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Natural Stimulation of the Nonclassical Receptive Field Increases
Information Transmission Efficiency in V1
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We have investigated how the nonclassical receptive field
(nCRF) affects information transmission by V1 neurons during
simulated natural vision in awake, behaving macaques. Stimuli
were centered over the classical receptive field (CRF) and
stimulus size was varied from one to four times the diameter of
the CRF. Stimulus movies reproduced the spatial and temporal
stimulus dynamics of natural vision while maintaining constant
CRF stimulation across all sizes. In individual neurons, stimu-
lation of the nCRF significantly increases the information rate,

the information per spike, and the efficiency of information
transmission. Furthermore, the population averages of these
quantities also increase significantly with nCRF stimulation.
These data demonstrate that the nCRF increases the sparse-
ness of the stimulus representation in V1, suggesting that the
nCRF tunes V1 neurons to match the highly informative com-
ponents of the natural world.
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The classical receptive field (CRF) of a visual neuron is tradi-
tionally defined as the region of space where stimuli evoke action
potentials. Surrounding the CRF is the nonclassical receptive
field (nCRF), where stimuli can modulate the responses evoked
by CRF stimulation (Allman et al., 1985). The nCRF may serve
to mediate contrast gain control through divisive modulation of
the responses evoked by CRF stimulation (Heeger, 1992; Wilson
and Humanski, 1993). However, several experiments suggest that
the nCRF may also be critical for representing extended contours
(Gilbert and Wiesel, 1990; Fitzpatrick, 2000), corners (Sillito et
al., 1995), or local curvature (Wilson and Richards, 1992; Krieger
and Zetzsche, 1996), and may aid in figure-ground segmentation
(Knierim and Van Essen, 1992). Together, these results demon-
strate that the nCRF plays an important role in the functioning of
V1 neurons.

In a previous study, we showed that natural stimulation of the
nCREF increases the selectivity of V1 neurons and decorrelates
their responses (Vinje and Gallant, 2000). Those results sug-
gested that nCRF stimulation increases the sparseness of stimulus
representation in V1. Sparseness refers to the coding density of a
neural representation. In a maximally dense representation, every
neuron responds to every stimulus and information is fully dis-
tributed across the population. In a maximally sparse represen-
tation, each neuron responds to a single stimulus and acts as a
“grandmother cell.” Extremely dense and extremely sparse codes
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are biologically implausible; any real neural code will fall some-
where between these two extremes.

In a sparse representation, neurons are narrowly tuned and
relatively few are active at any moment. A central tenet of sparse
coding is that information should be translated without loss into
an efficient representation where the responses of a few active
neurons are rich in information content. Reducing the number of
active neurons is metabolically economical, thus easing a major
constraint on information processing in the brain (Laughlin et al.,
1998; Sibson et al., 1998). In addition, the relatively large infor-
mation content per neuron potentially influences many aspects of
brain function, including pattern recognition capability and mem-
ory capacity (Barlow, 1961; 2001).

The optimal level of sparseness is a function of the goals of the
system and the resources available. Recent theoretical work sug-
gests that natural images can be efficiently represented by a sparse
code (Srinivasan et al., 1982; Barlow, 1989; Field, 1993; Bell and
Sejnowski, 1997; Olshausen and Field, 1997, 2000; Simoncelli and
Olshausen, 2001). Field (1987) demonstrated that linear filters
can produce a highly kurtotic, sparse output distribution in re-
sponse to natural images. However, some nCRF functions might
only be realizable with nonlinear mechanisms [e.g., biologically
plausible curvature/corner detectors must be substantially nonlin-
ear (Zetzche and Barth, 1990; Krieger and Zetzsche, 1996)].
Therefore, nonlinear operations such as those implemented by
the nCREF are likely to play an important role in increasing the
sparseness of neural coding (Olshausen and Field, 1997).

The hypothesis that nCRF stimulation increases the sparseness
of individual V1 neurons leads to numerous predictions. Several
of these predictions were confirmed in a previous report (Vinje
and Gallant, 2000). As sparseness increases, individual neurons
become more selective in their responses to complex stimuli, the
kurtosis of the firing rate distribution increases, and the responses
of neuron pairs are decorrelated.

The hypothesis that nCRF stimulation increases sparseness
also leads to four additional predictions. First, the average re-
sponse rate should decrease as sparseness increases in order to
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reduce the metabolic demands of visual processing. Second, the
reduction in spiking activity should not reduce the information
carried by the population of V1 neurons. Third, the average
information content per spike should increase. Finally, as sparse-
ness increases, individual neurons should become more efficient
at information transmission.

MATERIALS AND METHODS

Subjects and physiological procedures. All animal procedures were ap-
proved by oversight committees at the University of Washington (St.
Louis, MO) and the University of California at Berkeley and conformed
to or exceeded all relevant National Institutes of Health and United
States Department of Agriculture standards. Surgical procedures were
conducted under appropriate anesthesia using standard sterile tech-
niques (Connor et al., 1997).

Extracellular, single-neuron recordings were made with epoxy-coated
tungsten electrodes (AM Systems, Everett, WA and FHC, Bowdoinham,
ME) from two awake, behaving monkeys (Macaca mulata). Signals were
amplified, band-pass filtered, and isolated with a hardware window
discriminator. Spike triggers were monitored at 8 kHz. Only clearly
isolated single units were included in the data set.

Chambers were located over putative V1 by means of external cranial
landmarks. To confirm that recordings were obtained from V1 neurons,
we compared measured receptive field sizes and electrophysiological
response properties with those expected from the literature.

Receptive-field estimation. The boundaries of the CRF were estimated
using bars and gratings for which characteristics and placement were
manually controlled. We estimated the size of the CRF as the diameter
of the circle that circumscribed the minimum response field of the
neuron. For most neurons, these manual estimates were confirmed by
reverse correlation analysis using a dynamic (72 Hz) sequence of small
white squares flashed randomly in and around the CRF. Reliable CRF
estimates were typically obtained from 100-300 sec of data, representing
20-60 behavioral fixation trials. In most cases there was excellent agree-
ment between CRF profiles estimated using the two methods. In those
cases in which the methods disagreed, the reverse correlation size esti-
mates were used. CRF diameters ranged from ~20 to 50 min of arc,
consistent with other studies (Snodderly and Gur, 1995).

Simulated eye-movement model. During natural vision, primates make
stereotyped eye movements consisting of relatively long, stable fixations
interspersed with rapid saccades from one point to another (Keating and
Keating, 1982; Burman and Seagraves, 1994). The temporal structure of
natural visual stimulation is strongly influenced by these underlying eye
movements. We simulated natural macaque eye movements using a
statistical model. Eye-movement distributions were acquired during free-
viewing experiments using a scleral search coil. These data were used to
model the distribution of saccade lengths and the velocity profiles ap-
propriate for each saccade. For each simulated eye-movement sequence,
fixation durations were chosen randomly from a Gaussian distribution
with a mean of 350 msec and an SD of 50 msec. Saccade directions were
chosen randomly from a uniform distribution of angles.

