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� Motivation

Imagine that you are in a room where two people are speaking simultaneously� You have two microphones�
which you hold in di�erent locations� The microphones give you two recorded time signals� which we could
denote by x��t� and x��t�� with x� and x� the amplitudes� and t the time index� Each of these recorded
signals is a weighted sum of the speech signals emitted by the two speakers� which we denote by s��t� and
s��t�� We could express this as a linear equation�

x��t� � a��s� � a��s� ���

x��t� � a��s� � a��s� ���

where a��� a��� a��� and a�� are some parameters that depend on the distances of the microphones from
the speakers� It would be very useful if you could now estimate the two original speech signals s��t� and
s��t�� using only the recorded signals x��t� and x��t�� This is called the cocktail�party problem� For the
time being� we omit any time delays or other extra factors from our simpli�ed mixing model�
As an illustration� consider the waveforms in Fig� � and Fig� �� These are� of course� not realistic speech

signals� but su	ce for this illustration� The original speech signals could look something like those in Fig� �
and the mixed signals could look like those in Fig� �� The problem is to recover the data in Fig� � using
only the data in Fig� ��
Actually� if we knew the parameters aij � we could solve the linear equation in ��� by classical methods�

The point is� however� that if you don
t know the aij � the problem is considerably more di	cult�
One approach to solving this problem would be to use some information on the statistical properties of

the signals si�t� to estimate the aii� Actually� and perhaps surprisingly� it turns out that it is enough to
assume that s��t� and s��t�� at each time instant t� are statistically independent� This is not an unrealistic
assumption in many cases� and it need not be exactly true in practice� The recently developed technique
of Independent Component Analysis� or ICA� can be used to estimate the aij based on the information of
their independence� which allows us to separate the two original source signals s��t� and s��t� from their
mixtures x��t� and x��t�� Fig� � gives the two signals estimated by the ICA method� As can be seen� these
are very close to the original source signals �their signs are reversed� but this has no signi�cance��
Independent component analysis was originally developed to deal with problems that are closely related

to the cocktail�party problem� Since the recent increase of interest in ICA� it has become clear that this
principle has a lot of other interesting applications as well�
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Figure �� The original signals�
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Figure �� The observed mixtures of the source signals in Fig� ��
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Figure �� The estimates of the original source signals� estimated using only the observed signals in Fig� ��
The original signals were very accurately estimated� up to multiplicative signs�

Consider� for example� electrical recordings of brain activity as given by an electroencephalogram �EEG��
The EEG data consists of recordings of electrical potentials in many di�erent locations on the scalp�
These potentials are presumably generated by mixing some underlying components of brain activity� This
situation is quite similar to the cocktail�party problem� we would like to �nd the original components of
brain activity� but we can only observe mixtures of the components� ICA can reveal interesting information
on brain activity by giving access to its independent components�
Another� very di�erent application of ICA is on feature extraction� A fundamental problem in digital

signal processing is to �nd suitable representations for image� audio or other kind of data for tasks like
compression and denoising� Data representations are often based on �discrete� linear transformations�
Standard linear transformations widely used in image processing are the Fourier� Haar� cosine transforms
etc� Each of them has its own favorable properties 
����
It would be most useful to estimate the linear transformation from the data itself� in which case the

transform could be ideally adapted to the kind of data that is being processed� Figure � shows the basis
functions obtained by ICA from patches of natural images� Each image window in the set of training images
would be a superposition of these windows so that the coe	cient in the superposition are independent�
Feature extraction by ICA will be explained in more detail later on�
All of the applications described above can actually be formulated in a uni�ed mathematical framework�

that of ICA� This is a very general�purpose method of signal processing and data analysis�
In this review� we cover the de�nition and underlying principles of ICA in Sections � and �� Then�

starting from Section �� the ICA problem is solved on the basis of minimizing or maximizing certain
conrast functions� this transforms the ICA problem to a numerical optimization problem� Many contrast
functions are given and the relations between them are clari�ed� Section � covers a useful preprocessing that
greatly helps solving the ICA problem� and Section � reviews one of the most e	cient practical learning
rules for solving the problem� the FastICA algorithm� Then� in Section �� typical applications of ICA are
covered� removing artefacts from brain signal recordings� �nding hidden factors in �nancial time series�
and reducing noise in natural images� Section � concludes the text�

�



Figure �� Basis functions in ICA of natural images� The input window size was ��� �� pixels� These basis
functions can be considered as the independent features of images�
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� Independent Component Analysis

��� De�nition of ICA

To rigorously de�ne ICA 
��� ��� we can use a statistical �latent variables� model� Assume that we observe
n linear mixtures x�� ���� xn of n independent components

xj � aj�s� � aj�s� � ���� ajnsn� for all j� ���

We have now dropped the time index t� in the ICA model� we assume that each mixture xj as well
as each independent component sk is a random variable� instead of a proper time signal� The observed
values xj�t�� e�g�� the microphone signals in the cocktail party problem� are then a sample of this random
variable� Without loss of generality� we can assume that both the mixture variables and the independent
components have zero mean� If this is not true� then the observable variables xi can always be centered by
subtracting the sample mean� which makes the model zero�mean�
It is convenient to use vector�matrix notation instead of the sums like in the previous equation� Let us

denote by x the random vector whose elements are the mixtures x�� ���� xn� and likewise by s the random
vector with elements s�� ���� sn� Let us denote by A the matrix with elements aij � Generally� bold lower
case letters indicate vectors and bold upper�case letters denote matrices� All vectors are understood as
column vectors� thus xT � or the transpose of x� is a row vector� Using this vector�matrix notation� the
above mixing model is written as

x � As� ���

Sometimes we need the columns of matrix A� denoting them by aj the model can also be written as

x �
nX
i��

aisi� ���

The statistical model in Eq� � is called independent component analysis� or ICA model� The ICA model
is a generative model� which means that it describes how the observed data are generated by a process of
mixing the components si� The independent components are latent variables� meaning that they cannot
be directly observed� Also the mixing matrix is assumed to be unknown� All we observe is the random
vector x� and we must estimate both A and s using it� This must be done under as general assumptions
as possible�
The starting point for ICA is the very simple assumption that the components si are statistically

independent� Statistical independence will be rigorously de�ned in Section �� It will be seen below that we
must also assume that the independent component must have nongaussian distributions� However� in the
basic model we do not assume these distributions known �if they are known� the problem is considerably
simpli�ed�� For simplicity� we are also assuming that the unknown mixing matrix is square� but this
assumption can be sometimes relaxed� as explained in Section ���� Then� after estimating the matrix A�
we can compute its inverse� sayW� and obtain the independent component simply by�

s �Wx� ���

ICA is very closely related to the method called blind source separation �BSS� or blind signal separa�
tion� A �source� means here an original signal� i�e� independent component� like the speaker in a cocktail
party problem� �Blind� means that we no very little� if anything� on the mixing matrix� and make little
assumptions on the source signals� ICA is one method� perhaps the most widely used� for performing blind
source separation�
In many applications� it would be more realistic to assume that there is some noise in the measurements

�see e�g� 
��� ����� which would mean adding a noise term in the model� For simplicity� we omit any noise
terms� since the estimation of the noise�free model is di	cult enough in itself� and seems to be su	cient
for many applications�
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��� Ambiguities of ICA

In the ICA model in Eq� ���� it is easy to see that the following ambiguities will hold�

�� We cannot determine the variances �energies� of the independent components�

The reason is that� both s and A being unknown� any scalar multiplier in one of the sources si could
always be cancelled by dividing the corresponding column ai of A by the same scalar� see eq� ���� As a
consequence� we may quite as well �x the magnitudes of the independent components� as they are random
variables� the most natural way to do this is to assume that each has unit variance� Efs�i g � �� Then the
matrix A will be adapted in the ICA solution methods to take into account this restriction� Note that
this still leaves the ambiguity of the sign� we could multiply the an independent component by �� without
a�ecting the model� This ambiguity is� fortunately� insigni�cant in most applications�

�� We cannot determine the order of the independent components�

The reason is that� again both s and A being unknown� we can freely change the order of the terms in
the sum in ���� and call any of the independent components the �rst one� Formally� a permutation matrix
P and its inverse can be substituted in the model to give x � AP��Ps� The elements of Ps are the original
independent variables sj � but in another order� The matrix AP

�� is just a new unknown mixing matrix�
to be solved by the ICA algorithms�

��� Illustration of ICA

To illustrate the ICA model in statistical terms� consider two independent components that have the
following uniform distributions�

p�si� �

�
�

�
p
�
if jsij �

p
�

� otherwise
���

The range of values for this uniform distribution were chosen so as to make the mean zero and the variance
equal to one� as was agreed in the previous Section� The joint density of s� and s� is then uniform on a
square� This follows from the basic de�nition that the joint density of two independent variables is just
the product of their marginal densities �see Eq� ���� we need to simply compute the product� The joint
density is illustrated in Figure � by showing data points randomly drawn from this distribution�
Now let as mix these two independent components� Let us take the following mixing matrix�

A� �

�
� �
� �

�
���

This gives us two mixed variables� x� and x�� It is easily computed that the mixed data has a uniform
distribution on a parallelogram� as shown in Figure �� Note that the random variables x� and x� are not
independent any more� an easy way to see this is to consider� whether it is possible to predict the value of
one of them� say x�� from the value of the other� Clearly if x� attains one of its maximum or minimum
values� then this completely determines the value of x�� They are therefore not independent� �For variables
s� and s� the situation is di�erent� from Fig� � it can be seen that knowing the value of s� does not in any
way help in guessing the value of s���
The problem of estimating the data model of ICA is now to estimate the mixing matrix A� using only

information contained in the mixtures x� and x�� Actually� you can see from Figure � an intuitive way of
estimating A� The edges of the parallelogram are in the directions of the columns of A� This means that
we could� in principle� estimate the ICA model by �rst estimating the joint density of x� and x�� and then
locating the edges� So� the problem seems to have a solution�
In reality� however� this would be a very poor method because it only works with variables that have

exactly uniform distributions� Moreover� it would be computationally quite complicated� What we need is
a method that works for any distributions of the independent components� and works fast and reliably�
Next we shall consider the exact de�nition of independence before starting to develop methods for

estimation of the ICA model�
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Figure �� The joint distribution of the independent components s� and s� with uniform distributions�
Horizontal axis� s�� vertical axis� s��

Figure �� The joint distribution of the observed mixtures x� and x�� Horizontal axis� x�� vertical axis� x��
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� What is independence�

��� De�nition and fundamental properties

To de�ne the concept of independence� consider two scalar�valued random variables y� and y�� Basically�
the variables y� and y� are said to be independent if information on the value of y� does not give any
information on the value of y�� and vice versa� Above� we noted that this is the case with the variables
s�� s� but not with the mixture variables x�� x��
Technically� independence can be de�ned by the probability densities� Let us denote by p�y�� y�� the

joint probability density function �pdf� of y� and y�� Let us further denote by p��y�� the marginal pdf of
y�� i�e� the pdf of y� when it is considered alone�

p��y�� �

Z
p�y�� y��dy�� ���

and similarly for y�� Then we de�ne that y� and y� are independent if and only if the joint pdf is factorizable
in the following way�

p�y�� y�� � p��y��p��y��� ����

This de�nition extends naturally for any number n of random variables� in which case the joint density
must be a product of n terms�
The de�nition can be used to derive a most important property of independent random variables� Given

two functions� h� and h�� we always have

Efh��y��h��y��g � Efh��y��gEfh��y��g� ����

This can be proven as follows�

Efh��y��h��y��g �

Z Z
h��y��h��y��p�y�� y��dy�dy�

�

Z Z
h��y��p��y��h��y��p��y��dy�dy� �

Z
h��y��p��y��dy�

Z
h��y��p��y��dy�

� Efh��y��gEfh��y��g� ����

��� Uncorrelated variables are only partly independent

A weaker form of independence is uncorrelatedness� Two random variables y� and y� are said to be
uncorrelated� if their covariance is zero�

Efy�y�g �Efy�gEfy�g � � ����

If the variables are independent� they are uncorrelated� which follows directly from Eq� ����� taking h��y�� �
y� and h��y�� � y��
On the other hand� uncorrelatedness does not imply independence� For example� assume that �y�� y��

are discrete valued and follow such a distribution that the pair are with probability ��	 equal to any of the
following values� ��� ��� ������� ��� ��� ���� ��� Then y� and y� are uncorrelated� as can be simply calculated�
On the other hand�

Efy��y��g � � �� ��	 � Efy��gEfy��g� ����

so the condition in Eq� ���� is violated� and the variables cannot be independent�
Since independence implies uncorrelatedness� many ICA methods constrain the estimation procedure

so that it always gives uncorrelated estimates of the independent components� This reduces the number of
free parameters� and simpli�es the problem�
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Figure �� The multivariate distribution of two independent gaussian variables�

��� Why Gaussian variables are forbidden

The fundamental restriction in ICA is that the independent components must be nongaussian for ICA to
be possible�
To see why gaussian variables make ICA impossible� assume that the mixing matrix is orthogonal and

the si are gaussian� Then x� and x� are gaussian� uncorrelated� and of unit variance� Their joint density
is given by

p�x�� x�� �
�

��
exp��x�� � x��

�
� ����

This distribution is illustrated in Fig� �� The Figure shows that the density is completely symmetric�
Therefore� it does not contain any information on the directions of the columns of the mixing matrix A�
This is why A cannot be estimated�
More rigorously� one can prove that the distribution of any orthogonal transformation of the gaussian

�x�� x�� has exactly the same distribution as �x�� x��� and that x� and x� are independent� Thus� in the
case of gaussian variables� we can only estimate the ICA model up to an orthogonal transformation� In
other words� the matrix A is not identi�able for gaussian independent components� �Actually� if just one
of the independent components is gaussian� the ICA model can still be estimated��

� Principles of ICA estimation

��� �Nongaussian is independent�

Intuitively speaking� the key to estimating the ICA model is nongaussianity� Actually� without nongaus�
sianity the estimation is not possible at all� as mentioned in Sec� ���� This is at the same time probably the
main reason for the rather late resurgence of ICA research� In most of classical statistical theory� random
variables are assumed to have gaussian distributions� thus precluding any methods related to ICA�
The Central Limit Theorem� a classical result in probability theory� tells that the distribution of a sum

of independent random variables tends toward a gaussian distribution� under certain conditions� Thus� a
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sum of two independent random variables usually has a distribution that is closer to gaussian than any of
the two original random variables�
Let us now assume that the data vector x is distributed according to the ICA data model in Eq� ��

i�e� it is a mixture of independent components� For simplicity� let us assume in this section that all the
independent components have identical distributions� To estimate one of the independent components� we
consider a linear combination of the xi �see eq� ��� let us denote this by y � wTx �

P
i wixi� where w is

a vector to be determined� If w were one of the rows of the inverse of A� this linear combination would
actually equal one of the independent components� The question is now� How could we use the Central
Limit Theorem to determine w so that it would equal one of the rows of the inverse of A� In practice�
we cannot determine such a w exactly� because we have no knowledge of matrix A� but we can �nd an
estimator that gives a good approximation�
To see how this leads to the basic principle of ICA estimation� let us make a change of variables� de�ning

z � ATw� Then we have y � wTx � wTAs � zT s� y is thus a linear combination of si� with weights given
by zi� Since a sum of even two independent random variables is more gaussian than the original variables�
zT s is more gaussian than any of the si and becomes least gaussian when it in fact equals one of the si�
In this case� obviously only one of the elements zi of z is nonzero� �Note that the si were here assumed to
have identical distributions��
Therefore� we could take as w a vector that maximizes the nongaussianity of wTx� Such a vector

would necessarily correspond �in the transformed coordinate system� to a z which has only one nonzero
component� This means that wTx � zT s equals one of the independent components�
Maximizing the nongaussianity of wTx thus gives us one of the independent components� In fact� the

optimization landscape for nongaussianity in the n�dimensional space of vectorsw has �n local maxima� two
for each independent component� corresponding to si and �si �recall that the independent components can
be estimated only up to a multiplicative sign�� To �nd several independent components� we need to �nd all
these local maxima� This is not di	cult� because the di�erent independent components are uncorrelated�
We can always constrain the search to the space that gives estimates uncorrelated with the previous ones�
This corresponds to orthogonalization in a suitably transformed �i�e� whitened� space�
Our approach here is rather heuristic� but it will be seen in the next section and Sec� ��� that it has a

perfectly rigorous justi�cation�

��� Measures of nongaussianity

To use nongaussianity in ICA estimation� we must have a quantitative measure of nongaussianity of a
random variable� say y� To simplify things� let us assume that y is centered �zero�mean� and has variance
equal to one� Actually� one of the functions of preprocessing in ICA algorithms� to be covered in Section ��
is to make this simpli�cation possible�

����� Kurtosis

The classical measure of nongaussianity is kurtosis or the fourth�order cumulant� The kurtosis of y is
classically de�ned by

kurt�y� � Efy�g � ��Efy�g�� ����

Actually� since we assumed that y is of unit variance� the right�hand side simpli�es to Efy�g � �� This
shows that kurtosis is simply a normalized version of the fourth moment Efy�g� For a gaussian y� the
fourth moment equals ��Efy�g��� Thus� kurtosis is zero for a gaussian random variable� For most �but not
quite all� nongaussian random variables� kurtosis is nonzero�
Kurtosis can be both positive or negative� Random variables that have a negative kurtosis are called

subgaussian� and those with positive kurtosis are called supergaussian� In statistical literature� the cor�
responding expressions platykurtic and leptokurtic are also used� Supergaussian random variables have
typically a �spiky� pdf with heavy tails� i�e� the pdf is relatively large at zero and at large values of the
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Figure �� The density function of the Laplace distribution� which is a typical supergaussian distribution�
For comparison� the gaussian density is given by a dashed line� Both densities are normalized ot unit
variance�

variable� while being small for intermediate values� A typical example is the Laplace distribution� whose
pdf �normalized to unit variance� is given by

p�y� �
�p
�
exp�

p
�jyj� ����

This pdf is illustrated in Fig� �� Subgaussian random variables� on the other hand� have typically a ��at�
pdf� which is rather constant near zero� and very small for larger values of the variable� A typical example
is the uniform distibution in eq� ����
Typically nongaussianity is measured by the absolute value of kurtosis� The square of kurtosis can

also be used� These are zero for a gaussian variable� and greater than zero for most nongaussian random
variables� There are nongaussian random variables that have zero kurtosis� but they can be considered as
very rare�
Kurtosis� or rather its absolute value� has been widely used as a measure of nongaussianity in ICA and

related �elds� The main reason is its simplicity� both computational and theoretical� Computationally�
kurtosis can be estimated simply by using the fourth moment of the sample data� Theoretical analysis is
simpli�ed because of the following linearity property� If x� and x� are two independent random variables�
it holds

kurt�x� � x�� � kurt�x�� � kurt�x�� ����

and

kurt��x�� � �� kurt�x�� ����

where � is a scalar� These properties can be easily proven using the de�nition�
To illustrate in a simple example what the optimization landscape for kurtosis looks like� and how

independent components could be found by kurtosis minimization or maximization� let us look at a
��dimensional model x � As� Assume that the independent components s�� s� have kurtosis values
kurt�s��� kurt�s��� respectively� both di�erent from zero� Remember that we assumed that they have
unit variances� We seek for one of the independent components as y � wTx�
Let us again make the transformation z � ATw� Then we have y � wTx � wTAs � zT s � z�s��z�s��

Now� based on the additive property of kurtosis� we have kurt�y� � kurt�z�s��� kurt�z�s�� � z�� kurt�s���
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z�� kurt�s��� On the other hand� we made the constraint that the variance of y is equal to �� based on the
same assumption concerning s�� s�� This implies a constraint on z� Efy�g � z�� � z�� � �� Geometrically�
this means that vector z is constrained to the unit circle on the ��dimensional plane� The optimization
problem is now� what are the maxima of the function j kurt�y�j � jz�� kurt�s�� � z�� kurt�s��j on the unit
circle� For simplicity� you may consider that the kurtosis are of the same sign� in which case it absolute
value operators can be omitted� The graph of this function is the �optimization landscape� for the problem�
It is not hard to show 
�� that the maxima are at the points when exactly one of the elements of vector

z is zero and the other nonzero� because of the unit circle constraint� the nonzero element must be equal
to � or ��� But these points are exactly the ones when y equals one of the independent components �si�
and the problem has been solved�
In practice we would start from some weight vector w� compute the direction in which the kurtosis

of y � wTx is growing most strongly �if kurtosis is positive� or decreasing most strongly �if kurtosis is
negative� based on the available sample x���� ����x�T � of mixture vector x� and use a gradient method or
one of their extensions for �nding a new vector w� The example can be generalized to arbitrary dimensions�
showing that kurtosis can theoretically be used as an optimization criterion for the ICA problem�
However� kurtosis has also some drawbacks in practice� when its value has to be estimated from a

measured sample� The main problem is that kurtosis can be very sensitive to outliers 
���� Its value may
depend on only a few observations in the tails of the distribution� which may be erroneous or irrelevant
observations� In other words� kurtosis is not a robust measure of nongaussianity�
Thus� other measures of nongaussianity might be better than kurtosis in some situations� Below we

shall consider negentropy whose properties are rather opposite to those of kurtosis� and �nally introduce
approximations of negentropy that more or less combine the good properties of both measures�

����� Negentropy

A second very important measure of nongaussianity is given by negentropy� Negentropy is based on the
information�theoretic quantity of �di�erential� entropy�
Entropy is the basic concept of information theory� The entropy of a random variable can be inter�

preted as the degree of information that the observation of the variable gives� The more �random�� i�e�
unpredictable and unstructured the variable is� the larger its entropy� More rigorously� entropy is closely
related to the coding length of the random variable� in fact� under some simplifying assumptions� entropy
is the coding length of the random variable� For introductions on information theory� see e�g� 
�� ����
Entropy H is de�ned for a discrete random variable Y as

