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Abstract 

Although perseveration-the inappropriate repetition of 
previous responses-is quite common among patients with 
neurological damage, relatively few detailed computational ac- 
counts of its various forms have been put forth. A particularly 
well-documented variety involves the pattern of errors made 
by “optic aphasic” patients, who have a selective deficit in 
naming visually presented objects. Based on our previous work 
in modeling impaired reading via meaning in deep dyslexia, 
we develop a connectionist simulation of visual object naming. 
The major extension in the present work is the incorporation 
of short-term correlational weights that bias the network to- 
wards reproducing patterns of activity that have occurred on 
recently preceding trials. Under damage, the network replicates 
the complex semantic and perseverative effects found in the 

INTRODUCTION 

In neuropsychology, “perseveration” refers to the contin- 
uation or repetition of an activity or percept when the 
eliciting stimulus is no longer present and typically when 
it has been replaced by a different one. It is very com- 
monly observed. For example, Helmick and Berg (1976), 
who used a variety of tasks involving naming, drawing, 
defining, and the like, found that responses on 10% of 
trials for a group of 30 brain-damaged patients were 
some form of perseveration. 

Virtually the entire gamut of behaviors tested in neu- 
rological patients can give rise to perseverations. At the 
more peripheral end of the range are visual persevera- 
tions (palinopsias), most frequently found after right oc- 
cipital or parieto-occipital lesions (Hkcaen & Angeler- 
gues, 1963). They involve the reappearance of percepts 
when the object that gave rise to them is no longer 
present. By contrast, at the central end of the range are 
what Sandson and Albert (1984) call “stuck-in-set” per- 
severations observed after frontal lesions in tasks such 
as Wisconsin Card Sorting, where the patient has to 
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optic aphasic error pattern. Further analysis reveals that the 
perseverative effects are strongest when the lesions are near 
or within semantics, and are relatively mild when the preceding 
object evokes no response. Like optic aphasics, the network 
produces predominantly semantic rather than visual errors be- 
cause, in contrast to reading, there is some structure in the 
mapping from visual to semantic representations for objects. 
Viewed together with the dyslexia simulations, the replication 
of complex empirical phenomena concerning impaired visual 
comprehension based on a small set of general connectionist 
principles strongly suggests that these principles provide im- 
portant insights into the nature of semantic processing of visual 
information and its breakdown following brain damage. H 

switch from sorting cards by one rule (e.g., shape) to 
sorting by another (e.g., number) without an instruction 
as to which rule has become the correct one. On this 
task, frontal patients tend to continue sorting by the 
previously correct rule (Milner, 1963). 

Stuck-in-set perseveration has recently been analyzed 
from a theoretical perspective (see Dehaene & Chan- 
geux, 1991; Levine & Prueitt, 1989; Shallice, 1982). How- 
ever, as Sandson and Albert (1984) have pointed out, the 
sets of behaviors termed “perseverative” are hnctionally 
heterogeneous. No other type of perseveration has re- 
ceived a computational analysis. In this paper, we analyze 
a second major subtype of perseveration, called by Sand- 
son and Albert “recurrent perseveration,” which they 
hold to be related anatomically to posterior left hemi- 
sphere damage. It is the unintentional repetition of a 
previous response to a subsequent stimulus. Thus, the 
patient described by Lhermitte and Beauvois (1973) 
named a comb correctly, but then named a fork that was 
presented on the subsequent trial as a comb as well. 

There are relatively few detailed empirical analyses of 
the performance of patients showing strong persevera- 
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tive tendencies of this type. However, one group of dis- 
orders provides a clear exception and is therefore a good 
candidate for more detailed modeling. These are the 
selective problems in naming stimuli presented in one 
particular modality, of which an example was given 
above. They can arise after posterior lesions to the left 
hemisphere. 

A common way o f  CkdSSifyiIlg such disorders where 
the problem is specific to the visual modality is to dif- 
ferentiate between associative visual agnosia and optic 
aphasia, with the former being a difficulty in recognizing 
visually presented objects and the latter a difficulty in 
naming them (see, e g ,  Beauvois, 1982; Farah, 1990; 
McCarthy & Warrington, 1990). There are, however, a 
variety of  views on the relation between these disorders 
(see, e g ,  Beauvois, 1982; Humphreys & Riddoch, 1987) 
and, indeed, on the relation between associative agnosia 
and the disorder with which it is standardly contrasted, 
namely apperceptive agnosia (see, e.g., Farah, 1990; 
McCarthy & Warrington, 1990). Quite a number of au- 
thors see no substantial difference between associative 
agnosia and optic aphasia, but they disagree as to which 
is primary. Thus, some view optic aphasia as being 
merely a subtle form of agnosia (Goodglass, Barton, & 
Kaplan, 1968; Rubens, 1977). Other authors, however, 
argue that visual perception is intact in optic aphasics. 
Indeed, such patients can often mime appropriately the 
use of an object they cannot name (Gil, Pluchon, Toullat, 
Michenau, Rogez, & Levevre, 1985; Lhermitte & Beauvois, 
1973; Riddoch & Humphreys, 1987) but debate continues 
as to whether satisfactory performance of such tasks re- 
quires identification of the object, or whether they can 
be carried out by some mix of superordinate knowledge 
and structural descriptions (see Farah, 1990; Riddoch & 
Humphreys, 1987; Shallice, 1988a). Finally, some authors 
deny the autonomy of associative agnosia, viewing it as 
either a subtle apperceptive agnosia (e.g., Farah, 1990) 
or an optic aphasia (eg,  Geshwind, 1965). 

Whether or not associative agnosia and optic aphasia 
should be distinguished, a recent review (Iorio, Falanga, 
Fragassi, & Grossi, 1992) shows that patients with pos- 
terior left hemisphere lesions who have been catego- 
rized as exhibiting one or the other syndrome produce 
very similar patterns of errors (see Table 1). Typically, 

they produce semantic errors (e.g., needle + “thread’)), 
perseverative errors (needle 4 “cat” after naming a cat), 
and unrelated errors (e.g., needle + “house”). We will 
call this the “optic aphasic” error pattern. Some also 
produce what Iorio and colleagues call “confabulations,” 
but which Beauvois (1982) describes as “a peculiar min- 
gling of semantic errors, perseverations, and descriptions 
of morphological features of the object.” Visual errors 
(e.g., needle -+ “toothpick’) are less frequently recorded. 
By contrast, almost all patients with bilateral lesions who 
were clinically diagnosed as associative agnosic pro- 
duced predominantly visual errors. 

In this paper we will be concerned with modeling 
perseveration in the visual and semantic processes be- 
yond the level of structural descriptions. In general, as- 
sociative agnosic and optic aphasic patients appear 
relevant. Some authors, however, have used the term 
“associative agnosia” to encompass patients with subtle 
problems at the strucrural description level (see Farah, 
1990, for discussion). In addition, agnosic problems aris- 
ing from right hemisphere or bilateral lesions are typi- 
cally assumed to be at or before that level (see, e.g., 
Humphreys & Riddoch, 1987; McCarthy & Warrington, 
1986). Therefore, for a relevant patient database on 
which to test a model of the appropriate levels of per- 
ceptual and semantic processing, we will restrict consid- 
eration to associative agnosics with left hemisphere 
lesions and optic aphasic patients, who all have left hemi- 
sphere lesions.’ 
As far as these left posterior patients are concerned, 

there are only two clear exceptions who do not show 
the optic aphasic error pattern: associative agnosic FRA 
(McCarthy & Warrington, 1986), who made only super- 
ordinate errors, and an optic aphasic patient described 
by Coslett and Saffran (1989), who made unrelated errors 
almost exclusively. These patients will be considered in 
the Discussion. 

The most detailed account of a patient with a specific 
visual naming difficulty who exhibited a semantic and 
perseverative error pattern was provided by Lhermitte 
and Beauvois (1973) for their patient JF, who had had a 
left posterior cerebral artery infarct. JF was virtually nor- 
mal at naming from verbal description (4% errors) and 
from touch (8% errors) but made many more errors at 

Table 1. Cases Reviewed by Iorio et al. (1992) for Whom the Types of Naming Errors Are Reported, Subdivided According to 
Diagnostic Category and Location of Lesion 

Ewor 7jpe 

Cases Visual Semantic Persetwative Confabulations 

Bilateral considered 10 90 20 

Unilateral (left) considered 8 42 88 

“visual associative agnosic” 

“visual associative agnosic” 

“Optic aphasic” 10 40 100 

10 

88 

80 

0 

50 

40 
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naming pictures (28% errors) and objects (23%). Lher- 
mitte and Beauvois (1973) identified two apparent influ- 
ences on the error responses-“horizontal” ones directly 
from the stimulus, and “vertical” ones from an earlier 
stimulus (i.e., errors showing some perseverative effect). 
Table 2 shows the influences apparent in errors made 
by JF on naming 100 pictures and 30 objects. In a further 
experiment, where 320 color and black-and-white pic- 
tures were presented and 176 errors were made, the rate 
of errors with a vertical influence remained high (over 
50% of all errors) and varied little with picture type. 
These perseverations were mainly mixed with other 
types of error. The ratio of semantic errors to visual 
errors varied with the type of picture, being greater with 
more complex colored pictures than with black-and- 
white sketches. 

Given the existence of  such a well-documented patient 
who shows the optic aphasic error pattern, together with 
the variety of descriptions of other patients who have 
qualitatively similar error patterns, it is appropriate to 
consider how the errors arise. There has, however, been 
virtually no discussion of this issue. Riddoch and Hum- 
phreys (1987) discuss the relevance of the high rate of 
mixed visual-and-semantic errors in their optic aphasic 
patient, JB, but as he made few perseverative errors they 
do not discuss that critical aspect of the symptom pattern. 

By contrast, most theoretical discussion has focused 
on the overall pattern of performance exhibited by optic 
aphasic and associative agnosic patients. At least two ex- 
planations have been offered for associative agnosia. One 

Table 2. Errors Made by JF  in Two Experiment? 

100 30 
Pictures Objects 

Horizontal errors 
Semantic 

(e.g., shoe -+ “hat”) 9 3 
Visual 

(e.g., coffee beum + “hazel nuts”) 2 1 

Mixed visual-and-semantic 
( e g ,  omnge + “lemon”) 6 1 

Vertical errors 
Item and coordinate perseveration 

(e.g.,T26 . . . -+ “wristwatch” 
T27 scisors -+ “wristwatch’ 

(e.g. ,T44 . . . -+ “newspaper” 
T45 case + “two books”) 8 2 

Mixed horizontahertical errors 
(e.g.,T43 . . . + “chair” 

T47 basket -+ “cane chair” 
T53 string + “strand of  weaved 

cane”) 3 0 

“1;rom Lhermitte and Beauvois ( 1973) 

is degradation of the representations in a partially separ- 
able “visual” semantic system ( e g ,  McCarthy and War- 
rington, 1986). The other is the existence of a subtle 
impairment in visual perceptual processing (Farah, 
1990). 

Five possible accounts have been suggested for optic 
aphasia. Ratcliff and Newcombe (1982) have argued that 
there is a “direct” route from visual perceptual process- 
ing to naming, analogous to the lexical nonsemantic 
route from orthographic to phonological processing in 
reading (Morton & Patterson, 1980; Schwartz, Saffran, & 
Marin, 1980). However, there is no independent evidence 
for the existence of such a route (see Howard & Franklin, 
1988). 

A second explanation (e.g., Beauvois, 1982) is that 
semantics is not a unitary entity, but is separated into 
“visual” and “verbal” components. Visual input can di- 
rectly access only visual semantics, and naming can be 
based only on verbal semantics. Visual object naming 
requires communication from visual to verbal semantics; 
optic aphasia arises naturally from a disconnection be- 
tween them. Intact gesturing and categorization can be 
based on visual semantics, while intact auditory recog- 
nition is based on direct access to verbal semantics. The 
main problem with this account concerns the adequacy 
of the concept “visual semantics” (for discussion, see 
Caramazza, Hillis, Kapp, & Romani, 1990; Riddoch, Hum- 
phreys, Coltheart, & Funnell, 1988; Shallice, 1988a; 1993). 

A related proposal (Coslett & Saffran, 1989) is that 
semantics is divided not by modality but by hemisphere, 
with naming only supported in the left hemisphere. On 
this hypothesis, optic aphasia arises when visual input 
from both hemispheres is disconnected from left-hemi- 
sphere semantics, with residual comprehension sub- 
served by right-hemisphere semantics. In essence, this 
theory parallels the right-hemisphere hypothesis for 
reading in deep dyslexia (Coltheart, 1980; 1983; Saffran, 
Boygo, Schwartz, & Marin, 1980) and shares many of its 
strengths and weaknesses (see Coltheart, Patterson, & 
Marshall, 1987; Patterson & Besner, 1984; Shallice, 
1988a). 