Natural-vision movies. Natural-vision movies were constructed by ex-
tracting image patches from natural scenes along the simulated eye-scan
path. Scenes were chosen from a commercial, high-resolution photo-CD
image library of landscapes, structures, people, and animals (Corel
Corp., Ottawa, Ontario, Canada) and were converted to grayscale before
display. Image patches were extracted along a simulated scan path that
was sampled at ~1 kHz. Each 13.8 msec (72 Hz) movie frame was
constructed by averaging 14 separate image patches. Individual frames
were then concatenated to form movies. This over-sampling followed by
averaging minimized the potential of introducing temporal aliasing arti-
facts into the movie.

Patches of one, two, three, or four times the diameter of the CRF were
used to create a set of natural-vision movies. Movies of different sizes
were not scaled versions of one another. Instead, the patch boundary was
changed to reveal more or less of the underlying natural scene. Thus, the
region of the natural vision movie covering the CRF was identical across
all movie sizes, and any response modulation attributable to stimulus size
should reflect the effects of nCRF stimulation. Figure 1 illustrates the
stimulus generation method.

Flashed natural-image patches. An additional stimulus set was con-
structed by extracting image patches from along an eye-scan path that
was recorded during free viewing of natural scenes (Gallant et al., 1998).
Eye positions during fixations were identified using an automated pro-
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Figure 1. Natural-vision movies reproduce the stimulation that occurs
during free viewing of natural scenes. To construct a natural vision movie,
a saccadic scan path (white line) is generated using a model derived from
previously recorded eye movements. Image patches centered on the scan
path coordinates (white circles) are then extracted from the underlying
image. Image patches were from one to four times the size of the CRF.
(The small circle indicates 1 X CRF diameter, whereas the large circle
indicates 4 X CRF diameter.) Note that although nCRF stimulation
varied substantially with stimulus size, the stimulus falling on the CRF
was the same for all sizes.

cedure that registered a fixation whenever the eye remained within a 0.3
CRF diameter window for at least 70 msec; a change in fixation was
registered when the eye moved >0.3 receptive field diameters from its
original location. These fixation locations were used as center points for
patch extraction, and patches of 1 X CRF and 3 X CRF diameter were
extracted from the natural scene in the manner described above. Each
patch data set contained responses from 10-25 such patches.

The image patches were presented in grayscale under behavioral
conditions similar to those used for natural vision movies (see below).
Patches were shown at either the same size as the estimated CRF or
three times larger than the CRF. Each behavioral trial included four
random patches flashed for 500 msec each and separated by 700 msec
interstimulus intervals.

Stimulus presentation. Stimulus presentation and behavioral control
were handled by an Indigo® workstation (SGI, Mountain View, CA)
using custom software. Stimuli were presented on a high-quality video
monitor (Sony Trinitron; Sony, Tokyo, Japan) at 1280 X 1024 pixel
resolution. Movies were broken into 5 sec segments (trials) and were
shown centered on the CRF center of the recorded neuron. During
movie display, the animal fixated on a small target spot near the center
of the monitor. Eye position was monitored using a scleral search coil,
and trials were aborted if the eye deviated from fixation by >0.35°. At the
end of each successful trial, the animal earned a liquid reward. Only one
stimulus size was shown on each trial; stimuli of different sizes were
randomly interleaved across trials.

Response modulation ratio. The nCRF modulation produced by stimuli
of a given diameter is quantified in terms of the response modulation
ratio:

XCRF
R:_nXCRF _ " )

RGN @

In our analysis, the fundamental quantity of interest is the average
number of action potentials occurring in each time bin of the natural-
vision movie. In Equation 1, {r; “RF) is the average response recorded
during the ith time bin for stimuli confined to the CRF, and {r,*“RF) is
the average response recorded during the ith time bin for stimuli m times
the diameter of the CRF. Responses are averaged across repeated
stimulus presentation trials.

Selectivity index for natural-vision movies. We define a selectivity index
based on the responses of a neuron across a stimulus set:
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Here w is the mean response of the cell, o is its SD, and the number
of time bins is given by n.

The terms in braces define the activity fraction of the neuron across
the stimulus set (Tovee et al., 1993). It is easy to anticipate the asymptotic
behavior of the activity fraction (consider the expanded form of the
activity fraction in the middle expression of Eq. 2). If a neuron were
nonselective, then r,”*“RF would be constant across stimuli and the
numerator and denominator of the activity fraction would be equal. In
contrast, if a neuron responded to only the kth stimulus then the numer-
ator would be given by (" *RF)2, whereas the denominator would be
larger by a factor of n, n(r,"*“®¥)2. Thus, the activity fraction ranges
from 1, when the cell is nonselective, to 1/n, when the cell responds to a
single stimulus frame.

Equation 2 rescales the activity fraction so that it conveniently ranges
from 0 to 1. S will be 0 if a neuron is completely nonselective and 1 if it
responds only to a single stimulus. For convenience, we express S as a
percentage. In a previous publication, the selectivity index was referred
to as the sparseness index (Vinje and Gallant, 2000). In this paper, we use
sparseness as an adjective describing how stimuli are represented by
sensory neurons; therefore, increasing sparseness should produce numer-
ous effects, including increasing selectivity.

Information transmission in sensory neurons. From the perspective of
information theory, an axon is a biological communication channel.
Consider an observer who is monitoring the axon of a sensory neuron
with known filtering properties. Before the neuron responds, the ob-
server is uncertain about the nature of the stimulus. After observing the
responses of the neuron, the observer can determine the overlap between
the stimulus and the neural filtering properties. Thus, the response of the
neuron reduces the observer’s uncertainty about the stimulus. The
amount by which a response reduces uncertainty is referred to as the
mutual information carried between stimulus and response.

The total stimulus entropy, H(s), quantifies the observer’s uncertainty
regarding the stimulus before the response of the neuron is observed.
The conditional stimulus entropy H(s|r), gives the stimulus uncertainty
that remains after response observation. If the response is reliably
influenced by the stimulus, then the conditional stimulus entropy will
necessarily be less than the total stimulus entropy. The transmitted
mutual information is given by (Cover and Thomas, 1991):

I(s, r) = H(s) — H(s|r). 3)

The stochastic nature of spike generation means that neural responses
are variable even when a stimulus is repeated exactly. The response
variability caused by noise (noise entropy) limits the amount of informa-
tion that can be transmitted about a stimulus. Figure 24 illustrates the
relationship between stimulus entropy, noise entropy, and mutual infor-
mation. The reduction in stimulus uncertainty is equal to the reduction
in uncertainty regarding the response:

I(s, r) = H(s) — H(s|r) = H(r) — H(rls). 4)

Here, H(r) is the total response entropy, which quantifies the overall
variability of the responses of a neuron across the stimulus ensemble.
H(rls) is the conditional response entropy, describing the average vari-
ability in responses evoked by a single stimulus. The conditional response
entropy is equivalent to the noise entropy. In practice it is often easier to
evaluate response entropies than stimulus entropies.

