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Abstract—In 1964 Edwin H. Land formulated the Retinex from the HVS modeling objectives. However, as we shall see,

theory, the first attempt to simulate and explain how the huma  some striking similarities arise when these divergent rieso
visual system perceives color. His theory and an extensiothe 5.0 formalized as PDE’s

“reset Retinex” were further formalized by Land and McCann . . .
[1]. Several Retinex algorithms have been developed evemse. The Land and McCann Retinex theory ([1], [5]) is the first

These color constancy algorithms modify the RGB values at attempt to simulate and explain how the HVS perceives color,
each pixel to give an estimate of the color sensation withowt based on experiments using Mondrian patterns. In earlytsesu

priori information_o_n the iIIun_1inati_on. Unfortunately, the Retin ex ([6]), Land assumed that three independent sets of receptor
Is‘gggif!\gg.ca;zge%%?'rlﬁlisalgggnmn']s lggmpﬁ?gplzi( 2gghn(?)ti;g:|yan e?qst and that the comparison of these three re_ceptor autput
average of a very large set of paths on the image. For this reas, 9ives the sense of color. He named Retinex this system and
Retinex has received several interpretations and implemeations Retinex theory aims at reproducing the sensory response to
which, among other aims, attempt to tune down its excessive color stimuly by the HVS ([7]). This name is a neologism

complexity. In this paper, it is proved that if the paths are made of retina and cortex. Indeed, Land postulates that the

assumed to be symmetric random walks, the Retinex solutions . . . .
satisfy a discrete Poisson equation. This formalization wids an Retinex involves the structure and function of both retind a

exact and fastimplementation using only two FFT’s. Several COrtex ([1]). Land's Retinex theory is the first computagon
experiments on color images illustrate the effectivenessfdhe model to explain and simulate color constancy. In [8], Land
Retinex original theory. proposed the three Retinex Theory statements:

Index Terms—Retinex theory, color perception, stochastic in- | The composition of the light from an area in an image
tegral, PDE, FFT does not specify the color of that area.
Il The color of a unit area is determined by a trio of
[. INTRODUCTION numbers each computed on a single waveband to give

One of the main enigmas of perception is the discrepancy the relationship for tha_t Wavebz_;md between the unit area
between the physical reflectance of objects and the colors ~and the rest of the unit areas in the scene.
perceived by the human visual system (HVS). This system/ll The Retinex algorithm (described in Section I1)

made up of eye, retina and visual cortex, processes the#0to |n the past forty years, the Retinex model has inspired a
reaching the eyes. Color processing is completed in thexor{yide range of implementations, improvements and discnssio
V4 area. The result of this process is color sensation, Whl@@], [10], [11], [12]). The Retinex algorithms have alsoelne
cannot be measured directly: it can be only experienced R¥ed by several authors as color constancy algorithms. As
the HVS._Cc_>Ior sensation is not d_|rectly linked to the spactrprovenzi et al. mention in [13], “there is a big interest in
characteristics of the perceived signal ([2]). the comparison among spatial properties of all the differ-
One of the puzzling HVS features isolor constancy ent Retinex implementation available in literature”. Bhist
namely the ability to determine the colors of objects ir&Sp comparison is a challenging task because of the computa-
tive of the illumination conditions ([3]). Human and machin tional complexity of existing implementations and of their
color constancy are different concepts. As impressively dgirong dependence on their own parameters ([13]). Hurlbert
scribed in [2], the human color perception depends on skvega[14] tried to “clarify and formalize the lightness probie
factors such as overall illumination changes or the amofjnt@y proposing a new formulation of the intensity equation
detail in the scene ([4]). From the deep study of this HVgn which lightness algorithms are based”, but she did not
property one can deduce that the human color sensationsigstantiate a unique mathematical formula from which the
hardly influenced by the context. The reflectance, whichés thjifferent lightness problems would be derived.
amount of incident light reflected by an object for a given |, yhis paper, the original Retinex algorithm will be formal
wavelength, defines the physical color of an object ([3])e Th,eq as a (discrete) partial differential equation. Moregisely,
goal of machine color constancy is to determine reflectange,ij pe shown thatif the Retinex paths are interpreted
regardless of illumination. This objective is quite diffet . symmetric random walks, then Retinex is equivalent to a
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Perez et al. [15]. We can directly quote from these authors: e

First, it is well known to psychologists [Land %
and McCann 1971] that slow gradients of intensity,

L

15

which are suppressed by the Laplacian operator, can L
be superimposed on an image with barely notice- e
able effect. Conversely, the second-order variations %

extracted by the Laplacian operator are the most
significant perceptually. Secondly, a scalar function
on a bounded domain is uniquely defined by its )
values on the boundary and its Laplacian in the

interior. The Poisson equation therefore has a unique Fig. 1. _The original Land-McCann scheme without the resethagism:
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m 80 ~ 15 82 7400 104 .1
solution and this leads to a sound algorlth ' from bé?ow) at particular points along the path from top tattm. The

The paper is organized as follows. In the next section wembers at the bottom indicate the ratios of luminances mcert edges
present the original Retinex algorithm and its modified iggrs @0ong the path.”
called reset RetinexSection 1l gives a brief overview of
several types of Retinex implementations in the literature
The equivalence of Retinex and the Retinex PDE is detailedThe formula giving the lightness valuk of a pixel z =
in Section IV. An “Extrema Retinex” variant where the(i, j) computed by Retinex in a given chromatic channel was
paths start from image extrema is also considered. A Flpfoposed in [16], but the process itself is described in [1].
fast implementation is described in Section IV-C. SectioThe image datd(x) is the intensity value for each chromatic
V displays results of the proposed algorithm illustratitig t channel atz. Land and McCann consider a collection of