Yet another account of optic aphasia (Gordon, 1982; 
Margolin, Marcel, & Carlson, 1985; Rubens, 1979) locates 
the impairment to the transmission of information from 
visual perceptual processing to a unitary semantics, and 
challenges the claim that recognition is intact in these 
patients. On this approach, optic aphasia would amount 
to a type of “semantic access agnosia” (Riddoch & Hum- 
phreys, 1987). We return to the issue of the intactness of 
recognition in optic aphasic patients in the Discussion. 

A final, more recent proposal (Farah, 1990) hypoth- 
esizes that optic aphasics have two partial lesions, one 
between vision and semantics, and the other between 
semantics and naming. Each separate impairment is suf- 
ficiently mild to allow reasonable performance on ges- 
turing or tactile naming, but tasks that require both 
pathways-visual naming-would be much more dras- 
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tically impaired. The explanation for the disproportion- 
ate naming impairment hinges on the notion that an 
interactive connectionist system would be sufficiently ro- 
bust under each partial lesion alone, but would show 
supevadditive impairment under the combined lesions. 
Unfortunately, preliminary simulations exploring this 
possibility, carried out by one of us (DP) in collaboration 
with M. Farah, have been unsuccessful to date. 

None of these proposals for explaining the overall 
pattern of performance across tasks in optic aphasia is 
completely satisfactory-each involves either ad hoc as- 
sumptions or  insufficiently supported claims. From the 
present perspective they have an even more serious dis- 
advantage-they all focus on explaining the dissociation 
between impaired naming and (relatively) intact recog- 
nition, but have little to say about other characteristics 
of the disorder-in particular, the types of errors the 
patients make in naming. 

In the present paper we will therefore reverse the 
standard explanatory emphasis. We will be concerned 
with providing an account of the error pattern exhibited 
in optic aphasia. Any dissociation between naming and 
recognition (as demonstrated, for example, by mime) 
will be treated as a secondary issue. The error pattern, 
as pointed out earlier, is actually found not only in optic 
aphasic patients, but also in most left hemisphere patients 
described as associative agnosic. We refer to it as the 
optic aphasic error pattern for simplicity. Possible differ- 
ences between these disorders in the overall pattern of 
performance will be ignored until the Discussion, and 
an explanation of the error pattern that might apply to 
both disorders will be sought. 

The approach we will take is most closely related to 
the theoretical position of Riddoch and Humphreys 
(1987) in that we will assume that the error pattern arises 
from a lesion that impairs the generation of semantics 
from visual structural descriptions, and that this process 
operates on a “cascade” principle (i.e., levels continually 
pass on partial information throughout their computa- 
tion-see McClelland, 1979).’ However, to explain the 
error pattern we need to assume that the visual-to-se- 
mantics process can be effectively modeled in connec- 
tionist terms. Support for this approach comes from our 
recent work in modeling reading via meaning in patients 
with “deep dyslexia” (Hinton & Shallice, 1991; Plaut & 
Shallice, 1991a,b; 1993). 

CONNECTIONIST MODELING OF 
IMPAIRED VISUAL COMPREHENSION 

Deep dyslexic patients can pronounce written words 
only by first accessing their meaning, and typically make 
errors in this process (e.g., misreading the word RIVER as 
“ocean”). In addition to these “semantic” errors, a num- 
ber of other error types occur: visual (e.g., SWORD + 

“words”), derivational (e.g., GROWN + “growing”), visual- 
and-semantic (e.g., TROUBLE + “terrible”), and visual- 

then-semantic (e.g., SYMPATHY +. “orchestra,” presumably 
via symphony). Furthermore, these patients exhibit a va- 
riety of other symptoms, including an effect of part-of- 
speech in correct performance (nouns > adjectives > 
verbs > function words), better performance on con- 
crete, highly imageable words than on abstract, less im- 
ageable words, and an inability to read pronounceable 
nonwords. 

Through a series of simulation experiments carried 
out in collaboration with G. Hinton (Hinton & Shallice, 
1991; Plaut & Shallice, 1991a,b; 1993), we have demon- 
strated that the characteristics of deep dyslexia arise 
when systems of a particular type are lesioned in virtually 
any part. The systems are those that have the following 
characteristics: 

1. Orthographic and semantic representations are dis- 
tributed over separate groups of units, such that similar 
patterns represent similar words in each domain, but 
similarity is unrelated between domains. 

2.  Connection weights are learned by a procedure for 
performing gradient descent in some measure of per- 
formance on the task of mapping orthography to seman- 
tics. 

3. Mapping orthography to semantics is accomplished 
through the operation of “attractors.” 

4 .  The semantic representations of concrete words are 
much “richer” than those of abstract words (i.e., contain 
considerably more consistently accessed features). 

Figure 1 shows the architecture of the network used 
by Hinton and Shallice (1991). Orthography is repre- 
sented in terms of four groups of “grapheme” units, in 
which each unit represents a particular letter at a partic- 
ular position within the word (McClelland & Rumelhart, 
1981). The semantics of each word is described in terms 
of predetermined semantic features designed to capture 
intuitive semantic distinctions. The network has two main 
pathways: (1) a “direct” pathway, from grapheme units 
to semantic units via intermediate units, and ( 2 )  a “clean- 

s*c 
m m 

60 clean-up units 68 semantic units 

40 intermediate units - & 28 grapheme units 

Figure 1. The network used by Hinton and Shallice (1991). Arrows 
represent sets of connections that are lesioned. Notice that sets of 
connections are labeled with the initials of the names of the source 
and destination unit groups (e.g. -1 for grapheme-to-intemzediate 
connections). Only 25% of the possible connections in each pathway 
were included. However, additional direct connections were added 
among semantic units that represent closely related features. 

92 Journul of Cognitive Neuroscience Volume 5, Number 1 



up” pathway, from the semantic units to clean-up units 
and back to the semantic units. The direct pathway gen- 
erates initial semantic activity from visual input. The 
clean-up pathway iteratively refines this initial activity 
into the exact correct semantics of the word. 

The network was initialized to have small random 
weights, so that at the beginning of training the pattern 
of semantic activity produced by the word was quite 
different from its correct semantics. An iterative version 
of the backpropagation learning procedure, known as 
“backpropagation through time” (Rumelhart, Hinton, & 
Williams, 1986; Williams & Peng, 1990, see Appendix A), 
was used to train the network to activate each semantic 
unit to within 0.1 of its correct value for each word. 

After training, the network was systematically “le- 
sioned” by either removing some units or connections, 
or by adding random noise to the weights. As a result of 
this damage, the semantics produced by the network 
typically differs somewhat from the exact semantics of 
the presented word. Hinton and Shallice (1991) defined 
certain criteria that had to be satisfied by the corrupted 
semantics in order for the damaged network to be con- 
sidered to have made a response. Figure 2 shows the 
distribution of error types for disconnection lesions of 
each main set of connections. Lesions throughout the 
network reproduce the cooccurrence of semantic, visual, 
and mixed visual-and-semantic errors found in deep dys- 
lexia. 

More recently, we have extended these initial findings 
in two ways (Plaut & Shallice, 1991a,b; 1993). First, we 
have established the generality of the deep dyslexic error 
pattern by showing that it does not depend on peculiar 
characteristics of the network architecture, the learning 
procedure, or  the way responses are generated from 
semantic activity. Second, we have extended the ap- 
proach to account for many of the remaining character- 

- 2.5. 

G j I  1 3 s  S J C  C J S  Chance 
(41 (21 (21 (31 

Figure 2. The distribution of error types produced by disconnec- 
tion lesions that resulted in 25-75% correct performance in the 
model, as well as the distribution of types for error responses chosen 
randomly from the word set. The absolute height of the “Chance” 
distribution is arbitrary-nly the relative rates are informative. The 
number of lesion severities included in the calculation of error rates 
is indicated in parentheses below the label for each lesion location. 

istics of deep dyslexia, including the effects of 
concretenesshmageability and their interaction with vis- 
ual errors, the occurrence of visual-then-semantic errors, 
greater confidence in visual as compared with semantic 
errors, relatively preserved lexical decision with im- 
paired naming, and the existence of different subvarieties 
of deep dyslexia. 

A critical concept in understanding these results is that 
of an “attractor.” The semantic units in the network 
change their states over time in response to a particular 
orthographic input. The initial pattern of semantic activity 
generated by the direct pathway may be quite different 
from the exact semantics of the word. Interactions among 
semantic units, either directly via connections among 
themselves, or indirectly via the clean-up units, serve to 
gradually modify and “clean-up” the initial pattern into 
the final, correct pattern. This process can be concep- 
tualized in terms of movement in the high-dimensional 
space of possible semantic representations, in which the 
state of each semantic unit is represented along a sepa- 
rate dimension. At any instant in processing a word, the 
entire pattern of activity over the semantic units corre- 
sponds to a particular point in semantic space. The exact 
meanings of familiar words correspond to other points 
in the space. The states of semantic units change over 
time in such a way that the point representing the current 
pattern of semantic activity “moves” to the point repre- 
senting the nearest familiar meaning. In other words, the 
pattern corresponding to each known word meaning 
becomes an “attractor” in the space of semantic repre- 
sentations: patterns for nearby but unfamiliar meanings 
move toward the exact pattern of the nearest known 
meaning. The region in semantic space corresponding 
to the set of initial patterns that move to a given attractor 
is called its “basin” of attraction. As a result of damage 
to the network, the initial semantic pattern generated by 
a word may be “captured” within the basin of a related 
word (see Fig. 3) .  Since the layout of attractor basins 
must be sensitive to both visual and semantic similarity, 
these metrics are reflected in the types of errors that 
occur as a result of damage. 

Our ability to account for a number of aspects of deep 
dyslexia, and in particular the cooccurrence of a number 
of different types of error, using a connectionist model 
based on attractors suggests that a related approach may 
be possible for another neuropsychological error pat- 
tern, that of optic aphasia. 

SHORT-TERM CORRELATION WEIGHTS 

The cooccurrence of visual, semantic, and mixed visual- 
and-semantic errors in deep dyslexic reading would ap- 
pear to be analogous to the optic aphasic error pattern 
in object naming, suggesting a natural account of the 
latter in terms of a network that maps visual represen- 
tations onto semantic representations using attractors. 
However, the perseverative effects in optic aphasia, and 
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Figure 3. How damage to semantic attractors can cause a visual er- 
ror. Points in each space correspond to  particular patterns o f  activity 
over the corresponding group of units. The solid ovals depict the 
normal basins of attraction; the dotted one depicts a basin after se- 
mantic damage. 
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their interactions with semantic effects, are less straight- 
forward. In the dyslexia simulations, the networks were 
completely reset before the presentation of each word- 
there was no opportunity for the response to one stim- 
ulus to influence responses to subsequent stimuli. Ac- 
counting for the perseverative effects in optic aphasia 
requires an elaboration of the computational formalism. 

There are many possible ways of introducing effects 
of the temporal order of stimulus presentation into con- 
nectionist networks. Perhaps the simplest would be to 
process each object beginning from the set of unit states 
corresponding to the interpretation of the previous ob- 
ject, rather than resetting the network. However, persev- 
erative effects in optic aphasics can span intervening 
objects (Lhermitte & Beauvois, 1973), which would be 
difficult to account for solely in terms of sustained activity 
across object presentations (see also Joordens & Besner, 
1992). 

The approach we adopt involves introducing short- 
term weights that depend on the recent correlations 
between unit states. These weights augment the standard 
long-term weights that are slowly modified over the 
course of learning. In particular, each connection is given 
a second weight whose value is an exponentially decay- 
ing weighted average over stimulus presentations of the 
correlation of the states of the units it connects. More 
formally, if sL and s j  are the states of units i a n d j  after 
processing stimulus n - 1, then the short-term correla- 
tional weight cii on the connection from i t o j  is set 
according to 

(1) 

where s: = 2.s - 1 (scaling each unit state to range 
beween k 1) and A is the exponential weighting propor- 
tion (0.5 in our simulations). Both the long-term and 
short-term weights contribute to how units interact. Spe- 

$I = AS:.$ + (1 - A ) c ~ - ’ ]  

cifically, in processing the next stimulus n, the summed 
input $’ to each un i t j  at iteration t becomes 

where y balances the contribution of the short-term 
weights relative to the long-term weights [0.1 in our 
simulations; cf. Eq. (3) ,  Appendix A]. The short-term 
weights must be kept relatively small so that the standard 
weights can solve the task regardless of how the short- 
term weights are set. The states of units are computed 
from their summed input according to the standard sig- 
moid function [see Eq. (4), Appendix A]. Notice that the 
short-term weights do not change over iterations in pro- 
cessing a stimulus, but change only once the network 
has settled. The effect of the short-term weights is to bias 
the network toward recently occurring patterns of activ- 
ity. Although our simulations involve backpropagation 
networks that do not formally minimize an energy func- 
tion (cf. Hopfield, 1982), it may help to think of the 
short-term weights as temporarily lowering the energy 
(improving the “goodness”) of the minimum corre- 
sponding to the previous stimulus. 

