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Summary

We have explored the manner in which the population
of retinal ganglion cells collectively represent the vi-
sual world. Ganglion cells in the salamander were re-
corded simultaneously with a multielectrode array
during stimulation with both artificial and natural vi-
sual stimuli, and the mutual information that single
cells and pairs of cells conveyed about the stimulus
was estimated. We found significant redundancy be-
tween cells spaced as far as 500 pm apart. When we
used standard methods for defining functional types,
only ON-type and OFF-type cells emerged as truly
independent information channels. Although the av-
erage redundancy between nearby cell pairs was
moderate, each ganglion cell shared information with
many neighbors, so that visual information was repre-
sented 10-fold within the ganglion cell population.
This high degree of retinal redundancy suggests that
design principles beyond coding efficiency may be
important at the population level.

Introduction

Retinal ganglion cells in the same vicinity have long
been known to have receptive fields that overlap
extensively. This means that the retinal code at the level
of the ganglion cells intrinsically uses populations of
neurons to represent even the sharpest spatial features
within a visual image. In addition, natural visual scenes
have strong spatial correlations (Field, 1987; van der
Schaaf and van Hateren, 1996), which may cause an
even wider group of ganglion cells to participate in en-
coding any single feature within a natural image. A
central issue in studying the retina, as well as many
other neural circuits, is to understand how information
is represented collectively by the activity of a popula-
tion of neurons.

The retina is an exquisitely organized circuit with
many types of ganglion cells whose dendrites sample
different sources of visual information within the inner
plexiform layer (Dacey et al., 2003; Pang et al., 2002;
Pang et al., 2004; Rockhill et al., 2002; Roska and Wer-
blin, 2001; Sterling, 1998; Wu et al., 2000). Furthermore,
the dendrites of many types of ganglion cells tile, or just
barely cover visual space (Dacey, 1993; Vaney, 1994;
Waéssle and Boycott, 1991), leading to receptive-field
tiling for many kinds of ganglion cells (DeVries and Bay-
lor, 1997; Frechette et al., 2004). Together, these obser-
vations have led to the idea that the population of gan-
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glion cells comprises many parallel channels of visual
information and that such a code may be highly effi-
cient: cells within each channel have minimally overlap-
ping receptive fields, and cells in different channels
encode different visual features. This organization com-
plements classical theoretical ideas of efficient infor-
mation encoding by sensory systems (Attneave, 1954;
Barlow, 1961), where it has been suggested that the
center-surround antagonism of ganglion cell-receptive
fields acts to decorrelate the spatial power spectrum of
natural scenes and reduce the redundancy in the retinal
code (Atick, 1992; Atick and Redlich, 1992; van Hat-
eren, 1992). However, the efficiency of the retinal code
has not been directly tested.

There are many reasons to think that nearby ganglion
cells may not encode independent visual information.
First, the receptive/dendritic fields of some types of
ganglion cells cover visual space many times (Peichl
and Wassle, 1979; Rockhill et al., 2002). Second, func-
tional and anatomical classification is based on deter-
mining whether groups of ganglion cells can be clearly
distinguished; such methods do not guarantee that
these different cell types will encode entirely indepen-
dent information. Third, natural stimuli cannot be fully
characterized by their spatial power spectrum: they
also possess strong spatiotemporal regularities due to
object motion (Dong and Atick, 1995) as well as higher-
order correlations due to extended spatial patterns like
edges (Ruderman, 1994; Ruderman, 1997). It is not
clear whether retinal processing can detect and elimi-
nate these complex correlations. Furthermore, much of
the analysis of population coding in the retina is based
on the measurement of receptive fields. Such a charac-
terization is likely to be incomplete, because ganglion
cells respond to light with many nonlinearities that are
not captured by the spatiotemporal receptive field
(Hartline, 1937; Olveczky et al., 2003; Shapley and Vic-
tor, 1979; Victor and Shapley, 1979) and because the
receptive field can change considerably due to adapta-
tion (Barlow et al., 1957; Smirnakis et al., 1997).

Instead of relying on receptive field maps or simpli-
fied models of ganglion cell function, the redundancy
of the retinal code can be directly measured by quanti-
fying the amount of information that ganglion cells con-
vey about the stimulus in groups and as individuals
(Warland et al., 1997). We present here the first direct
measurement of the redundancy in the neural code of
the retina in response to a rich set of natural stimuli. To
aid in understanding the factors that give rise to redun-
dancy between ganglion cells, we also used simplified
artificial stimuli to analyze the sources of retinal redun-
dancy and to relate redundancy to the receptive-field
properties of ganglion cells. A simple model is de-
scribed to explore the consequences of redundancy
between cell pairs for the information encoded by the
entire ganglion cell population.

Results

We recorded simultaneously from populations of gan-
glion cells in the salamander retina using a planar multi-
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electrode array. To explore the manner in which visual
scenes are represented within the population of retinal
ganglion cells, we calculated the fractional redundancy
between all pairs of ganglion cells. This quantity mea-
sures the degree to which pairs of ganglion cell spike
trains encode the same visual information (Gat and
Tishby, 1999; Gawne and Richmond, 1993; Panzeri and
Schultz, 2001; Petersen et al., 2001; Schneidman et al.,
2003a); its value is sensitive not just to pairwise correla-
tions between spikes, but to all correlations that can
be directly sampled (see Experimental Procedures). By
directly sampling, the redundancy can be measured
without implicitly assuming any model of the light re-
sponse or of the noise. Redundancy was defined as
the difference between the mutual information that the
responses of each cell alone conveyed about the stim-
ulus, I(R,;S) and I(R,;S), and the information conveyed
by their joint responses, I(R,,R;S). As information rates
varied widely within the population of ganglion cells, we
calculated the redundancy as a fraction of the minimum
information of the two individual cells (Reich et al.,
2001):

1= [[(RsS) + KR»;S)] — KR..R:S)
s min{(RS),/(R5S)} )

This normalization factor, min{/(R.;S), I(Rx;S)}, is the
maximum possible redundancy between two cells, so
that the fractional redundancy can be no greater than
1. The fractional redundancy is 0 when the two cells
encode independent information about the stimulus; its
value is 1 when the two cells encode exactly the same
information or when one cell’s information is a subset
of the other’s. Negative values of the redundancy mean
that the cells are synergistic.