510
104

118

perception effects of the original Land method, depending paths~yi,...,v,...,v~ starting atz and ending at an
on the threshold parameter. These experiments seem to agiégtrary image pixely,. Let n;, be the number of pixels of
with the original scopes of Retinex, and confirm several colehe pathv,, and denote byr;, = i (tx) for tx = 1,...,np
illusions. and byz;, 11 = v (tx + 1) the subsequent pixel of the path
so thaty; (1) = x andyx (ng) = yk.
Il. ORIGINAL RETINEX ALGORITHM Definition 1: The lightness L(x) of a pixel z in a given

The basic Retinex model is based on the assumption tigfomatic channel is the average of the relative lightness a
the HVS operates with three retinal-cortical systems, emeh over all paths, that is
processing independently the low, middle and high freqigsnc N
of the visible electromagnetic spectrum. Each system preslu Liz) = 2 k=1 L) 1
. : : i (z) , @
one lightness value which determines, by superpositios, th N
perception of color in the HVS. On digital RGB imageswhere L(z;y;) denotes theelative lightness of a pixel z

the lightness is represented by the triplétz( Lo, L) of  with respect toy, on the pathy, defined by
lightness values in the three chromatic channels.
Nk I
Lwg) =35 {mg %] | @

A. Resetless Retinex = I(w4,41)

Inspired by several expenme_nts_, Land and M(_:Can_n Oth, for a fixed contrast threshofd
served that edges are the main image feature invariant to

illumination, and therefore the main source of informatton s if |s| >t
achieve color constancy ([1]). They also realized that aidum 5(s) = ©)
nance ratio threshold between two adjacent points mamtain 0 if |s|<t.

the edge if there is one between those points, but eliminates
the gentle slopes caused by nonuniform illumination. Thus,
obtaining the lightness values boils down to processing the
entire image in terms of luminance ratios. In the case of two The reset mechanism proposes an adaptation of the above
widely separated areas in the image, they therefore cansiflgfinition to ensure that all paths start from regions whiee t
the sequential product of ratios across edges on a patmgpinfnaximal luminance value is attained. We quote from [1]:

Reset mechanism

both areas (see Fig. 1). Since this generalized lightnd&s ra One that seems simple, but is not, is to scan
would then depend upon the chosen path, the Retinex algo- the entire scene to find the area or areas with the
rithm considers all possible paths starting at random p@ntl highest reflectance. (...) Although this technique is

ending at the pixel at which the lightness value is computed. mathematically valid we feel that it is not readily
This lightness is then defined as the average of the prodiicts o transposed into biological mechanisms. We therefore
ratios between the intensity values of subsequent edgaspoin  sought a technique that can automatically estab-
in the path. In order to remove the effects of nonuniform lish the highest reflectance without a separate first
illumination over the scene, the ratio is considered upitbr scanning step. We adopted the convention that the
it does not differ from 1 by more than a fixed threshold value. initial ratio is the ratio of the signal of the second



receptor to that of the first (followed by the third algorithms, recursive algorithms, center/surround aigors
to the second, etc.). Then, regardless of the true and physically-motivated variants (introduced by Horn]]18
reflectance of an area, our technique supposes that We shall now review briefly these categories.

the first receptor in any path is reporting from an
area that reflects 100 of the light. (...) Attainment

of a sequential product greater than 1.0 indicates that
the sequence should be started afresh and that this
new, higher reflectance should be next supposed to
be 100%. (...) As the path proceeds, the sequential
product always starts over at unity when the path
encounters an area with a reflectance higher than
the highest previously encountered.

A. Path-based algorithms

In these algorithms the lightness of each pixel depends on
the multiplication of ratios along random walks. The orggin
works of Land, [1], [8], belong to this category, jointly it
recent implementations such as [19] and [12].

The main drawbacks of path-based algorithms are the de-
pendency of the path geometry, the computational complexit
and the large amount of free implementation parameterg, suc

Notice that the above quotation uses products of ratios (se®the number of paths and their lengths.

Fig. 1). Taking the logarithm of this product yields a sum In [19], the authors implemented the original Retinex using
of logarithms of ratios. In the reset formulation of RetinexBrownian motion to approximate each path in the Retinex
the average givingL(z) is taken over paths on which allalgorithm. This application greatly improves the effeetiess
partial sums leading to the complete sun;y,) must be of the algorithm and its speed, but the new implementatiitin st
non-positive: presents the two mentioned drawbacks. However, we follow
ne these authors and adopt the Brownian motion as the likeliest
Vi=1,...,n5—1, Z 5 {bg M] < 0. (4) interpretation of the set of paths that was left unspecifigd b
(Tt +1) Land and McCann.
The value of the reset Retinex solution at a pixel depends onIn [1.2]’ Provenz_| _et al. pr_esented a detailed mc_’;\thematlcal
. analysis of the original Retinex algorithm proposing an an-
the memory of each single path. To the best of OurknOWIGdgaﬁ’tic formula that describes the algorithm behavior. The
this fact rules out any PDE formalization for reset Retinext” o "9 . L y
As shown by the above Land and McCann quotation, tr;%)gstulate that the qualitative behavior of Retinex in iefat

. . tt% the variation of the different parameters can be predicte
main goal of the reset mechanism was to ensure that all paths " : . .
._by using a direct mathematical formula. Unfortunately,irthe

starting froma end at points, that are image extrema. This roof is reduced to a Retinex without threshold. Provenzi et

goal is not achieved by reset Retinex. The reset mechanigm. : N o
only selects paths along whithere is no value larger than the alin their last work [13] replace paths by 2-D pixel sprays.

initial value. This observation justifies defining d&xtrema The spray approach is faster than the path-based one.