There is independent computational and empirical 
motivation for introducing short-term weights. In the 
domain of object recognition, the most common use of 
short-term interactions among units is to temporarily 
bind together combinations of Visual features into a co- 
herent whole (Crick, 1984; von der Malsburg, 1981, 1988; 
von der Malsburg & Schneider, 1986). The recent dis- 
covery of synchronized oscillations in the responses of 
visual cortical cells to disjoint moving contours of a single 
object (Eckhorn, Bauer, Jordan, Brosh, Kruse, Munk, & 
Reitboek, 1988; Engel, Konig, Gray, & Singer, 1990; Gray, 
Konig, Engel, & Singer, 1989) has led to the development 
of a number of models of synchronized neuronal activity 
for feature binding involving short-term interactions 
among units (Atiya & Baldi, 1989; Baldi & Meir, 1990; 
Bush & Douglas, 1991; Eckhorn, Reitboek, Ardnt, & 
Dicke, 1989; Horn, Sagi, & Usher, 1991; Huminel& Bied- 
erman, 1992; Uammen, Koch, % Hdmes, 1990; Konig % 
Shillen, 1991; Lytton & Sejnowski, 1991; Sompolinsky, 
Golomb, & Kleinfeld, 1989; Sporns, Gally, Reeke, & Edel- 
man, 1989; Wilson & Bower, 1990). 

Short-term weights have other interesting computa- 
tional properties. Learning with short-term weights can 
minimize the interference to old knowledge caused by 
new learning, and can rapidly recover the old knowledge 
by canceling out this interference (Hinton and Plaut, 
1987). Although the procedure employed by Hinton & 
Plaut for changing the short-term weights depends on 
the error on the task rather than directly on the states of 
units themselves, a bias toward previous interpretations 
would arise if both short- and long-term weights were 
updated after every stimulus presentation (McClelland & 
Rumelhart, 1985). Hinton (personal communication, de- 
scribed in McClelland & Kawamoto, 1986) demonstrated 
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how to use short-term weights to implement recursion 
in a network that draws shapes composed of other 
shapes. The long-term weights hold the knowledge about 
how to draw shapes. The short-term weights hold context 
information about what to draw next once the network 
is finished with drawing the current shape. Thus, the 
short-term weights function like a “stack’ that can rein- 
state the calling context once a drawing “subroutine” 
returns. Short-term interactions have also been em- 
ployed for recruitment of units during learning (Feld- 
man, 1982). 

Short-term weights are also useful in accounting for 
empirical phenomena in cognitive psychology. The most 
obvious of these are repetition and semantic priming 
effects, both in normals (Collins & Quillian, 1969; Man- 
dler, 1980; Meyer & Schvaneveldt, 1976) and amnesics 
(for a review, see Shimamura, 1986). McClelland and 
Rumelhart (1985) simulate a range of priming effects 
with immediate changes directly to the long-term weights 
rather than to a separate set of short-term weights, al- 
though the same results would also hold in the latter 
case (see also McLaren et al., 1989). Another appropriate 
domain involves short-term memory and its consolida- 
tion into long-term memory (e.g., Gardner-Medwin, 
1989). Goebel(1990) suggests how to use rapidly chang- 
ing correlational weights for serial rehearsal in short- 
term memory (see also Schmidhuber, 1992). Cleeremans 
and McClelland (1991) show how short-term weights can 
account for the temporary biases of subjects in learning 
to respond to structured event sequences. This last work 
is particularly interesting because it involves specific 
biases toward recently occurring mociations between 
stimuli, above and beyond the bias changes for the in- 
dividual stimuli themselves. This suggests that the short- 
term mechanism involves weights between units rather 
than, or in addition to, simple threshold changes for 
individual units (cf. Morton, 1969). 

At a neurophysiological level, it has been known for 
some time (e.g., Kupferman, 1979; Hartzell, 1981) that 
changes in synaptic efficacy at a single synapse occur at 
many different time scales. A great deal of recent research 
has elucidated the neurobiological mechanisms of asso- 
ciative learning in the form of long-term potentiation 
(LTP, Bliss & L0mo, 1973; Lynch, McCaugh, & Weinber- 
ger, 1984; Cotman & Monaghan, 1988), also known as 
long-term enhancement (LTE, McNaughton, 1982; Mc- 
Naughton & Morris, 1987). LTE differs mechanistically 
from non-associative forms of short-term potentiation 
(McNaughton, 1983) and decays with a range of time- 
constants (Barnes & McNaughton, 1980). The rapidly de- 
caying components of LTE could naturally implement the 
type of learning carried out by the short-term weights in 
our network. 

Thus, there is some independent motivation for ex- 
tending the computational formalism to include short- 
term correlational weights as a means of introducing 
temporal interactions between successive stimuli. How- 

ever, it should be kept in mind that in the current context 
we are extending the formalism in direct response to 
the observation of perseverations in optic aphasia, and 
it is in this sense rather ad hoc. For this reason, the 
simple occurrence of perseverations in the network 
should be viewed as less interesting than the interactions 
of these perseverative effects with other aspects of the 
network’s behavior, which are not inherent in the exten- 
sion of the formalism. 

A SIMULATION OF IMPAIRED OBJECT 
NAMING 

Following the dyslexia simulation, we develop a network 
for mapping visual representations of objects onto se- 
mantic representations, and compare its behavior under 
damage with that of optic aphasics. We begin by describ- 
ing the details of the task the network is to perform. We 
then describe the network architecture and the proce- 
dure by which it is trained. Following this, we compare 
the behavior of the network under damage with the 
behavior of optic aphasics in visual object naming tasks. 

The Task 

Forty objects were chosen from four categories of indoor 
objects: kitchen objects, office objects, furniture, and 
tools (see Table 3). We first summarize their visual (in- 
put) representations, and then their semantic (output) 
representations. The full details of these representations 
are presented in Appendix B. 

The input representation for objects was designed to 
coarsely approximate the kind of visual information that 
would be available for the purposes of object recogni- 
tion. The representation of each object loosely corre- 
sponds to a structural description (Marr & Nishihara, 
1978; Palmer, 1977), augmented with information about 
color, texture, absolute size, and more general visual 
characteristics of the object. Table 4 lists the type of 
information represented by each of the 44 visual features. 

Table 3. The Objects Used in the Simulations 

Objects in Each Categoy 

Kitchen O ? c e  
Objects Objects Furniture Tools 

CUP 
spoon 
Pan 
fork 
knife 
bowl 
can 
plate 
dkh 
glass 

Pen 
$file 
Paper 
book 
dkk 
tape 
stamp 
board 
glue 
ink 

chair 
table 
bed 
sofa 
stool 
rug 
radio 
tele 
divan 
desk 

saw 
nail 
plane 
ruler 
screw 
awl 
axe 
bolt 
nut 
vice 
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Table 4. The Type of Information Represented by Each 
Visual Feature 

Types of Visual Features 

Features Description 

1-5 Main component Shape 

6-10 Second component Shape 
11-12 Relative position 
13-15 Relative size 

16-20 Third component Shape 
21-22 Relative position 
23-25 Relative size 

26-34 General characteristics 
35-37 Color 
38--39 Texture 
40-44 Absolute size 

The possible values for each of these types of information 
are encoded as different patterns of activity over the 
designated feature groups (see Appendix B). 

Much as in the dyslexia simulation, the semantics of 
each of the 40 objects is represented in terms of a set of 
semantic features (see Appendix B). Twenty-eight of the 
86 features represent the abstract visual semantics of the 
object. The first 14 of these are identical to the general 
visual characteristics, color, and texture encoding used 
in the visual (input) representations. The next three are 
a condensed version of the absolute size encoding, and 
the remaining 11 summarize the shape of the object. 
Following this, there are features for consistency ( a ) ,  
material of which the the object is made (8),  where the 
object is found (lo), its general function (lo),  specific 
function (22), and the general actions associated with it 
(7). We assume that information about more specific 
actions associated with an object would be given a non- 
semantic, possibly motoric, representation, in the same 
way that the semantic representation of an object con- 
tains only very general visual information. 

The Network 

The architecture of the network we will use to map visual 
representations onto semantic ones is derived from the 
dyslexia network, and is shown in Figure 4.3 It has a 
direct pathway from 44 “visual” input units through 40 
intermediate units to 86 semantic output units, and a 
clean-up pathway attached to semantics with 40 addi- 
tional units. Only a randomly selected 25% of the pos- 
sible connections between two layers are present. Unlike 
the dyslexia network, the current network has no direct 
connections among semantic units-all interactions 
among these units must take place via the clean-up units. 
The network has a total of 4492 connections. In addition 
to the standard long-term learning weight, each connec- 

S J C  

40 clean-up units 86 sernanlic units 
\ 

40 intermediate units 

44 visual units 

Figure 4.  The architecture of the optic aphasia network. Notice that 
the set of connections from the Visual (input) units to the intermedi- 
ate units is labeled V+I rather than -1. 

tion has a short-term correlational weight that operates 
as described previously. 

The Training Procedure 

The network was trained using backpropagation through 
time (see Appendix A) to activate each of the appropriate 
semantic units to within 0.2 of its correct value over the 
last three of eight iterations when presented with the 
visual representation of each object. At the end of pro- 
cessing each object, the short-term weights were modi- 
fied according to Eq. (1). In this way each object was 
presented in the context of the outcome of the presen- 
tation of the previous object. Objects were chosen ran- 
domly without replacement for presentation during a 
sweep to ensure that they were all presented equally 
often and in an unbiased order. To solve the task, the 
network must derive a set of long-term weights that 
enables it to recognize each object when preceded by 
each other object. To the extent that the unit correlations 
for one object are unrelated to those for the next, the 
short-term weights effectively act like noise in the 
weights, forcing the network to develop stronger seman- 
tic attractors with the long-term learning weights. 

Although the operation of the network is deterministic, 
the random order of object presentations causes perfor- 
mance to vary somewhat over successive training sweeps. 
However, the network reliably satisfied the training cri- 
teria after about 9000 sweeps through all 40 objects. N o  
attempt was made to minimize the training time. 

The Lesioning Procedure 

After the network had learned to recognized each object, 
we subjected each set of connections to lesions of a wide 
range of severity: 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 
and 0.7. The severity of lesion specifies the proportion 
of existing connections that are selected at random and 
removed from a given set. We followed the dyslexia 
simulation in applying two criteria to the generated se- 
mantic activity to decide whether the output of the dam- 
aged network constituted a response or an omission. 
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First, a proximity criterion ensured that the corrupted 
semantics was sufficiently close to the correct semantics 
of some object. Specifically, the cosine of the angle (i.e., 
normalized dot product) between the semantic vector 
produced by the network and the actual semantic vector 
of some object (in the 86-dimensional space of semantic 
features) had to be greater than 0.8. Second, a gap cri- 
terion ensured that no other object matched nearly as 
well. Specifically, the proximity to the generated seman- 
tics of the best matching object had to be at least 0.05 
larger than the proximity to any other object. If either of 
these criteria failed, the output was interpreted as an 
omission; otherwise the best matching object was taken 
as the response, which either could be the correct object 
or an error. We have not implemented an output system 
that would map the semantics of objects onto their pro- 
nunciations. Plaut and Shallice (1991a) discuss the diffi- 
culties in developing such a system, and demonstrate 
that criteria and output systems produce similar effects 
in the domain of word reading. In the current simula- 
tions we must resort to applying much more computa- 
tioiially demanding criteria directly to semantics. 
Specifically, the expected proximity of random vectors 
decreases with increasing dimensionality, so these cri- 
teria are somewhat more stringent in the current context 
(with 86 semantic features) than when applied to the 
semantics of words (with 68 features). While this will 
lower the overall rate of explicit responses (correct or  
error), it should not significantly bias the distributions 
of error types (see Hinton & Shallice, 1991). We will 
explicitly verify this later. 

