/phonemic or morphological relatedness. 

More critically, Coltheart and colleagues failed to take into 
account the fact that WB exhibited deficits on purely phonolog. 
ical tasks such as nonword repetition (Funnell, 1983 ) and pho- 
neme stripping and blending (Patterson & Marcel, 1992), 
which suggests an additional impairment within phonology it- 
self. Funnell had argued that such a phonological impairment 
could not explain WB's nonword reading deficit because (a) 
he repeated nonwords more successfully (10/20) than he read 
them (0/20), and (b) he achieved some success (6/10) in 
blending three-phoneme words from auditory presentation of 
their individual phonemes. We note, however, that the failure 
to repeat fully half of a set of simple, single-syllable, wordlike 
nonwords (e.g., COBE, NUST ) certainly represents a prominent 
phonological deficit. Moreover, because Funnell's auditory 
blending test used only words as target responses, WB's partial 
success on this task is not especially germane to the issue. Pat- 
terson and Marcel (1992) assessed WB's blending performance 
with nonword targets and found that he was unable to produce 
a single correct response whether the auditory presentation con- 
sisted of the three individual phonemes of a simple nonword 
(such as COBE) or of its onset and rime. Patterson and Marcel 
argued that this phonological deficit in a nonreading task was 
sufficient to account for WB's complete inability to read 
nonwords. 

Thus, the pattern of performance exhibited by WB can be 
explained within the SM89 framework in terms of a mildly im- 
paired semantic reading pathway, possibly an impaired phono- 
logical reading pathway, but, in particular, an impairment 
within phonology itself. A similar explanation applies to WT 
(Coslett, 1991 ): Although this patient's performance on pho- 
nological blending tasks was not reported, she was severely and 
equally impaired in her ability to read and to repeat the same 
set of 48 nonwords. 

We point out in passing that deep dyslexia (Coltheart et al., 
1980), the remaining major type of acquired central dyslexia 
and one closely related to phonological dyslexia (see, e.g., Glos- 
ser & Friedman, 1990), can be accounted for in terms of the 
same computational principles that are used in the current 
work (see Plaut & Shallice, 1993 ). 

Developmental dyslexia. Our focus in the current work has 
been on characterizing the computational principles governing 
normal skilled readifig and acquired dyslexia following brain 
damage in premorbidly literate adults. Even so, we believe that 
the same principles provide insight into the nature of reading 
acquisition, both in its normal form and in developmental dys- 
lexia, in which children fail to acquire age-appropriate reading 
skills. 

There is general agreement that a number of distinct patterns 
of developmental dyslexia exist, although exactly what these 
patterns are and what gives rise to them are a matter of ongoing 
debate. A common viewpoint is that there are developmental 
analogues to the acquired forms of dyslexia (see, e.g., Baddeley, 
Ellis, Miles, & Lewis, 1982; Harris & Coltheart, 1986; Mar- 
shall, 1984). Perhaps the clearest evidence comes from Castles 
and Coltheart (1993), who compared 53 dyslexic children with 
56 age-matched normal readers in their ability to pronounce 
exception words and nonwords. The majority (32) of the dys- 
lexic children were abnormally poor on both sets of items. How- 
ever, 10 were selectively impaired at exception word reading, 
which corresponds to developmental surface dyslexia, and 8 
were selectively impaired at nonword reading, which corre- 
sponds to developmental phonological dyslexia. Castles and 
Coltheart interpreted their findings as supporting a dual-route 
theory of word reading in which either the lexical or the sublex- 
ical procedure can selectively fail to develop properly (although 
they offered no suggestion as to why this might be). 

More recently, Manis, Seidenberg, Doi, McBride-Chang, and 
Peterson (in press) compared 51 dyslexic children with 51 con- 
trols matched for age and 27 matched for reading level. They 
confirmed the existence of separate surface and phonological 
dyslexic patterns, although, again, most of the dyslexic children 
showed a general reading impairment. Critically, the perfor- 
mance of the developmental surface dyslexic children was re- 
markably similar to that of reading-level matched controls, 
which suggests a developmental delay. By contrast, the phono- 
logical dyslexic children performed unlike either set of controls, 
which suggests a deviant developmental pattern. Although these 
findings are not incompatible with the dual-route account, 
Manis and colleagues contend that they are more naturally ac- 
counted for in terms of different impediments to the develop- 
ment of a single (phonological) pathway. Specifically, they sug- 
gest (following SM89) that the delayed acquisition in develop- 
mental surface dyslexia may arise from limitations in the 
available computational resources within the phonological 
route. Consistent with this interpretation, SM89 found that a 
version of their network trained with only half the normal num- 
ber of hidden units showed a disproportionate impairment on 
exception words compared with regular words (although per- 
formance on all items was poorer, consistent with finding that 
generalized deficits are most common). However, the nonword 
reading capability of the network was not tested, and Coltheart 
et al. (1993) pointed out that it was not likely to be very good 
given that overall performance was worse than in the normal 
network, which itself was impaired on nonword reading. 