H�Y � � �
X
i

P �Y � ai� logP �Y � ai� ����

where the ai are the possible values of Y � This very well�known de�nition can be generalized for continuous�
valued random variables and vectors� in which case it is often called di�erential entropy� The di�erential
entropy H of a random vector y with density f�y� is de�ned as 
�� ����

H�y� � �
Z

f�y� log f�y�dy� ����

A fundamental result of information theory is that a gaussian variable has the largest entropy among
all random variables of equal variance� For a proof� see e�g� 
�� ���� This means that entropy could be used
as a measure of nongaussianity� In fact� this shows that the gaussian distribution is the �most random� or
the least structured of all distributions� Entropy is small for distributions that are clearly concentrated on
certain values� i�e�� when the variable is clearly clustered� or has a pdf that is very �spiky��
To obtain a measure of nongaussianity that is zero for a gaussian variable and always nonnegative� one

often uses a slightly modi�ed version of the de�nition of di�erential entropy� called negentropy� Negentropy
J is de�ned as follows

J�y� � H�ygauss��H�y� ����
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where ygauss is a Gaussian random variable of the same covariance matrix as y� Due to the above�mentioned
properties� negentropy is always non�negative� and it is zero if and only if y has a Gaussian distribution�
Negentropy has the additional interesting property that it is invariant for invertible linear transformations

�� ����
The advantage of using negentropy� or� equivalently� di�erential entropy� as a measure of nongaussianity

is that it is well justi�ed by statistical theory� In fact� negentropy is in some sense the optimal estimator of
nongaussianity� as far as statistical properties are concerned� The problem in using negentropy is� however�
that it is computationally very di	cult� Estimating negentropy using the de�nition would require an
estimate �possibly nonparametric� of the pdf� Therefore� simpler approximations of negentropy are very
useful� as will be discussed next�

����� Approximations of negentropy

The estimation of negentropy is di	cult� as mentioned above� and therefore this contrast function remains
mainly a theoretical one� In practice� some approximation have to be used� Here we introduce approxi�
mations that have very promising properties� and which will be used in the following to derive an e	cient
method for ICA�
The classical method of approximating negentropy is using higher�order moments� for example as follows


����

J�y� � �

��
Efy�g� � �

	

kurt�y�� ����

The random variable y is assumed to be of zero mean and unit variance� However� the validity of such
approximations may be rather limited� In particular� these approximations su�er from the nonrobustness
encountered with kurtosis�
To avoid the problems encountered with the preceding approximations of negentropy� new approxi�

mations were developed in 
���� These approximation were based on the maximum�entropy principle� In
general we obtain the following approximation�

J�y� �
pX
i��

ki�EfGi�y�g �EfGi���g��� ����

where ki are some positive constants� and � is a Gaussian variable of zero mean and unit variance �i�e��
standardized�� The variable y is assumed to be of zero mean and unit variance� and the functions Gi are
some nonquadratic functions 
���� Note that even in cases where this approximation is not very accurate�
���� can be used to construct a measure of nongaussianity that is consistent in the sense that it is always
non�negative� and equal to zero if y has a Gaussian distribution�
In the case where we use only one nonquadratic function G� the approximation becomes

J�y� � �EfG�y�g �EfG���g�� ����

for practically any non�quadratic function G� This is clearly a generalization of the moment�based ap�
proximation in ����� if y is symmetric� Indeed� taking G�y� � y�� one then obtains exactly ����� i�e� a
kurtosis�based approximation�
But the point here is that by choosing G wisely� one obtains approximations of negentropy that are

much better than the one given by ����� In particular� choosing G that does not grow too fast� one obtains
more robust estimators� The following choices of G have proved very useful�

G��u� �
�

a�
log cosha�u� G��u� � � exp��u���� ����

where � � a� � � is some suitable constant�
Thus we obtain approximations of negentropy that give a very good compromise between the properties

of the two classical nongaussianity measures given by kurtosis and negentropy� They are conceptually

��



simple� fast to compute� yet have appealing statistical properties� especially robustness� Therefore� we shall
use these contrast functions in our ICA methods� Since kurtosis can be expressed in this same framework�
it can still be used by our ICA methods� A practical algorithm based on these contrast function will be
presented in Section ��

��� Minimization of Mutual Information

Another approach for ICA estimation� inspired by information theory� is minimization of mutual informa�
tion� We will explain this approach here� and show that it leads to the same principle of �nding most
nongaussian directions as was described above� In particular� this approach gives a rigorous justi�cation
for the heuristic principles used above�

����� Mutual Information

Using the concept of di�erential entropy� we de�ne the mutual information I between m �scalar� random
variables� yi� i � ����m as follows

I�y�� y�� ���� ym� �

mX
i��

H�yi��H�y�� ����

Mutual information is a natural measure of the dependence between random variables� In fact� it is
equivalent to the well�known Kullback�Leibler divergence between the joint density f�y� and the product
of its marginal densities� a very natural measure for independence� It is always non�negative� and zero if
and only if the variables are statistically independent� Thus� mutual information takes into account the
whole dependence structure of the variables� and not only the covariance� like PCA and related methods�
Mutual information can be interpreted by using the interpretation of entropy as code length� The

terms H�yi� give the lengths of codes for the yi when these are coded separately� and H�y� gives the code
length when y is coded as a random vector� i�e� all the components are coded in the same code� Mutual
information thus shows what code length reduction is obtained by coding the whole vector instead of the
separate components� In general� better codes can be obtained by coding the whole vector� However� if the
yi are independent� they give no information on each other� and one could just as well code the variables
separately without increasing code length�
An important property of mutual information 
��� �� is that we have for an invertible linear transfor�

mation y �Wx�

I�y�� y�� ���� yn� �
X
i

H�yi��H�x� � log j detWj� ����

Now� let us consider what happens if we constrain the yi to be uncorrelated and of unit variance� This means
EfyyT g �WEfxxT gWT � I� which implies det I � � � �detWEfxxT gWT � � �detW��detEfxxT g��detWT ��
and this implies that detW must be constant� Moreover� for yi of unit variance� entropy and negentropy
di�er only by a constant� and the sign� Thus we obtain�

I�y�� y�� ���� yn� � C �
X
i

J�yi�� ����

where C is a constant that does not depend onW� This shows the fundamental relation between negentropy
and mutual information�

����� De�ning ICA by Mutual Information

Since mutual information is the natural information�theoretic measure of the independence of random vari�
ables� we could use it as the criterion for �nding the ICA transform� In this approach that is an alternative
to the model estimation approach� we de�ne the ICA of a random vector x as an invertible transformation

��



as in ���� where the matrixW is determined so that the mutual information of the transformed components
si is minimized�
It is now obvious from ���� that �nding an invertible transformation W that minimizes the mutual

information is roughly equivalent to �nding directions in which the negentropy is maximized� More precisely�
it is roughly equivalent to �nding ��D subspaces such that the projections in those subspaces have maximum
negentropy� Rigorously� speaking� ���� shows that ICA estimation by minimization of mutual information is
equivalent to maximizing the sum of nongaussianities of the estimates� when the estimates are constrained to
be uncorrelated� The constraint of uncorrelatedness is in fact not necessary� but simpli�es the computations
considerably� as one can then use the simpler form in ���� instead of the more complicated form in �����
Thus� we see that the formulation of ICA as minimization of mutual information gives another rigorous

justi�cation of our more heuristically introduced idea of �nding maximally nongaussian directions�

��� Maximum Likelihood Estimation

����� The likelihood

A very popular approach for estimating the ICA model is maximum likelihood estimation� which is closely
connected to the infomax principle� Here we discuss this approach� and show that it is essentially equivalent
to minimization of mutual information�
It is possible to formulate directly the likelihood in the noise�free ICA model� which was done in 
����

and then estimate the model by a maximum likelihood method� Denoting byW � �w�� ����wn�
T the matrix

A��� the log�likelihood takes the form 
����

L �

TX
t��

nX
i��

log fi�w
T
i x�t�� � T log j detWj ����

where the fi are the density functions of the si �here assumed to be known�� and the x�t�� t � �� ���� T
are the realizations of x� The term log j detWj in the likelihood comes from the classic rule for �linearly�
transforming random variables and their densities 
���� In general� for any random vector x with density
px and for any matrixW� the density of y �Wx is given by px�Wx�j detWj�

����� The Infomax Principle

Another related contrast function was derived from a neural network viewpoint in 
�� ���� This was based on
maximizing the output entropy �or information �ow� of a neural network with non�linear outputs� Assume
that x is the input to the neural network whose outputs are of the form gi�w

T
i x�� where the gi are some

non�linear scalar functions� and the wi are the weight vectors of the neurons� One then wants to maximize
the entropy of the outputs�

L� � H�g��w
T
� x�� ���� gn�w

T
nx��� ����

If the gi are well chosen� this framework also enables the estimation of the ICA model� Indeed� several
authors� e�g�� 
�� ���� proved the surprising result that the principle of network entropy maximization�
or �infomax�� is equivalent to maximum likelihood estimation� This equivalence requires that the non�
linearities gi used in the neural network are chosen as the cumulative distribution functions corresponding
to the densities fi� i�e�� g

�
i��� � fi����

����� Connection to mutual information

To see the connection between likelihood and mutual information� consider the expectation of the log�
likelihood�

�

T
EfLg �

nX
i��

Eflog fi�wT
i x�g� log j detWj� ����
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Figure �� An illustration of projection pursuit and the �interestingness� of nongaussian projections� The
data in this �gure is clearly divided into two clusters� However� the principal component� i�e� the direction
of maximum variance� would be vertical� providing no separation between the clusters� In contrast� the
strongly nongaussian projection pursuit direction is horizontal� providing optimal separation of the clusters�

Actually� if the fi were equal to the actual distributions of w
T
i x� the �rst term would be equal to

�PiH�wT
i x�� Thus the likelihood would be equal� up to an additive constant� to the negative of mutual

information as given in Eq� �����
Actually� in practice the connection is even stronger� This is because in practice we don
t know the

distributions of the independent components� A reasonable approach would be to estimate the density of
wT
i x as part of the ML estimation method� and use this as an approximation of the density of si� In this

case� likelihood and mutual information are� for all practical purposes� equivalent�
Nevertheless� there is a small di�erence that may be very important in practice� The problem with

maximum likelihood estimation is that the densities fi must be estimated correctly� They need not be
estimated with any great precision� in fact it is enough to estimate whether they are sub� or supergaussian

�� ��� ���� In many cases� in fact� we have enough prior knowledge on the independent components� and
we don
t need to estimate their nature from the data� In any case� if the information on the nature of
the independent components is not correct� ML estimation will give completely wrong results� Some care
must be taken with ML estimation� therefore� In contrast� using reasonable measures of nongaussianity�
this problem does not usually arise�

��� ICA and Projection Pursuit

It is interesting to note how our approach to ICA makes explicit the connection between ICA and projection
pursuit� Projection pursuit 
��� ��� ��� ��� is a technique developed in statistics for �nding �interesting�
projections of multidimensional data� Such projections can then be used for optimal visualization of the
data� and for such purposes as density estimation and regression� In basic ���D� projection pursuit� we try
to �nd directions such that the projections of the data in those directions have interesting distributions� i�e��
display some structure� It has been argued by Huber 
��� and by Jones and Sibson 
��� that the Gaussian
distribution is the least interesting one� and that the most interesting directions are those that show the
least Gaussian distribution� This is exactly what we do to estimate the ICA model�
The usefulness of �nding such projections can be seen in Fig� �� where the projection on the projection

pursuit direction� which is horizontal� clearly shows the clustered structure of the data� The projection on
the �rst principal component �vertical�� on the other hand� fails to show this structure�
Thus� in the general formulation� ICA can be considered a variant of projection pursuit� All the non�

gaussianity measures and the corresponding ICA algorithms presented here could also be called projection

��



pursuit �indices� and algorithms� In particular� the projection pursuit allows us to tackle the situation
where there are less independent components si than original variables xi is� Assuming that those dimen�
sions of the space that are not spanned by the independent components are �lled by gaussian noise� we
see that computing the nongaussian projection pursuit directions� we e�ectively estimate the independent
components� When all the nongaussian directions have been found� all the independent components have
been estimated� Such a procedure can be interpreted as a hybrid of projection pursuit and ICA�
However� it should be noted that in the formulation of projection pursuit� no data model or assumption

about independent components is made� If the ICA model holds� optimizing the ICA nongaussianity
measures produce independent components� if the model does not hold� then what we get are the projection
pursuit directions�

� Preprocessing for ICA

In the preceding section� we discussed the statistical principles underlying ICA methods� Practical algo�
rithms based on these principles will be discussed in the next section� However� before applying an ICA
algorithm on the data� it is usually very useful to do some preprocessing� In this section� we discuss some
preprocessing techniques that make the problem of ICA estimation simpler and better conditioned�

��� Centering

The most basic and necessary preprocessing is to center x� i�e� subtract its mean vector m � Efxg so
as to make x a zero�mean variable� This implies that s is zero�mean as well� as can be seen by taking
expectations on both sides of Eq� ����
This preprocessing is made solely to simplify the ICA algorithms� It does not mean that the mean

could not be estimated� After estimating the mixing matrix A with centered data� we can complete the
estimation by adding the mean vector of s back to the centered estimates of s� The mean vector of s is
given by A��m� where m is the mean that was subtracted in the preprocessing�

��� Whitening

Another useful preprocessing strategy in ICA is to �rst whiten the observed variables� This means that
before the application of the ICA algorithm �and after centering�� we transform the observed vector x
linearly so that we obtain a new vector 
x which is white� i�e� its components are uncorrelated and their
variances equal unity� In other words� the covariance matrix of 
x equals the identity matrix�

Ef
x
xT g � I� ����

The whitening transformation is always possible� One popular method for whitening is to use the eigen�
value decomposition �EVD� of the covariance matrix EfxxT g � EDET � where E is the orthogonal matrix
of eigenvectors of EfxxT g and D is the diagonal matrix of its eigenvalues� D � diag�d�� ���� dn�� Note that
EfxxT g can be estimated in a standard way from the available sample x���� ����x�T �� Whitening can now
be done by


x � ED����ETx ����

where the matrixD����is computed by a simple component�wise operation asD���� � diag�d����� � ���� d
����
n ��

It is easy to check that now Ef
x
xT g � I�
Whitening transforms the mixing matrix into a new one� 
A� We have from ��� and �����


x � ED����ETAs � 
As ����

The utility of whitening resides in the fact that the new mixing matrix 
A is orthogonal� This can be seen
from

Ef
x
xT g � 
AEfssT g 
AT � 
A 
AT � I� ����
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Figure ��� The joint distribution of the whitened mixtures�

Here we see that whitening reduces the number of parameters to be estimated� Instead of having to
estimate the n� parameters that are the elements of the original matrix A� we only need to estimate
the new� orthogonal mixing matrix 
A� An orthogonal matrix contains n�n � ���� degrees of freedom�
For example� in two dimensions� an orthogonal transformation is determined by a single angle parameter�
In larger dimensions� an orthogonal matrix contains only about half of the number of parameters of an
arbitrary matrix� Thus one can say that whitening solves half of the problem of ICA� Because whitening is
a very simple and standard procedure� much simpler than any ICA algorithms� it is a good idea to reduce
the complexity of the problem this way�
It may also be quite useful to reduce the dimension of the data at the same time as we do the whitening�

Then we look at the eigenvalues dj of EfxxT g and discard those that are too small� as is often done in the
statistical technique of principal component analysis� This has often the e�ect of reducing noise� Moreover�
dimension reduction prevents overlearning� which can sometimes be observed in ICA 
����
A graphical illustration of the e�ect of whitening can be seen in Figure ��� in which the data in Figure �

has been whitened� The square de�ning the distribution is now clearly a rotated version of the original
square in Figure �� All that is left is the estimation of a single angle that gives the rotation�
In the rest of this tutorial� we assume that the data has been preprocessed by centering and whitening�

For simplicity of notation� we denote the preprocessed data just by x� and the transformed mixing matrix
by A� omitting the tildes�

��� Further preprocessing

The success of ICA for a given data set may depende crucially on performing some application�dependent
preprocessing steps� For example� if the data consists of time�signals� some band�pass �ltering may be very
useful� Note that if we �lter linearly the observed signals xi�t� to obtain new signals� say x

�
i �t�� the ICA

model still holds for x�i �t�� with the same mixing matrix�
This can be seen as follows� Denote byX the matrix that contains the observations x���� ����x�T � as its columns�

and similarly for S� Then the ICA model can be expressed as�

X � AS ����
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Now� time 	ltering of X corresponds to multiplying X from the right by a matrix� let us call it M� This gives

X
� � XM � ASM � AS�� ��
�

which shows that the ICA model remains still valid�

� The FastICA Algorithm

In the preceding sections� we introduced di�erent measures of nongaussianity� i�e� objective functions for
ICA estimation� In practice� one also needs an algorithm for maximizing the contrast function� for example
the one in ����� In this section� we introduce a very e	cient method of maximization suited for this task�
It is here assumed that the data is preprocessed by centering and whitening as discussed in the preceding
section�

	�� FastICA for one unit

To begin with� we shall show the one�unit version of FastICA� By a �unit� we refer to a computational
unit� eventually an arti�cial neuron� having a weight vector w that the neuron is able to update by a
learning rule� The FastICA learning rule �nds a direction� i�e� a unit vector w such that the projection
wTx maximizes nongaussianity� Nongaussianity is here measured by the approximation of negentropy
J�wTx� given in ����� Recall that the variance of wTx must here be constrained to unity� for whitened
data this is equivalent to constraining the norm of w to be unity�
The FastICA is based on a �xed�point iteration scheme for �nding a maximum of the nongaussianity of

wTx� as measured in ����� see 
��� ���� It can be also derived as an approximative Newton iteration 
����
Denote by g the derivative of the nonquadratic function G used in ����� for example the derivatives of the
functions in ���� are�

g��u� � tanh�a�u�� ����

g��u� � u exp��u����

where � � a� � � is some suitable constant� often taken as a� � �� The basic form of the FastICA algorithm
is as follows�

�� Choose an initial �e�g� random� weight vector w�

�� Let w� � Efxg�wTx�g �Efg��wTx�gw
�� Let w � w��kw�k
�� If not converged� go back to ��

Note that convergence means that the old and new values of w point in the same direction� i�e� their
dot�product is �almost� equal to �� It is not necessary that the vector converges to a single point� since w
and �w de�ne the same direction� This is again because the independent components can be de�ned only
up to a multiplicative sign� Note also that it is here assumed that the data is prewhitened�

The derivation of FastICA is as follows� First note that the maxima of the approximation of the negentropy of
w
T
x are obtained at certain optima of EfG�wT

x�g� According to the Kuhn�Tucker conditions ���
� the optima of
EfG�wT

x�g under the constraint Ef�wT
x��g � kwk� � � are obtained at points where

Efxg�wT
x�g � �w � � ����

Let us try to solve this equation by Newton�s method� Denoting the function on the left�hand side of ���� by F � we
obtain its Jacobian matrix JF �w� as

JF �w� � EfxxT g��wT
x�g � �I ����
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To simplify the inversion of this matrix� we decide to approximate the 	rst term in ����� Since the data is sphered� a
reasonable approximation seems to be EfxxT g��wT

x�g � EfxxT gEfg��wT
x�g � Efg��wT

x�gI� Thus the Jacobian
matrix becomes diagonal� and can easily be inverted� Thus we obtain the following approximative Newton iteration�

w
� � w � �Efxg�wT

x�g � �w���Efg��wT
x�g � �� ����

This algorithm can be further simpli	ed by multiplying both sides of ���� by � � Efg��wT
x�g� This gives� after

algebraic simplication� the FastICA iteration�

In practice� the expectations in FastICA must be replaced by their estimates� The natural estimates
are of course the corresponding sample means� Ideally� all the data available should be used� but this is
often not a good idea because the computations may become too demanding� Then the averages can be
estimated using a smaller sample� whose size may have a considerable e�ect on the accuracy of the �nal
estimates� The sample points should be chosen separately at every iteration� If the convergence is not
satisfactory� one may then increase the sample size�

	�� FastICA for several units

The one�unit algorithm of the preceding subsection estimates just one of the independent components� or
one projection pursuit direction� To estimate several independent components� we need to run the one�unit
FastICA algorithm using several units �e�g� neurons� with weight vectors w�� ����wn�
To prevent di�erent vectors from converging to the same maxima we must decorrelate the outputs

wT
� x� ����w

T
nx after every iteration� We present here three methods for achieving this�

A simple way of achieving decorrelation is a de�ation scheme based on a Gram�Schmidt�like decorrela�
tion� This means that we estimate the independent components one by one� When we have estimated p
independent components� or p vectors w�� ����wp� we run the one�unit �xed�point algorithm for wp��� and
after every iteration step subtract from wp�� the �projections� w

T
p��wjwj � j � �� ���� p of the previously

estimated p vectors� and then renormalize wp���

�� Let wp�� � wp�� �
Pp

j��w
T
p��wjwj

�� Let wp�� � wp���
q
wT
p��wp��

����

In certain applications� however� it may be desired to use a symmetric decorrelation� in which no vectors
are �privileged� over others 
���� This can be accomplished� e�g�� by the classical method involving matrix
square roots�

LetW � �WWT �����W ����

whereW is the matrix �w�� ����wn�
T of the vectors� and the inverse square root �WWT ����� is obtained

from the eigenvalue decomposition ofWWT � F�FT as �WWT ����� � F�����FT � A simpler alternative
is the following iterative algorithm 
����

�� LetW �W�
p
kWWTk

Repeat �� until convergence�
�� LetW � �

�
W � �

�
WWTW

����

The norm in step � can be almost any ordinary matrix norm� e�g�� the ��norm or the largest absolute row
�or column� sum �but not the Frobenius norm��

	�� FastICA and maximum likelihood

Finally� we give a version of FastICA that shows explicitly the connection to the well�known infomax or
maximum likelihood algorithm introduced in 
�� �� �� ��� If we express FastICA using the intermediate
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formula in ����� and write it in matrix form �see 
��� for details�� we see that FastICA takes the following
form�

W� �W � ��diag���i� �Efg�y�yT g�W� ����

where y �Wx� �i � Efyig�yi�g� and � � diag�����i � Efg��yi�g��� The matrixW needs to be orthogo�
nalized after every step� In this matrix version� it is natural to orthogonalizeW symmetrically�
The above version of FastICA could be compared with the stochastic gradient method for maximizing

likelihood 
�� �� �� ���

W� �W � ��I� g�y�yT �W� ����

where � is the learning rate� not necessarily constant in time� Comparing ���� and ����� we see that
FastICA can be considered as a �xed�point algorithm for maximum likelihood estimation of the ICA data
model� For details� see 
���� In FastICA� convergence speed is optimized by the choice of the matrices
� and diag���i�� Another advantage of FastICA is that it can estimate both sub� and super�gaussian
independent components� which is in contrast to ordinary ML algorithms� which only work for a given class
of distributions �see Sec� �����

	�� Properties of the FastICA Algorithm

The FastICA algorithm and the underlying contrast functions have a number of desirable properties when
compared with existing methods for ICA�

�� The convergence is cubic �or at least quadratic�� under the assumption of the ICA data model �for a
proof� see 
����� This is in contrast to ordinary ICA algorithms based on �stochastic� gradient descent
methods� where the convergence is only linear� This means a very fast convergence� as has been
con�rmed by simulations and experiments on real data �see 
�����

�� Contrary to gradient�based algorithms� there are no step size parameters to choose� This means that
the algorithm is easy to use�

�� The algorithm �nds directly independent components of �practically� any non�Gaussian distribution
using any nonlinearity g� This is in contrast to many algorithms� where some estimate of the proba�
bility distribution function has to be �rst available� and the nonlinearity must be chosen accordingly�

�� The performance of the method can be optimized by choosing a suitable nonlinearity g� In particular�
one can obtain algorithms that are robust and�or of minimum variance� In fact� the two nonlinearities
in ���� have some optimal properties� for details see 
����

�� The independent components can be estimated one by one� which is roughly equivalent to doing
projection pursuit� This es useful in exploratory data analysis� and decreases the computational load
of the method in cases where only some of the independent components need to be estimated�

�� The FastICA has most of the advantages of neural algorithms� It is parallel� distributed� computa�
tionally simple� and requires little memory space� Stochastic gradient methods seem to be preferable
only if fast adaptivity in a changing environment is required�

A MatlabTM implementation of the FastICA algorithm is available on the World Wide Web free of
charge 
����

� Applications of ICA

In this section we review some applications of ICA� The most classical application of ICA� the cocktail�party
problem� was already explained in the opening section of this paper�
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�� Separation of Artifacts in MEG Data

Magnetoencephalography �MEG� is a noninvasive technique by which the activity or the cortical neurons
can be measured with very good temporal resolution and moderate spatial resolution� When using a MEG
record� as a research or clinical tool� the investigator may face a problem of extracting the essential features
of the neuromagnetic signals in the presence of artifacts� The amplitude of the disturbances may be higher
than that of the brain signals� and the artifacts may resemble pathological signals in shape�
In 
���� the authors introduced a new method to separate brain activity from artifacts using ICA� The

approach is based on the assumption that the brain activity and the artifacts� e�g� eye movements or
blinks� or sensor malfunctions� are anatomically and physiologically separate processes� and this separation
is re�ected in the statistical independence between the magnetic signals generated by those processes� The
approach follows the earlier experiments with EEG signals� reported in 
���� A related approach is that of

����
The MEG signals were recorded in a magnetically shielded room with a ����channel whole�scalp

Neuromag���� neuromagnetometer� This device collects data at �� locations over the scalp� using or�
thogonal double�loop pick�up coils that couple strongly to a local source just underneath� The test person
was asked to blink and make horizontal saccades� in order to produce typical ocular �eye� artifacts� More�
over� to produce myographic �muscle� artifacts� the subject was asked to bite his teeth for as long as ��
seconds� Yet another artifact was created by placing a digital watch one meter away from the helmet into
the shielded room�
Figure �� presents a subset of �� spontaneous MEG signals xi�t� from the frontal� temporal� and

occipital areas 
���� The �gure also shows the positions of the corresponding sensors on the helmet� Due
to the dimension of the data ���� magnetic signals were recorded�� it is impractical to plot all the MEG
signals xi�t�� i � �� ���� ���� Also two electro�oculogram channels and the electrocardiogram are presented�
but they were not used in computing the ICA�
The signal vector x in the ICA model ��� consists now of the amplitudes xi�t� of the ��� signals at a

certain time point� so the dimensionality is n � ���� In the theoretical model� x is regarded as a random
vector� and the measurements x�t� give a set of realizations of x as time proceeds� Note that in the basic
ICA model that we are using� the temporal correlations in the signals are not utilized at all�
The x�t� vectors were whitened using PCA and the dimensionality was decreased at the same time�

Then� using the FastICA algorithm� a subset of the rows of the separating matrix W of eq� ��� were
computed� Once a vector wi has become available� an ICA signal si�t� can be computed from si�t� �
wT
i x

��t� with x��t� now denoting the whitened and lower dimensional signal vector�
Figure �� shows sections of � independent components �IC
s� si�t�� i � �� ���� � found from the recorded

data together with the corresponding �eld patterns 
���� The �rst two IC
s are clearly due to the musclular
activity originated from the biting� Their separation into two components seems to correspond� on the
basis of the �eld patterns� to two di�erent sets of muscles that were activated during the process� IC� and
IC� are showing the horizontal eye movements and the eye blinks� respectively� IC� represents the cardiac
artifact that is very clearly extracted�
To �nd the remaining artifacts� the data were high�pass �ltered� with cuto� frequency at � Hz� Next�

the independent component IC� was found� It shows clearly the artifact originated at the digital watch�
located to the right side of the magnetometer� The last independent component IC� is related to a sensor
presenting higher RMS �root mean squared� noise than the others�
The results of Fig� �� clearly show that using the ICA technique and the FastICA algorithm� it is

possible to isolate both eye movement and eye blinking artifacts� as well as cardiac� myographic� and other
artifacts from MEG signals� The FastICA algorithm is an especially suitable tool� because artifact removal
is an interactive technique and the investigator may freely choose how many of the IC
s he or she wants�
In addition to reducing artifacts� ICA can be used to decompose evoked �elds 
���� which enables direct

access to the underlying brain functioning� which is likely to be of great signi�cance in neuroscienti�c
research�
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Figure ��� �From 
����� Samples of MEG signals� showing artifacts produced by blinking� saccades� biting
and cardiac cycle� For each of the � positions shown� the two orthogonal directions of the sensors are
plotted�


�� Finding Hidden Factors in Financial Data

It is a tempting alternative to try ICA on �nancial data� There are many situations in that application
domain in which parallel time series are available� such as currency exchange rates or daily returns of stocks�
that may have some common underlying factors� ICA might reveal some driving mechanisms that otherwise
remain hidden� In a recent study of a stock portfolio 
��� it was found that ICA is a complementary tool
to PCA� allowing the underlying structure of the data to be more readily observed�
In 
���� we applied ICA on a di�erent problem� the cash�ow of several stores belonging to the same

retail chain� trying to �nd the fundamental factors common to all stores that a�ect the cash�ow data�
Thus� the cash�ow e�ect of the factors speci�c to any particular store� i�e�� the e�ect of the actions taken
at the individual stores and in its local environment could be analyzed�
The assumption of having some underlying independent components in this speci�c application may

not be unrealistic� For example� factors like seasonal variations due to holidays and annual variations�
and factors having a sudden e�ect on the purchasing power of the customers like prize changes of various
commodities� can be expected to have an e�ect on all the retail stores� and such factors can be assumed to
be roughly independent of each other� Yet� depending on the policy and skills of the individual manager
like e�g� advertising e�orts� the e�ect of the factors on the cash �ow of speci�c retail outlets are slightly
di�erent� By ICA� it is possible to isolate both the underlying factors and the e�ect weights� thus also
making it possible to group the stores on the basis of their managerial policies using only the cash �ow
time series data�
The data consisted of the weekly cash �ow in �� stores that belong to the same retail chain� the cash