We would like to measure the performance of the 
damaged network on each object as stimulus when pre- 
ceded by every other object. We will refer to the preced- 
ing object as the “prime.” One possible procedure for 
gathering data is to administer a particular lesion, and 
then measure performance on all of the objects after 
using each of them in turn as the prime (i.e., setting the 
short-term weights based on the unit correlations when 
the prime object is presented to the damaged network). 
However, this procedure has the drawback that the pat- 
tern of errors will be quite similar for each different 
prime-the tendency for a particular lesion to cause 
particular errors may dominate any perseverative effects. 
The alternative procedure that we adopt is to administer 
a different lesion for each prime object. This means that 
data is gathered over 800 instances of a particular type 
of lesion (40 primes X 20 lesions per prime) rather than 
just 20. In  this way, the effects due to a particular type of 
lesion are better sampled, while still enabling persever- 
ative effects to emerge. Although the first procedure is 
more analogous to the testing situation for an individual 
patient, the latter should produce results that better re- 
flect the extent to which lesions to the network in gen- 
eral produce the optic aphasic error pattern. 

For each lesion, we randomly selected and removed 
the appropriate proportion of connections, presented the 

prime with the short-term weights set to zero, and set 
the short-term weights on the basis of the resulting unit 
activities. We then presented each object in turn (with 
the short-term weights fixed). The network responded 
correctly if the generated semantics satisfied the prox- 
imity and gap criteria for the semantics of the presented 
object. It made an error if the criteria were met for some 
other object, and it produced an omission if the gener- 
ated semantics failed either of the criteria. 

RESULTS 
Correct Performance 

Figure 5 presents the correct performance of the network 
after lesions to each set of connections, as a function 
of lesion severity. Overall, lesions to the direct path- 
way (visual-to-intermediate, V+I, and intmediate- 
to-semantic, 1-S) are more debilitating than lesions 
to the clean-up pathway (semantic-to-cleanup, S+C, and 
cleanup-to-semantic, C-S). Compared with the correct 
rates for disconnection lesions of the dyslexia network 
(see Hinton & Shallice, 1991, p. 86), the optic aphasia 
network is much less sensitive to 1-S lesions and much 
more sensitive to S+C lesions. This contrast can be 
understood by recognizing that the network finds it quite 
difficult to correctly recognize objects when the short- 
term weights provide a bias toward previous objects. It 
relies heavily on the clean-up pathway to overcome this 
bias, and is therefore more sensitive to lesions to this 
pathway. 

loomQ\ 90 

‘O t 
li0 t 
40 ”i 

I Lesion Severity 

Figure 5. Overall correct performance of the optic aphasia network 
after lesions to each main set of connections, as a function of lesion 
severity. 
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Error Classification 

When the network is incorrect, it either fails to respond 
(omission) or  produces as a response an object other 
than the one presented (error). To classify explicit errors, 
we need a definition of when the stimulus and response 
are visually and/or semantically related. We could use 
category membership for semantic relatedness as Hinton 
and Shallice did, but there is no visual similarity measure 
for objects analogous to letter overlap. A more uniform 
approach is to use the proximity (i.e., normalized dot- 
product) of the representations of the stimulus and re- 
sponse as a direct measure of their visual and semantic 
similarity. We can then apply criteria to these proximity 
values to determine if two objects are sufficiently similar 
to be related for the purposes of error classification. 
Accordingly, two objects will be considered visually re- 
lated if the proximity of their visual representations ex- 
ceeds 0.6, and semantically related if their proximity of 
their semantic representations exceeds 0.55. The exact 
values of these criteria are somewhat arbitrary because 
we will evaluate the proportions of different error types 
produced by the network relative to their chance rates. 
We chose these values so that the chance rates of visual 
and semantic relatedness across all possible object pairs 
are about equal and near 10%. Specifically, these criteria 
yield the following chance rates of errors: visual v = 
0.0949, semantic s = 0.0885, mixed visual-and-semantic 
m = 0.0615, and other o = 0.7551. Notice that w = 
0.00840 is much less than m. If visual and semantic 
similarity were unrelated, these two values should be 
about equal, as they are for the Hinton and Shallice word 
set (Plaut & Shallice, 1991a; 1993). 

A more direct test of the relationship between visual 
and semantic relatedness is the correlation, over all pairs 
of objects, of visual and semantic proximity. In fact, there 
is a highly significant correlation between visual prox- 
imity and semantic proximity for objects [0.52 ignoring 
diagonal terms, t(1558) = 2 3 . 7 , ~  < 0.0011. In contrast, 
the correlation for the word set shows a slight negative 
trend [ -0.04, t(1558) = 1.56, p = 0.121. Thus, a major 
difference between our definition of object recognition 
as compared with word recognition is that there is sig- 
nificant structure in the mapping of visual input to se- 
mantics for objects but not for words. That is, unlike 
words, objects with similar appearances have similar 
meanings. This will prove important in explaining the 
rarity of visual errors in optic aphasic object naming 
compared with visual errors in deep dyslexic reading. 

Horizontal Errors 

We are concerned with two types of effects in the errors 
produced by the network under damage, roughly cor- 
responding to Lhermitte and Beauvois’ (1973) distinction 
between “horizontal” and “vertical” errors. Horizontal 
errors refer to the standard relation between the stimulus 

and response. For these we will use the definitions of 
visual and semantic relatedness described above, and 
classify errors as visual, semantic, mixed visual-and-se- 
mantic, and “other” in the same way as Hinton and Shal- 
lice (1991). We address vertical (perseverative) errors in 
the following section. 

Figure 6 presents the rates of each type of horizontal 
error after lesions resulting in correct performance be- 
tween 20 and 80%, as well as the distribution of types in 
pairs of different stimuli and responses chosen randomly 
from the set of objects. The total error rates are fairly 
low, ranging from 3.1% for V+I lesions to 0.1% for C-+S 
lesions. The very low rates of explicit errors after clean- 
up lesions indicate that relatively intact attractors are 
necessary to clean-up the corrupted semantics into those 
of a related object-with damaged attractors the network 
either names the object correctly (as was shown in Fig. 
5) or simply fails to respond. Considering the distribu- 
tion of error types, first notice that proportions of “other” 
erroreresponses unrelated to the stimulus--are very 
low relative to their chance proportion. Visual and se- 
mantic similarity have a strong influence on the behavior 
of the damaged network. The clearest effect of this is a 
strong bias toward mixed visual-and-semantic errors. A- 
though their chance rate is only about 6%, they constitute 
over 68% of the errors produced by the network. There 
is also a strong bias toward semantic errors as compared 
to visual errors. Overall, the ratio of semantic errors to 
visual errors is 5.7 times the chance ratio. This ratio 
increases as the location of damage moves closer to 
semantics. For V+I the ratio is 4.5 times the chance 
value, while lesions to the clean-up pathway ( W C  and 
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Figure 6. The distribution of error types for lesions to the optic 
aphasia network producing correct performance between 20 and 
SO%, as well as the distribution of types for error responses chosen 
randomly from the set of objects. 
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C-S) produce virtually no Visual errors. In fact, almost 
92% of the errors produced by the network are seman- 
tically related to the stimulus, compared with a chance 
value of 15%. 

Why, then, does the network show such a strong bias 
toward semantic and mixed visual-and-semantic errors 
relative to visual errors? Another way to phrase this ques- 
tion is, why is the bias toward semantic vs. visual simi- 
Larity in errors so much stronger in the optic aphasia 
network than in the dyslexia network? In the dyslexia 
simulations, the ratio of visual errors to semantic errors 
is roughly equal to that of their chance rates (see, e.g., 
Plaut & Shallice, 1991a, p. 82). It is unlikely that the 
difference relates directly to the presence of short-term 
weights in the optic aphasia network. A bias in errors 
toward the previous object would match the chance dis- 
tribution of error types, since all combinations of primes 
and stimuli were tested. Rather, it is more likely to relate 
to a difference in the nature of the tasks of object rec- 
ognition and word recognition. Earlier we argued that 
the relationship between visual and semantic represen- 
mions is more structured for objects than it is for words, 
both in general and in how we have defined the tasks. 
That is, two objects with similar visual forms are more 
likely to have similar meanings and functions than are 
words that share letters. In a sense this follows the dis- 
tinction made by Gibson (1979) that shapes have partic- 
ular “affordances”-they allow for certain types of 
manipulations and actions independent of specific 
knowledge of their identity (see also Riddoch & Hum- 
phreys, 1987). 

We explain word reading errors in deep dyslexia, and 
object naming errors in optic aphasia, in terms of the 
same computational principles: damage to an attractor 
network causes the initial pattern of activity generated 
by a stimulus to be “captured” by the attractor for a 
related stimulus (see Fig. 3). In mapping orthography to 
semantics, there is strong pressure to position and shape 
the attractors so as to separate the initial semantic activity 
for visually similar stimuli into their quite distinct, final 
semantics. In fact, for many words (e.g., BUG), visual 
similarity with words in other categories (e.g., MUG, BOG) 

is often much greater than with any of the words in the 
same category (e.g., DOG, PIG). Because visually similar 
words tend to produce similar initial patterns of semantic 
activity, the network must learn to position their attractor 
basins to pull apart these similar patterns into quite 
different final patterns. As a result, there are large areas 
within semantic space where the attractor basins for 
purely visually related words adjoin, providing ample 
opportunity for visual errors (see also the analysis in 
Appendix A of Hinton & Shallice, 1991). In contrast, as 
discussed. above, in object naming it is less common that 
visually similar objects need to be separated into com- 
pletely different semantics. In addition, even for visually 
similar, semantically distinct pairs of objects (e.g., fork 
and awl), there are typically other objects within each 

category that are just as visually similar (e.g., spoon and 
nail, respectively). When the initial semantics for fork is 
corrupted by damage, the additional bias of semantic 
similarity makes the mixed errorfork + “spoon” much 
more likely than the visual error fork + “awl”. Thus, 
potential visual errors are often preempted by semantic 
or mixed visual-and-semantic errors. 

In fact, the optic aphasia network is more likely to 
produce semantic errors relative to visual errors than 
are the deep dyslexia networks, even when the chance 
possibilities for visual and semantic errors are made 
approximately equal (compare, for instance, Fig. 6 with 
Fig. 5.6 of Plaut & Shallice, 1991a). This seems likely to 
be due to another difference between the networks. The 
optic aphasia network has to constantly overcome the 
disturbing influence of the perseverative effects of the 
preceding stimulus. This requires it to build more pow- 
erful attractors. Since stronger attractors produce more 
accurate semantic representations, putative errors are 
more likely to satisfy the gap criterion. Semantic errors 
are particularly sensitive to the gap criterion because 
they differ from semantically related alternatives (includ- 
ing the correct response) on only a few features. Thus, 
by helping to satisfy the gap criterion, stronger attractors 
tend to increase the rate of semantic errors relative to 
visual  error^.^ 

For these two reasons, then, the optic aphasia network 
is much more prone to produce semantic errors com- 
pared with visual errors than are the deep dyslexia net- 
works. This difference corresponds to that obtained 
between the two neurologically based error patterns that 
are being considered. 

Vertical Errors 

One of the more interesting aspects of the naming errors 
of optic aphasics is that they are biased by the responses 
given to previously presented objects. These persevera- 
tive errors, termed “vertical” by Lhermitte and Beauvois 
(1973), are most frequently identical to previous re- 
sponses, but can also be semantically related. Mixed vis- 
ual-and-semantic perseverative errors occur as well, but 
purely visual perseverations have not been documented. 

In the preceding section we analyzed error responses 
based only on the relationship between stimulus and 
response-so-called “horizontal” errors. Classifying ver- 
tical errors is more complicated as they involve the re- 
lationship of both the stimulus and response with 
previous objects. For simplicity we will confine ourselves 
to considering the effects of only the immediately pre- 
ceding object, which we call the “prime.” This simplifi- 
cation also applies to most of the errors produced by 
patients. We will also consider only semantic relatedness 
between the prime and the stimulus and/or response, as 
the rate of purely visual relatedness is so low. Finally, if 
the damaged network misnames the previous object, we 
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will consider the named object to be the “prime” for the 
purposes of comparison with the stimulus and response. 

Table 5 presents the possible relationships between 
stimulus, response, and prime, and their classification 
into error types. Each type is labeled in two parts. The 
first part (before the “+”) refers to the nature of the 
stimulus-response (horizontal) error: 

S Stimulus and response are semantically related (in- 
cludes semantic and mixed visual-and-semantic 
errors). 

Stimulus and response are not semantically related 
(includes visual and “other” errors). 

0 

The second part of the label refers to the nature of the 
(vertical) perseveration, depending on the relationship 
between the prime and the stimulus andlor response: 

P The response is identical to the prime (“persevera- 
tion”). 

P The stimulus is identical to the prime but the re- 
sponse is not. In this case the prime-response re- 
lationship is contraql to an item perseveration. 

C The response is semantically related (“coordinate”) 
but not identical to the prime. 

C The stimulus is semantically related to the prime but 
the response is not. Thus, the response goes 
against a semantic perseveration. 