1

Redundancy between Pairs of Ganglion Cells
In order to assess retinal processing under realistic vi-
sual conditions, we stimulated retinas with a set of nat-
ural movie clips chosen to represent a variety of envi-
ronments. An especially important characteristic of
natural stimuli is the wide field motion caused by the
movement of an animal’s eyes or body, as this should
strongly stimulate many ganglion cells. We included
movies having five different categories of motion: ob-
ject motion, optic flow, smooth pursuit, saccades, and
combinations of these kinds of motion. Movies catego-
rized as having object motion were filmed while the
video camera remained stationary and one or more ob-
jects within the field of view moved freely (see Experi-
mental Procedures). For the other categories of movies,
the camera was moved so as to stimulate eye or body
movements. Most movies were taken of woodland
scenes, but some were aquatic or man-made. Four ex-
amples of movie frames are shown in Figure 1A.
Figure 1B shows spike rasters from ten cells re-
corded simultaneously during the forest walk movie. As
seen, the spike trains were sparse and temporally pre-
cise, primarily occurring in well-isolated firing events
(Berry et al., 1997). There was a complex pattern of
event times across the population, with some cells
sharing many narrow events and others sharing none.
Figure 1C plots the fractional redundancy for 1838 cell
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Figure 1. Redundancy under Natural Stimulation

(A) Single frames from four natural movie clips having different
categories of motion.

(B) Examples of spike rasters from ten cells recorded simulta-
neously during the forest walk movie clip. Each dot represents the
time of a spike; vertical dimension shows 120 repeated stimulus
trials. Cells A and B have a fractional redundancy of 0.17, while cell
C does not share significant redundancy with any of the other cells.
(C) Fractional redundancy for 1838 cell pairs in 4 retinas stimulated
by natural scenes plotted versus the distance between the cell’s
receptive-field centers. The type of motion present in each movie
clip is shown by the dot color: object motion (red), saccades (blue),
optic flow (green), smooth pursuit (black), and combinations of mo-
tion (orange).

pairs stimulated by 12 different movies versus the dis-
tance between ganglion cells, as determined from the
receptive field of each cell (see Experimental Pro-
cedures). Although the redundancy depended system-
atically on the distance between cells, there was wide
variation among the values for cell pairs of roughly the
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same distance apart. Redundancies as large as 50%
were seen among nearby cells; cells | and J in Figure
1B are such an example. However, most cell pairs—
even those that were closely spaced—were nearly in-
dependent, indicating that ganglion cells can extract
many different visual features from the same spatial lo-
cation within a natural image. Significant redundancy
existed between some cell pairs separated by up to
500 pm. Since the receptive-field center radius of most
ganglion cells is ~100 pm, redundant coding was
therefore present for some cell pairs with nonoverlap-
ping receptive-field centers. Very few cell pairs exhib-
ited values of synergy that could be not explained by
sampling errors (see Experimental Procedures), and the
largest values of synergy were less than 5%. No obvi-
ous differences in redundancy were found among the
five categories of movie motion (Figure 1, colors).

Overrepresentation within the Ganglion

Cell Population

Since a large fraction of all the cell pairs that we mea-
sured showed at least some redundancy, the pairwise
redundancy offers only a partial measure of the total
redundancy of the visual messages sent from eye to
brain. To quantify the number of neighbors with which a
typical ganglion cell shares redundant information, we
considered the fraction of cell pairs with redundancies
greater than 5%. This threshold is a conservative
bound on the random error inherent in our estimation
of the redundancy (see Experimental Procedures). Shown
in Figure 2A, this fraction was ~40% for nearby gan-
glion cells. Most redundant neighbors were found
within 150 um of a given ganglion cell. But because the
number of neighbors increases with distance, a sub-
stantial contribution came from cells spaced up to
500 pwm apart. When we estimated the total number of
redundant partners within a neighborhood of radius
500 wm (assuming a density of 1400 cells/mm?), we
found 114 = 11 such cells under natural stimulus condi-
tions. Among those significantly redundant partners,
the average redundancy was ~14% at close range and
decreased to ~7% at 500 pm away (Figure 2B). There-
fore, a typical ganglion cell shares a moderate degree
of redundancy with a large number of cells in its local
region of the retina.

In order to assess the contribution of pairwise corre-
lations to the total redundancy of the ganglion cell pop-
ulation, we combined all of our redundancy measure-
ments to estimate an overrepresentation factor. The
overrepresentation factor is a sum of the redundancies
between one ganglion cell and all of its neighbors, di-
vided by the mutual information of the original cell (see
Experimental Procedures). This factor measures the
number of times, on average, that information con-
veyed by one neuron is also conveyed by neighboring
neurons. Shown in Figure 2C, the overrepresentation
factor for a typical ganglion cell was roughly 11.0 = 1.0
when stimulated by natural movies. In this calculation,
we included all pairwise redundancies above a thresh-
old of 5% and treated cell pairs with less redundancy
as independent. If we use no threshold and simply
average over all cell pairs, the overrepresentation is
roughly the same, 11.4 = 1.2. If we set this threshold at
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Figure 2. Overrepresentation within the Ganglion Cell Population

(A) The proportion of all measured cell pairs whose redundancy
exceeded a significance threshold of 5% plotted as a function of
the distance between cells.

(B) The average redundancy of those significantly redundant cell
pairs plotted versus cell pair distance.

(C) Left: overrepresentation factor for natural movies (red) and
checkerboard flicker (blue, see Experimental Procedures). Right:
total number of neighboring cells that share significant redundancy
with a single cell, estimated by summing over the data in (A) and
assuming a cell density of 1400 cells/mm?, for natural movies (red)
and checkerboard flicker (blue). All error bars were determined by
randomly selecting half of the cell pairs and repeating the calcula-
tion for many such selections.

10%, the overrepresentation factor only drops to 6.0
0.6, indicating that a significant contribution comes
from a small number of cell pairs with much larger re-
dundancies. This analysis suggests that visual mes-
sages are, on average, represented many times within
the population of ganglion cells.