Calculation of total response entropy and conditional response entropy. It
is straightforward to compute the total response entropy via the direct
method (de Ruyter van Steveninck et al., 1997; Borst and Theunissen,
1999; Reich et al., 2000). All direct information estimation methods
begin by translating the spike train into discrete words that represent
local spike patterns. The choice of translation process is equivalent to
choosing a hypothesis about how neurons encode and decode informa-
tion. The detailed nature of the encoding/decoding process is still unre-
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Figure 2. Sensory neurons transmit information when their responses
allow an observer to reduce uncertainty regarding the nature of the
stimulus. A, Diagram illustrating relationship between uncertainty and
information. The first rectangle symbolizes the total uncertainty present in
the set of all stimulus-response pairings for a given neuron; the second
rectangle represents the observer’s a priori uncertainty about the stimuli in
a natural-vision movie; the third rectangle represents the uncertainty in the
observed responses of the neuron. These uncertainties can be translated
into entropies by means of Equation 5. The single number that summa-
rizes overall stimulus uncertainty is the total stimulus entropy, H(s), while
the total response entropy is H(r). The remaining rectangles are the
conditional stimulus uncertainty (C.S.U.) and the conditional response
uncertainty (C.R.U.) (quantified by the entropies H(s|[r) and H(rls), re-
spectively). The gray-shaded region denotes correlations between the
stimulus and the responses of the neuron; this correlation is what allows
information, I(s, 7), to be transmitted. If every stimulus evokes a unique
and repeatable response, then response uncertainty will be entirely de-
termined by stimulus uncertainty. In this case the gray-shaded region
would completely overlap both stimulus and response uncertainties. In
real neurons, repeated presentation of a stimulus produced a range of
responses, so H(r) > I(s, ). The remaining uncertainty, H(rls), is attrib-
utable to noise in the encoding and transmission process. B, Grayscale
rastergram of single neuron responses to repeated movie presentations.
Rows represent repeated presentations of the movie, whereas columns
represent individual time bins. Each time bin contains a single response
word whose identity is determined by the number of action potentials
(identity is indicated by the shading of each bin). The total response
entropy, H(r), is a function of the frequency with which each word is
observed, p;**'. C, Magnified view of responses to one stimulus repeated
20 times. Variation in the identity of the response words is clearly visible
across trials and is quantified as noise entropy, H(rs = k). Noise entropy
is a function of the probability that each word occurs in response to the
kth stimulus, pf.

solved for V1 neurons, but the most common assumption is that neurons
in V1 employ a memory-less rate code. Under this assumption, informa-
tion is carried by the number of spikes occurring in each time bin. All
bins are treated independently, so there is no possibility that information
is carried (or lost) by patterns in the firing rate that extend across
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multiple bins. This rate-coding assumption also ignores highly precise
temporal patterns that may occur within a single time bin (i.e., tight
coupling of spike times to external events or internal oscillations).

If the firing rate possesses temporal correlations extending across
multiple time bins, then the assumption of a memory-less rate code may
lead to overestimation of the information transmission rate of the neu-
ron. Conversely, if information is carried by the temporal structure of the
spiking activity within a time bin, then the memory-less rate code
assumption may lead to underestimation of the information transmission
rate. Clearly, the assumption of a memory-less rate code has strengths
and weaknesses. Many more complex neural codes have been proposed
(for example, see Optican and Richmond, 1987; Richmond et al., 1987;
Meister, 1996; de Ruyter van Steveninck et al., 1997), but their existence
is controversial. More complex coding schemes are also more difficult to
assess experimentally; this is especially true for codes involving extended
temporal correlations. For these reasons, we have restricted the current
analysis to the hypothesis of memory-less rate coding.

After the spike train is translated into discrete words, the probability
of word occurrence is determined empirically from the data. After
determining the occurrence probability of each word, the entropy can be
found using (Shannon and Weaver, 1949):

H = = p;log:p)). (5)

=0

The summation runs over discrete words, and p; is the probability of
the occurrence of the jth word.

Under the assumption of a memory-less rate code, the spike train is
divided into nonoverlapping time bins that are treated as independent
words. Each word is uniquely identified via the number of spikes that it
contains (Reich et al., 2000). The total response entropy is given by:

H(r) = = 2 p™ loga(pi*™). ©)

j=0

Where p/'°" is the number of time bins containing exactly j action
potentials divided by the total number of time bins. The total response
entropy is a function of both the number of distinct response words and
their frequency of occurrence. Total response entropy is therefore re-
lated to the dynamic range of a neuron; neurons with larger dynamic
ranges will be able to generate a larger variety of spike patterns in
response to a given stimulus set.

The noise entropy describes the average variability of responses to
single stimuli. Let p/’-‘ be the probability that the jth word occurred in
response to the kth stimulus. The noise entropy for stimulus k& is given by:

H(rls = k) = =, pl loga(ph). (7

j=0

The probability of word occurrence for each stimulus, pf, is equal to
the number of stimulus-repetition trials on which the kth stimulus pro-
ducesj action potentials, divided by the overall number of repetitions. (In
the experiments reported in this paper, each stimulus was repeated
between 10 and 40 times.)

The overall noise entropy of the neuron is found by averaging across
the noise entropies of the individual stimuli:

H(rls) = (H(rls = k). ®)

Given H(r) and H(rls), Equation 4 provides information transmission per
time bin. Figure 2B, C provides a graphical overview of how the response
probabilities are determined from the data. From Equation 4 it can be
seen that the fundamental quantity in the analysis is the information per
time bin. However, to allow comparison with other studies, it is desirable
to report information transmission rates per second or per spike. Infor-
mation per second is found by dividing the information per time bin by
the duration of each time bin. Information per spike is found by dividing
the information per second by the mean number of spikes per second.
In the current study, two experimental factors may result in underes-
timation of information transmission rates. First, visual stimuli were
presented while animals performed a simple visual fixation task. During
fixation the eye is not entirely steady; a small degree of ocular drift and
corrective microsaccadic eye movements are inevitable. These small eye
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Table 1. Population averages as a function of stimulus size and time
bin duration

Time bin duration (msec)

Stimulus
size 4.6 13.8 25 50

1XCRF 156 106 84 63
2XCRF 183 132* 107 17.9*
3XCRF 187 13.6* 11.1* 8.0*
4 X CRF 177 131 102 75

Information per second (bits/sec)

1 X CRF 1.0 07 05 0.4

2 X CRF 1.3 0.9* 0.7* 0.5*
3 X CRF 1.6* 12* 1.0 0.7*
4 X CRF Le* 1.2* 1.0 0.7%

Information per spike (bits/spike)