Just as for normal skilled reading, this limitation of the SM89 
model stems from its use of inappropriately structured ortho- 
graphic and phonological representations. To demonstrate this, 
we trained a feedforward network with only 30 hidden units 
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Figure 26. Correct performance ofa feedforward network with only 
30 hidden units on Taraban and McClelland's (1987) high- (HF) and 
low-frequency (LF) exception words (Exc) and their regular consistent 
control words (Reg), and on Glushko's (1979) nonwords, as a function 
of training epoch. The network was trained exactly as the one whose 
corresponding data are shown in Figure 22. 

in an identical fashion to the one with 100 hidden units from 
Simulation 4 (without semantics ). This network was chosen for 
comparison simply because it is the only one for which the rel- 
evant acquisition data have already been presented, in Figure 
22--the other networks would be expected to show similar 
effects. The corresponding data for the version with 30 hidden 
units are given in Figure 26. As a comparison of  the figures 
reveals, limiting the number of  hidden units selectively impairs 
performance on exception words, particularly those of low fre- 
quency. By contrast, nonword reading is affected only very 
slightly. Notice that the performance of the dyslexic network at 
Epoch 500 is quite similar to that of the normal network at 
about Epoch 150. Thus, limiting the computational resources 
that are available for learning the spelling-to-sound task repro- 
duces the basic delayed pattern of  developmental surface dys- 
lexia. Other manipulations that impede learning, such as weak 
or noisy weight changes, would be expected to yield similar 
results. 

With regard to developmental phonological dyslexia, Manis 
et al. (in press) suggest that a selective impairment in nonword 
reading may arise from the use of phonological representations 
that are poorly articulated, perhaps because of more peripheral 
disturbances (also see, e.g., Liberman & Shankweiler, 1985; 
Rack, Snowling, & Olson, 1992). A consideration of  the normal 
SM89 model is instructive here. That network used representa- 
tions that, we have argued, poorly capture the relevant structure 
within and between orthography and phonology. As a result, the 
model was over 97% correct at reading words, both regular and 
exception, but only 75% correct on a subset of  Glushko's 
(1979) nonwords (when scored appropriately; see Seidenberg 
& McClelland, 1990). Thus, in a sense, the model behaved like 
a mild phonological dyslexic (see Besner et al., 1990, for similar 
arguments). In this way, the performance of  the model provides 
evidence that a system with adequate computational resources, 

but which fails to develop appropriately componential ortho- 
graphic and (particularly) phonological representations, will 
also fail to acquire normal proficiency in sublexical spelling- 
sound translation. It should also be kept in mind that, to what- 
ever extent the semantic pathway develops and contributes dur- 
ing reading acquisition, the dissociation between word and non- 
word reading would be exacerbated. 

A final point of contention with regard to the implications of  
developmental reading disorders for the SM89 framework con- 
cerns the existence of  children whose oral reading ability, even 
on exception words, far surpasses their comprehension--as in 
so-called hyperlexia (Huttenlocher & Huttenlocher, 1973; Meh- 
egan & Dreifuss, 1972; Metsala & Siegel, 1992; Silverberg & 
Silverberg, 1967). Typically, these children are moderately to 
severely retarded on standardized intelligence tests and may to- 
tally lack conversational speech. They also tend to devote a con- 
siderable amount of  time and attention to reading, although this 
has not been studied thoroughly. We suggest that, perhaps ow- 
ing to abnormally poor development in the semantic pathway, 
such children may have phonological pathways that are like our 
networks trained without semantics. In the limit, such networks 
learn to pronounce all types of  words and nonwords accurately 
with no comprehension. 

Lexical decision. The final ofColtheart et al.'s (1993) ob- 
jections to the SM89 model concerns its ability to perform lexi- 
cal decisions. Although SM89 established that, under some 
stimulus conditions, the model can discriminate words from 
nonwords on the basis of  a measure of  its accuracy in regener- 
ating the orthographic input, Besner and colleagues (Besner et 
al., 1990; Fera & Besner, 1992) demonstrated that its accuracy 
in doing so is worse than that of human readers in many condi- 
tions. Coltheart et al. (1993) mistakenly claimed that the SM89 
orthographic error scores yielded a false-positive rate of over 
80% on Waters and Seidenberg's (1985) nonwords when word 
error rates were equated with human readers' rates at 6. 1%--in 
fact, these numbers result from using phonological error scores 
(Besner et al., 1990), which SM89 did not use (although they 
did suggest that learning phonological attractors for words 
might help). Although the actual false-positive rate was much 
lower--Besner and colleagues reported a rate of 28% when or- 
thographic and phonological error scores were summed and or- 
thographically strange words were excluded--it was still 
unsatisfactory. 

Of course, SM89 never claimed that orthographic and pho- 
nological information was completely sufficient to account for 
lexical decision performance under all conditions, and they 
pointed out that "there may be other cases in which subjects 
must consult information provided by the computation from 
orthography to semantics" (p. 552). Semantics is a natural 
source of  information with which to distinguish words from 
nonwords, given that, in fact, a string of  letters or phonemes is 
defined to be a word by virtue of it having a meaning. Coltheart 
et al. (1993) raised the concern that, in a full implementation of 
the SM89 framework, the presentation of  an orthographically 
regular nonword (e.g., SARE) would activate semantics to the 
same degree as a word (e.g., CARE) and thereby preclude lexical 
decision. 