Retinex’, namely a variant where all paths only start from _ _
image extrema. Extrema Retinex is an easy adaptation of DBf. Recursive algorithms

1 Recursive algorithms were developed by Frankle and Mc-
Definition 2: (Extrema RetinexThe lightness L(z) of a Cann. They replace the path computation by a recursive xnatri
pixel z in a given chromatic channel is the average of theomparison ([20], [21], [22]). These algorithms computege
relative lightness at over all paths linkingr to an arbitrary distance iterations between pixels first and then progrelssi
image extremuny;, the path meeting no other extremuninove to short-distance interactions. The spacing between
before reachingy;,. We therefore have.(z) = Zkzlj\f(w'c) pixels being compqred cjec_reases at each. step _in clockwise
where L(z;yx) is given by (2). order. The comparison is implemented with ratio-product-

In all that follows we shall analyze and compare both defeset-average operation at each space.

initions, namely the original Retinex (Def. 1) and Extrema This algorithm is computationally more efficient than the
Retinex of Def. 2. Somehow, the result of reset Retinex shodrevious ones. The main drawback is that it depends on
be intermediate between the result of Resetless Retinex @dgrucial parameter, namely the number of times a pixel’s
Extrema Retinex. As the above quotation shows, ExtrerfR§ighbors are to be visited. This parameter is named nuniber o
Retinex was considered by Land and McCann, but only ftgrations. The optimal value for this parameter is noticéeal

be rejected as biologically not plausible. In recent papef@@n strongly influence the final result (see [23] for a disituss
such as [7], McCann clearly refers this area or areas with tAbthis point).

highest reflectance as “local maximum” zones. All the same,

we consider it interesting and legitimate to compare it W& C. Center/surround algorithms

original Retinex, to see whether it makes a serious diffegen
or not.

tk=J

Through the years, Land’s views on Retinex evolved to its
last form as a center/surround spatially opponent operatio
([24]). This new technique introduces a weight in the recip-

IIl. STATE OF THE ART rocal influence of two pixels, inversely proportional to ithe

Many interpretations, implementations and improvemergguare distance.
of the Retinex algorithm can be found in the literature. The These new implementations suggested to some authors the
interpretations are usually categorized [17], [11] as fimthed idea that the lightness values could be computed by sulrtgact



a blurred version of the input image from the original imagequation when the domain is a rectangle. The very same equa-
Thus, Rahman et al. use a Gaussian to compute the blurredfion is actually called Poisson-equation-type Retinexatgm

age and perform color correction at a single scale ([25]gyThin [33], which refers to Kimmel et al. [17] variational model
made later this algorithm multi-scale ([26]). The algaomithin for Retinex. This last model is similar to the Horn model. It
the center/surround class are faster than the path-bass) oalso assumes that the illumination field is smooth, and faser
and the amount of parameters is notably reduced. Howeviarthe variational model a knowledge of the limited reflec&an
they still present a large amount of parameters which adlgnamic range as a constraint. These authors also presented
difficult to formalize. Moreover, the Rahman et al. algomith fast multi-resolution solution to the variational problem

are based on the “gray world” assumption, i.e. the assumptio

that, on average, the world is gray, and the results ovenr colo IV. A PDE MODEL OF RETINEX THEORY

Images W.'th gray_—wor_ld wola‘u_ons are unnatqral. . Our limited aim is to propose a possible formalization of
There is growing interest in Retinex variants permitting, . original Retinex theory of lightness perception déseli

local contrast enhancement and therefore an improved ;| o [16] and Land-McCann [1], and, to some extent, its
sual qua}l|ty. Berta_lmlo et al. ,[27] r_\ave recently proposedset formulation. The main outcome of this formalizatici w
a novel interpretation of Land’s Retinex theory, the Kefrne e a Poisson equation

Based Retinex (KBR), which relies on the computation of
the expectation of a suitable random variable weighted with
a kernel function. The authors prove that Retinex and KBR The random path model
share the same intrinsic properties. The method has a lowThe first thing to do is to give a formal definition for the
computational cost but “the set of parameters that corme$pgaths used by Land et al. These authors did not give any
to the best visual performance varies with the input imagedefinite indication on the set of paths to be used. Thus, most
This work is based and compared with two previous worksnplementations tend to reduce the number of admissibtespat
[28] and [4], in which color correction algorithms are deads for obvious computational reasons. However, in absence of
in the framework of variational techniques and are inspired any specification, it seems sound to do exactly the contrary,
the basic phenomenology of human color vision. Very regenthamely to consider the most general class of random paths
Bertalmio and Cowan ([29]) have implemented the KBR asompatible with image geometry. Such are the paths obtained
Wilson-Cowan equations. by standard symmetric discrete random walks on the image
grid [34]. These paths start from the reference pixahd their
stopping pixely is an arbitrary pixel on the image grid. Such
random paths can of course have loops. In particular nothing
The algorithms in this category propose to translate thgcjudes their passing more than onceabypefore reaching
Retinex principles into a more physical form, leading to sef Notice that when the grid mesh tends to zero these random
of equations or to an optimization problem. Horn's workihs tend to Brownian paths that are isotropic. This Brawni
[18] is the first of a group of articles ([30], [31], [32]) in path interpretation was already proposed in its asymplotin
which the authors propose to decompose the image intengi{){19]. Thanks to this isotropic limit, the anisotropy ofeth
I as a product of the reflectancg and of the incident random symmetric walk is no serious objection to adopting a
illumination intensity L, so that/ = R - L. Horn separates gjscrete random walk. In coherence with this remark, welshal
reflectance and illumination by taking the logarithm of thgge that the underlying PDE also tends to be isotropic when
image intensity,log/ = logR + log L. Like in Retinex, ihe image mesh tends to zero.
the main assumption is that the illumination varies smgothl T4 define easily how the random walk bounces back when it
over the image, while sharp discontinuities are preserny oiheets the image boundary, the random walk is first considered
where the reflectance changes. Applying the Laplacian yields 3 random walk on the whole plane. To this aim, the rectan-
Alogl = AlogR + Alog L. Then the first component gyjar image defined on the rectangular gRd= {0, ..., M —
Alog R is zero almost everywhere, and is large only at they » (o . . N —1} is first reflected through its boundaries to
reflectance edges. The second comporehig L is bounded 4 rectangular imagéo, ..., 2M — 1} x {0, ...,2N — 1}. For
and small becausg varies smoothly. Thus, Horn proposes tostance the reflection through the right vertical imagee sid
apply a threshold operat@t to remove the second componentgatisfies set(M —1+i,7) == u(M —i,j) for 1 <i< M,
This yielldsT(AlogI.) o~ Algg R. This relation can be viewed yhich impliesu(2M — 1, 5) = u(0, j), so that the right hand
as a Poisson equation to firidz /2 from 7, namely side and the left hand side of the new image are equal (see
A(log R) = T(AlogI). (5) Fig. 2 _Ieft). This symmetric imgge_is then extendgd 'Fo the
whole integer planeZ? by making it 2M x 2N periodic.
The solution of the Poisson equation is finally exponendiat&vhen a function is obtained by this symmetrization and
to yield an estimate of the reflectance. Horn normalizes tperiodization, we shall say that it ig\/, N) symmetric and
result by assuming that there is at least one point in the émageriodic (This setting is the standard image representation
that reflects all the light, which is therefore assumed to hesed for the Discrete Cosinus Transform.) Two pixels in the
white. plane are said¢ongruent if they are obtained from the same
The Poisson equation (5) in Horn’s model is usually solveatiginal pixel in the initial image domain by reflection and
by an iterative scheme, certainly not an optimal methodHisr t periodization.