�ow measurements cover ��� weeks� Some examples of the original data xi�t� are shown in Fig� ���
The prewhitening was performed so that the original signal vectors were projected to the subspace

��



spanned by their �rst �ve principal components and the variances were normalized to �� Thus the dimension
of the signal space was decreased from �� to �� Using the FastICA algorithm� four IC
s si�t�� i � �� ���� � were
estimated� As depicted in Fig� ��� the FastICA algorithm has found several clearly di�erent fundamental
factors hidden in the original data�
The factors have clearly di�erent interpretations� The upmost two factors follow the sudden changes

that are caused by holidays etc�� the most prominent example is the Christmas time� The factor on the
bottom row� on the other hand� re�ects the slower seasonal variation� with the e�ect of the summer holidays
clearly visible� The factor on the third row could represent a still slower variation� something resembling
a trend� The last factor� on the fourth row� is di�erent from the others� it might be that this factor
follows mostly the relative competitive position of the retail chain with respect to its competitors� but
other interpretations are also possible�
More details on the experiments and their interpretation can be found in 
����


�� Reducing Noise in Natural Images

The third example deals with �nding ICA �lters for natural images and� based on the ICA decomposition�
removing noise from images corrupted with additive Gaussian noise�
A set of digitized natural images were used� Denote the vector of pixel gray levels in an image window

by x� Note that� contrary to the other two applications in the previous sections� we are not this time
considering multivalued time series or images changing with time� instead the elements of x are indexed by
the location in the image window or patch� The sample windows were taken at random locations� The ��D
structure of the windows is of no signi�cance here� row by row scanning was used to turn a square image
window into a vector of pixel values� The independent components of such image windows are represented
in Fig� �� Each window in this Figure corresponds to one of the columns ai of the mixing matrix A� Thus
an observed image window is a superposition of these windows as in ���� with independent coe	cients�
Now� suppose a noisy image model holds�

z � x� n ����

where n is uncorrelated noise� with elements indexed in the image window in the same way as x� and z
is the measured image window corrupted with noise� Let us further assume that n is Gaussian and x is
non�Gaussian� There are many ways to clean the noise� one example is to make a transformation to spatial
frequency space by DFT� do low�pass �ltering� and return to the image space by IDFT 
���� This is not
very e	cient� however� A better method is the recently introduced Wavelet Shrinkage method 
��� in which
a transform based on wavelets is used� or methods based on median �ltering 
���� None of these methods
is explicitly taking advantage of the image statistics� however�
We have recently introduced another� statistically principled method called Sparse Code Shrinkage 
����

It is very closely related to independent component analysis� Brie�y� if we model the density of x by ICA�
and assume n Gaussian� then the Maximum Likelihood �ML� solution for x given the measurement z can
be developed in the signal model �����
The ML solution can be simply computed� albeit approximately� by using a decomposition that is an

orthogonalized version of ICA� The transform is given by

Wz �Wx�Wn � s�Wn� ����

where W is here an orthogonal matrix that is the best orthognal approximation of the inverse of the
ICA mixing matrix� The noise term Wn is still Gaussian and white� With a suitably chosen orthogonal
transformW� however� the density ofWx � s becomes highly non�Gaussian� e�g�� super�Gaussian with a
high positive kurtosis� This depends of course on the original x signals� as we are assuming in fact that
there exists a model x �WT s for the signal� such that the �source signals� or elements of s have a positive
kurtotic density� in which case the ICA transform gives highly supergaussian components� This seems to
hold at least for image windows of natural scenes 
����
It was shown in 
��� that� assuming a Laplacian density for si� the ML solution for si is given by a

�shrinkage function� �si � g��Wz�i�� or in vector form� �s � g�Wz�� Function g��� has a characteristic shape�

��



it is zero close to the origin and then linear after a cutting value depending on the parameters of the
Laplacian density and the Gaussian noise density� Assuming other forms for the densities� other optimal
shrinkage functions can be derived 
����
In the Sparse Code Shrinkage method� the shrinkage operation is performed in the rotated space� after

which the estimate for the signal in the original space is given by rotating back�

�x �WT�s �WT g�Wz�� ����

Thus we get the Maximum Likelihood estimate for the image window x in which much of the noise has
been removed�
The rotation operator W is such that the sparsity of the components s � Wx is maximized� This

operator can be learned with a modi�cation of the FastICA algorithm� see 
��� for details�
A noise cleaning result is shown in Fig� ��� A noiseless image and a noisy version� in which the noise

level is �� � of the signal level� are shown� The results of the Sparse Code Shrinkage method and classic
wiener �ltering are given� indicating that Sparse Code Shrinkage may be a promising approach� The noise
is reduced without blurring edges or other sharp features as much as in wiener �ltering� This is largely
due to the strongly nonlinear nature of the shrinkage operator� that is optimally adapted to the inherent
statistics of natural images�


�� Telecommunications

Finally� we mention another emerging application area of great potential� telecommunications� An example
of a real�world communications application where blind separation techniques are useful is the separation
of the user
s own signal from the interfering other users
 signals in CDMA �Code�Division Multiple Access�
mobile communications 
���� This problem is semi�blind in the sense that certain additional prior informa�
tion is available on the CDMA data model� But the number of parameters to be estimated is often so high
that suitable blind source separation techniques taking into account the available prior knowledge provide
a clear performance improvement over more traditional estimation techniques 
����

� Conclusion

ICA is a very general�purpose statistical technique in which observed random data are linearly transformed
into components that are maximally independent from each other� and simultaneously have �interesting�
distributions� ICA can be formulated as the estimation of a latent variable model� The intuitive notion of
maximum nongaussianity can be used to derive di�erent objective functions whose optimization enables the
estimation of the ICA model� Alternatively� one may use more classical notions like maximum likelihood
estimation or minimization of mutual information to estimate ICA� somewhat surprisingly� these approaches
are �approximatively� equivalent� A computationally very e	cient method performing the actual estimation
is given by the FastICA algorithm� Applications of ICA can be found in many di�erent areas such as audio
processing� biomedical signal processing� image processing� telecommunications� and econometrics�
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Figure ��� �From 
����� Nine independent components found from the MEG data� For each component the
left� back and right views of the �eld patterns generated by these components are shown � full line stands
for magnetic 
ux coming out from the head� and dotted line the 
ux inwards�
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Figure ��� �from 
����� Five samples of the original cash
ow time series �mean removed� normalized to
unit standard deviation	� Horizontal axis� time in weeks�
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Figure ��� �from 
����� Four independent components or fundamental factors found from the cash
ow data�
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Figure ��� �from 
����� An experiment in denoising� Upper left� original image� Upper right� original
image corrupted with noise� the noise level is �� �� Lower left� the recovered image after applying sparse
code shrinkage� Lower right� for comparison� a wiener �ltered image�
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