- 

- 

U 

The easiest way to understand these types is in terms of 
the different influences that contribute to the error. An 
S + U  error [e.g. (“spoon”) desk -+ “chair”] is a standard 
semantic error with no perseverative influence, while an 
O+P error [ e g  (“spoon”) desk -+ “spoon”] is a repeated 
response unrelated to the stimulus. In an S+C error [eg. 
(“spoon”) fork 4 “knife”], both horizontal (stimulus- 
response) and vertical (prime-response) semantic simi- 
larity contribute to the error. In an error involving the 
perseverative relation F or C [eg. (“spoon”) spoon --+ 

The response and prime are unrelated. 

“desk’]], the stimulus is consistent with the perseverative 
effect but the response is not-thus the error is contrary 
to the perseverative influence. 

As mentioned in the Introduction (see Table 2 ) ,  of the 
types of errors of JF described by Lhermitte and Beauvois 
(1973), most are horizontal semantic errors (S+U) but 
both O+P, S+P, and S+C occurred reasonably often as 
well. 

Figure 7 shows the distribution of these perseverative 
error types produced by lesions to the optic aphasia 
network, averaged over all lesion locations and severities 
producing correct performance between 20 and 80%. 
The figure also shows the rates of each error type that 
would be expected if the preceding object had had no 
influence on errors. The predominance of horizontal 
semantic errors is clear in the figure. However, since our 
current concern is with perseverative influences, we will 
first consider the remaining (“0”) errors. These errors 
provide the clearest picture of perseverative influences 
because there is no confounding bias from semantic 
relatedness of the stimulus and response. 

Pure perseverations (O-t P), in which the previous re- 
sponse is repeated even though it bears no relation to 
either the current stimulus or response, make up 3.73% 
of the network’s errors. The overall proportion of error 
responses that are not semantically related to the stim- 
ulus is 8.26%. If there were no perseverative influence 
on errors, only 1 in 40 of these responses would be iden- 
tical to the prime, and so only 0.21% of all errors would 
be O+P by chance. Thus, the abserved rate of response 
perseverations is about 18 times the chance rate. Another 
indication of the strong perseverative influence is that it 
is extremely rare (0.02% of errors) for the prime itself 
to produce an unrelated response when presented as 
the stimulus (O+F), even though this type of error is 
just as likely by chance as O+P. Thus, the prime is 
exerting a strong bias on the nature of the response 
independent of any relationship with the stimulus. 

Table 5. The Possible Types of Errors Based on Semantic Relatedness between Stimulus, Response, and Prime 

Relationship Example 

TYPe Stimulus-Response Prime-Stimulus Prime-Response Prime Stimulus -+ Response 

S+P Semantic Identical “spoon” fork -+ ”spoon” 

S + P  Semantic Identical Semantic “spoon” spoon -+ “fork’ 

s+c Semantic Semantic “spoon” fork -+ “knife” 

s+u Semantic None “spoon” desk -+ “chair” 

“spoon” desk -+ “spoon” O+P None Identical 

O+P None Identical None “spoon” spoon -+ “desk  

o+c None Semantic “spoon” desk -+ “fork 

O+C None Semantic None “spoon” fork -+ “desk’ 

o + u  None None “spoon” desk -+ “nail” 
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Figure 7. Distribution of perseverative error types, averaged over all 
lesion locations and severities producing correct performance be- 
tween 20 and 80%. The black bars indicate the expected rate of each 
ppe if there were no  perseverative influence. 

The network also produces some semantic persever- 
ations (O+C), in which, rather than the prime itself, an 
object that is semantically related to prime is given 
as a response unrelated to the stimulus [e.g. (“spoon”) 
desk + “fork”; 2.75% of errors]. In contrast, the network 
is much less likely t o  produce an unrelated response 
when the stimulxs is semantically related to the prime 
[O+c, e.g. (“spoon”) fork -+ “desk’; 0.24% of errors]. 
Both these errors and completely unrelated errors 
(O+U) occur at rates far below chance. Thus, the prime 
biases the network toward responses that are semanti- 
cally related to it-this increases O + C  errors and de- 
creases O+c  and O+U errors. 

A similar pattern o f  results holds among errors in 
which the stimulus and response are semantically re- 
lated. Among these, by far the most common is the 
conventional horizontal semantic error with no persev- 
erative relationship (S+U; 51.6% of errors), although 
these fall well below their chance rate. Among the errors 
for which there is a perseverative influence, the most 
common are response perseverations [ S+P, e.g. 
(“spoon”) fork + “spoon”; 24.8% of errors], occurring 
about 10 times above the chance rate. Semantic persev- 
erations (.S+C) are somewhat less common (15.0%) and 
are only slightly above the chance rate. Thus, the prime 
induces a strong bias toward an identical response to the 
next object rather than simply one in the same category. 
Also notice that it is very rare (0.38%) for the prime to 

produce another object in the category rather than itself 
(S+P) when presented as the stimulus. Thus, even within 
a category, the prime biases responses toward itself com- 
pared with other objects in the category. This bias toward 
S+P errors is also seen in the error responses of JF. 

Effects of Type of Response to the Preceding 
Object 

For the purposes of categorizing perseverative errors, 
we have define the “prime” to be the response given to 
the preceding object (correct or an error), or the object 
whose semantics are nearest those generated by the net- 
work in the case where presentation of the preceding 
object resulted in an omission. While we have grouped 
these conditions together in the analysis presented 
above, it would seem likely that the influence that the 
prime has on the naming of subsequent objects would 
vary considerably with how well the network responded 
to the prime itself. To investigate this possibility, we 
separated errors based on how the damaged network 
responded to the prime. 

Figure 8 presents the same data on the distributions 
of perseverative error types, now separated by whether 
the network named the preceding object correctly, made 
an error, or failed to respond. Consider the balance of 
responses that are identical to the prime (P) vs. those 
that are unrelated (U), both for semantic errors (S) and 
other errors (0). This provides a rough measure of the 
“strength” of perseverative influences. First notice that 
the proportions of all errors that are response persev- 
erations (S+P and O+P) are much lower when the 
prime is an omission than when it is an explicit response. 
Conversely, when the prime produces no response as a 
stimulus, the proportion of errors showing no persev- 
erative influence (S+U and O+U) are much higher and 
close to their chance proportions (relative to S and 0 
responses, respectively). In fact, the proportion of all 
error responses that are identical to the prime is 50.3% 
for primes producing explicit response vs. only 3.1% for 
primes producing omissions. Thus, when an object gen- 
erates no response, it also has far less influence on the 
naming of subsequent objects than when it generates a 
correct or error response. This makes sense given that 
omissions occur when the semantics generated by the 
network do not match the nearest object very well. When 
the short-term weights are set on the basis of poorer 
semantics, they provide a weaker bias toward the prime 
than when set by more accurate semantics. For this rea- 
son, the combined data reported in Figure 7 significantly 
underestimate the perseverative influence from previous 
objects that evoke an explicit response. 

Even among explicit responses, there are some inter- 
esting differences between correctly vs. incorrectly 
named primes. When the preceding object is named 
correctly, the proportion of errors involving a response 
perseveration is about equal to that involving no persev- 
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Figure 8. Distributions of perseverative error types following prime 
presentations resulting in omissions, correct responses, and errors. 

erative relation. In contrast, when the preceding object 
is named incorrectly, the next object is much more likely 
to elicit the same response. The proportion of errors 
that are response perseverations is 48.1% for primes 
producing errors vs. 34.4% for primes named correctly. 
In essence, the attractor for the incorrect response has 
become abnormally strong as a result of damage, pro- 
ducing the error to the preceding object. When the short- 
term weights are set on the basis of this object’s seman- 
tics, there is even stronger pressure for other objects to 
succumb to the same attractor. 

The perseverative responses of optic aphasics can 
come from correctly named objects, incorrectly named 

objects, and have even been reported on objects gener- 
ating no response (Gil et al., 1985; Lhermitte & Beauvois, 
1973). The proportions of error types that follow each 
of these conditions has not been analyzed in detail, so it 
is difficult to compare the network’s behavior with that 
of patients in more than a qualitative manner. However, 
quite a common effect clinically is a chain of semantically 
related responses, which could be explained by the ex- 
istence of an abnormally deep attractor. 

Effects of Lesion Location 

The data from different lesion locations are averaged 
together in the results presented above. However, the 
distribution of perseverative error types differs signifi- 
cantly as a function of the location of damage in the 
network. Figure 9 presents the distributions of these 
error types separately for each lesion location. The pat- 
tern for V+I lesions is most similar to that for the entire 
network because the largest proportion of errors (73.2%) 
occur after these lesions. There is an interesting pro- 
gression in the error pattern as the lesion location moves 
closer to semantics. For V-I lesions, most semantic er- 
rors show no perseverative relationship, while other er- 
rors are about balanced between O+P and O+U.  For 
these lesions, the proportion of error responses that are 
identical to the prime is 27.7%. I+S lesions show a 
slightly higher proportion of perseverative responses 
(30.2%). Clean-up lesions produce virtually no non- 
semantic errors, and those that occur are either item or 
semantic perseverations with the prime. Overall, com- 
pared with lesion to the direct pathway, clean-up lesions 
produce a higher proportion of perseverations (33.3% 
after C+S lesions and 42.3% after S 4 C  lesions). Thus, 
the strength of the perseverative influence increases as 
lesions move closer to semantics. However, the propor- 
tion of semantic perseverations (S + C and O+ C) is some- 
what less affected by lesion location. 

Why should lesions near or  within semantics produce 
a stronger bias toward response perseverations than le- 
sions closer to the input? Clean-up lesions corrupt the 
semantic attractors for objects, resulting in far fewer 
overall naming errors than do lesions to the direct path- 
way (see Fig. 6). After clean-up lesions, the prime is 
named correctly on 71.8% of the  trial^.^ When this occurs, 
the short-term weights within the clean-up pathway are 
set in a way that magnifies the clean-up influences that 
generated the semantics of that particular object. This 
additional bias has more influence after clean-up lesions 
compared with direct-pathway lesions because the nor- 
mal clean-up influences are diminished after the former 
but not the latter. The bias toward the semantics of the 
preceding object can dominate the weakened clean-up 
for the correct semantics of the stimulus, causing the 
network to more frequently produce a response persev- 
eration. Even when the semantics generated by the net- 
work in response to the preceding object do not satisfy 
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the response criteria, they still evoke short-term weights 
that bias the network on the next trial toward the se- 
mantics of that object as compared with others. 

Effects of Severity of the Impairment 

All of the results we have presented thus far have been 
averaged across lesions producing overall correct per- 
formance between 20 and 80%. Our motivation for con- 
sidering only this range of performance is that quite mild 
or severe impairments often produce an atypical distri- 
bution of error types (see Plaut & Shallice, 1991a). Also, 
the levels of correct performance of most of the patients 
we are considering fall into this range. However, since 
patients vary significantly in their overall levels of per- 
formance, it is important to know how the behavior of 
the network varies over a range of severities of impair- 
ment as well. 

There are two general trends in the distribution of 
errors as performance deteriorates with increasing lesion 
severity. First, the proportion of error responses that are 
unrelated to the stimulus gradually increases. Only 2.7% 
of all errors are unrelated when correct performance is 

above 80%, while over 22.2% are unrelated when per- 
formance is below 20%. Second, as performance dete- 
riorates, the proportion of errors that are response 
perseverations gradually decreases. S + P and O+ P errors 
account for 47.3% of all errors when correct perfor- 
mance is above 80%, but only 20.9% when performance 
is below 20%. Thus, as the severity of the impairment 
increases, both the stimulus and the preceding object 
have diminished influence on the responses generated 
by the network. Conversely, networks with only slight 
impairments are particularly prone to producing re- 
sponses that are related to 60th the stimulus and prime- 
-58.5% of all errors are either S+P or S+C when cor- 
rect performance is above 80%. 

Effects of Response Criteria 

To verify that our results do not depend on the particular 
values of the response criteria used, we reevaluated the 
behavior of the network under the identical set of le- 
sions, using less stringent criteria for explicit responses. 
Specifically, we decreased the proximity criterion from 
0.8 to 0.75, and decreased the gap criterion from 0.05 to 
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0.025. These relaxed criteria increase the overall pro- 
portion of word presentations producing explicit re- 
sponses from 51.2 to 61.1%. Although both the rates of 
correct and error responses increase, errors account for 
a higher proportion of explicit responses when the cri- 
teria are more lenient (6.8 vs. 3.7%). 