D. Physics-based Algorithms
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Fig. 2. Left: Domain symmetrization. Center: A random waiktiie plane. Right: The congruent random walk in the imageaiom

Consider a standard symmetric random walkin Z2. By Definition 3: Assumel < I(z) < C'is a bounded symmet-
taking the unique congruent poi&t of x; belonging to the ric image. Given a stopped symmetric random wajkon the
original image domain, we can associate with the random watkage grid starting at and stopping at a pixel, the relative
in the plane a random walk in the original image domain (sdightnessL(z,y) is
Fig. 2 right). In that way, the random wadk is reflected when n(y) 1)
it hits the initial image boundary. More precisely, conside _ : Xy . y
generic boundary pix€li, j) belonging (e.g.) to the right hand L(z,y) = E ; 0 {IOg I(xfﬂ)} =B L) (6
vertical image side. Then if the random wakk is at (¢, j), ) ) ) . .
its next positionx,.; can be up, down, right and left with The lightness.(z) of a pixelz in a given chromatic channel
probability 1. When the next position implies crossing thdS the expectation of the relative lightness (2)aif a stopped
image boundary towardi + 1, j), thenx, hits the boundary Symmetric random walkty_on the image grid starting atand
half-pixel (i + 1, ), bounces back, and therefore stays for orf§OPPINg at a random uniform image pixel In other terms,

more step ak; 1 = (4,j). We could have defined directly the 1
reflected random walk; but, both settings being equivalent, L(z) = NM Z L(z,y)- (7)
advantage can be taken of both. Indeed, standard theory on YyeER

random walks in the plane [34] applies g, while X, is a In the case oExtrema Retingxdenoting byY the set of image
Markov chain with a finite number of states. The effect on th@maxima, we call lightness the function
image is identical becauséx;) = I(x;).

) . ; . (Y) Y
In agreement with the first Retinex theory, the stopping . I(x) ] Y
pixel y is a uniformly distributed random pixel in the image Lz) =B ; O |los I(xY,)] B L) ®

rectangle. (Here and in all that follows, random variables a

written with bold characters.) We say that the random path fit€ only difference with the original Land definition is that
the planex, hits y if %, does. This amounts to say thef the Retinex walk is specified to be a standard random walk.

hits any pixel congruent tg The above defined values are finite. Indeed, the function
. I(xY : ;
Lemma 1:For every specified stopping pixglthe random ¢ [log #{3)} is uniformly bounded, and by Lemma 1 the

walk stops almost surely in finite time, and the expectatibn expectation of the stopping tinn(y) is finite.

the stopping time is finite and uniformly bounded. The discrete Laplace operator on a grid is defined by
Proof: Indeed, since we can reach any pixel from anf(:,5) =: f(i+1,5)+ f(i —1,5) + f(i,5+ 1)+ f(i,5 —

pixel, %, is an irreducible Markov chain on a finite set ofl) — 4f(i, j). The discrete normal boundary operator on the

states (the original image domaf). Thus, the announcedboundary of the rectangular domain is defined, for example on

properties are standard [34]. B the right vertical boundary, b)%%f(M —3.0) = f(M,j) -

. N M —1,5).
We can therefore consider the stopping time of the randof Lemma 2:The relative lightness.(x,y) in a chromatic

walk aty, n(y) and the stopped random walk at a piysr at channel as defined in Def. 3 is @/, N) symmetric and

aéitigf dpe'gﬁgs d b}'/l’he associated stopped symmetric rando?enodlc solution of the discrete Poisson equation

_AmL((an) = F((E), xz 7& Y,

y .| xt, fort<n(y); { - 3 )
*t —'{ y, fort>n(y). L(z,y) =0, =Y

whereA L denotes the discrete Laplace operator with respect

We denote the length of this random walk byx}) (and t0 2

similar notations for a stopping sé€Y: n(Y), xYX). The
Retinex “average over paths” is nothing but an expectation Flr) = f( I(x) ) f( I(x) )
E in the random walk model. The next definition is therefore I(x_o) I(z40)

the straightforward translation of Land’s original defioit in I(x) I(x)
more formal probabilistic terms. +f (I(zo)) f (I(x0+)