Although further simulation work is clearly required to ad- 
dress the full range of lexical decision data adequately, a few 
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comments may serve to allay this specific concern. We imagine 
that the semantic representations for words are relatively sparse, 
meaning that each word activates very few of  the possible se- 
mantic features and each semantic feature participates in the 
meanings of  a very small l~rcentage of words. Connectionist 
networks of  the sort we are investigating learn to set the base 
activation level of  each output unit to the expected value of  its 
correct activations across the entire training corpus, because 
these values minimize the total error in the absence of  any in- 
formation about the input. In the case of  sparse semantic repre- 
sentations, this means that semantic features would be almost 
completely inactive without specific evidence from the ortho- 
graphic input that they should be active. Notice that the nature 
of this evidence must he very specific in order to prevent the 
semantic features of  a word like CARE from being activated by 
the presentation of orthographically similar words like ARE, 
SCARE, CAR, and so forth. This extreme sensitivity to small or- 
thographic distinctions would also prevent many semantic fea- 
tures from being activated strongly by a nonword like SARE. 
Thus, on this account, the computational requirements of  a 
connectionist system that maps orthography to semantics veri- 
tably entail the ability to perform lexical decision. 

Pseudohomophone and blocking effects. Two other, some- 
what overlapping sets of  empirical findings have been viewed as 
problematic for the current approach: pseudohomophone 
effects (Buchanan & Besner, 1993; Fera & Besner, 1992; 
McCann & Besner, 1987; Pugh et al., 1994) and blocking effects 
(Baluch & Besner, 1991; Coltheart & Rastle, 1994; Monsell et 
al., 1992). The first set involves demonstrations that, under a 
variety conditions, pseudohomophones (i.e., nonwords with 
pronunciations that match that of  a word; e.g., BRANE) are pro- 
cessed differently than orthographically matched nonpseu- 
dohomophonic nonwords (e.g., FRANE). For example, readers 
are faster to name pseudohomophones and slower (and less 
accurate) to reject them in lexical decision (McCann & Besner, 
1987). The second set of problematic findings involves demon- 
strations that readers' performance is sensitive to the context 
in which orthographic stimuli occur, usually operationalized in 
terms of how stimuli are blocked together during an experi- 
ment. For example, skilled readers are slower and make more 
regularization errors when pronouncing exception words in- 
termixed with nonwords than when pronouncing pure blocks 
of exception words (Monsell et al., 1992 ). 

Neither of these sets of phenomena is handled particularly well 
by the SM89 implementation, but both have natural formulations 
within the more general framework that includes semantics. Pseu- 
dohomophone effects may stem from an articulatory advantage in 
initiating familiar pronunciations (Seidenberg, Petersen, Mac- 
Donald, & Plant, 1996) or from interactions between phonology 
and semantics that do not occur for control nonwords. Blocking 
effects may reflect adjustments---either stimulus-driven or under 
the strategic control of readers--in the relative contribution of  the 
semantic and phonological pathways in lexical tasks. These inter- 
pretations are supported by recent findings of  Pugh et al. (1994), 
who investigated effects of spelling-sound consistency and seman- 
tic relatedness in lexical decision as a function of  whether or not 
the nonword foils include pseudohomophones. They found faster 
latencies for consistent words than for inconsistent words only in 
the context of purely nonpseudohomophonic nonwords; there was 

no effect of consistency when pseudohomophones were present. 
Similarly, in a dual lexical decision paradigm, they obtained facil- 
itation for visually similar word pairs that were phonologically 
consistent (e.g., BRIBE-TRIBE) and inhibition for those that were 
inconsistent (e.g., COUCH-TOUCH; Meyer et al., 1974) only when 
no pseudohomophones were present; the introduction of  pseudo- 
homophones eliminated the consistency effect. However, semantic 
relatedness (e.g., OCEAN-WATER) yielded facilitation regardless of  
nonword context. These findings suggest that readers normally use 
both the semantic and phonological pathways in lexical decision 
but avoid the use of the phonological pathway when this would 
lead to inappropriate semantic activity, as when pseudohomo- 
phones are included as foils. 

Effects of position of exceptional correspondence. Coltheart 
and Rastle (1994) argued that one of the determinants of naming 
RT for exception words is the position--counting graphemes and 
phonemes from left to right--at which the word deviates from 
rnle-governed correspondences. They claimed that such an effect 
is incompatible with any parallel approach to word namir~ 
whereas the Dual-Route Cascaded (DRC) model of  Coltheart et 
al. (1993) both predicts and simulates this effect, because the GPC 
procedure of  the DRC model operates serially across an input 
string. The three monosyllabic words for which they provided sim- 
ulation data from the DRC model are CHEF, TOMB, and GLOW. By 
their account, the critical factor is that CHEF--for which the model 
requires the largest number of processing cycles---is irregular at its 
first grapheme/phoneme, TOMB, requiring an intermediate Hum- 
her of cycles, breaks the rules at the second grapheme/phoneme; 
and GLOW, which yields the fastest time from the model, becomes 
only irregular at the third position. 