Sources of Redundancy

Ganglion cells can encode similar visual messages
either because of correlations in the stimulus or be-
cause of shared retinal circuitry that makes them sensi-
tive to similar visual features. In order to study the con-
tributions from these different mechanisms, we used
random flickering checkerboards, where the stimulus
had minimal correlations in space and time (55 pm
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Figure 3. Redundancy under Minimally Correlated Stimulation

Fractional redundancy for 479 cell pairs stimulated by flickering
checkerboards plotted versus the distance between the cell’s re-
ceptive-field centers. Color indicates the functional type of the cells
in a pair: pairs where both cells are the same functional type (blue),
pairs where one cell is ON-type and the other is OFF-type (green),
and other pairs where the cells are of different functional type (red).
Lines show the average redundancy for same-type cell pairs (blue)
and different-type cell pairs other than ON-OFF pairs (red). ON-OFF
cell pairs were independent.

checker size, 33 ms frame time). In such a stimulus en-
semble, correlations between ganglion cells are primar-
ily due to shared retinal circuitry. The largest redundan-
cies under checkerboard stimulation (~40%; Figure 3)
were similar to those for natural movies, suggesting
that receptive-field overlap plays the dominant role in
redundant coding for nearby ganglion cells. In fact, the
overrepresentation under checkerboard flicker, 10.8 =
1.0, was roughly the same as found under naturalistic
stimulation (Figure 2C), reinforcing this conclusion. For
checkerboard flicker, significant redundancy was found
primarily for cell pairs closer than ~200 pm (Figure 3),
consistent with the typical receptive-field center diame-
ter of salamander ganglion cells. By comparing this re-
sult to that for natural movies (Figure 1), one can see
that the stimulus correlations present in natural movies
give rise to significant redundancy for more widely sep-
arated ganglion cells, although such pairs are un-
common.

As seen for natural movies, ganglion cells under flick-
ering checkerboard stimulation also exhibited a wide
variety of redundancy values at a given cell pair dis-
tance (Figure 3). One obvious explanation for this diver-
sity is that cells of the same functional type have higher
redundancy than cells of different functional type.
While a consensus has not yet emerged about how to
perform functional classification, there are standard,
widely used methods based on the responses of neu-
rons to a broad ensemble of stimuli. Following recent
studies (DeVries and Baylor, 1997; Schnitzer and Meis-
ter, 2003), we assigned ganglion cells to six functional
types using the temporal dynamics of the receptive-
field center (Figure 4). Greater redundancy was found,
on average, for pairs where both cells were of the same
functional type than for pairs where the cells belonged
to different functional types (Figure 3, blue lines versus

red lines), although considerable variation was again
observed (blue dots versus red dots). This variability
may reflect the fact that some cells did not fall clearly
into a single functional class, but instead had proper-
ties that were intermediate between two classes. Cell
pairs were found to encode independently when one
member of the pair was any kind of ON cell and the
other member was any kind of OFF cell (green dots).
When one cell in the pair was slow OFF-type, indepen-
dence was also found, regardless of the functional type
of its partner (data not shown). Under naturalistic stim-
ulation, however, cell pairs with one slow OFF-type cell
were no longer found to be independent, indicating that
only ON and OFF channels of visual information are
truly independent.

Interpreting Redundancy Values

Intuitively, high redundancy is expected for cell pairs
with overlapping spatial-receptive fields, as such cells
receive almost identical stimulation during natural
movie clips. But even if ganglion cells have identical
spatial-receptive fields, subtle differences in their fea-
ture selectivity should limit their fractional redundancy
to values less than 1. Noise also serves to limit redun-
dancy, as it causes nominally identical neurons to re-
spond differently on a trial-by-trial basis. In order to
better understand how these factors affect coding re-
dundancy, we stimulated the retina with spatially uni-
form flicker, where every cell received identical stimula-
tion. Although ganglion cell spike trains were locked to
the stimulus with great precision under these condi-
tions (Berry et al., 1997), we found an average signifi-
cant redundancy of 31% and values no greater than
80% (Figure 5). This indicates that noise and functional
diversity indeed limit the redundancy to values much
less than 1. Comparing Figures 1 and 5, we see that
under naturalistic visual conditions, the redundancy be-
tween ganglion cells can be a large fraction of what is
possible given their noise and feature selectivity. How-
ever, a much larger proportion of cell pairs were inde-
pendent under naturalistic than uniform stimulation
(57% versus 21% of cell pairs closer than 50 pm), indi-
cating that ganglion cells with overlapping receptive
fields can exploit differences in their spatiotemporal
sensitivity to extract distinct information from natural
scenes.

The fractional redundancy includes correlations be-
yond pairs of spikes as well as non-Poisson variability
in ganglion cell spike trains. How does this quantity
compare to simpler, non-information theoretic mea-
sures of shared function? One such measure is the sim-
ilarity between the spatiotemporal receptive fields of
two cells. We investigated the relationship between the
full receptive-field structure of ganglion cells and their
redundancy by computing the receptive-field overlap
between pairs of ganglion cells. This quantity is normal-
ized to have a value of 1 when the two cells have iden-
tical spatiotemporal receptive fields (see Experimental
Procedures).

As expected, the receptive-field overlap was a strong
function of the distance between cells (Figure 6A).
Since nonzero values were often found for cells spaced
by more than 200 pm, receptive-field surrounds could
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Figure 4. Functional Classification
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Left columns: Merger score of our quantitative clustering algorithm (see Experimental Procedures) plotted as a function of the number of
clusters. The break in the merger score is indicated by a dashed line; this threshold defines the number of significant clusters. In each
experiment, the final merger was between clusters of ON and OFF cells; this merger had a negative score that is off the scale of the graphs.
Right columns: Time course of the spike-triggered average for all ganglion cells in the experiment. Color indicates functional type. Outlier
cells were combined with their most similar cluster. Rows correspond to recordings from two different retinas.

make a significant contribution to the overlap. Like the
redundancy (Figure 3A), the receptive-field overlap took
on a wide range of values for nearby cells and was
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Figure 5. Redundancy under Strongly Correlated Stimulation