) o)



and f(z) = d6(log(z)), 6 has been defined in (3),_o = (¢ — Finally, substituting these values in formula (13) we obtai
1,j), wo— = (4,5 = 1), 240 = (i+1,]), and%}: (4,7 +1). .
Proof: Consider the stopped random walk starting atz o
and ending ay. If z = y, thenL(z,y) = 0, sinceL(xY) = 0. —ALW) = 37y ( 2, F@- > F(y)>
If o # y, this path hits first, with probability /4, one of the yERyF yERyA Y
four z-neighborsyz_g, xo_, z1o, andzg . Let us denote this 1
neighborhood by/ (x). By removing the first step at?, the ~ MN ((MN — DF(@) - Z F(y)
shortened patlx] =: x/_, becomes the symmetric random 1
walk starting atz’ € V() and ending ay. Indeed, there is =F(2) - 31w > F(y).
a bijection between: a) the set of random paths starting at yeR
and stopping ay whose first step igz, 2’|, and b) the set of By symmetry, it is an easy check thEyER F(y) = 0,
random paths starting from’ and stopping ay. Thus, and we get (12). The existence and uniqueness of shé\/)
1 I(z) B symmetric and periodic solution of this discrete equation
L(z,y) =E L(x{) = 1 > (f (I(:c’)) +E E(X?)) follows from the explicit calculation of the solution by DCT
'€V (x) in Section IV-C. [ |
_ 1 Z (f (I(ff) ) L y)) A straightforward adaptation of the proof of Lemma 2 gives,
45 I(x") "77)7 with the same notation, the Retinex equation in Ehérema
case:
which yields (9). Corollary 1: Let Y be the set of image maxima. The
B Extrema Retinex lightness value in a chromatic chanbel

Remark 1:The result of lemma 2 can be reformulated agefined in Def. 3 is the unique\Z, N') symmetric and periodic
a discrete equation on the initial discrete image moBlel  solution of the discrete Poisson equation

L(z,y) is the unique solution of the Poisson equation with

YER y#x

x

" —AL(z)=F(z) =¢Y
Neumann boundary condition,
Y {L(x):O reyY ' (14)
—A L(z,y)=F ,TER . . . .
L(_xzy)(i %) (=) ; i Z i cR (11) Remark 2:1f we consideri(s) = s, that is, Retinex without
adLa(:lc,y) —0 e R threshold, then the equation (12) becomes
Theorem 1:The lightness valud.(z) in a chromatic chan- —AL(z) = —Alog(I(z)) . (15)

| defined in Def. 3 is th [ luti f . L . .
net defined in e 1S the tnique solution o An asymptotic of the above equation is easily derived. Assum

—AL(x)=F(x) zeR (12) for simplicity thatA/ = N and that the discrete domaRis a
‘9‘18#75””) =0 r € IR sampling of a continuous domdii 1) on which! is assumed
. . . to be defined with arbitrarily sharp resolution. Assume also
Whersriolfs_ SEﬁ(r;?d in (10). that v(x) := log(I(z)) is a C* function. Under these ideal
By L, circumstances, we can l&f — oo and look for an asymptotic

“AL(z) = 1 Z “A, L(z,y) state for t_helsolutiorL = Ly of (15), which now depends on
MN = N. Seth = , the pixel mesh. Then by second order Taylor
expansion,
o 1 _ _ _ .o 12 .. 2
= (;;é A, L(z.y) é&(%fﬂ) ) Do(i, j) = W Mo(i, ) + o(h?),

where A is the usual Laplacian. By a classic asymptotic
By Lemma 2, we know the value of the first term but it remaingrgument using distribution theory, the solutién, of (15)
to compute the second term. Using the discrete Green Formigads in the sense of distributions to the unique solufioof

we have the continuous Neumann problem
- daL(z,y) _ —AL=—Alog(I(z)) z€0,1]2
A L(z,y) = /= 0. ) )
I;z_z (,9) I;:R o {2—5 - ooy (9
By equation (11) we have This equation is similar to Horn's equation [18] (see Settio
[1I-D) and is isotropic, thus confirming the isotropy of the
=D A L(wy)=— Y ALy - ALy, y) Retinex model.
TER TER,zFY Remark 3: The equation obtained in Theorem 1 is identical
to thePoisson editing equatiovery recently proposed in Perez
- Z F(z) = A, L(y, y)- et al. [15]. However, the arguments presented in this paper
TER FY need be presented even if briefly. The authors remark that a
Thus, vector fieldV defined on the image domain is not necessarily
A, L(y,y) = Z F(x). a gradient field, namely there is not necessarily a function

©ER xy such thatVu = V. But a natural variational formulation leads



1 c2mkn i 2mlm
_ N

}‘ f(kv ) = f(n,m)e™" e T

/\ and the discrete inverse Fourier transform fon,n) €

T 0 {0,...,M —1}x {0,...,N — 1} by
Fig. 3. The central section of the Poisson kernel. NoIM-L Corkn s 2mlm
f(n,m) = Z flk, e~ e 73 . (20)
k=0 1=0

to compute a function: whose gradient is closest 16 as a The discrete Fourier transform has the following property
solution of the Poisson equation

. N—-1M-1
Au = divV. (17) f(n —ng,m — mo) _ @(k, l)eiszkneizg&m
These authors also proposetexture flatteningapplication, k=0 1=0
whose goal it is to wash out the texture and keep only thehere N i .
edges. This is obtained by solving Gk, D) = f(k,De "= x e Tar (21)
Au = div(§(DI)), (18) Substituting the discrete Fourier transform in (12) andhgsi

. ) . the property (21) yields
where § is a lower threshold on the gradient killing small

gradients but maintaining the edges. This equation is #gtua 7% | (4 — 2c0s 2k 2 cos 2_7Tl) =F(k1), (22
identical to Blake's equation [30]. N M
which entails (fork, ! # 0)

B. Locality of Retinex - F(k,1)
H L(k’ l) = 2k 27l * (23)
As suggested by one of our referees, the locality of the 4 — 2 cos =+ — 2 cos Ff

Retinex PDE could be evaluated by computing the avera
length of the paths. However, this average length with stdpp
brownian motion is already of ordér(N?) in one dimension
and much higher in dimension 2. Thus this length does
really evaluate the locality of the Poisson equation. Tlasoe
is that random walks are twisted. The Retinex PDE locality ¢
be measured more realistically by the standard deviatidheof
Poisson kernel underlying the equation. Actually, the msti

equation is_ non-linear and has no kernel unles_s we put § plicitly assumesF' and L to be (2N, 2M )-periodic. Notice
thresholdt in (3) to zero. In that case the equation becom(ﬁgat we have found a unique solution in the class of fiel/)

linear. Thus its soluthn IS equwalent_ tp the convolutian 0symmetric and periodic discrete functions, as announced in
the second member with a kernil. Anticipating on the next Theorem 1

tshectllzon a_mddusmg (2b3)' the equation ker#€lis defined on Notice that in the case of Extrema Retinex we cannot use
€ rourier domain by this fast implementation. In this case we use an slowertitera

gging (20) we obtain the value df at each point of the grid,
and finally normalizeL to the interval[0,255]. All of the