By our account, the critical difference between these three 
words may not be the position of irregularity but rather the pro- 
portion of other known words with similar spelling patterns that 
agree or conflict with the target word's pronunciation (see Jared & 
Seidenberg, 1990, for an elaboration of this argument). The Con- 
cise Oxford Dictionary lists 72 monosyllabic words starting with 
cn_ ;  63 of  these have the pronunciation / C / a s  in CHAIR; 5 have 
the pronunciat ion/S/as in CHEF; 4 are pronounced/k /as  in 
CHORD. CHEF is therefore a highly inconsistent word. For the word 
TOMB, it is somewhat difficult to know what neighborhood of  
words to choose for a similar analysis. If we take words beginning 
with TO._, although the two most common pronunciations are / a /  
as in TOP and / O/as  in TONE, the third most likely pronunciation, 
with 7 exemplars, i s / U / a s i n  TO, TOO, and TOMB; other pronun- 
ciations (as in TON, TOOK, and TOIL) are less common. At the 
body level, TOMB has one friend, WOMB, and two enemies, BOMB 
and COMB. TOMB is therefore a moderately inconsistent word. Fi- 
nally, for words ending in _ow, although the GPC procedure of  
Coltheart et al. ( 1993 ) considers ow ~ / W  / (as in NOW ) regular 
and OW ~ / O / as in GLOW irregular, in fact 17 of the 29 monosyl- 
labic words in English ending in _ow rhyme with GLOW, whereas 
only 12 have Coltheart and colleagues' "regular" pronunciation as 
in NOW. Thus, GLOW is inconsistent but has the more frequent 
correspondence. Consistent with this interpretation, the attractor 
network developed in Simulation 3 produced naming latencies of  
2.00 for CHEF, 1.92 for TOMB, and 1.73 for GLOw. 

The experiment with human readers performed by Coltheart 
and Rastle (1994) revealed their predicted relationship between 
position of irregularity and naming RT, with the slowest RTs 
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to words like CHAOS with an irregular first grapheme-phoneme 
correspondence and fastest RTs to words like BANDAGE that do 
not become irregular until the fifth grapheme-phoneme corre- 
spondence. All of the stimulus words had two syllables, which 
prevents us from evaluating the performance of our networks 
on their materials. Inspection of  these words in their appendix, 
however, again suggests a confounding between position and de- 
gree of consistency. Take the items which, by their analysis, be- 
come irregular at the fifth position; almost half of these words 
(6/14) were two-syllable words with first-syllable stress and 
with second syllables ending in silent E (e.g., BANDAGE and 
FESTIVE). Because the GPC procedure of Coltheart et al. 
(1993) applies the same rules independent of  syllable position, 
it assigns the v o w e l / A / t o  the grapheme A_.E in the second 
syllable of BANDAGE and the v o w e l / I / t o  the grapheme I_E in 
the second syllable of FESTIVE. Despite the fact that our model 
is not yet able to treat multisyllabic words, the nature of its op- 
eration ensures that it would be sensitive to the fact that words 
with this sort of pattern do not have tense (long) vowels in sec- 
ond syllable. The great majority of  two-syllable words ending in 
__IVE (e.g., ACTIVE, PASSIVE, MOTIVE, NATIVE) have the same 
final vowel as FESTIVE, making FESTIVE a relatively consistent 
word. Whether this reinterpretation of the Coltheart and Rastle 
effect turns out to give an adequate account of their results re- 
mains to be seen from future empirical and modeling work. 
Furthermore, even if a position effect is found when properly 
controlled stimuli are used, it may very well be consistent with 
a parallel computation of  phonology from orthography in 
which the decision to initiate articulation depends only on the 
initial phoneme(s) (Kawamoto, Kello, & Jones, 1994, in 
press). Thus, rather than being incompatible with our ap- 
proach, Coltheart and Rastle's findings may in fact relate to 
simple properties of  networks that develop representations over 
time. 

Extensions of the Approach 

The approach we have taken can be extended in a number of 
different directions. The most obvious and natural extension is 
to the reading of multisyllabic words. The pronunciation of  
these words exhibits the same kind of quasi-regular structure 
found at the level of monosyllables ( Jared & Seidenberg, 1990), 
but these regularities now apply not just to grapheme- 
phoneme correspondences but to the assignment of  stress as 
well, and they involve sensitivity to linguistic variables such as 
the form-class of the word, its derivational status, and several 
other factors (Smith & Baker, 1976). 

One challenge that arises in extending our approach to multi- 
syllabic words is finding a better method for condensing regu- 
larities across positions within a word. The representations we 
have used condense regularities within the onset or the coda of 
a monosyllabic word, but experience with particular correspon- 
dences in the onset does not affect processing of the same corre- 
spondence in the coda or vice versa. Indeed, our model has two 
completely separate sets of  weights for implementing these cor- 
respondences, and most of  its failures (e.g., with the consonant 
j in the coda) are attributable to the fact that its knowledge 
cannot be transferred between onsets and codas. 

Ultimately, it seems likely that the solution to the problem 

of condensing regularities will involve sequential processing 
some level. The paradigm case of this is the approach used 
NETtalk (Sejnowski & Rosenberg, 1987; also see Bullinar: 
1995), in which the letters are processed sequentially, procee 
ing through a text from left to right. The input is shifted throu 
a window that is several slots wide, and each letter is mapped 
its corresponding phoneme when it falls in the central slot. TI 
allows each successive letter to be processed by the same set 
units, so the regularities extracted in processing letters in 
position are available for processing letters in every other po 
tion. At the same time, the presence of other letters in the sk 
flanking the central slot allows the network to be context sen 
tive and to exhibit consistency effects. 

One drawback of such a letter-by-letter approach is that t 
onset of pronunciation of a word is completely insensitive 
the consistency of its vowel; consistency does affect the vov 
correspondences, but these only come into play after the pt 
nunciation of the onset has been completed. This present., 
problem because the empirical finding of  consistency effects 
naming latencies is one of  the main motivations of a conm 
tionist approach to word reading. For this reason, and becau 
there is a great deal of coarticulation of successive phonem, 
we have taken the view that fluent, skilled reading involve, 
parallel construction of a pronunciation of  at least several p~ 
nemes at a time. One possibility is that skilled readers attem 
to process as much of the word as they can in parallel and th 
redirect attention to the remaining part and try again (s 
Plaut, McClelland, & Seidenberg, in press, for a simulation 
lustrating this approach). In this way, early on in learning, re~ 
ing is strictly sequential, as in NETtalk, but as skill develops, 
becomes much more parallel, as in the models we have pl 
sented here. The result is that the system can always fall back, 
a sequential approach, which allows the application of knox 
edge of  regularities acquired in reading units of any size to 
applied across the entire length of the utterance (Skoyl, 
1991 ). The approach extends naturally to words of any lengl 
with the size of  the window of parallel computation being col 
pletely dependent on experience. 