If we consider lesions producing correct performance 
between 20 and 80%, the network produces a much 
higher overall error rate when using less stringent cri- 
teria (4.0 vs. 1.3%). However, the distribution of error 
types is quite similar. The network continues to show a 
strong bias towards mixed visual-and-semantic errors 
(59.4% of all errors) and many more semantic than visual 
errors, with the ratio being four times the chance ratio. 
These numbers are somewhat lower than those for the 
original criteria (68.2% and 5.1) because the less strin- 
gent criteria produce a higher proportion of “other” 
errors (8.9 vs. 3.6% of all errors, respectively). 

The basic perseverative effects also remain when using 
relaxed response criteria. The rates of S+P, S+C, O+P, 
and O+C errors are all still well above the rates expected 
if the prime had no effect on the response, while S+P, 
O+c, and O+F errors occur at rates well below their 
expected chance rates. Overall, 19.5% of all errors are 
item perseverations when using the less stringent crite- 
ria, compared with 28.5% with the original criteria. In 
fact, completely unrelated errors are more common with 
less stringent criteria (6.6 vs. 2.7% of all errors). Thus, 
while less stringent criteria allow poorer semantic activity 
patterns to qualify as responses, thereby reducing the 
overall influence of the stimulus and prime on the re- 
sponse in the averaged data, the same pattern of hori- 
zontal and vertical effects in errors is present. 

DISCUSSION 

The current simulation demonstrates that the computa- 
tional approach used in our earlier work on deep dys- 
lexia can be extended to the analysis of the error pattern 
of optic aphasia. In particular, given our earlier work, 
one could expect that the errors that occur when the 
optic aphasia network is lesioned would reflect the sim- 
ilarity metrics of the input and the output representa- 
tions, both separately (i.e., in semantic errors and visual 
errors) and together (in mixed visual-and-semantic er- 
rors). And in fact, semantic errors and visual errors occur 
at well above chance levels, and mixed visual-and-se- 
mantic errors occur even more frequently. 

In both the dyslexia and optic aphasia simulations, a 
small set of general connectionist principles-relating to 
distributed representations, gradient descent learning, 
and attractors-is sufficient to account for complex em- 
pirical phenomena concerning impaired visual compre- 
hension. This strongly suggests that these principles shed 
light on the nature of the computations underlying the 
semantic processing of visual information. 

The major extension in the present simulations is the 

incorporation of short-term correlational weights. In ad- 
dition to having other interesting computational and em- 
pirical consequences, these weights bias the network 
toward reproducing patterns of activity that have oc- 
curred on recently preceding trials. As a result, the effects 
of lesions to the network have an additional dimension. 
Responses that have occurred on the preceding trial now 
occur as errors at well above chance rates, especially 
when the stimulus is semantically related to the preced- 
ing response. In addition, less frequently but still above 
chance, a coordinate of the preceding item occurs as an 
error response. If one considers the optic aphasic error 
pattern described in the Introduction, both of these types 
of error have been extensively documented. They cor- 
respond to the two types of “vertical” error discussed by 
Lhermitte and Beauvois (1973). Frequent semantic errors 
are also a standard part of the optic aphasic error pattern, 
and a high frequency of mixed errors have been noted 
by Riddoch and Humphreys (1987) in their patient JB. 
They also noted that the patient had particular difficulty 
in discrimination between objects that were both visually 
and semantically similar, which they also interpret in 
terms of cascaded processes. 

Three main empirical issues remain with respect to 
the syndrome: whether the simulation reproduces all 
aspects of the error pattern, how the two exceptional 
patients referred to in the Introduction can be explained, 
and what account can be given of other aspects of the 
syndrome. However, before turning to these questions, 
it is important to clarify how the network architecture 
and lesioning procedure relate to the underlying neu- 
roanatomy of object recognition and the typical neuro- 
pathology in optic aphasia. 

Relation to Neuroanatomy and 
Neuropathology 

The main emphasis of our work is to elucidate the gen- 
eral computational principles that underlie the ability of 
damaged connectionist networks to reproduce neuro- 
psychological phenomena. However, for the behavior of 
a damaged network to be relevant to the behavior of 
neurological patients, there must be some relationship 
between the structures that are damaged in the network 
and the brain structures that are damaged in the patients. 
The general question of the relation between various 
types of connectionist networks on the one hand, and 
various aspects of neurobiology on the other, is far be- 
yond the scope of this paper (for discussion, see e g ,  
Allport, 1985; Churchland & Sejnowski, 1988; Crick, 1989; 
Crick & Asanuma, 1986; Nadel, Cooper, Culicover, & 
Harnish, 1989; Smolensky, 1986, 1988). Nonetheless, we 
can make some tentative suggestions as to how groups 
of units in the current network might relate to neuro- 
anatomy. 

The visual input units in our network represent high- 
level visual information in the form of structural descrip- 
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tions of objects. Substantial neurophysiological and neu- 
roanatomical evidence, from both human and animal 
work, suggests that the highest-level presemantic visual 
representations are found in inferior temporal cortex 
(see Plaut & Fdrah, 1970, for a review). Based on an 
extensive review of reported cases of associative agnosia, 
Farah (1990, 1991) proposes bilateral involvement in 
humans, with each hemisphere specializing in different 
types of information. However, Warrington and Taylor 
(1973, 1978) consider right hemisphere systems to be 
particularly important, at least for complex stimuli. 

Not  surprisingly, localizing semantics is more prob- 
lematic. Of course, one possibility (see eg., Allport, 1985) 
is that semantics cannot be localized to any particular 
brain location, but is distributed across a number of 
cortical areas that are specialized for different modalities 
to different extents. In fact, most generalized dementias, 
such as Alzheimer’s disease, involve diffuse cortical dam- 
age (for an overview, see Heilman & Valenstein, 1785). 
However there is increasing evidence that left temporal 
structures are particularly important for semantic pro- 
cessing. A series of patients with unilateral left hemi- 
sphere lesions were given a set of verbal tests by 
Coughlan and Warrington (1978). The three tests that 
had low semantic loading were performed roughly 
equally well by patients whose lesions involved the tem- 
poral lobe and by those whose lesions spared the tem- 
poral lobe. However the four tests that had a strong 
semantic component were performed significantly worse 
by the temporal group. More recently, there have been 
a series of  studies of individual progressive aphasic pa- 
tients using CT, MRI, and PET. Where the language prob- 
lem was well restricted to semantic processing, focal 
atrophy of the left temporal lobe has been the standard 
finding (e.g., Poeck & Luzzatti, 1988, cases 2 and 3; Tyr- 
rell, Warrington, Frackowiak, & Rossor, 1770, cases 2 and 
5; Hodges, Patterson, Oxbury, & Funnell, 1772). 

The one finding which appears discrepant with a key 
role for the left temporal lobe in semantic processing is 
the suggestion from work using PET imaging that se- 
mantic processing involves the left dorsolateral prefron- 
tal cortex (Petersen, Fox, Mintun, & Raichle, 1988). 
However, the task employed required subjects to gen- 
erate a use for a noun ( e g ,  CAKE + “eat”). Frith, Friston, 
Liddle, and Frackowaik (1991) found that generation 
tasks that lack a semantic component also involve the 
same part of the frontal lobe. They argue that it is this 
component of the task used by Petersen and colleagues, 
and not the semantic aspect, that leads to left dorsolateral 
frontal activation. This certainly fits with the classical 
neuropsychological view of word fluency tasks (see Mil- 
ner, 1764). 

One of. the main strengths of connectionist neuro- 
psychology is that brain lesions have a natural, fairly 
atheoretical interpretation in terms of removal of units 
and/or connections (but see Small, 1991, for alternative 
interpretations). Thus, to the extent that we can associate 

groups of units in the model with brain areas, we would 
interpret lesions to the model as corresponding to partial 
or complete lesions of the corresponding brain struc- 
tures. On this basis, our simulation of the optic aphasic 
error pattern after lesions that impair semantic process- 
ing of visual information fits well with the neurological 
evidence that most known optic aphasic patients have 
unilateral left posterior damage, and that this region is 
particularly important for semantic processing. 

With this relationship between network structure and 
brain structure in mind, we return to considering the 
extent to which the simulation reproduces all aspects of 
the optic aphasia error pattern. To this end, it is useful 
to compare optic aphasia and deep dyslexia, and their 
simulations, with respect to the relationships between 
their respective input and output representations. 

A Comparison of Optic Aphasia and Deep 
Dyslexia 

The two main differences in the pattern of performance 
of deep dyslexics and optic aphasics that are relevant 
relate to the relative frequency of purely visual errors 
and perseverations. Errors that are visually but not se- 
mantically related can constitute a fairly high proportion 
of all errors in some deep dyslexics (e.g., 51% for PS, 
Shallice & Coughlan, 1980) and yet are quite rare in 
optic aphasics (Riddoch & Humphreys, 1987; Gil et al., 
1985; Lhermitte & Beauvois, 1973). One possible contri- 
bution to this difference is that the definition of visual 
similarity may be more stringent for objects than for 
words. However, with presumab1,y the same criteria for 
visual similarity, some other visual agnosics make a high 
proportion of visual errors in naming objects (e.g., 46% 
for FZ; Levine, 1978; also see Larrabee, Levin, Huff, Kay, 
& Guinto, 1985). Thus, the rarity of visual errors by optic 
aphasics cannot be completely explained by a criterion 
difference. Our explanation is that the relative difference 
in visual errors in reading vs. object naming is due to 
the different amount of structure in the two tasks and 
the different overall strength of the attractors. As dem- 
onstrated in the simulations, the greater similarity be- 
tween the visual and semantic representations of objects 
diminishes the influence of purely visual similarity on 
the layout of attractor basins within semantics, as re- 
flected in the pattern of errors produced under damage. 
The stronger attractors at the semantic level also lead to 
a greater increase in semantic errors. 

Is it legitimate to assume there is greater structure in 
the relationships between the visual and semantic rep- 
resentations of objects compared with words? In our 
dyslexia simulations we have assumed that the mapping 
from orthography to semantics is completely unstruc- 
tured, which is only approximately true. However, many 
aspects of the visual representation of an object are se- 
mantically relevant as well. Strong similarity of visual 
form is a characteristic of many semantic categories, par- 
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ticularly biological ones. Even members of functionally 
defined categories often share visual characteristics be- 
cause similar shapes are appropriate for similar actions 
(e.g., elongated shapes for pounding, horizontal shapes 
for sitting/Iying, Gibson, 1979). Moreover, size is clearly 
semantically relevant as are many of the general Visual 
characteristics we used. Thus, the assumption that object 
naming is more structured than word naming seems 
justified (also see Bobick, 1987; Richards, 1988, for dis- 
cussion). 

The second main difference between reading in deep 
dyslexia and object naming in optic aphasia relates to 
perseveration. Although perseveration is common after 
many types of language-related impairments (Albert & 
Sandson, 1986), it is not particularly prevalent in the 
reading errors of deep dyslexics. In contrast, a relatively 
high proportion of the naming errors of optic aphasics 
are related to previously presented objects (e.g., 28% for 
JF, Lhermitte & Beauvois, 1973). We introduced short- 
term correlational weights to provide a means by which 
object naming could be influenced by the responses 
given to previous objects. While some amount of inde- 
pendent justification can be given for such weights, we 
were motivated to include them in the current simula- 
tions directly by the observation of perseverative effects 
in patients, and so they must be viewed as somewhat ad 
hoc. However, the fact that they lead to interesting inter- 
actions with other aspects of the operation of the net- 
work, such as semantic influences in errors, suggests that 
their introduction contributes in a significant way to un- 
derstanding the nature of perseverative influences in 
optic aphasia. The simulation demonstrates that these 
two differences can account for the relative rarity of 
purely visual errors in optic aphasia. Thus, the whole 
error pattern can be explained on the present approach. 

However, a question remains: if there is independent 
motivation for including short-term weights in mapping 
between visual and semantic representations in object 
naming, why did we not include them in networks for 
mapping orthography t o  semantics in reading? The sim- 
ple answer is that the behavior of the patients with im- 
pairments in this mapping is better explained without 
them. However, this answer is unsatisfying without an 
independent explanation for why a temporary bias to- 
ward previous patterns of activity is computationally ap- 
propriate in object recognition but not reading. One 
possible explanation is that, unlike in object recognition, 
in reading for meaning there is great pressure to rec- 
ognize successive words as quickly as possible. As long 
as the meaning of each individual word is unrelated to 
the next, any bias toward the semantics of previous words 
would induce a kind of “sluggishness” that would impede 
the .network in deriving the correct semantics of the 
current word. More generally, short-term weights are not 
appropriate in a network for a task in which the speed 
of separate successive interpretations is critical. However, 
the infinite generative capacity o f  language has no equiv- 

alence in object identification. Successively recognized 
objects-those found together-will tend more to be 
related than successive words, so a temporary bias in 
object recognition would be beneficial. In addition, the 
use of short-term interactions for feature binding and 
segmentation is more critical for natural objects than for 
words. Finally, the pace at which dyslexics are tested is 
far slower than the normal rate of word recognition, 
while object recognition is tested at far closer to its 
“natural” rate. 