' above computations are performed on the extended symmetric
ni?ﬁageF defined on th& N x 2M grid. F' being symmetric, its
Fourier coefficientd” are real. Since the coefficients btk;, 1)

& Equation (22) are also real, this property is transfetvgd

the equation tal, and L is also symmetric. In addition, the

se of the discret¢2N,2M) Fourier transform ofL and F

f((k: )= 1 (19) method (Gauss-Seidel) for solving the corresponding finea
T 4 2 cos % — 92¢co8 %l system. The existence and uniqueness proof for a solution of

) ) ] ] ] . the equation in Corollary 1 is also classic: It is the minimum
Convolving with this kernel a datg is equivalent to solving ¢ 5 strictly convex quadratic functional.

the Poisson equation withas a second member. The standard

deviation of K for N = M = 1024 is o = 342,66 and the

kernel shape and locality can be appreciated in Fig. 3. TPe Advantages of the PDE model

effect of this kernel Retinex spreads as far as one third@f th The new implementation of original Retinex has three

image. We refer to Fig. 7 to illustrate how Retinex gets le@$lvantages compared to previous implementations: Under th
local when the threshold increases. random walk assumption on the paths, it is completely faithf

to the original idea of Land-McCann. It is fast in the oridina
) ) setting, and uses a unique parameter, the original Retinex
C. FFT implementation threshold.

The discrete equation (12) is easily solved using the discre Table | compares its computational cost with the previous
Fourier transform. The discrete Fourier transform of a twamplementations mentioned in Section 1ll. In this talile=
dimensional functionf(n, m) defined on aN x M grid is MN is the number of pixels in the image. All previous path-
defined for(k,1) € {0,...,M — 1} x {0,...,N — 1} by based implementation have obviously a higher computdtiona



cost, in spite of the fact that they consider consideraldg le Apply FFT to F — F
paths and less seed poigtsSome of the given values for the ComputeL with equation (23)
computational costs depend on parameters that have anyway Apply inverse FFT tol — L
high values. For example, in [13], the authors deduce that th ConvertL to [0, 255]
ideal values of parameters ane= 20, N = 400. end for
Table | compares the number of parameters involved in
the various implementations. Only two implementationg][2 B Visual illusions: experiments
[20], restrict themselves to a unique parameter. But, as wé - €xp
mentioned before, this unique parameter in McCann and inLand’s Retinex theory was postulated as a perception model
Frankle et al. has a strong influence on the result: “thind attempted to explain the HVS and in particular classic
parameter can vary the output from radical to no dynam@®lor perception illusions. In optical illusions the infioation
range compression” ([22]). Variations of the Retinex paggan gathered by the eye is processed in the brain to give a
instead change only marginally the final result, as we shafrception that does not tally with a physical measurement
observe in next section. of the stimulus source. Applying the Retinex algorithm to an
Since the Retinex PDE implementation proposed here ilgisory image, it is expected that the result will be an imag
similar to the Horn and Blake models, Table 1l compareshowing the same tendencies in the alteration of colorses th
the computational costs of these models. Clearly the FFiVS.
implementation is much faster than any iterative scheme, an As a first classic example, Fig. 4 shows Adelson’s checker

actually works for all of these Poisson equations. shadow illusion. In the left image a green cylinder standing
on a black and white checker-board casts a diagonal shadow
V. EXPERIMENTAL RESULTS across the board. The image has been so constructed that

_ ) the white squares in the shadow, one of which is labeled
In this section, we present several results of the PD%,H have actually the very same gray value as the black
implementation, with a discussion about the thresholdeslu squares outside the shadow, one of which is labeled "A” The
The proposed PDE implementation of Retinex can be testgdssic illusion is that the squares A and B appear resygtiv
on line by users on their own images at http://mw.cmigy ek and white, despite the fact that they share the same
ens-cachan.fr/mfegawave/demo/retgmje/. The chou?e of the gray value, (88). If Retinex is faithful to human perception
threshold value is left to the user. We shall also discuss hq{ should make B much brighter than A. The image on the
the Extrema Retinex implementation. right shows the result of applying the PDE Retinex algorithm
The gray value in square A is now 75 and in square B it is
A. The gamma-corrected model 100, making the square A effectively darker than the square
=N in agreement with our perception. The Retinex primary

The experiments implement the Retinex theory using t ) A
al was to simulate our perceptual color illusions. Thus

new-introduced Poisson equation and the FFT (Section V- S ; _
In principle, Retinex should be applied to raw images and e criterion _here is whether the per_ceptua_l tendencies are
will do so on several of our own. However, most classic tegplequately s-|mullate(.j and not 'F’y any image improvement.
images are gamma-corrected images in JPEG format. Thus, Wg)ur next illusion is about simultaneous contrast, namely
have to state how to deal with them. The gamma-correctif fact that the appearance of a color depends on the colors

consists of applying a concave function to the raw image, fyrounding it. Fig. 5 shows a background with a smooth
practice a logarithm or & power with0 < v < 1. Assuming variation and two circles with the same gray value (170). One

that the gamma-correction is logarithmic is not restriztiv” of them is placed in the darker part of the image, and the
andlog have a very similar shape over the usual image rangner one in the brighter part. The usual perception is that t
As a rewarding consequence of this assumption, instead cJf'€ in the darker part looks conspicuously brighter thiz
working with differences between logarithms of intensitie®ther- Again, this illusion is so strong that it needs magkin
like in Retinex, we can deal directly with intensity diffees e Whole image by a white sheet, excepting only both disks,
when working with gamma-corrected images. Thus we ol check that they indeed share the same Il_Jmilnan_ce. I.f we use
write directly f(z) = o(z), instead off (z) = d(log()), with a threshold larger than the background variation, in this case