Moving beyond single word reading, the approach taken h~ 
is applicable, we believe, to a wide range of  linguistic and cogJ 
tive domains---essentially to all those with quasi-regular strt 
ture in the sense that there is systematicity that coexists wJ 
some arbitrariness and many exceptions. The first domain 
which the approach was applied was that of  inflectional mt 
phology (Rumelhart & McClelland, 1986 ). As stated in our i 
troduction, this application certainly remains controversi 
Pinker and his colleagues (Marcus et al., 1992; Pinker, 195 
Pinker & Prince, 1988) continue to maintain that no sin! 
mechanism can fully capture the behavior of  the regular inflt 
tional process and the handling of  exceptions. Although we, 
not claim that the existing connectionist simulations have fu 
addressed all valid criticisms raised, at this point we see lit 
in these criticisms that stands against the applicability of t 
connectionist approach in principle. Indeed, the argume! 
raised in these articles do not, in general, reflect a full apprec 
tion of the capabilities of  connectionist networks in quasi-re~ 
lar domains. For example, Pinker ( 1991 ) did not acknowled 
that connectionist models of  both reading aloud (as shown ht 
and in SM89) and of inflectional morphology (Daugherty 
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Seidenberg, 1992) show the very frequency by regularity in- 
teraction that he takes as one of  the key indicators of  the opera- 
tion of  a (frequency-insensitive) rule system and a (frequency- 
sensitive) lexieal lookup mechanism. 

Indeed, there are several aspects of  the empirical data in the 
domain of inflectional morphology that appear at this point to 
favor an interpretation in terms of  a single, connectionist sys- 
tem that is sensitive to both frequency and consistency. We con- 
sider here one such aspect--namely, the historical evolution of  
the English past tense system. Hare and Elman (1995) have re- 
viewed the pattern of  change from the early Old English period 
(circa 870) to the present. In early Old English, there were two 
main types of  verbs--strong and weak---each consisting of sev- 
eral subtypes. Over the period between 870 and the present, the 
different types of  weak verbs coalesced into a single type: the 
current "regular" past. Many of  the strong verbs "regularized," 
but several of  them persist to this day as the various irregular 
verbs of  modern English. The coalescence of  the various types 
of  weak verbs into a single type, the pattern of  susceptibility 
to regularization among the strong verbs, and the occasional 
occurrence of "irregularization," in which a particular weak 
verb took on the characteristics of a cluster of  strong verbs, are 
all traced to workings of  a single connectionist system that is 
sensitive to both frequency and consistency. In Hare and El- 
man's approach, language change is cast as the iterative appli- 
cation of a new generation of learners (simulated by new, un- 
trained networks) to the output of the previous generation of 
learners (simulated by old networks, trained on the output of  
even older networks). Each generation imposes its own distor- 
tions on the corpus: Among these are the elimination of  subtle 
differences between variations of  the weak past that apply to 
similar forms, and the regularization of  low-frequency irregular 
forms with few friends. Gradually over the course of  genera- 
tions, the system is transformed from the highly complex sys- 
tem of circa 870 to the much simpler system that is in use today. 
The remaining irregular verbs are either highly consistent with 
their neighbors, highly frequent, or both; less frequent and less 
consistent strong verbs have been absorbed by the regular sys- 
tem. Crucially for our argument, both the "regular" (or weak) 
system and the "exception" (or strong) system show effects of 
frequency and consistency, as would be expected on a single- 
system account. 

Derivational morphology presents another rich quasi-regular 
domain to which our approach would apply. First, there are many 
morphemes that are partially productive in ways that are similar 
to quasi-regular correspondences in inflectional morphology and 
reading aloud: That is, they appear to be governed by a set of"soit" 
constraints. Second, the meaning of a morphologically complex 
word is related to, but not completely determined by, its constitu- 
ent morphemes; thus, there is partial, but not complete, regularity 
in the mapping from meaning to sound (see Bybee, 1985, for a 
discussion of these points). 

Graded influences of  frequency and consistency appear to oper- 
ate not just at the level of individual words but also at the level of 
sentences, as evidenced by recent findings oflexical, semantic, and 
contextual effects in syntactic ambiguity resolution (see, e.g., Mac- 
Donald, 1994; Taraban & McCleUand, 1988; Trueswell, Tanen- 
haus, & Garnsey, 1994). For example, consider the temporary 
main verb versus reduced relative ambiguity associated with the 