Fractional redundancy for 502 cell pairs stimulated by spatially uni-
form flicker plotted versus the distance between the electrodes on
which each cell was recorded. Here all cells received identical stim-
ulation. Color indicates functional type: pairs where both cells are
the same functional type (blue), pairs where one cell is ON-type
and the other is OFF-type (green), and other pairs where the cells
are of different functional type (red).

often larger for cells of different functional type than for
cells of the same functional type (red dots versus blue
dots). Again, this may reflect the fact that not all gan-
glion cells fell clearly into a single functional class.
When directly compared, large values of receptive-field
overlap often corresponded to large values of redun-
dancy (Figure 6B). However, extensive variability was
found. This surprising result stems from the fact that
the spatiotemporal receptive field alone is a poor pre-
dictor of ganglion cell responses under naturalistic
stimulation (van Hateren et al., 2002). The receptive
field overlap is a good measure of the functional sim-
ilarity between neurons only if it actually does a good
job at predicting when each neuron spikes. Since the
prediction is poor, receptive-field overlap is an unrelia-
ble measure of functional similarity under natural condi-
tions. The redundancy is calculated directly from actual
spike trains, so it is does not suffer this inadequacy.

Discussion

We have shown that the salamander retina uses a neu-
ral code that is extensively redundant to transmit visual
information from eye to brain, with visual messages re-
peated many times within the population of nearby
ganglion cells. In large part, this overrepresentation
arises from within the circuitry of the retina, as it is ob-
served even for stimuli having minimal spatial and tem-
poral correlation. Redundant coding can therefore be
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Figure 6. Redundancy and Receptive-Field Overlap

(A) Receptive-field overlap for 1176 cell pairs plotted against their
receptive-field center distance. Color indicates functional type, as
in Figure 3.

(B) Fractional redundancy plotted against receptive-field overlap
for cells recorded under naturalistic stimulation.

thought of as a design choice made by the retina: many
ganglion cells sample each point in visual space and
convey similar information. In fact, we found extensive
mixing of messages among cells assigned to different
functional types—even with relatively simple stimuli,
such as checkerboard flicker—so that a ganglion cell
shared significant redundancy with almost half of its
closest neighbors. Furthermore, the correlations pre-
sent in natural visual scenes induce shared signaling
among more widely spaced ganglion cells. In total, the
average ganglion cell shared redundancy with over 100
other cells, and as a result, we estimate that the infor-
mation encoded by an average ganglion cell is repre-
sented ~10 times over within the local population un-
der naturalistic stimulus conditions.

Estimating the Population Redundancy

How does the overrepresentation factor relate to the
information conveyed by a population of neurons? We
can gain insight by considering a simple model of a
population of n neurons with uniform pairwise correla-
tions. We will calculate the population redundancy un-
der two different, simple assumptions and compare

them. The goal of this calculation is not to accurately
capture all of the details of the ganglion cell code, but
to explore how its population redundancy scales with
the number of correlated neurons and the degree of
pairwise redundancy.

First, we assume that every neuron conveys an infor-
mation | about the stimulus and that all pairs have a
redundancy of A. Furthermore, we assume that there
are only pairwise correlations in the population (Marti-
gnon et al., 2000; Schneidman et al., 2003b). For n neu-
rons, the population information is /,,, which is less than
the sum of each cell’s individual information, nl/ (Figure
7B, i and ii). The redundancy, measured as a fraction of
the individual cell’s visual information, is defined here
as A, =1 - I,/nl. When we add another neuron to the
population, we gain information /, but some of this in-
formation is redundant. Since this new neuron shares A
information with all of the previous neurons, one might
naively estimate that nA is lost to redundancy. However,
much of the nA is, in fact, the same information
counted many times.

To estimate how much of the new neuron’s informa-
tion is already encoded by the existing neurons, we
make the assumption that the redundancy within a
large population of neurons is uniformly distributed.
This means that the total possible redundancy, nA, has
the same overlap as that found within the existing pop-
ulation (Figure 7B, iii and iv). As a result of this unifor-
mity assumption, only nA(/,,/nl) out of the new neuron’s
I of information is lost to redundancy. The information
of the population of n+7 neurons is then given by a
recursive relationship in terms of the information en-
coded by the population of n neurons (Figure 7C):

I, A
lpa=la+1—nA =) =(1——) I+ 2)
nl )

As the population size increases, the fraction of the
information / that is already represented by existing
neurons increases until new neurons add no new infor-
mation and the population information saturates at a
value of /., = I?/A. Equation 2 can be reexpressed as a
relationship between the population redundancy for
n+1 neurons and that present for n neurons, where the
superscript u denotes the assumption of uniform corre-
lation in the population:

R (1-2) gy M8 3)
™ N+ 1]°" n+t1

An even simpler approximation to the population re-
dundancy can be made using the overrepresentation
factor. Since the overrepresentation for n neurons, 6,
measures how many times the information of one neu-
ron is also encoded within the rest of the population,
the population information is the sum of each cell’s in-
formation divided by the overrepresentation, I, = nl/©,,.
This leads to a population redundancy of:

- 1
Ag‘lO) =1- 61 @

n

where the overrepresentation is ©,, = (n — 1)A/l. This
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3 information encoded by a population of four
cells.

(B) Graphical description of the assumption
of uniform correlations. (i and ii) The redun-
dancy among the first three cells is the infor-
- 1 mation they jointly encode (i) divided by the
sum of their individual informations (ii). (iii
and iv) The ratio between the part of the new
cell’s information that is redundant (iiij) and
the total possible redundancy (iv) is as-
sumed to be equal to the redundancy among
the first three cells.

(C) Recursive formula for the information en-
coded by all four cells, showing the terms in

Population Information Equation 2.
3 I (D) Redundancy in a simple model neural
I, - 1 * 4 - 3 37 population plotted versus the number of

neurons for an estimate based on the as-
sumption of uniform redundancy within the
population (dark blue line) and for an esti-
mate based on the overrepresentation factor

(light blue line). The parameters of the model
are roughly matched to experimental values:
n = 100 and A/l = 0.1, giving an overrepre-
sentation of 0499 = 9.9 (see Figure 2). The
population redundancy is Ryoo = 0.9, indicat-
ing that the population has 10 times less in-
formation than the sum of each cell’s infor-
mation.
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formula only makes sense in the limit of many neurons,
where 6, > 1.