Efficiency (%) IXCRF 175 165 168 174
2X CRF  21.8* 21.7% 225% 229+
3XCRF  260% 26.1% 269% 26.6*

4 X CRF  26.2* 26.6* 26.7" 26.5*

Asterisks indicate mean values that significantly exceed 1 X CRF mean values (p =
0.05).

movements introduce variability in retinal stimulation that in turn in-
creases response variability. This artificially inflates our estimates of
H(rls) and thereby decreases our estimates of I(s, r). A second source of
bias might arise from the absence of top-down influences that could
influence V1 responses during natural vision. For example, during nat-
ural vision the ocular-motor system might provide V1 with an efference
signal denoting eye movements that could allow V1 to process informa-
tion more efficiently. This possibility is clearly speculative, but the pos-
sible role of extraretinal influences is poorly understood in V1. Both
factors suggest that our experimental estimates of information transmis-
sion should be interpreted as de facto lower bounds on the true capabil-
ities of V1 neurons. Fortunately, our analysis centers on the changes in
information transmission that result from differential stimulation of the
nCRF. These factors should be common across nCRF stimulation con-
ditions and have little or no effect on our results.

Choice of time-bin duration. Because our analysis assumes a rate code,
the duration of the time bins should match the true integration time of
the target neurons. Unfortunately, this critical time constant is unknown.
To compensate, we analyze the data using several different binning times
(4.6, 13.8, 25, and 50 msec) that span the range of plausible integration
times (Bair, 1999). A summary of the results obtained with other bin
lengths is given in Table 1 and also discussed in Results. To facilitate
comparison with previous work (Vinje and Gallant, 2000), we focus on
the results obtained with 13.8 msec time bins. With the exception of
Table 1, all figures and results come from 13.8 msec binning unless stated
otherwise.

Correction for finite data bias in the response entropies. The values for
p;°* and pf are estimated from the experimental data, leading to uncer-
tainty in H(r) and H(rls). The uncertainties in the entropy estimates
contain both random error (because of sampling) and systematic biases.
Error attributable to sampling is handled conventionally, by considering
whether results are statistically significant. The bias, however, can be
removed explicitly. In particular, the noise entropy is strongly affected by
limitations in the number of trial repetitions. In general, this results in
potential underestimation of the noise entropy (which would produce an
overestimation of information transmission).

For both H(r) and H(r|s), the relationship between the true entropy and
the experimental estimate of the entropy is given by (Treves and Panzeri,
1995; Strong et al., 1998):

o c.
chsztrueJr Zﬁ> (9)

a=1

where ¢, is an empirically determined weighting coefficient for the ath
correction term and N denotes the number of times each stimulus was
repeated. In our data, the linear bias term dominates the sum in Equation
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Figure 3. Finite repetitions of each stimulus lead to systematic biases in
the experimentally measured entropies. Response entropy (circles) and
noise entropy (squares) are plotted versus 1/N, where N is the number of
trials used in the calculation of p{°* and pf. Error bars were determined
by the Jackknife method (Efron and Tibshirani, 1993). Because of the
small size of the error bars, they are shown in white atop the data points.
Lines represent the least-squares fit of Equation 10 to the response
entropy data (solid line) and noise entropy data (dashed line). The true
entropy values are the ordinate intercepts of the best-fit functions.

9. In light of this, we consider only the first- and second-order correction
terms:

€ O
Hg,/rp:HtrueJrN-’—W' (10)

All of the analyses presented in this report used the bias-corrected
entropies, H,

To find H,,,., we divide the original data set into several subsets, each
containing N trials, and evaluate Hﬁ,\ﬁq, for each subset. Subsets contain,
respectively, one-quarter, one-third, one-half, or all of the original trials.
Second, we fit Equation 10 to these data via least-squares minimization.
The value of H,,,,. is the ordinate intercept of the best-fit function. Figure
3 illustrates this process for an example neuron.

Testing for excessive finite data bias. The number of trials required for
accurate bias correction depends on time-bin duration and the response
properties of the neuron under study. If there are too few repeated
stimulus presentations, higher-order correction terms become important
and Equation 10 fails to sufficiently describe the finite data bias. Fortu-
nately excessive levels of bias contamination can be detected by testing
whether the experimentally estimated entropies violate the Ma bound
(Strong et al., 1998).

The Ma bound is a lower bound on response entropy and can be
estimated for both the total response entropy, H(r), and the noise entropy
H(rls). For words composed of single time bins, the general expression
for the Ma bound is given by (Ma, 1981):

rue

Hy, = —log:((pp) = —log| 2. p? |. (11)

=0

H,y, is useful because it is less susceptible to finite data bias than H,,,,.
The response entropy can sink below the Ma bound only if H,,, is
strongly contaminated by finite data bias (Strong et al., 1998). Because
finite data bias affects experimental estimates of the noise entropy more
strongly than estimates of the total response entropy, the noise entropy
is more likely to violate the Ma bound.

We computed the Ma bounds on both total response entropy and noise
entropy to allow exclusion of any neurons with gross levels of bias
contamination. During responses to natural-vision movies, both response
entropies were greater than H,,, for all neurons. This satisfies the Ma
bound criterion and indicates that our entropy estimates are free from
excessive finite data bias.

Significance testing. We determined whether the descriptive statistics of
two sample sets are significantly different via randomized, two-tailed ¢
tests (Manly, 1991). In all cases randomization was performed to rule out
the null hypothesis that the two sets of observations come from the same
underlying population distribution. Thus, significance implies that the
value of the descriptive statistic for nCRF data is significantly different
from the corresponding value obtained with CRF data. The standard
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significance criterion of p = 0.05 is sufficient when comparing two
collections of neurons. However, when judging significant differences in
single neurons or time bins, we use a more restrictive significance
criterion, p = 0.01.

RESULTS

Response modulation by the nCRF in area V1 during
natural vision

Many studies have demonstrated that the nCRF has pronounced,
generally suppressive effects on responses (Hubel and Wiesel,
1965; Blakemore and Tobin, 1972; Bishop et al., 1973; Nelson,
1991). However, nCRF modulation can also enhance responses
(Jomes, 1970; Hirsch and Gilbert, 1991; Knierim and Van Essen,
1992; Levitt and Lund, 1997, Kapadia et al., 2000). We have
found that nCRF stimulation during natural vision can both
enhance and suppress responses. Figure 44 shows the peristimu-
lus time histogram (PSTH) obtained from one V1 neuron in
response to stimulation by a natural-vision movie confined to the
CRF. When the stimulus size is increased to four times the
diameter of the CRF (4 X CRF) some responses are enhanced
while others are suppressed (Fig. 4B). The modulation ratio, R,
summarizes the influence of the nCRF on the ith stimulus time
bin (see Materials and Methods). In Figure 4, those time bins
with significant R; values (p = 0.01) are shown in white (significant
suppression) or black (significant enhancement). Modulation by
the nCRF depends on both image content and the elapsed time
from fixation onset. These intrafixation temporal dynamics may
reflect presynaptic depression (Abbott et al., 1997; Chance et al.,
1998), some form of short-term adaptation, or perhaps the influ-
ences of intracortical feedback (Rao and Ballard, 1999).