Individual Cases 

As mentioned in the Introduction, there are at least two 
patients who, in terms of their overall pattern of perfor- 
mance, would be classified as optic aphasics or associa- 
tive agnosics, and yet whose performance presents 
problems for the current account. These are the optic 
aphasic patient studied by Coslett and Saffran (1989) and 
the associative agnosic patient, FRA, studied by McCarthy 
and Warrington (1986). 

Coslett and Saffran’s patient was virtually entirely un- 
able to name objects, and most of his errors (39/49) bore 
no semantic or visual relation to the stimulus (e.g., scis- 
sors -+ “clocks”; volcano + “pillar”). Seven responses 
were semantic errors, two were perseverations, and one 
was a visual error. Thus, on the model, he would clearly 
need to have a severe lesion. Yet on a number of object 
comprehension tests-categorization tasks, functional 
similarity judgments, and semantic association judg- 
ments-he performed well. 

However, if one examines the patient’s performance 
in more detail, the contrast between spared nonverbal 
performance and abolished naming performance be- 
comes less striking. First, it should be noted that the 
patient was far from perfect (50% correct) at gesturing 
appropriately to objects, and the apparent superiority 
over naming does not necessarily conflict with the 
model, as we will see in a moment. Second, as previously 
mentioned, in our simulation the proportion of error 
responses unrelated to the stimulus increases with lesion 
severity (see also Hinton & Shallice, 1989; Plaut & Shal- 
lice, 1991a). For example, V-+1(0.5) lesions, which re- 
duce correct performance to 6.5%, produce over three 
times more errors that are completely unrelated to the 
stimulus and prime than do lesions producing correct 
performance between 20 and Of the remaining 
errors, 89% are semantically related to the stimulus and 
4.5% are pure perseverations (O+P). Yet even when an 
object is not named correctly, dn average the generated 
semantics is closer to the correct semantics than to those 
of a randomly chosen unrelated object 89% of the time. 
Thus, the residual semantic activity in the damaged net- 
work could support quite reasonable performance on 
nonverbal tests of comprehension even when overt nam- 
ing is virtually abolished, similar to Coslett and Saffran’s 
patient. 
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The second patient, FRA of McCarthy and Warrington 
(1986), presents a different problem. Not  only was FRA 
unable to name objects reliably, he also had some diffi- 
culty with tasks requiring nonverbal accessing of seman- 
tic representations. For example, he made many errors 
at matching two examples of the same object that were 
very visually different (e.g., two types of razor). Yet tasks 
that stressed the structural description level were per- 
formed well. Thus, his deficit would appear to be within 
the domain of the model. Yet his explicit errors in one 
experiment are described as “semantic approximations” 
with “no evidence of perseverative responding.” 

Clearly since FRA was 50% correct at naming pictures, 
his deficit is not as severe as that of Coslett and Saffran’s 
patient. It is puzzling that his performance on nonverbal 
semantic judgment tasks should be the worse, particu- 
larly on category judgment tasks that both patients car- 
ried out (although in different forms). Moreover, FRA’s 
pattern of errors was different from that typical of the 
syndrome. He made either omissions or superordinate 
semantic errors. One possibility is that FRA’s lesion lay 
in the semantic system itself, as McCarthy and Warrington 
(1986) argue. It is not possible to assess the effect of 
such a location of lesion properly on the present model 
because intact semantic units are required for the cal- 
culation of the proximity and gap measures. However, 
the effect would presumably be similar to S-+C lesions 
(see Plaut 8 Shallice, 1993). As these lesions give low 
absolute rates of explicit errors, and almost 98% of these 
have a semantic component, the absolute rate of non- 
semantic errors would be swamped by semantically re- 
lated ones. In addition, accessing an incomplete semantic 
representation would presumably lead to many super- 
ordinate semantic errors. 

However, as FRA performed normally on naming from 
auditory description, such an account would seem to 
entail acceptance of some amount of specialization 
within semantics (see Beauvois, 1982; Shallice, 1987, 
1992; Warrington & Shallice, 1984; but also Caramazza et 
al., 1990; Riddoch et al., 1988, for criticisms). In address- 
ing these wider issues it is useful to consider other 
aspects of the optic aphasia syndrome. 

The Overall Pattern of Performance 

A major issue remains to be addressed, regarding the 
relationship between the current simulation and thepre- 
served abilities of optic aphasics. The impaired visual 
object naming of optic aphasics is perplexing because 
their visual recognition of objects, as indicated by ges- 
turing or categorization tasks, as well as their naming of 
objects presented in other modalities, appears relatively 
intact. 

The current simulation reproduces the error pattern 
of optic aphasics in visual object naming by introducing 
an impairment in deriving semantics from visual input. 
In this sense it follows Riddoch and Humphreys’ (1987) 

claim that optic aphasia is more appropriately considered 
a “semantic access agnosia.” However, the current re- 
search simulates neither intact visual recognition nor 
intact nonvisual naming in the context of impaired visual 
naming. In what sense then is it a simulation of optic 
aphasia? The honest answer is that it is not one-it is 
only a simulation of the error pattern of optic aphasics. 
However, such a simulation is interesting only as an 
explanation of patient behavior if it can plausibly be 
extended to incorporate the remaining characteristics of 
the syndrome. 

In attempting to reconcile the current simulations with 
the preserved abilities of optic aphasics, we must reem- 
phasize that the visual recognition capabilities of optic 
aphasics may not be as intact as generally thought. The 
claims of intact recognition in optic aphasia have been 
based almost entirely on their performance in tasks in- 
volving either gesturing or  semantic categorization. Re- 
garding categorization, in our discussion of Coslett and 
Saffran’s (1989) patient we provided evidence that non- 
verbal tests of comprehension could be performed quite 
accurately by the damaged network even when explicit 
naming is severely impaired (see also Hinton & Shallice, 
1991). We approximated these tests by applying a less 
siringent “best-match” criterion to semantics, so our ex- 
planation assumes that the categorization tasks at which 
optic aphasics succeed require less precise semantics 
than naming. Riddoch and Humphreys provide some 
evidence for this by showing that their patient JB was 
significantly impaired at a categorization task that re- 
quired distinctions within a category (as naming must). 

Turning to gesturing tasks, in fact adequate gesturing 
to misnamed objects has been demonstrated in only 
three cases (Gil et al., 1985; Lhermitte & Beauvois, 1973; 
Riddoch & Humphreys, 1 9 8 7 t i n  two others (Coslett & 
Saffran, 1989; Larrabee et al., 1985) gestures incorrectly 
corresponded to the named object, and in an additional 
two cases (Assal & Regli, 1980; PeAa-Casanova & Roig- 
Rovira, 1985), gesturing and naming visual stimuli were 
equally impaired. To explain relatively preserved gestur- 
ing, Riddoch and Hurnphreys (1987) point out that ges- 
turing is often judged less stringently than naming, and 
typically requires less precise semantics. Their patient JE3 
was 75% correct at gesturing but only 45.5% correct at 
naming in a task in which objects were selected to have 
filly discriminable gestures. Thus, gesturing shows some 
impairment, but is still better than naming. 

However, the same argument is unlikely to account 
for the relatively preserved gesturing of some optic 
aphasics. Lhermitte and Beauvois’ (1973) patient JF never 
made an incorrect gesture to a set of 100 pictures of 
objects of which 31 were misnamed. If gesturing were 
based entirely on the same impaired semantics that un- 
derlies poor naming, occasional gesturing errors would 
be predicted. Riddoch and Humphreys (1987) propose 
that correct gesturing may often be based directly on the 
(nonsemantic) structural description derived by vision. 
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However, as Farah (1990) points out, often quite different 
gestures are appropriate for visually similar objects (e.g., 
a sewing needfe and a toothpick), making it unlikely that 
visual representations alone can support gesturing. 

A possible resolution is to suggest that gesturing in 
optic aphasics may be based on a combination of intact 
visual structural descriptions and residual semantics. The 
residual semantics could narrow the range of gestures 
that are appropriate for the shape of the object to those 
that are consistent with the general semantics of the 
object, preventing inappropriate gestures. This would be 
analogous to the claim that residual operation of the 
phonological route in phonological alexics "edits out'' 
any potential semantic errors that might arise from the 
impaired operation of the semantic route (Newcombe & 
Marshall, 1980). However, there is yet another objection 
that can be raised to this proposal (see Shallice, 1988b). 
If gesturing is based on the same semantic representation 
that supports naming, then there are semantic and per- 
severative errors that would support a different mime 
from the one produced. On these trials, could the patient 
really rely on the semantic representation to select ap- 
propriately between different gestures that are supported 
by the structural descriptions? 

Perhaps gesturing in optic aphasia can be based on 
the intact generation of functional portions of an object's 
semantics (see Farah & McClelland, 1991; Sacchett & 
Humphreys, 1992; Warrington & Shallice, 1984) even 
though the generation of other portions of semantics 
that normally support naming is impaired. Again, this 
would involve accepting some amount of specialization 
within semantics. A simulation based on this proposal 
would involve naming and gesturing to visual and non- 
visual stimuli. It would constitute a complete simulation 
of optic aphasia consistent with the current account of 
the error pattern in object naming. However, it remains 
to be developed. 

APPENDIX A: BACKPROPAGATION 
THROUGH TIME 

This appendix gives the mathematical details of the 
"backpropagation through time" learning procedure (Ru- 
melhart et al., 1986; Williams & Peng, 1990). 

The Units 

Let xj') be the total input o f  u n i t j  at time t, and let jJt) 
be its output. Then if wg is the weight on the connection 
from unit i to unitj ,  then 

( 3 )  

( 4 )  

The Forward Pass 

The network runs for a fixed number of iterations t,,,,. 
The input is presented to the network by setting y!" for 
each input unit i and every t as specified by the input. 
y;') of  the remaining units are initialized to some con- 
stant value (0.2 in our simulations). Then for t = 1 to 
t,,,, unit inputs and outputs are calcubated according to 
Eqs. ( 3 )  and (4) ,  respectively. 

The Error Function 

In addition to the states of the input units, the environ- 
ment specifies the desired states 4) of each output unit 
j for some times t (typically the last three iterations in 
our simulations). The error E'" for time 1, called the 
cros-entropy (Hinton, 1989), is defined over output units 
j to be 

i 

where the total error E = XJ?), 

The Backward Pass 

The bachward pass calculates the derivatives of the error 
with respect to the states and weights in the network. 
The error derivative of a unit's State has two components: 
the derivative of the "external" error function (which is 
0 for nonoutput units and for iterations without desired 
states) and the derivative of the error caused by the unit's 
influence on other units. The error derivatives for 
weights have two corresponding terms. Specifically, for 
t = t,, to 1, the derivatives of the error at time t with 
respect to the states and weights of  each unit are calcu- 
lated according to the following equations: 

Weight Updating 

The procedure defined by Eq. (6) is applied to each 
example in turn, accumulating error derivatives for the 
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weights. At this point, each weight in the network is 
changed according to: 

where E determines the overall learning rate (0.001 in 
our simulations), 01 is a momentum term that causes 
weight changes to be similar to previous weight changes 
(0.95 in our simulations), and n is the number of 
“sweeps” through the examples so far. 

Training Criterion 

Because the sigmoid unit function asymptotes at 0 and 
1, units cannot actually achieve these values in principle. 
Accordingly, for tasks with binary outputs (as are ours), 
training is halted when, for every example, the difference 
between the actual and desired state of each output unit 
is smaller than some tolerance (0.1 in our simulations). 

APPENDIX B: REPRESENTATIONS 

This appendix provides details on the input and output 
representations used in the simulations described in this 
paper. 

Visual Representations of Objects 

Visual input for objects is represented over 44 visual 
features, as summarized in Table 4. The first 25 features 
are devoted to representing the shape of the object in 
terms of up to three “components,” one of which is 
designated as the main component. These might be 
thought of as loosely corresponding to Biederman’s 
(1987) “geons.” The shape of each component is en- 
coded over five units, as shown in Table 6. The position 
and size of the second and third components relative to 
the main component are described in terms of two and 
three additional units, respectively (see Table 7). The 
remaining 19 of the 44 features describe more general 
visual characteristics of the object, as well as color, tex- 
ture, and absolute size information (see Table 8). 

Table 9 describes the visual representations of each of 
the 40 objects in terms of the codes listed in the tables 
for values of each type of information. Figure 10 shows 
the actual assignment of each of the 44 visual features to 
each object. 