word EXAMINED in the sentence THE EVIDENCE EXAMINED BY 
THE LAWYER WAS USELESS ( Ferreira & Cli~on, 1986). The degree 
to which readers are slowed in sentence comprehension when en- 
countering such ambiguities is subject to a number of influences, 
including a previous disambiguating context (Trueswell et al., 
1994), the semantic plausibility of the head noun in the main-verb 
reading (cf. EVIDENCE vS. an animate noun like WITNESS), and 
the relative frequency with which the verb is used as a simple past 
tense (e.g., THE PERSON EXAMINED THE OBJECT ) as opposed to a 
passiviz~ past participle (e&, THE OBJECT WAS EXAMINED BY 
THE PERSON; M_acI)onald, 1994). Verbs that are consistently used 
in the simple past tense lead to much monger garden path effects 
when a reduced relative interpretation is required than do verbs 
that are more ambiguous in their usage. These effects have a natu- 
ral interpretation in terms of a constraint-satisfaction process in 
which a variety of sources of lexical knowledge conspire to pro- 
duce a coherent sentence interpretation, including graded influ- 
ences whose strength depends on the consistency of a word-form's 
usage (see Juliano & Tanenhaus, 1994; MacDonald, Pearlmutter, 
& Seidenbergo 1994, for discussion, and Kawamoto, 1993; N. 
Pearlmutter, Daugherty, MacDonald, & Seidenberg, 1994; St. 
John & McClelland, 1990, for connectionist simulations illustrat- 
ing some of these principles). 

Even more generally, the domains encompassed by semantic, 
episodic, and encyclopedic knowledge are all quasi-regular in that 
facts and experiences are partially arbitrary but also partially pre- 
dictable from the characteristics of other, related facts and experi- 
ences (see McC'lelland, McNaughton, & O'Reilly, 1995, for 
discussion). Consider the robin, for example. Its properties are 
largely predictable from the properties of  other birds, but its color 
and exact size, the sound that it makes, the color of  its eggs, and so 
forth are relatively arbitrary. Rumelhart (1990; Rumelhart & 
Todd, 1993) showed how a connectionist network can learn the 
contents of a semantic network, capturing both the shared struc- 
ture that is present in the set of concepts--so as to allow g~eral- 
ization to new examples--while at the same time mastering the 
idiosyncratic properties of  particular examples. As another exam- 
ple, consider John E Kennedy's assassination. There were several 
arbitrary aspects, such as the date and time of the event. But our 
understanding of what happened depends on knowledge derived 
from other events involving presidents, motorcades, rifles, spies, 
and so on. Our understanding of these things informs, indeed per- 
wades, our memory of Kennedy's assassination. And our under- 
standing of other similar events is ultimately influenced by what 
we learn about Kennedy's assassination. St. John (1992) provided 
an example ofa connectionist network that learned the character- 
istics of events and applied them to other; similar events, using just 
the same learning mechanism, governed by the same principles of 
combined frequency and consistency sensitivity, as our spelling-to- 
sound simulations. 

In summary, quasi-regular systems like that found in the En- 
glish spelling-to-sound system appear to be pervasive, and there 
are several initial indications that connectionist networks sensitive 
to frequency and consistency will provide insight into the way such 
systems are learned and represented. 

Conclusions 
At the end of  their article, Coltheart et al. (1993) reached a 

conclusion that seemed to them "inescapable": 
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Our ability to deal with linguistic stimuli we have not previously 
encountered . . . can only be explained by postulating that we 
have learned systems of general linguistic rules, and our ability at 
the same time to deal correctly with exceptions to these r u l e s . . .  
can only be explained by postulating the existence of systems of 
word-specific lexical representations. (p. 606) 

We have formulated a connectionist approach to knowledge 
and processing in quasi-regular domains, instantiated it in the 
specific domain of English word reading, and demonstrated that 
it can account for the basic abilities of  skilled readers to handle 
correctly both regular and exception items while still generaliz- 
ing well to novel items. Within the approach, the proficiency of  
humans in quasi-regular domains stems not from the existence 
of separate rule-based and item-specific mechanisms, but from 
the fact that the cognitive system adheres to certain general 
principles of  computation in neural-like systems. 

Our connectionist approach not only addresses these general 
reading abilities but also provides insight into the detailed 
effects of frequency and consistency both in the naming latency 
of normal readers and in the impaired naming accuracy of ac- 
quired and developmental dyslexic readers. A mathematical 
analysis of a simplified system, incorporating only some of  the 
relevant principles, forms the basis for understanding the inti- 
mate relationship between these factors and, in particular, the 
inherently graded nature of spelling-sound consistency. 

The more general lexical framework for word reading on 
which the current work is based contains a semantic pathway in 
addition to a phonological pathway. In contrast to the lexical 
and sublexical procedures in dual-route theories, which operate 
in fundamentally different ways, the two pathways in the cur- 
rent approach operate according to a common set of  computa- 
tional principles. As a result, the nature of processing in the two 
pathways is intimately related. In particular, a consideration of  
the pattern of impaired and preserved abilities in acquired sur- 
face dyslexia leads to a view in which there is a partial division 
of labor between the two pathways. The contribution of  the pho- 
nological pathway is a graded function of frequency and consis- 
tency; items weak on both measures are processed particularly 
poorly. Overt accuracy on these items is not compromised, 
however, because the semantic pathway also contributes to the 
pronunciation of words (but not nonwords). The relative capa- 
bilities of the two pathways are open to individual differences, 
and these differences may become manifest in the pattern and 
severity of reading impairments following brain damage. 