To quantify the observed modulation, we calculated R; values
for all time bins in our data set (Fig. 54-C). Again, R, values are
colored according to their significance: white for significant sup-
pression, black for significant enhancement. (Modulation ratios
and histogram values are plotted on logarithmic scales because of
the large dynamic range of modulation produced by natural
stimulation of the nCRF.) As stimulus size increases, there is a
modest increase in the number of significantly modulated time
bins. In general, enhancement is always less pronounced than
suppression. However, for all stimulus sizes a substantial fraction
of modulation is positive. As stimulus size increases, the net
modulation becomes steadily more suppressive.

Suppression also significantly decreases the mean spiking rate
of individual neurons. The fractions of neurons whose spike rates
are significantly suppressed by nCRF stimulation are 50% at 2 X
CRF, 59% at 3 X CREF, and 73% at 4 X CRF (p = 0.01). The
suppression of individual neurons is reflected in the average spike
rate of the population, which decreases with increasing stimulus
size (Fig. 5D).

In a previous study, we showed that increasing stimulus size
decorrelated the responses of neuron pairs (Vinje and Gallant,
2000). The decorrelation index measures the relative overlap of
the tuning properties for each neuron pair; as neuron pairs
become decorrelated the overlap in their tuning functions is
reduced. Thus, for large stimuli, different neurons were unlikely
to fire in response to the same space—time stimulus, whereas for
stimuli confined to the CREF, there was a significant chance of
correlated firing.

Increasing nCRF stimulation produces a net increase in sup-
pressive modulation, a reduction in the overall population activity
rate, and a reduction in tuning overlap. These results support the
first untested prediction: increasing nCRF stimulation reduces
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Figure 4. The nCRF modulates responses dur-
ing natural vision. 4, PSTH obtained from one
V1 neuron in response to a natural-vision movie
confined to the CRF. Responses are weakly mod-
ulated by the simulated fixations (information per
second, 13.1 bits/sec; information per spike, 0.18
bits/spike; efficiency, 10%; selectivity index, 13%).
B, Responses of the same cell to a natural-vision
movie composed of the CRF stimulation used in

A plus a circular surrounding region. The overall
stimulus size was 4 X CRF diameter. Stimulation
of the nCRF dramatically increases variation of
responses across fixations (information per sec-
ond, 28.4 bits/sec; information per spike, 0.67 bits/
spike; efficiency, 26%; selectivity index, 51%). Re-
sponses to some stimuli are significantly enhanced
(black bins; p = 0.01). For this neuron, enhance-
ment is concentrated in the onset transients oc-

| curring at the beginning of simulated fixations.
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metabolic load by lowering mean spike rates. Furthermore, these
three findings suggest that nCRF stimulation reduces the effective
bandwidth of single neurons, thereby restricting the range of
stimuli that they represent.

nCRF stimulation increases information

transmission rate

Does this shrinkage in effective bandwidth reduce the amount of
information represented by V1 neurons? If information is lost,
then the stimulus representation will be coarsened rather than
made sparser (Foldiak and Young, 1995; Olshausen and Field,
1997; Barlow, 2001). Information must be preserved if nCRF
stimulation truly increases sparseness. Information transmission
can be preserved in numerous ways. One possibility is that the
overall information transmission rate might be preserved at the
level of individual neurons. Alternatively, some neurons may
increase their information transmission rates while other neurons
transmit less information.

Information transmission rates (bits per second) for our sample
of V1 neurons are shown in Figure 64-D. For each neuron at
each stimulus size, we compared information rates observed with
and without nCRF stimulation. Neurons with significantly in-
creased information rates are shown in black, while those with sig-
nificantly decreased rates are shown in white (p = 0.01). The effects
of natural nCRF stimulation vary across neurons. Some exhibit
decreases in information transmission rates, whereas others exhibit
increases. Interestingly, significant increases in information trans-
mission rates occur more frequently than significant decreases. The
ratio of significant increases to significant decreases is 3.8:1 at 2 X
CREF, 3.4:1 at 3 X CREF, and 3.7:1 at 4 X CRF.

For our sample of neurons, the average information transmis-
sion rate also increases with stimulus size (Fig. 6E). The increase
in mean rate is modest but statistically significant for stimulus
sizes of 2 X CRF and 3 X CRF (p = 0.05) and is marginally
significant for stimuli of 4 X CRF diameter (p = 0.07).

Table 1 shows the average information rate as a function of
stimulus size and time-bin duration. In general, the average rate
increases as time-bin duration decreases. From 50 msec to 4.6
msec, the information transmission rate increases by ~250%. The
increase in information rates for short binning times is commonly
observed in neurophysiological data sets (Strong et al., 1998) and

Other responses are strongly suppressed (white
bins; p = 0.01). The under-bar highlights those
time bins where significant enhancement and sup-
pression occur.

occurs because H(r) increases more rapidly than H(rls) as bin
duration shrinks.

Our second prediction is that the average information trans-
mission rate should not decrease as stimulus size increases. Our
results demonstrate that information transmission actually in-
creases with stimulus size. This is consistent with the predicted
preservation of information. It also suggests that nCRF stimula-
tion may be necessary to fully realize the information-processing
potential of V1 neurons.

nCRF stimulation increases information per spike

As discussed in the introductory remarks, sparse coding offers
several potential advantages to the nervous system. It may sim-
plify development of neural connections, increase learning rates,
and increase memory capacity (Barlow, 1961, 2001). Sparse cod-
ing also reduces the number of action potentials required to
represent a scene and thereby decreases the metabolic demands
of information processing (Srinivasan et al., 1982; Laughlin et al.,
1998). If the system is to maintain the fidelity with which a scene
is represented, this reduction in spiking activity must be accom-
panied by an increase in the average amount of information each
spike provides about the stimulus. Thus, natural nCRF stimula-
tion should increase the average information carried by each
spike.

The average information that a spike transmits about the stim-
ulus is found by simply dividing the information per second by the
mean number of spikes per second: I, = I/, where w is the
mean spike rate of the neuron for all stimuli of a given size.

Information transmission per spike is shown in Figure 74-D.
Figure conventions are identical to those used in Figure 6. Stim-
ulation of the nCRF can increase or decrease the information per
spike, but the trend is strongly toward increasing the information
content of spikes. The ratio of neurons with significant increases
to those with significant decreases is 6.5:1 at 2 X CRF and 26:1 at
3 X CREF. For data obtained with stimuli of 4 X CRF diameter,
all significantly modulated neurons show increases in their infor-
mation transmission per spike.