These two measures of population redundancy differ
when there are few neurons in the population, but they
both reach the same value for many neurons (Figure
7D). This indicates that in the limit of large overrepre-
sentation, ©,, >>1, the population information is simply
related to the overrepresentation factor, /,, = nl/©,, for
a population of uniformly correlated neurons. What this
calculation illustrates is that correlations of moderate
strength shared among many cells can significantly re-
duce the population information. This results from the
fact that a group of n neurons has n(n - 1)/2 cell pairs,
so that the number of pairs grows rapidly as the pop-
ulation size increases. Therefore, to understand the im-
pact of pairwise correlations on a population code, one
should consider the overrepresentation factor, which is
a sum over pairwise redundancies, not just the average
pairwise redundancy. Such an analysis predicts that the
retinal code is ~10-fold redundant.

The calculation described above is only an approxi-
mation to the effect that pairwise redundancy has on
the information encoded by a population of neurons.
The real answer will depend on the detailed relationship
between all pairwise correlations. In addition, the pop-
ulation information may be altered by correlations
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among three or more neurons that cannot be explained
by existing pairwise correlations. Schneidman et al.
(2003b) have described a formalism that gives a precise
definition to the impact of pairwise correlations on the
information conveyed by a population of neurons by
reference to the maximum entropy distribution for n
neurons consistent with all pairwise correlations. This
formalism also defines the contribution to the popula-
tion information from unique correlations at third order
or higher. It will be interesting to determine how the
connected information of second order described in
this work relates to the overrepresentation factor.

Amphibian versus Mammalian Retinas

We carried out our experiments in the salamander ret-
ina. How might these results differ in the mammalian
retina? Previous studies of ganglion cells in the mam-
malian retina reveal that the population has rather high
overlap: 40-55 in the cat, depending on eccentricity
(Peichl and Wassle, 1979), and ~40 in the rabbit in the
far periphery (Rockhill et al., 2002). This degree of over-
lap makes it likely that the ganglion cell code in mam-
mals also possesses extensive redundancy. Physiologi-
cal measurements in the salamander give a total
coverage of ~60 for receptive fields (Segev et al.,
2004), similar to these mammalian retinas. Furthermore,
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salamander ganglion cells have a center-surround spa-
tial organization with roughly equal weight in center and
surround (Smirnakis et al., 1997), indicating that they
are expected to remove spatial correlations in natural
scenes, as in mammalian retinas.

On the other hand, notable differences exist between
salamander and mammalian retinas. In the salamander,
we have identified six types of ganglion cells based on
functional classification, but as many as 15-20 types of
mammalian ganglion cells have been described, pri-
marily using anatomy (Dacey, 1993; Masland, 2001;
Wassle and Boycott, 1991). Thus, if there is greater
specialization of function within the mammalian retina,
its ganglion cell code may be less redundant than the
salamander’s. It is important to note, however, that not
all of these many types of ganglion cells are expected
to be functionally independent. For instance, brisk tran-
sient and brisk sustained cells are very likely to respond
to many of the same stimulus patterns. Another distinc-
tion is that the salamander retina has a large fraction
of ganglion cells that are OFF-type with very transient
responses, and these ganglion cells tend to share high
redundancy. Because the mammalian retina has many
ganglion cells with more sustained responses and a
more equal balance between ON and OFF cells, some-
what lower redundancy might be expected.

Redundancy in Other Neural Codes

Using the same definition of fractional redundancy as
we used (Equation 1), Reich and Victor (Reich et al.,
2001) found extensive redundancy among neurons in
primary visual cortex of the macaque monkey during
stimulation with flickering checkerboards. Notably, their
values ranged up to ~50% between pairs of cells and
had great variability, as seen for the retina under natu-
ralistic stimulation (Figure 1). Petersen and Diamond
explored how pairs of spikes both within the same cell
and between pairs of cells contributed to the joint mu-
tual information in primary somatosensory cortex of the
rat in response to whisker plucks (Petersen et al., 2001;
Pola et al., 2003). They found that pairs of cells in the
same barrel were highly redundant (20% of the joint
mutual information, on average), and those in differ-
ent barrels also had significant redundancy. Perhaps
it is quite common for neural circuits to use codes
with extensive and overlapping redundancies between
neurons.

Multineuronal Firing Patterns

Many previous studies have reported an enhanced
tendency for nearby ganglion cells to fire spikes syn-
chronously —both under constant illumination (Mastro-
narde, 1989) and visual stimulation (Meister et al.,
1995). Such correlations suggest that the brain might
interpret instances when two or more cells fire spikes
synchronously as a different visual message than when
the same cells spike individually. The receptive field for
such synchronously spiking cell groups are smaller
than the union of individual cell’s receptive fields
(Schnitzer and Meister, 2003), leading to the suggestion
that recognizing synchrony among cells may allow the
brain to achieve higher spatial resolution than other-
wise possible and that the retinal code may thus be

significantly synergistic (Meister, 1996). It is perhaps
then surprising that pairs of ganglion cells almost never
exhibited net synergy. Synchronous spike pairs were,
however, relatively rare, so that they might serve as a
synergistic coding symbol without necessarily leading
to average synergy between cells. In addition, it is pos-
sible that other multineuronal firing patterns, such as
combinations of spiking from some cells and silence
from other cells, may constitute synergistic coding
symbols.

Warland et al. (1997) have used linear decoding to
study how a population of ganglion cells encode spa-
tially uniform flicker. Identifying four functional types of
neurons, they found that cells of the same type contrib-
uted almost no extra information to the population
code (high redundancy), while the first cell of a different
type contributed almost its entire individual information
(low redundancy). A similar study using flickering
checkerboards again found that cell pairs with large re-
ceptive-field overlap were strongly redundant (D. War-
land, personal communication), in agreement with our
results (Figure 3). Furthermore, recognizing synchro-
nous spikes as distinct coding symbols did not in-
crease the information captured by a linear decoder.
However, a linear decoder is only one possible algo-
rithm with which to extract information from a spike
train, and the information extracted by such a decoder
is only a lower bound on the encoded information.
Thus, this technique is not as well suited to evaluating
the synergy or redundancy of the neural code as the
direct method (Schneidman et al., 2003a). Dan et al.
(1998) studied the role of synchronous spikes for the
transmission of information from LGN to visual cortex,
finding that a linear decoder could extract up to 40%
more information about flickering checkerboards if syn-
chronous spikes were treated as distinct coding sym-
bols. This result suggests that noise correlations con-
tribute net synergy to this neural code, in contrast to
what Warland et al. (1997) found in the retina.