Needless to say, much remains to be done. The current simu- 
lations have specific limitations, such as the restriction to unin- 
flected monosyllables and the lack of attention paid to the de- 
velopment of orthographic representations, which need to be 
remedied in future work. Furthermore, the nature of processing 
within the semantic pathway has been characterized in only the 
coarsest way. Finally, a wide range of related empirical issues, 
including phonological dyslexia, developmental dyslexia, lexi- 
cal decision, and pseudohomophone and blocking effects, have 
been addressed in only very general terms. Nonetheless, the re- 
sults reported here, along with those of  others taking similar 
approaches, clearly suggest that the computational principles of 
connectionist modeling can lead to a deeper understanding of 
the central empirical phenomena in word reading in particular 
and in quasi-regular domains more generally. 
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Appendix A 

Stimuli Used in Simulation Studies 

High frequency 

Regular Regular 
consistent inconsistent Ambiguous  Exception Nonword  

BEST BASE BROWN ARE LARE 
BIG BONE CLEAR BOTH FOTH 
CAME BUT DEAD BREAK DEAK 
CLASS CATCH DOWN CHOOSE BDOSE 
DARK COOL FOUR COME POME 
DID DAYS GONE DO MO 
FACT DEAR GOOD DOES POES 
GOT FIVE HEAD DONE RONE 
GROUP FLAT HOW FOOT POOT 
HIM FLEW KNOW GIVE MIVE 
MAIN FORM KNOWN GREAT REAT 
OUT GO LOVE HAVE MAVE 
PAGE GOES LOW MOVE BOVE 
PLACE GROW NEAR PULL RULL 
SEE HERE NOW PUT SUT 
SOON HOME ONE SAID HAID 
STOP MEAT OUR SAYS TAYS 
TELL PAID OWN SHALL NALL 
WEEK PLANT SHOW WANT BANT 
WHEN ROLL SHOWN WATCH NATCH 
WHICH ROOT STOOD WERE LERE 
WILL SAND TOWN WHAT DAT 
WITH SMALL YEAR WORD TORD 
WRITE SPEAK YOUR WORK BORK 

Low ~equency  

Regular Regular  
consistent inconsistent Ambiguous  Exception Nonword  

BEAM BROOD BLOWN BOWL NOWL 
BROKE COOK BROW BROAD BOAD 
BUS CORD CONE BUSH FUSH 
DEED COVE CROWN DEAF MEAF 
DOTS CRAMP DIVE DOLL FOLL 
FADE DARE DREAD FLOOD BOOD 
FLOAT FOWL FLOUR GROSS TROSS 
GRAPE GULL GEAR LOSE MOSE 
LUNCH HARM GLOVE PEAR LEAR 
PEEL HOE GLOW PHASE DASE 
PITCH LASH GOWN PINT PHINT 
PUMP LEAF GROOVE PLOW CLOW 
RIPE LOSS HOOD ROUSE NOUSE 
SANK MAD LONE SEW TEW 
SLAM MOOSE PLEAD SHOE CHOE 
SLIP MOTH POUR SPOOK STOOK 
STUNT MOUSE PRONE SWAMP DRAMP 
SWORE MUSH SHONE SWARM STARM 
TRUNK PORK SPEAR TOUCH MOUCH 
WAKE POSE STOVE WAD NAD 
WAX POUCH STRIVE WAND MAND 
WELD RAVE SWEAR WASH TASH 
WING TINT THREAD WOOL BOOL 
WIT TOAD ZONE WORM FORM 

Note. The regular consistent words, regular inconsistent words, and exception words are from Experiments  1 and 2 o f  Taraban and McClelland 
(1987). In those studies, the regular consistent words are the control words for the exception words. In addition, each regular inconsistent word shares 
a body with some exception word. The  ambiguous  words contain bodies associated with two or more  pronunciations,  each o f  which occurs in m an y  
words. They were generated by Seidenberg and McClelland (1989) to be matched in frequency (Kufera  & Francis, 1967) with the Taraban and 
McClelland high- and low-frequency regular consistent and exception words. The nonwords were generated by altering the onsets o f  the exception 
words. 

(Appendixes continue on next page) 
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A p p e n d i x  B 

A c c e p t e d  P r o n u n c i a t i o n s  o f  G l u s h k o ' s  (1979)  N o n w o r d s  

Consistent nonwords Inconsistent nonwords 

Nonword Pronunciation(s) Nonword Pronunciation(s) 