The mean information per spike also increases substantially as
a function of stimulus size (Fig. 7E, black circles). For stimuli of
4 X CRF diameter, the mean information per spike is 1.85 times
larger than that of the value obtained with CRF-sized stimuli. All
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Figure 5. Stimulus size affects the modulation ratio and the mean spike
rate. A-C, Modulation ratios, R;, for stimuli of sizes 2 X CRF, 3 X CRF,
and 4 X CRF. Both axes are presented on a logarithmic scale (base 10) to
facilitate display. Positive values of log[R,] indicate relative enhancement,
whereas negative values of log[R;] indicate relative suppression. Those
time bins with significantly enhanced ratios are shown in black, whereas
those with significantly decreased ratios are shown in white (p = 0.01).
The total number of valid time bins in each data set, n,; the number of
time bins demonstrating significant enhancement, n ; ; and the number of
time bins demonstrating significant suppression, n |, are indicated to the
right of each histogram. Not all time bins are included in the histogram.
Time bins for which R; = 0 are indicated by n,. These bins are included
in the total number of valid bins, but have undefined logarithms. Time
bins where CRF-sized stimuli evoke no spikes are indicated by 7. These
bins have undefined modulation ratios and are not included in the total
number of valid time bins. Enhancement is less frequent than suppression,
especially at larger stimulus sizes. Significant enhancement occurs in 1.7,
2.3, and 3.0% of the time bins for stimulus sizes of 2 X CRF, 3 X CRF and
4 X CREF, respectively, whereas significant suppression occurs in 4.6, 6.4,
and 8.0%. D, Average spikes per second versus stimulus size. The mean
spike rate falls monotonically as stimulus size increases. The mean spike
rate in response to 4 X CREF stimuli is ~75% of mean the rate observed
with CRF stimulation alone.

stimuli of a size =2 X CRF produce significant increases in
information per spike (p = 0.05). Because the information-per-
spike distributions are positively skewed, we also evaluated the
median information transmission per spike (Fig. 7E, gray trian-
gles). As expected, the medians increase less than the means, but
still increase significantly for sizes of =3 X CRF (p = 0.05). Table
1 presents the average information per spike as a function of
stimulus size and time-bin duration. As duration decreases, the
information per spike increases in a manner similar to that
observed for information per second.

Natural nCREF stimulation increases the information content of
each spike for most neurons in our sample. This confirms the
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Figure 6. Information transmission in V1 neurons increases with stimu-
lus size. A-D, Information transmission rates for stimuli of sizes 1 X CRF,
2 X CRF, 3 X CRF, and 4 X CRF. Neurons in which stimulus size
significantly increases information transmission per second are shown in
black, whereas those neurons with significant decreases in transmission
are shown in white (p = 0.01). The total number of neurons in each
histogram, n,; the number of neurons demonstrating significant increases,
n 4 ; and the number of time bins demonstrating significant decreases, n |,
are indicated to the right of each histogram. Significant increases occur in
43, 39, and 45% and significant decreases occur in 11, 14, and 12% of the
neurons for stimulus sizes of 2 X CRF, 3 X CRF, and 4 X CREF,
respectively. £, Mean information transmission per second versus stimu-
lus size. The mean rates obtained with 2 X CRF and 3 X CRF stimuli are
significantly higher than the mean rate observed with stimuli confined to
the CRF (p = 0.05). With stimuli of 4 X CRF diameter the increase in
mean rate is marginally significant (p = 0.07).

third prediction of the hypothesis that nCRF stimulation in-
creases sparseness in V1.

nCRF stimulation during natural vision

increases efficiency

As nCRF stimulation increases sparseness, it should also increase
the efficiency of information processing. In information theoretic
terms, efficiency measures the fraction of available bandwidth that
a neuron actually uses to transmit information. Formally this is
expressed as the ratio of the amount of information actually
transmitted over the theoretical maximum amount of information
that could be transmitted (Cover and Thomas, 1991; Borst and
Theunissen, 1999):

_H(r) — H(rls) 1(r,s)
- H(n  H0)

(12)

Figure 84-D shows efficiency versus stimulus size for our
sample of neurons. Figure conventions again match those used in
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Figure 7. Information per spike increases with stimulus size. A-D, In-
formation transmission per spike versus stimulus size. Figure conventions
match those used in Figure 6. Significant increases in information per
spike occur in 59, 70, and 79% and significant decreases occur in 9, 3, and
0% of the neurons for stimulus sizes of 2 X CRF, 3 X CRF, and 4 X CRF,
respectively. E, Mean (black circles) and median ( gray triangles) informa-
tion per spike estimates as a function of stimulus size. The mean infor-
mation per spike obtained with 2 X CRF and larger stimuli is significantly
higher than that observed with stimuli confined to the CRF (p = 0.05).

Figure 6. As stimulus size increases, so does the efficiency of single
neurons. The ratio of neurons with significant increases to those
with significant decreases is 6.3:1 at 2 X CRF and 26:1 at 3 X CRF.
With 4 X CRF stimuli, all significantly modulated neurons show
increases in the efficiency of information transmission.

Mean efficiency increases with nCRF stimulation (Fig. 8E); for
4 X CRF-sized stimuli, the mean efficiency is 1.6 times larger than
the value obtained with CRF-sized stimuli. The increases in mean
efficiency are statistically significant for all stimuli of a size =2 X
CRF (p = 0.05). Table 1 presents the average efficiency as a
function of stimulus size and time-bin duration. In contrast to
information rate and information per spike, mean efficiency does
not change substantially as bin duration decreases. As bin dura-
tion shrinks, increases in H(r) inflate the apparent information
transmission per second and per spike. However, in the case of
efficiency, the denominator of Equation 12 largely cancels this
effect.

Neurons use their available transmission bandwidth more effi-
ciently when the nCRF is stimulated than when stimuli are
confined to the CRF. Because efficiency does not explicitly de-
pend on spike rate, this result complements the finding that nCRF
stimulation increases the amount of information available in each
spike and confirms the last of our predictions.
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Figure 8.  Efficiency of information transmission increases with stimulus
size. A-D, Efficiency versus stimulus size. Figure conventions match those
used in Figure 6. Significant increases in efficiency occur in 57, 70, and
82% and significant decreases occur in 9, 3, and 0% of the neurons for
stimulus sizes of 2 X CRF, 3 X CRF, and 4 X CREF, respectively. E, Mean
efficiency as a function of stimulus size. Efficiency observed with 2 X CRF
and larger stimuli is significantly higher than that observed with stimuli
confined to the CRF (p = 0.05).

Information transmission and efficiency correlate

with selectivity

Thus far we have shown that nCRF stimulation increases infor-
mation transmission rates, the information content of single
spikes, and processing efficiency in both individual neurons and
our sample population. In a previous study (Vinje and Gallant,
2000), we showed that nCRF stimulation increases the selectivity
of V1 neurons (Fig. 9). All of these results are consistent with the
idea that nCRF stimulation increases the sparseness of the rep-
resentation of visual information in V1. A supplementary test of
the sparse coding hypothesis is to determine whether selectivity is
correlated with information transmission in individual neurons. If
the nCREF increases sparseness, then cells that show a substantial
increase in selectivity contingent on nCRF stimulation should be
more informative and more efficient than those that do not show
such changes.