Recently, Nirenberg et al. (2001) used information
theoretic techniques to study the importance of noise
correlations for the retinal code, concluding that gan-
glion cells were largely independent encoders. Our
study differs from theirs in two important ways. First,
we have reported redundancy, which is the direct mea-
sure of whether neurons are independent encoders.
The redundancy, which includes both signal and noise
correlations, was found to be as high as 50% of the
information conveyed by a single cell (Figure 1). Sec-
ond, we have studied the strength of correlations not
just at the level of cell pairs, but also at the population
level. Because ganglion cells share redundancy with
many nearby cells, we find that the retinal code has
extensive redundancy (Figure 2).

Efficiency of the Retinal Code

Theories of efficient coding predict that processing
within sensory systems acts to remove correlations
present in the natural world and reduce the redundancy
of the neural code. The fact that redundancy was pre-
sent for cell pairs with nonoverlapping receptive-field
centers (Figures 1 and 3) shows that the retina achieves
only partial redundancy reduction. However, theories
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that have formalized the notion of efficient coding pre-
dict perfect redundancy reduction only when the noise
in the system is negligible (Atick, 1992; Laughlin, 1989;
van Hateren, 1992). In fact, most cell pairs with non-
overlapping receptive-field centers were independent,
so that the average redundancy of such cell pairs was
not very large (Figure 2). Furthermore, the theory of
Atick and Redlich relies on several key assumptions:
that the statistics of natural scenes are captured by
their spatial power spectrum, that ganglion cells con-
vey information using a firing rate code, that retinal pro-
cessing is described by the action of a linear filter, and
that ganglion cell-receptive fields tile visual space. We
and others have found that none of these conditions
actually hold (Berry et al., 1997; Dong and Atick, 1995;
Peichl and Wassle, 1979; Ruderman, 1994), so that
many important factors influence the efficiency of the
retinal population code in ways that are not yet under-
stood.

The Uses of Redundancy

Although the principle of redundancy reduction has
been highly influential in neuroscience in the 50 years
since it was first proposed by Attneave and Barlow (Att-
neave, 1954; Barlow, 1961), Barlow himself recently re-
visited this notion critically (Barlow, 2001). There are, in
fact, several advantages to a redundant neural code.
Most obviously, such a code can be highly tolerant to
the misfiring of a single ganglion cell. The surprising
degree of overrepresentation that we have observed in-
dicates that there is great scope for the brain to use
error-correction mechanisms to ensure that behavior-
ally vital information is not corrupted by noise. Redun-
dancy may also constitute a form of passive attention
or salience map, as it allows highly overrepresented vi-
sual information to have a stronger impact on down-
stream neurons than other visual information that is not
overrepresented. Perhaps the ability to rank the impor-
tance of different stimuli with such a saliency map more
than compensates for the coding inefficiency it re-
quires. Finally, redundancy among neurons also con-
fers the potential to form combinatorial codes, where
unique stimulus features can be represented by the dif-
ference in the responses of two or more neurons. Such
combinatorial codes may allow high-order features to
be extracted more simply by subsequent neural circuits
than would be possible with a highly efficient code. We
should also keep in mind, though, that retinal redun-
dancy may serve no positive purpose.

Whatever the possible advantages of redundancy, it
clearly can be achieved only at a cost in efficiency:
more neurons and more spikes are deployed to repre-
sent the same information than are truly necessary.
While there has been a great focus on efficiency as a
fundamental design principle for neural codes, robust-
ness is less well understood (but see LeMasson et al.,
1993). Quantifying our intuitive notion of robustness, as
has recently been demonstrated for the chemical net-
work underlying bacterial chemotaxis (Barkai and Lei-
bler, 1997), promises to enrich our understanding of
design principles in neural networks. Especially inter-
esting will be to explore how redundancy and efficiency
trade off as the signal-to-noise ratio of visual stimuli

changes, as it does, for instance, with changes in the
mean light level (Atick, 1992; Laughlin, 1989; van Hat-
eren, 1992).

Experimental Procedures

Physiological Preparation

Larval tiger salamanders were light adapted for 1 to 3 hr prior to
removal of the eye. A section of the eye one-quarter to one-third
of the original size was isolated. The preparation left the retina,
pigment epithelium, and sclera as an intact unit. The isolated sec-
tion was placed ganglion side down on a microelectrode array and
held in place with a dialysis membrane. The sample chamber was
continuously perfused with Ringer’s solution at room temperature
(Balasubramanian and Berry, 2002). Recordings of 12 to 24 hr were
consistently achieved. This study is based on data from five dif-
ferent retinal preparations.

Visual Stimulation

Natural movie clips were acquired using a Canon Optura Pi video
camera at 30 frames per second. The spatial power spectrum of
movie clips had an approximately power-law dependence on spa-
tial frequency, S(k) ~ k™. The exponent, o, ranged from 2.05 to
2.30 in our set of movies. The temporal power spectrum also fol-
lowed a power law, S(w) ~ », with an exponent ranging from 0.84
to 1.82. The average luminosity at the retina of all movies was
within 15% percent of the total mean value of 8 Lux (12 mW/m?).
The original color movies were converted to gray scale, incorporat-
ing a gamma correction for the computer monitor. All visual stimuli
were displayed on an NEC FP1370 monitor and projected onto the
retina from the ganglion cell side with standard optics. Movies were
displayed at 60 Hz with 2 repeated frames. A display pixel was
11 wm by 11 pm when projected onto the retina. Movie clips cov-
ered the entire piece of dissected retina.