BEED poEd/ BILD /blld/,/bild/ 
BELD /beld/ BINT folnt/,/bint/ 
BINK foiNk/ BLEAD folEd/,bled/ 
BLEAM /blEm/ B O O D  /bUd/,/bAd/,/bud/ 
BORT floOrt/ B O S T  foOst/,foAst/,/bost] 
BROBE forOb/ B R O V E  forOv/,forUv/,for A v/ 
CATH /k@T/,/kaT/ C O S E  /kOs/,/kOz/,/kUz/ 
COBE /kOb/ COTH /kOT/,/koT/ 
DOLD /dOld/,/dald/ D E R E  /dAr/,/dEr/,/dur/ 
IX)ON /dUn/ D O M B  /dOm/,/dUm/,/dam/,/damb/ 
DORE /dOr/ DOOT /dUt/,/dut/ 
DREED /driEd/ D R O O D  /drUd/,/drAd/,/drud/ 
FEAL /rE1/ FEAD /fEd/,/fed/ 
GODE ]gOd/ GOME /gOm/,/gAm/ 
GROOL /grUl/,/grul/ GROOK /grUk/,/gruk/ 
BEAN /hEn/ H A I D  /h@d/,/hAd/,/hcd/ 
BEEF /hEf/ HEAF /hEf/,/hef/ 
HODE /hOd/ HEEN /hEn/,/hin/ 
HOIL /hYl/ HOVE /hOv/,/hOv/,/h A v/ 
LAIL /IAI/ LOME /lOm/,/1Am/ 
LOLE /IO1/ LOOL /IU1/,/Iul/ 
MEAK /mAk/,/mEk/ MEAR /mAr/,/mEr/ 
MOOP /mUp/ MONE /mOn/,/m A n/,/mon/ 
M U N E  /mUn/, /myUn/ MOOF /mUf/,/muf/ 
NUST /nAst/  NUSH /nAS/,/nuS/ 
PEET /pEt/ PILD /pIld/,/pild/ 
PILT /pilt/ P L O V E  /plOv/,/plUv/,/plAv/ 
PLORE /plOr/ P O M B  /pOm/,/pUm/,/pam/,/pamb/ 
PODE /pOd/ POOT IpUt/,/put/ 
POLD /pOld/,/pald/ P O V E  /pOv/,/pUv/,/pAv/ 
PRAIN /prAn/ P R A I D  /pr@d/,/prAd/,/pred/ 
SHEED /SEd/ SHEAD /SEd/,/Sed/ 
SOAD /sOd/,/sod/ S O O D  /sOd/,/sAd/,/sud/ 
SPEET /spEt/ S O S T  /sOst/,/sAst/,/SOSt/ 
STEET /stEt/ S P E A T  /spAt/,/spEt/,/spet/ 
SUFF /s A f/ S T E A T  /stAt/,/stEt/,/stet/ 
SUST /sAst/ SOLL /sA1/,/sul/ 
SWEAL /swEl/ S W E A K  /swAk/,/swEk/ 
TAZE /tAz/ T A V E  /t@v/,/tAv/,/tav/ 
W E A T  /wAt/,/wEt/,/wet/ WEAD /wEd/,/wed/ 
WOSH /waS/ W O N E  /wOn/,/wAn/,/won/ 
WOTE /wOt/ WULL /w A l/,/wul/ 
WUFF /wAf/ WUSH /wAS/,/wuS/ 

Note. /a/ in POT,/@/ in CAT,/e/ in BED,/i/in HIT,/o/in DOO,/u/in GOOD,/A/in MAKE,/E/in KEEP,/I/in 
mKE,/O/in HOPE,/U/in BOOT,/W/in NOw,/Y/in BOY,/A/in CUP,/N/in RINO,/S/in SHE,/C/in CmN,/Z/in 
BEIGE,/T/in THIN,/D/in THIS. All other phonemes arc represented in the conventional way (e.g.,/b/in 
BAT). 
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A p p e n d i x  C 

Regula r i za t ions  o f  Ta raban  a n d  M c Cle l l a nd ' s  (1987) Excep t ion  Words  
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High-frequency exceptions Low-frequency exceptions 

Word Correct Regularization(s) Word Correct Regularization(s) 

ARE /at/ /At/ BOWL fool/ foWl/ 
BOTH /I:K)T/ fooT/ BROAD forod/ fol'Od/ 
BREAK forAk/ /brEk/ BUSH foilS/ fo/NS/ 
CHOOSE /CUz/ /CUs/ DEAF /def/ /dEf/ 
COME /k A m/ /kOm/ DOLL /dal/ /dOi/ 
DO /dU/ /dO/,/da/ FLOOD /flAd/ /flUd/,/flud/ 
DOES /dAz/ /dOz/,/dOs/ GROSS /glOS/ /gros/,/gras/ 
DONE /d A n/ /dOn/ LOSE /IUz/ /IOs/,/lOz/ 
FOOT /flit/ /rUt/ PEAR /pAr/ /pEr/ 
GIVE /giv/ /glv/ PHASE /fAz/ /fAs/ 
GREAT /grAt/ /grEt/ PINT /pint/ /pint/ 
HAVE /hay/ /hAy/ PLOW /plW/ /plO/ 
MOVE /mUv/ /mOv/ ROUSE /rWz/ /rWs/ 
PULL /pul/ /pAl/ SEW /sO/ /sU/ 
PUT /put/ /pAt/ SHOE /SU/ /SO/ 
SAID /sed/ /sAd/ SPOOK /spUk/ /spuk/ 
SAYS /sez/ /sAz/,/sAs/ SWAMP /swamp/ /sw@mp/ 
SHALL /Sa]/ /Sol/ SWARM /$wOrrn/ /swarnl/ 
WANT /want/ /w@nt/ TOUCH /tAC/ /tWC/ 
WATCH /waC/ /w@C/ WAD /wad/ /w~l /  
WERE /wur/ /wEt/ WAND /wand/ /w@nd/ 
WHAT /W A t/ /w@t/ WASH /woS/ /w@S/ 
WORD /wurd/ /wOrd/ WOOL /will/ /wUI/ 
WORK /wurk/ /wOrk/ WORM /wurnl/ /wOITII/ 

Note. /a/in POT,/@/in CAT,/e/in BED,/i/in HIT,/o/in DOG,/U/in GOOD,/A/in MAKE,/E/in KEEP,/I/in BIKE, 10/in HOPE,/U/in BOOT,/W/in 
NOW,/Y/in BOY,/A/in CUP,/N/in RING,/S/in SHE,/C/in CHIN,/Z/in BEIGE,/T/in THIN,/D/in THIS. All other phonemes are represented in the 
conventional way (e.g.,/b/in BAT). 
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