Stimulus selectivity is not significantly correlated with informa-
tion per second in our sample of cells (Fig. 104-D). However,
selectivity is significantly correlated with information per spike
for all stimulus sizes (Fig. 10E-H; p = 0.01). The correlations
between information per spike and selectivity are 0.91, 0.90, 0.89,
and 0.89 for CRF-, 2 X CRF-, 3 X CRF-, and 4 X CRF-sized
stimuli, respectively. Finally, stimulus selectivity is also signifi-
cantly correlated with efficiency (Fig. 10/-L; p = 0.01). Correla-
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Figure 9. Stimulus selectivity increases with stimulus size. A-D, Selec-
tivity versus stimulus size. Figure conventions match those used in Figure
6. Significant increases in selectivity occur in 61, 70, and 88% and
significant decreases occur in 11, 5, and 2% of the neurons for stimulus
sizes of 2 X CRF, 3 X CRF, and 4 X CREF, respectively. E, Mean
selectivity versus stimulus size. Selectivity obtained with 2 X CRF and
larger stimuli is significantly higher than that found with stimuli confined
to the CRF (p = 0.05).

tions between efficiency and selectivity are 0.89, 0.89, 0.87, and
0.88 for CRF-, 2 X CRF-, 3 X CRF-, and 4 X CRF-sized stimuli,
respectively.

The lack of correlation between information transmission per
second and selectivity suggests that the observed increases in
information rate may not be central to the process of increasing
sparseness. This is perhaps unsurprising, given that the prediction
was merely that average information transmission should be pre-
served. In contrast, the correlation of selectivity with information
per spike and efficiency suggests that these three measures are
related by an underlying causal factor. It seems likely that this
causal factor is the sparseness of information representation in
V1. As sparseness increases, there are corresponding increases in
selectivity, information per spike, and efficiency of information
transmission.

Results obtained with flashed natural-image patches

Natural-vision movies are designed to mimic the stimulation that
occurs during saccadic vision of a static scene. The majority of the
movie consists of fixations where image content is held constant.
These fixations are linked by simulated saccades with realistic
acceleration profiles. The stimulation contained in saccades
blends together image patches and avoids any discontinuous
change in stimulus content. Most previous physiology experi-

Vinje and Gallant « nCRF Stimulation Increases Efficiency of V1 Cells

ments use flashed stimuli that contain instantaneous onset and
offset transitions and substantial interstimulus intervals. Clearly
the nature of the transitions between image patches is very
different in these two procedures.

To facilitate comparisons between our results and those ob-
tained using flashed stimuli, we performed the following control
experiment. Image patches were selected from natural scenes and
presented as flashed stimuli (» = 10 neurons; see Materials and
Methods). Responses to the flashed stimuli were concatenated to
form a pseudo-movie and analyzed in the same manner as
natural-vision movies (responses during interstimulus intervals
were discarded).

Unfortunately, flashed stimulus patches were presented only
five times; therefore, this data set suffers from larger entropy
biases than our main data set. This problem is partially caused by
difficulty in accurately estimating the second correction term in
Equation 10 and was partially ameliorated by using only the linear
correction term. To enable comparison with data from natural-
vision movies, we also limited the natural-vision data to the first
five trials and applied only the linear bias correction. This ap-
proach subjected both data sets to the same bias-producing con-
ditions and thus allowed a fair comparison between the results
from the natural vision and the flashed stimuli.

The effects of nCRF stimulation with flashed stimuli are gen-
erally similar to those obtained with natural-vision movies. Both
the information per spike and the efficiency increase with stimu-
lus size. For the largest flashed stimulus size (3 X CRF), the
average information per spike increases by 25% and the average
efficiency increases by 10%. Information transmission per second
does not increase.

These results suggest that increasing stimulus size increases
response sparseness with flashed stimuli, as it does with natural-
vision movies. However, these effects are somewhat smaller with
flashed stimuli. This may be an artifact of small sample size,
because not all neurons demonstrate strong nCRF modulation
effects. Alternatively, this may reflect differences in the transient
responses evoked by the two stimulus classes. When the first 200
msec are removed from the response to each flashed-image patch,
information transmission more closely matches that obtained
with natural-vision movies.

Total entropy and noise entropy both decrease with
increasing stimulus size

Information is the difference between two measures of variance,
the total response entropy and the noise entropy. An increase in
information can reflect a decrease in noise entropy, an increase in
total entropy, or some combination of the two. Each of these
changes would alter neuronal spiking patterns in ways that allow
insight into the specific biophysical mechanisms underlying nCRF
modulation. If nCRF stimulation increases the total response
entropy, then the nCRF must increase the dynamic range of the
neuron and/or the reliability of spikes elicited by the stimulus. In
contrast, if the noise entropy decreases consequent to nCRF
stimulation, then the nCRF must suppress spikes that are not
relevant to encoding the stimulus.

Entropy measures are summarized in Figure 11. Figure 114-D
shows total stimulus entropy, and Figure 11E-H shows noise
entropy. Those neurons with significantly increased entropies are
shown in black, while those with significantly decreased entropies
are shown in white (p = 0.01). It is readily apparent that the nCRF
has a large effect on both total entropy and noise entropy. On
average, both total entropy and noise entropy decrease with
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nCREF stimulation. However, the noise entropy falls faster than
the total entropy.

The differential effect of nCRF stimulation on these two en-
tropies underlies the observed increases in information rate,
information per spike, and efficiency. The simultaneous decrease
of both total and noise entropies explains why nCRF stimulation
has a relatively weak effect on information per second: such
stimulation decreases both total entropy and noise entropy and
dilutes the effective increase in overall information transmission
rates.

Information per spike and efficiency are both ratio measures
with the weakly increasing information rate in their numerators.
However, the denominator terms of both measures (w and H(r),
respectively) shrink with increasing stimulus size. This conver-
gence of a weakly increasing numerator and a decreasing denom-
inator underlies the strong increases in information per spike and
efficiency as a function of stimulus size. The nCRF appears to
suppress most responses and enhance a select few. As sparseness
increases, those action potentials that are not reliably linked to
stimulus properties are winnowed from the responses of the
neuron.

sponse entropy and the noise entropy of
individual neurons.

DISCUSSION

Our results show that nCRF stimulation changes the response
entropies of V1 neurons. Stimulation of the nCRF decreases total
response entropy but has an even greater effect on the noise
entropy. This differential modulation underlies the pattern of
results we observed: relative to CRF stimulation alone, natural-
istic nCRF stimulation increases selectivity, information per sec-
ond, information per spike, and efficiency.