Semantic Representations of Objects 

The semantics of each of the 40 objects is represented 
in terms of a set of semantic features, listed in Table 10. 
Figure 11 shows the assignment of semantic features to 
each of the 40 objects. 

Table 6. The Encoding lised to Describe the Visual Shape of 
Each of the Three (Possible) Components of Each Object“ 

Component Shape 

Features Code 

1 1 1 1 1  

1 1 1 1 0  

1 1 1 0 1  

1 1 0 1 1  

1 1 0 1 0  

1 1 0 0 1  

1 1 0 0 0  

1 0 1 1 1  

1 0 1 0 1  

1 0 1 0 0  

1 0 0 1 1  

1 0 0 0 1  

1 0 0 0 0  

0 1 1 1 1  

0 1 1 1 0  

0 1 1 0 1  

0 1 1 0 0  

0 1 0 1 1  

0 1 0 1 0  

0 1 0 0 1  

0 1 0 0 0  

0 0 1 1 0  

0 0 0 0 1  

0 0 0 0 0  

Cy 

Cyh 

Cyl 

IP 

SIP 

Cys 

t 

sph 

tap 
cu 

hsp 

PC 
r 

br 

PP 

bt 

bl 

PS 

Pr 
If 

Ift 

liq 

ho 

Description 

Cylinder 

Cylinder-hollow 

Cylinder-short 

Cylinder-long 

TOP 
Legs/prongs 

Single legprong 

Sphere 

Taper-to-point 

Curve 

Half-sphere 

Plane-circular 

Rim 

Box-rectangular 

Parallel planes 

Box-thin 

Box-long 

Plane-square 

Plane-rectangle 

Londflat 

Long/flat/th in 

Liquid 

Hole 

( N o  second or third 
component) 

T h e  meanings of the features are roughly (1) contains curves, (2) sides 
contain parallel lines, (3) sizes along all three dimensions of the same 
order of magnitude, (4) more equal in dimensions than shapes with 
similar values for preceding features, and ( 5 )  more regular than shapes 
with similar values for preceding features. The “code” letters will be 
used to describe the assignment of visual features to objects. 
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Table 7. The Encoding o f  the Position and Size of the 
Second and Third Components Relative to the Main 
Component 

Relatitle Position 

Feutures Code Description 

1 1  ee Extension at end 

I 0  em Extension at middle 

0 1  ae Attachment at end 

0 0  am Attachment at middle 

0 0  ( N o  second or third component) 

Kelutizie Size 

Features Code Description 

1 1 1  1 Longer 

1 1 0  e Equal 

0 1 1  S Smaller 

0 0 1  m:, Much smaller (1/4 to 1/2) 

0 0 0  vms V e q  much smaller 

0 0 0  (No second or third component) 

016 from the McDonnell-Pew Program in Cognitive Neurosci- 
ence, and Grant ASC-9109215 from the National Science Foun- 
dation. 
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Notes 

1. Only one left hemisphere agnosic patient is known to us 
who makes predominantly visual errors, patient RV of Reauvois 
and Saillant (1985). As he was 75 when first tested, an additional 
apperceptive component is plausible. 
2. Our analysis does not, however, require us to assume a 
unitary semantics. 
3. In simulations reported by Plaut (1991), a network with a 
somewhat different architecture produced equivalent results as 
those described in this paper. 
4. See Figure 6 of Hinton and Shallice (1991) for a related 
empirical phenomena: semantic errors tend to have a smaller 
gap for a given proximity than do  visual errors. 
5. This proportion is much higher than the average correct 
performance for subsequently presented objects after clean-up 
lesions (59.2%) because the prime is presented with all of the 
short-term weights set to zero. 
6. The explicit error rate of the patient (4969) is much higher 
than in the simulation after V-tI(0.5) lesions (3.5%), suggesting 
that either the patient used a lower response criterion or that 
naming involved random guessing. In either case this would 
inflate the rate of “other” errors. 

Table 8. The Coding for General Visual Characteristics, 
Color, Texture, and Absolute Size 

General characteristics” 

Code Description 

dv 

dh 

ss 

ifl 

con 

sh 

dis 

int 

dr 

Direction of main component-vertical 

Direction of main component-horizontal 

Screwhawtooth 

Internal flexibility between components 

Concave 

Sharp 

Distortable 

Interior visible 

Rectangle/handle apparent on surface 

Color 

Features Code Descri@tion 

1 1 1  

1 1 0  

1 0 1  

1 0 0  

0 0 1  

0 0 0  

va 

brn 

si 

gr 

wh 

tr 

Various 

Brown 

Silver 

Gray 

White 

Transparent 

Texture 

Features Code Description 

1 0  sm Smooth 

0 1  ro Rough 

0 0  ei Either 

Absolute Size 

Features Code Description 

1 0 0 0 0  s<3i Less than 3 in 

1 1 0 0 0  s3-6i 3 to 6 in. 

1 1 1 0 0  s3-12i 3 to 12 in 

s6-12i 6 to 12 in. 0 1 1 0 0  

0 1 1 1 0  s6i-2f 6 in. to 2 ft 

0 0 1 1 0  sl-2f 1 to 2 €t. 

0 0 0 1 1  s2-6f 2 to 6 ft .  

0 0 0 0 1  s>6f Greater than 6 ft. 

”Each “general” characteristic is represented by a separate feature. 
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Table 9. A Description of the Visual Representation of Each Object in Terms of the Codes Used in Previous Tables t o  Ikscribe 
Values o f  Each Type of Visual Information 

Assignment of Visual Features to Objects 

Object Muin Second 7;bird General Color 1 kxture Size 

cup 
qoon 
Pan 
fork 
knife 
howl 
can 
plate 
dsh 
g i m  
PLX 
file 
PUPW 
hook 
di.qk 
tupe 
stump 
hoard 
glue 
ink 
chair 
table 
bed 
so f a  
stool 
n*g 
mdio 
tele 
divan 
desk 

mil 
p h n e  
WlW 
screw 
awl 
m e  
bolt 
nut 
zke 

su w 

PC 
hsp 
PS 

If t  
IP 

r 
r 
Pc 

P' 

Pr 
ho 
ho 

tdp 

tap 
t 
IP 
1P 
IP 

IP 
Pr 

br 

PP 

tap 
cu 

cu 

PC 
tap 
tap 
Cys 
ho 
cyl 

ae 
ee 
ae 
ee 
ee 

ee 
ae 
ae 
ee 
ae 

ae 
am 
am 

ee 
ee 
ae 
ae  
ae 
am 
ae 

am 

ae 

ee 
am 

ee 
ee 
ee 
ee 
am 
am 

e 
ms 
e 
ms 
e 

ms 
ms 
e 
vms 
e 

e 
vms 
S 

vms 
e 
e 

vms 

1 

S 

e 

e 

S 

ms 
ms 

1 
e 
e 
1 

e 
S 

CU am 

If ae 

t ee 

liq am 
ps ae 

Pr ae 
PP ae 

PC ee 
1ft am 

sph ee 
cyl am 

S 

1 

ms 

S 
e 

ms 
S 

1 
vms 

ms 
1 

dv con 
con 
dv con 
sh 
sh 
dv con 
dv 
dh 
dh con 
dv con 
ifl 
ifl 
dis 
ifl int 

dis 

con int 
dh 
dh 
dh 
dh 
dh 
dh dis 
dh 
dh 
dh 
dh dr 
ss sh 
sh 
sh 

ss sh 
sh 
sh 
ss 
ss 
dv ifl int 

vd 

si 
si 
si 
si 
va 

wh 
va 
tr 
va 

Wh 

bl 
brn 
va 
va 
va 
va 
brn 
brn 
va 
va 
brn 
va 
va 
%r 

brn 
si 
gr 
%r 
brn 
Sr 
gr 
%r 
%r 
gr 

va 

va 

va 

va 

Vd 

sm 
sm 
sm 
sm 
sm 
sm 
sm 
sm 
sm 
sm 
sm 
ei 
sm 
ei 
ro 
sm 
sm 
sm 
sm 
sm 
ei 
sm 
ro 
ro 
sm 
ro 
sm 
sm 
ro 
sm 
sm 
sm 
sm 
sm 
ro 
sm 
sm 
ro 
ro 
sm 

53-6i 
s3-12i 
s61-2f 
s3-12i 
s3-12i 
s6i-2f 
53-61 
s6-12i 
s6-12i 
53-61 
53-61 
51-2f 
s6-12i 
s6-12i 
53-61 
53-61 
5<31 
51-2f 
5<31 
5<31 
52-6f 
52-6f 
5>6f 
52-6f 
51-2f 
5>6f 
s6-12i 
51-2f 
52-6f 
52-6f 
51-2f 
53-61 
sbi-2f 
51-2f 
5<31 
53-61 
51-2f 
5<31 
5<31 
51-2f 
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Figure 10. Assignment of vis- 
ual features t o  objects 

Figure 11. The assignment of 
semantic features to objects. 

CUP 1 
SPOON 2 
PAN 3 
FORK 4 
KNIFE 5 
BOWL 6 
CAN 7 
PLATE 8 
DISH 9 
GLASS10 
PEN 11 
FILE 12 
PAPER13 
BOOK 14 
D I S K  15 
TAPE 16 
STAMP17 
BOARD18 
GLUE 19 
INK 20 
CHRIR21 
TABLE22 
BED 23 
SOFA 24 
STOOL25 
RUG 26 
RfiDID27 
TELE 28 
DIVAN29 
DESK 30 
SAW 31 
NAIL 32 
PLANE33 
RULER34 
SCREW35 
AWL 36 
AXE 37 
BOLT 38 
NUT 39 
VICE 40 

CUP 1 
SPOON 2 
PAN 3 
FORK 4 
K N I F E  5 
BOWL 6 
CAN 7 
PLFITE 8 
DISH 9 
GLASS10 
PEN 11 
F I L E  12 
PAPER13 
BOOK 1 4  
D I S K  15 
TAPE 16 
STAMP17 
BOORD18 
GLUE 19 
I N K  20 
C H A I R 2 1  
TABLE22 
BED 23 
SOFA 24 
STOOL25 
RUG 26 
R A D I O 2 7  
TELE 28 
DIVAN29 
DESK 30 
SAW 31 
N A I L  32 
PLANE33 
RULER 3 4 
SCREW35 
AWL 36 
e X E  37 
BOLT 38 
NUT 39 
V I C E  40 
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Table 10. The Semantic Features Used to Describe Objects 

Semantic Features 

Visual Characteristics Made of Specz$c Function 

1 Main component vertical 

2 Main component horizontal 

3 Screw/sawtooth 

4 Internal flexibility 

5 Concave 

6 
7 

H 

9 

1 0 

11 

12 

13 

14 

15 

10 

17 

18 

19 

20 

21 

22 

23 

24 

25 

2 6 

27 

28 

Sharp 

Distortable 

Interior visible 

RectangWhandle apparent 

Color (visual coding) 

Color (visual coding) 

Color (visual coding) 

Smooth 

Rough 

Size less than 6 in. 

Size 6 in. t o  2 ft. 

Size greater than 2 ft. 

Main-shape 1D 

Main-Shdpe 2D 

Main-shape 3D 

Rectangular cross section 

Circular cross section 

HdS legs 

Has other appendage 

Simple 

Complex 

Liquid 

Has hole 

31 Metal 

32 Pottery 

33 Wood 

34 Cloth 

35 Glass 

36 Plastic 

37 Paper 

38 Other substance 

Where Found 
~ ~ 

39 Home 

40 Office 

41 Outdoors 

42 Kitcheddining room 

43 Living roomistudy 

44 Bedroom 

45 Work-room 

46 Onground 

47 On surface 

48 Otherwise supported 

General Function 

49 Cooking 

50 Eating 

51 Drinking 

52 Leisure 

53 Rest 

54 Carpentry 

55 Work-office 

56 Work-home 

Consistency 57 Aesthetic 

58 Choppingkutt ing 

59 Holding in place 

60 Writing 

61 Information-holding 

62 Measuring 

63 Reading 

64 Sticking 

65 Assigning-value 

66 Holding foodldrink 

67 Sitting 

68 Lying 

69 Use-with-liquid 

70 Use-with-solid 

71 Sleeping 

72 For comfort 

7 3  For listening 

74  For viewing 

75  Manipulating another artifact 

76 Is manipulated by another artifact 

77 Functioning with another object 

78  Functioning alone 

79 Container 

GeneVal Action 

80 Use with one arm 

81 Use with two arms 

82 Use with hand (little arm movement) 

83 Use involves mouth 

84 Easilv breakable 

85 Placed in lap/held in front of body 

86 Characteristic action of whole body 29 Hard 

30 soft 
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