5 defined by (3). Then the functioR defined in (10) simply W€ taket = 3, the result is an image with constant background
becomes (45). The left circle gets a 13 gray value and the right circle

a 245 gray value, which is coherent with our perception.
Finally, Fig. 6 shows the successful simulation of a color
F(z) = fU(x)—I(z_q)+ fI(x) — I(x4q) + illusion. On the left image, two X’s with exactly the sameaol
fU(z) — I(zo-) + fd(z) — I(zo,). (24) are puton different backgrounds, one yellow and the other
purple. The striking illusion is that the X on the left seems
Then, the pseudo-code applied to the different images f@y have a color similar to the purple background color on the
obtaining the results showed in this section is: right, while the X on the right has an apparent color similar
for each color channel do to the yellow background color on the left. By applying the
ComputeF’ defined in (24), using the selected thresholRetinex algorithm witht = 3 the X’s really get these illusory
t colors.



TABLE |
COMPARISON BETWEEN PATH BASEDRETINEX ALGORITHMS

Algorithm | Parameters Computational Cost |
Land [16] N=number of pathsp; = number of pixels of each path, O(N -ny - H)
t = threshold
McCann [21] nlterations = number of times a pixel's O(H? - nLayers)
neighbors are to be visited
Frankle et al. [20] nilterations = number of times a pixel's O(H - nlterations -log,(H))
neighbors are to be visited
Provenzi et al. [12] | N=number of pathsp; = number of pixels of each path, O(N -ny - H)
e = threshold
Provenzi et al. [13] R=radius of the spraysf = radial density function, O(N -n-H)
N = number of spraysp = number of pixels per spray
PDE Implementation t = threshold O(H -logy(H))
TABLE Il

COMPARISON BETWEENPDEIMPLEMENTATIONS

Algorithm | Parameters | Computational Cost |

Rahman et al. [26] N = number of gaussiang;,, = scale of the Gaussian O(H - Zi;l c2)
wy, =weight associated with each scale Using FFT:
OB-(N+1)-H-log(H))

Horn [18] e = threshold O(H?)

Blake [30] A = threshold O(H?)
Kimmel et al. [17] a, 3 = weights in the penalty functional, O(99 - H)

Ty = iterations in each resolution layey,= gamma correction
Bertalmio [27] w(z) = kernel, f(x) = scaling function O(H -log(H))

FFT Implementation t = threshold O(6- H -loga(H))

Edward H. Adeison T Edward H. Adeison

Fig. 4. The Adelson’s checker shadow illusion and the sanmsgérapplying the Retinex algorithm with= 3.

C. The Retinex threshold ~ = 0.85 and the color balance was a simple stretching of all
channels with minimal value at 0 and maximal value at 255.
With the function F defined in (24), the second membefor a deeper discussion of Retinex thresholds, see [22]
of the Poisson equation (12) behaves as an edge detector ani® understand the effect of this threshold Fig. 7 shows
produces a positive impulse located on the brighter side @fnoisy original and the result of Retinex with increasing
the edge and a negative impulse located on the darker sitfgeshold values = 0,10, and 15. The background clutter
The good point of expressing Land’s model on the gammand the shades are progressively filtered out whieicreases,
corrected image is that we can gain an intuitive meanirgt the main edges are kept. At= 15, however, edges start
for the Retinex threshold used in the definition ofi. This loosing contrast and low contrasted details could disappea
threshold allows to eliminate the small impulses. Now, in
gamma-corrected images, edges and image details areyusuall
perceived when their gradient exceeds a value around 10 (Por
classic 0-255 ranges). Thus, to avoid squeezing contrdkein  In agreement with the original theory, several experiments
image the thresholt must be significantly smaller thai). It have been performed directly on raw images. The procedure
is surprisingly harder to fix a threshold on the raw image. Thearts by applying the logarithmic function to the images,
gamma-correction performed in Section V.A was made withen solving the Retinex PDE, using the expression in (10),

Raw images
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Fig. 5. Simultaneous contrast illusion. Left: the origiimakage. Right: Retinex result with= 3. By Retinex the background slope is eliminated and theeefor
the shape-background contrast enhanced. In the left integémo disks have exactly the same grey level. Retinex is @mat to formalize the process by
which the right disk appears conspicuously brighter thanléft one. After applying Retinex, this disk indebdcomedrighter.

Cl

Fig. 6. On the left, the original image, the two X's have ekatihe same color. In the right image, Retinex simulates Bugion by which the left X gets
an apparent color similar to the right purple background #re right X gets an apparent color similar to the left yellbackground.

Fig. 7. Left: Original image. Center left: Retinex with= 0. Center right: Retinex witt = 10. Right: Retinex witht = 15. Observe how colors are
slightly enhanced and the background clutter progressietininated when the thresholdgrows.

and finally exponentiating and quantifying the result. This Fig. 10 compares the results on a real image of Retinex and
last quantification step, necessary for the visualizatibthe Extrema Retinex. The results are again quite similar.
image, makes the results on raw images and on JPEG images
quite similar. Fig. 8 shows an example of this procedureh wif= Comparison
thresholdg = 0 andt = 0.05 applied to the raw image. In the The comparison between PDE Retinex and other Retinex
bottom right image we show the result of the direct applarati implementations is a hard work, due to the fact that most
of Retinex to the JPEG image (obviously without the logamith codes are not available. Luckily, the web page http://www.
and exponentiation steps). The results are quite similae Tcs.sfu.catcolour/publications/IST-2000/ gives the results of
reason was explained above: the gamma-correction appliedicCann99 and Frankle-McCann Retinex ([22]) over two
create JPEG images is very similar to a logarithm. images. Figure 11 and Figure 12 show a comparison between
these results and the PDE Retinex result. The first image is a
synthetic image, where the PDE Retinex implementation does
not produce any change, and McCann99 and Frankle-McCann