Previous theoretical research has shown that the informative
components of natural scenes are sparsely distributed (Field,
1987; Olshausen and Field, 1996, 1997; Bell and Sejnowski, 1997).
Our results suggest that the nCRF might tune V1 neurons to
match the sparsely distributed, informative components of natu-
ral scenes. The resulting neural code is also sparse, highly selec-
tive, and efficient.

The level of sparseness in the neural code does not necessarily
match that of natural images; the sparse components of natural
images are determined by the physical structure of the world,
while the sparseness of a neural code also reflects biophysical,
computational, and behavioral constraints (van Hateren and
Ruderman, 1998). Therefore, the neural code might be more or
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less sparse than would be expected based simply on the statis-
tics of natural images. Future research should reveal how the
level of sparseness in the neural representation compares with
the distribution of informative image features in natural
scenes.

Stimulus dependence of information transmission

Recently, Reich et al. (2000) have evaluated information trans-
mission by V1 neurons in anesthetized macaques. Their work is
particularly relevant because their analysis was similar to ours and
their stimulus set is complementary to ours. They used three
types of stimuli: drifting sinusoidal gratings, stationary gratings,
and checkerboard m-sequences. Each stimulus encompassed both
the CRF and nCREF of the neurons under study.

For the V1 complex cells in their study, Reich et al. (2000)
obtained the following median values of information transmission
using drifting gratings, stationary gratings, and m-sequences, re-
spectively: 1.58, 4.38, and 4.99 bits/sec and 0.08, 0.19, and 0.42
bits/spike. They found higher information rates for simple cells:
10.28, 7.29, and 6.41 bits/sec and 0.92, 0.25, and 0.69 bits/spike.
Our natural visual stimuli produce substantially higher informa-
tion transmission than that reported by Reich et al. (2000). For
large stimuli (4 X CRF), the median values of information trans-
mission are 9.12 bits/sec and 0.91 bits/spike.

There are several factors that may underlie this difference.
First, although both studies derive their bias removal methods
from Treves and Panzeri (1995), the details of the methods are
different. These differences could potentially affect estimated
information rates. Second, information transmission rates might
be affected by the anesthesia used in the Reich et al. (2000) study.
Finally, it is possible that V1 neurons transmit relatively more
information about the natural stimuli used in our experiments.
This is consistent with the observation of Reich et al. (2000) that
information transmission rates are stimulus-dependent. If this
stimulus dependence underlies the difference in information
rates, then it suggests that V1 neurons are optimized for repre-
senting natural visual stimuli.

Comparison with information transmission in

H1 neurons

Because information is measured using a rather abstract scale
(bits), it is difficult to appreciate the meaning of the information-
transmission rates observed in a single sensory system. One way
to better understand our results is to compare them with infor-
mation processing in a different nervous system. The blowfly (Cal-
liphora vicina) is an interesting case in this regard. From the
standpoint of information theory, the most studied cells in the
blowfly are the wide-field, velocity-sensitive H1 neurons. The blow-
fly has only two H1 neurons and must rely on this pair to provide
crucial flight control information. If H1 neurons are highly opti-
mized for representing wide-field motion, their information-
transmission properties should reflect this fact.

Previous studies have reported that H1 neurons transmit ~1
bit/spike and operate at an efficiency of ~50% (de Ruyter van
Steveninck et al., 1997; Strong et al., 1998). For V1 neurons
provided with 4 X CRF natural-vision movies, the average infor-
mation transmission is 1.2 bits/spike and the average efficiency is
~27%. These values are probably lower bounds on the true
information-transmission capacities of V1 neurons; we make sev-
eral conservative assumptions in our analysis while simulta-
neously removing potential inflationary biases (see Materials and
Methods). Given this situation, it is impressive that some V1
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neurons are more efficient than the average H1 neuron (i.e. >3
bits/spike and/or efficiency values approaching 50%).

The neocortex is a comparatively recent evolutionary innova-
tion. Despite this, during natural vision the information-
transmission properties of some V1 neurons are roughly compa-
rable with the transmission properties of H1 neurons responding
to wide-field motion. This also supports the idea that V1 neurons
are optimized to process the information in natural scenes.

Coding density in the visual system

Coding density is a fundamental property of any neural repre-
sentation: do a few neurons encode the important information or
is information distributed across most of the available neurons?
Each stage of sensory processing offers an opportunity to alter the
sparseness of the stimulus representation. At each stage, the
representation of sensory input may be refined so that the most
informative components are easily accessible to higher areas.
Thus, it is important to identify the factors that influence coding
density at each processing stage and to determine whether they
increase or decrease sparseness. Unfortunately, this matter has
received little experimental attention.

Previous researchers have suggested that the spatiotemporal
tuning properties of the retina (Srinivasan et al., 1982) and the
lateral geniculate nucleus (Dan et al., 1996) minimize the encod-
ing of redundant visual input. Beyond V1, there have been only
two studies of coding density (Young and Yamane, 1992; Rolls
and Tovee, 1995). The representation of the visual world in the
inferotemporal cortex appears to be at least as sparse as the
representation we find in V1. However, direct comparisons are
difficult because of differences in stimulation and analysis. Future
studies using common stimulus sets and sparseness metrics while
recording from neurons in multiple cortical visual areas will allow
rigorous comparisons and may lead to a deeper understanding of
how information is represented during visual processing.

What does the nCRF do?

Previous studies of the nCRF have focused on suppressive mod-
ulation and have suggested that the nCREF is critical for contrast-
gain control (Geisler and Albrecht, 1992; Heeger, 1992; Wilson
and Humanski, 1993). Others have noted that appropriate nCRF
stimulation can actually enhance responses, suggesting that it
plays a role in representing specific features such as curvature,
extended contours, corners, and texture boundaries (Gilbert and
Wiesel, 1990; Knierim and Van Essen, 1992; Wilson and Rich-
ards, 1992; Sillito et al., 1995; Fitzpatrick, 2000). Our results
demonstrate that natural nCRF stimulation can both facilitate
and suppress responses. However, suppression predominates,
consistent with contrast-gain control models. In addition, the
nCREF also increases selectivity and optimizes filtering, which
may allow for more efficient processing of the sparse components
of natural scenes. The finding that the nCRF of V1 neurons
promotes sparse coding appears consistent with previous studies
of nCREF function and adds a new dimension to our understand-
ing of the nCRF.

Full-field stimulation is common during normal vision. In this
regime, V1 neurons represent the visual world with a relatively
sparse code and operate at their peak efficiency. However, some
neurophysiological experiments confine stimuli to the CRF and
avoid nCRF stimulation. Under these conditions V1 neurons
evidently operate below their true potential and transmit less
information with lower efficiency than they would if both the CRF
and nCRF were stimulated. Our results suggest that during nat-
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ural vision, the CRF and nCRF act together as a single unit
optimized for processing natural scenes.
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