During visual optic flow, the retina sees a range of radial object
motions (defined as the radial speed of passing edges) that depend
monotonically on the distance of the object from the center of view.
This can be thought of as a range of angular speeds starting at
zero in the center of the field of view to some maximum in the
periphery. In the optic flow movies shown here, this maximum an-
gular speed is 5°/s for the region of the movie viewed by the gan-
glion cells. In saccadic movies, rapid camera movements occurred
at a rate of 0.75 + 0.2 saccades/s. The typical duration of each
simulated saccade was 0.2 = 0.1 s with angular speeds averaging
150°/s = 50°/s. In between simulated saccades, the camera was
still and there was no intrinsic motion in the scene. In smooth pur-
suit, the camera was panned slowly and steadily across a static
scene with a speed of about 2°/s.

In the checkerboard random flicker, square regions (55 pm on
the retina) were randomly chosen to be either black or white on a
fast time scale (every 33 ms), giving the impression of flicker every-
where in space. In spatially uniform flicker, intensity values for the
entire screen were randomly chosen every 33 ms. Natural movie
clips of 15 to 30 s duration as well as checkerboard and uniform
flicker sequences of 30 s duration were presented to the retina
between 100 and 300 times for redundancy calculations. With the
exception of one experiment, each retinal preparation was pre-
sented with many stimuli: a collection of movies, repeated checker-
board flicker, repeated uniform flicker, and nonrepeated checker-
board to map receptive fields.

Electrophysiological Recording

Extracellular voltages were recorded by a MultiChannel Systems
MEA 60 microelectrode array and amplified with band pass filtering
of ~1 Hz to 3 kHz. Experiments used either a square microelec-
trode array with 10 wm diameter electrodes spaced 100 pm apart,
or a hexagonal array with a spacing of 30 pm in the center and
90 pm for the outermost ring. Custom recording hardware and soft-
ware based on a National Instrument MIO 64 A/D PCI card and
LabView software streamed data to disk with a sampling rate of 10
kSamples/s. Voltage data from each of the 60 electrodes were
sorted into spike trains of single ganglion cells based on the overall
spike size and shape in a 2.5 ms window. Only spike waveforms



Neuron
502

that were clearly distinguished from the noise were used. We re-
quired that isolated spike trains had fewer than 0.5% of their in-
terspike intervals shorter than 2 ms. In order to determine whether
the same spikes were being counted on multiple channels, the
crosscorrelation function between isolated spike trains was com-
puted. Whenever there was a narrow (0.2 ms) peak in the cross-
correlation that contained more than 1% of the spikes, one of the
spike trains was disqualified.

Receptive-Field Analysis

To map the receptive fields of ganglion cells, we stimulated them
with nonrepeated checkerboard flicker for 30-45 min and calcu-
lated the spike-triggered stimulus average (Schnitzer and Meister,
2003). The spike-triggered average, RF(x,y,t), contains the spatial
and temporal features of the stimulus that on average caused a
cell to spike. The spatial profile showed center-surround antago-
nism, and the temporal dynamics displayed a mixture of temporal
integration and differentiation. The spatial profile of the receptive-
field center was fit with a two-dimensional Gaussian function, and
the center coordinates, X = (xq,yo), were used to determine the dis-
tance between pairs of ganglion cells, D, = |X, — X|. The receptive-
field center was identified as all of the checkers having the same
polarity as the checker with the largest value, and its temporal pro-
file was calculated by summing over the temporal profile of all the
checkers that belonged to the receptive-field center.

Receptive-Field Overlap
The receptive field can be viewed as a vector with separate com-
ponents for each spatial location and time bin before the spike,
giving a total of 80 x 80 x 32 components. To calculate the overlap
between cells a and b, O,,, we computed the inner product be-
tween their receptive fields and divided by the noise-corrected
magnitude of each receptive-field vector:

0, - RF; * RF, ®)

f f °
[ — [ =
VIREE = Ny | IRFE = Nyod

The overlap has a maximum value of +1 when the two receptive
fields are identical, a minimum value of -1 when they are of oppo-
site polarity but otherwise the same, and a value close to 0 when
they are far apart in space or very different in their temporal dy-
namics. The noise correction term ¢ was defined as the standard
deviation per pixel far in space and/or time from the maximum of
the spike-triggered average, and N was the number of pixels. This
correction compensated for the overestimation in magnitude of
each receptive-field vector due to averaging over only a finite num-
ber of spikes. Noise correction was unnecessary for the numerator,
because noise causes no bias in this inner product. In most cases,
the noise correction resulted in roughly a ~10% change in the
overlap.

Functional Classification

Following previous studies (DeVries and Baylor, 1997; Schnitzer
and Meister, 2003), we assigned cells to functional classes based
on the temporal dynamics of their receptive-field center. We used
an agglomerative clustering algorithm to help inform our choice of
functional classes. Receptive fields were compared by computing
their functional overlap, using only the temporal dynamics of the
receptive-field center (Equation 5). At the outset of our iterative
algorithm, each cell formed its own cluster. First, we found the pair
of clusters that had the largest overlap. Then, these two clusters
were merged into a single cluster by averaging their receptive
fields, weighted by the number of cells in each cluster. This pro-
cedure was repeated until all cells were merged into a single clus-
ter. The significance of each merger was evaluated using the over-
lap between the two clusters. If the two clusters were very similar,
then they will have an overlap close to +1, but if they were quite
different, then the overlap will be significantly lower. Six cell classes
could be identified, as shown by a break in the merger score as a
function of number of clusters (Figure 4). Including the spatial pro-
file of the receptive field had little effect on the assignment of func-
tional classes. Similar results were found across multiple retinas.

Our functional types corresponded closely with previous classifica-
tion schemes. For instance, when tested with diffuse flashes of
light, fast OFF, standard OFF, and medium OFF cells were ON/OFF-
type; slow OFF cells were OFF-type; and fast ON and slow ON were
ON-type.