In this section we present some results with Extremighten the black square. Figure 12 is a bluish image. The
Retinex. As we shall see, the results are similar to the t®suhree implementations successfully remove the blue tone in
of the original Retinex. However, with Dirichlet condition the image. Probably because of its lack of locality (see the
inside the image domain, the PDE can no more be solvegction on locality), the PDE Retinex result is darker. Yt t
by a fast Fourier implementation. A classic Gauss-Seidgkality in McCann99 and Frankle-McCann results lead to the
iterative scheme was instead used. The algorithm searc@gsation of local halos, such as those around the lettetsein t
first the image extrema and puts these points to zero. Thslne book. This artefact is typical of center-surround rogth
the lightness at the other points is the solution of the linegnd, in general, of methods where the paths are made more
system associated with the discrete PDE. local.

In Fig. 9 we show the Extrema Retinex results on the images
in Fig. 4 and Fig. 5 respectively, with the usual conseneativ VI. DISCUSSION AND CONCLUSION
value threshold parametér= 3. The results are very similar  The main contribution of this paper is the proof of a math-
to the corresponding Retinex results. ematical equivalence between an interpretation of theraig

E. Extrema Retinex
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Fig. 8. Top Left: Original image. Top Right: Retinex resutipéied to the raw image with = 0. Bottom Left: Retinex result witlt = 0.05. Bottom Right:
Retinex result applied to the gamma corrected image with2. Notice how similar are the results. Both maintain an imdg# ts close to the original, but
the low contrasted texture on the wall has been wiped out.

Edward H. Adelson

Fig. 9. Left: The result of Extrema Retinex with= 3 on the image in Fig. 4. The gray level of square A becomes 80tl@dyray level of square B
becomes 120. Right: The result of Extrema Retinex with 3 on the image in Fig. 5. The background becomes constant ankfthcircle becomes darker
than the right one. Thus Extrema Retinex shows the same ppiesppas Retinex simulating color perception.

Land-McCann Retinex theory, where the paths, unspecifieke an implementation of the physical Retinex family”; “&h
in the theory, are assumed Brownian, and a simple Poissauthors claim to be faithful to the original Retinex version
equation. The FFT solver of this equation permitted to lhstdhowever this is not confirmed by the presented results. In
an on line demo where it can be tested with all values dct the method presented in the paper and easily testable
the Retinex threshold parameter. But this analysis has atmo internet performs quite differently from path based and
revealed that the underlying equation was already known fieerative Retinex”. This comment actually confirms the math
other scopes such as image editing, and that it was veryasimimatical result: under the Brownian path assumption the
to two physical models, namely the Horn and Blake equatiorariginal Retinex becomes a Poisson equation, very similar t
While the equivalence in itself is true and proven, itslorn’s physical model and almost identical to Blake’s model
interpretation is questionable. We thank one of the referee
for making the following three comments, which we decided The third valuable referee comment is that several recent
to reproduce textually because they reflect the main aspéctsind successful variants stemming from Retinex use a more
the discussion on Retinex. restricted set of paths than the ones considered in thergrese
The first comment roughly recalls that the basic assumptiopaper: “The evidence from the mathematical analysis of lo-
of the original Retinex theory have been proven wrong. “Theality should be related to the fact that in the original Rexi
idea that HVS and consequently Retinex aims at separati@gnd in HVS) locality depends on image content. The limited
illuminance from reflectance was an initial hypothesis the path random sampling, together with the reset operatongsha
been proven to be false in recent works ([35], [36]). ThisaideRetinex local effect, according to the image content. This i
is at the base of the major part of the center-surround aadkey feature not always considered in the center-surround
physics based Retinex”. and physics based Retinex implementation. For an example
The second comment situates the Brownian path Retinek center-surround anisotropic implementation see [37]. A
implementation proposed here in the rich literature ofarstis lack of anisotropy can lead to a contrast decrement that in
stemming from Retinex: “The proposed approach perfornfsct | have experienced using their web application and is
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Fig. 10. Left: Original image. Center: The result of Retingth thresholdt = 3. Right: The result of Extrema Retinex with= 3. They are not identical,
but extremely similar.

e

Fig. 11. Left: Original image, Left Center: Result of McC@3nwith 4 iterations, Right Center: Result of Frankle-Mc@asith 4 iterations, Right: Result
of PDE Retinex.

A GRAMMII
FORTAJAANALD
]

Al ANMMII
FORTAZAANA

Fig. 12. Top Left: Original image, Top Right: Result of McC@9® with 4 iterations, Bottom Left: Result of Frankle-Mc@awith 4 iterations, Bottom
Right: Result of PDE Retinex.

often compensated with additional arbitrary color rediora between two different scopes in Retinex theory: color badan
methods. Thus the random walk assumption is not enoughd local contrast adjustment. The relation between those
to be completely faithful to the original Retinex idea. Théwo scopes should be further investigated. The experiments
comparison between proposed Retinex and Extrema Retierewith actually confirmed that the simplest original Rexi

can be seen as a different trade-off between global and loogkerpreted with Brownian paths provides a local contrast
effect”. adjustment, in the spirit of [38] and [15].

The random path assumption taken in this paper can and
will indeed be the object of discussion, because it seems to
be too isotropic and too nonlocal. The last experiment in th@] E. Land and J. McCann, “Lightness and retinex theody,’Opt. Soc.
experimental section actually illustrates better thisasion Amer, vol. 61, no. 1, pp. 1-11, Jan 1971. . ,

. . . éZ] A. Rizzi and J. McCann, “On the behavior of spatial modelsolor,
by comparing the results of the Poisson PDE with more” i, s1/spiE Electronic Imagingvol. 649302, 2007.

local methods. There is indeed an interaction in the litgeat [3] M. Ebner, Color Constancy Wiley, 2007.
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