Redundancy

Spike trains were discretized into the spike count in successive
time bins of 10 ms; bins were allowed to have more than one spike.
Next, spike words were formed by concatenating K such time bins.
For the joint response of two cells, spike counts from each cell
were concatenated together into a word of 2K digits. The prob-
ability of finding the it" spike word W; at time t during the movie,
p(Wjlt), was compiled over repeated stimulus presentations, and
the probability of finding the it" spike word over the entire movie
was found by averaging over time, p(W)) = (p(Wilt));. Entropies were
estimated directly from the probability distribution of spike words:

Hsignar = — E,-P(Wi)|°92 pW)) (6a)

Hue — {25 pWilt)log, p(Wilf)}, (6b)

and the mutual information between stimulus and response was
the difference between signal and noise entropies:

I(R;S) = Hsignal = Hpoise-

Entropies were corrected for the finite size of the data set by
dividing the data into S = 2, 4, and 8 blocks and using standard
techniques (Strong et al., 1998). An extrapolation to infinite word
length was made using word lengths ranging from 2 to 4 digits
(Strong et al., 1998). Using these methods, we found signal entro-
pies in the range of 5.2 to 13 bits/spike, with an average of 8.6 bits/
spike; noise entropies in the range of 2.4 to 7.9 bits/spike, with an
average of 4.6 bits/spike. A very wide range of firing rates was
found under naturalistic stimulus conditions, from 0.06 up to 10.2
spikes/s with a median of 1.2 spikes/s; the information rates for
individual cells correspondingly varied widely, from 0.35 to 21.8
bits/s with a median of 4.4 bits/s.

Random and Systematic Error in Redundancy Values

Signal entropies were much better sampled than noise entropies,
and single-cell entropies were better sampled than joint entropies.
As a result, any bias that remained after correction for finite data
size tended to be largest for the joint noise entropy. Such a bias
would decrease the measured redundancy. To estimate the size of
this bias, we assumed a Poisson model of spike generation with a
5 ms absolute refractory period; the free firing rate in this model
can be uniquely determined from the measured spike trains (Berry
and Meister, 1998). With this model, we generated random spike
trains with enough repeats to sample the noise entropy thoroughly.
By comparing the information of simulated spike train having many
repeats (1800) to the information for spike trains having the same
number of repeats as used in our data (120-180), we found that the
redundancy was underestimated by ~0.5%-1% under our experi-
mental conditions.

The redundancy depends on the choice of time bin used to form
spike words. We chose 10 ms because the timing precision of neu-
rons was rarely any better, so that most of the details of the spike
train on a finer temporal scale are noise. However, fluctuations in
firing on a fine temporal scale may serve to further distinguish the
responses of different neurons and thus decrease their redun-
dancy. On the other hand, excess synchrony can also exist on a
fine temporal scale, and these correlations may increase the redun-
dancy. We tested the effect of temporal scale by subdividing spike
words of 10 or 20 ms duration into words of the same duration but
having smaller time bins and recomputing the redundancy. When
words with 2 bins of 10 ms were divided into 4 bins of 5 ms, the
redundancy increased by a factor of 1.10 + 0.06; when words with
1 bin of 10 ms were divided into 4 bins of 2.5 ms, the redundancy
increased by a factor of 1.11 = 0.11. These tests indicate that noise
correlations on a fine temporal scale add about 10% to the redun-
dancy.

The redundancy also depends on the total temporal duration of
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the chosen spike words. Longer words are desirable, but words
with many digits cannot be adequately sampled. Typically, the
probability of joint responses could only be sampled with spike
words up to 4 digits long. As a result, there is a trade-off with the
choice of time bin: smaller time bins resolve synchrony on a fine
timescale, but cannot sample correlations on a long timescale.
Such correlations significantly affect the redundancy: when we
used 5 ms bins instead of 10 ms bins, extrapolating up to 4 digit
spike words in each case, the redundancy was smaller by a factor
of 1.35 = 0.10. This underscores the fact that forming spike words
with a duration of 40 ms allows one to sample correlations not
observed within 20 ms spike words. Pairs of ganglion cells often
exhibited weak correlation on timescales greater than 40 ms, which
are only partially captured by extrapolation to infinite word length.
Our choice of time bin and word length reflects a good balance
between resolving fine temporal structure and sampling long time-
scale correlations. Were we able to sample spike words with
smaller time bins and many more digits, it is likely that the redun-
dancy would be greater than our estimate.

The significance of our calculated redundancy values was deter-
mined by two different methods. First, we examined the distribution
of redundancies found under checkerboard stimulation for cell
pairs separated by more 250 um (see Figure 3). Since such pairs
of cells have little or no overlap of their receptive-field centers, we
expect that they should mostly be independent. We fit a Gaussian
to the distribution over these putatively independent cell pairs; the
width of the Gaussian was ~2.5%. Second, we shifted the spikes
of one cell relative to another by a constant, random time. Again,
such a shift should render the cell pair nearly independent. We
calculated the redundancy between cell pairs for many values of
this relative time shift; the standard deviation across different time
shifts was 3%. We chose a conservative threshold of 5% redun-
dancy for significance, as the probability that independent cells
would have a larger apparent redundancy by chance is p < 0.01.

Overrepresentation Factor

The overrepresentation factor measures how many times, on
average, the information encoded by one ganglion cell is also en-
coded by neighboring cells. For a single cell a, this quantity is 6, =
ZpAaplla, where A,y is the (nonnormalized) redundancy and [, is the
information, both measured in bits. Because we record only a small
fraction of the ganglion cells in a patch of retina, this quantity is
dominated by the details of which cells we happened to sample.
Instead, we pooled all of our measurements to estimate the total
overrepresentation for the population. For this, we averaged all
values of redundancy for cells spaced by a distance r, 6(r) =
(Aaflo)s,~5)-r, Where the sum is over a and b, so that the indivi-
dual information of each cell appears once in the denominator in
this average. The total overrepresentation was given by the sum of
this contribution over all distances up to the maximum for which
we had sufficient data, © = [" 0(r) 2nr . dr, where the cell den-
sity n.o; was taken to be 1400 cells/mm? (Segev et al., 2004) and
the integral was evaluated with a bin size of 25 um. At large separa-
tions, the few cell pairs that were redundant tended to have values
close to the significance threshold, so that a calculation of the
overrepresentation at this range had great uncertainty. As a result,
we included only cell pairs separated by up to r,,,, = 500 pnm in our
calculation. Error bars were determined by randomly selecting half
of the cell pairs and repeating the calculation for many such selec-
tions. Since the overrepresentation factor is an average quantity, it
is still possible for an individual ganglion cell to encode some
unique information even when the overrepresentation factor is
larger than 1.
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