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Perceptual learning, improvement with training in perceptual  
abilities, has been used as a model to study experience-dependent 
cortical plasticity in adults. The focal contentions in perceptual  
learning studies in the last couple of decades have been the corti-
cal loci in which the plastic changes occur and the forms of cortical 
changes that can account for the improved behavioral performance1–3.  
Some electrophysiological studies have shown that training in  
simple discrimination and detection tasks can alter neuronal response 
properties in visual cortical areas such as V1 (refs. 4–7) and V4  
(refs. 8–11). However, it has been argued that perceptual training 
mainly modifies downstream cortical areas that are engaged in the 
allocation of attentional resource12 and integration of sensory evi-
dence for decision-making13–15. Thus, it is still a matter of debate 
whether the sensory codes for the trained stimulus can be refined in 
early visual cortex through repeated practice.

More controversial observations of learning-induced changes come 
from imaging studies, which have shown that training can result in 
increased16–19 or decreased20,21 activation in early cortical areas,  
that an initial increase is followed by a drop of activation back to 
pre-training level22, and even that the overall activation is not 
affected, whereas the discrimination abilities of individual voxels 
are enhanced23. These mixed results suggest that perceptual training 
can cause complex changes in early visual cortex and that different 
response patterns may reflect different phases of learning.

Previous single-electrode recordings have shown learning-induced 
changes in V1 by comparing different neuronal samples before and 
after training. It is unclear how perceptual learning dynamically affects 
neural coding at the population level over the entire course of training 
and to what extent neuronal dynamics can account for the diverse 
imaging results. We sought to address this issue, which is important 
for understanding the neural mechanisms of perceptual learning. 

To this end, we tracked possible dynamic changes in spatiotemporal 
properties of V1 neurons in monkeys implanted with multielectrode 
arrays. By characterizing learning-induced daily changes across more 
than 2 weeks of extensive training on a visual contour detection task, 
we found that V1 population responses were markedly remodeled in 
space and time. Our observations suggest that perceptual learning 
refines the representation of visual information in V1 for enabling 
and facilitating a simple readout of task-relevant signals.

RESULTS
Two naive adult male monkeys (Macaca mulatta, named MG and MJ) 
participated in this study. Multiunit activities of V1 superficial layer 
neurons were recorded with chronically implanted microelectrode 
arrays (6 × 8 electrodes, 0.5 mm in length, 0.4-mm spacing). The 
receptive field (RF) centers and preferred orientations of V1 recording 
sites were very stable across training days (Fig. 1a), suggesting that we 
had been recording from the same set of cortical columns.

The monkeys were trained to perform a contour detection task 
using a two-alternative forced-choice task6,24. A pair of stimulus  
patterns was displayed simultaneously for a brief amount of time  
(Fig. 1b). These two patterns were circular in outline, 8.5° (in mon-
key MG) or 7.5° (MJ) in diameter, divided by hidden rhomboid 
grids. Each rhomboid compartment, with equal and constant base 
and height of 0.5° and therefore equal and constant area, contained 
a small bar of 0.25 × 0.05°. In one pattern (referred to as the noise 
pattern, NP), the orientation of each component bar was randomly 
assigned. In the other pattern (referred to as the contour pattern, CP; 
Fig. 1c), a contour was formed by collinear alignment of adjacent 
bars along a diagonal axis of the hidden compartments, whereas the 
remaining bars were exactly identical to those in the noise pattern 
(Fig. 1b, see also refs. 24,25). In a block of trials, either the CP or NP 
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Perceptual training continuously refines neuronal 
population codes in primary visual cortex
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Perceptual learning substantially improves visual discrimination and detection ability, which has been associated with visual 
cortical plasticity. However, little is known about the dynamic changes in neuronal response properties over the course of training. 
Using chronically implanted multielectrode arrays, we were able to capture day-by-day spatiotemporal dynamics of neurons in 
the primary visual cortex (V1) of monkeys trained to detect camouflaged visual contours. We found progressive strengthening 
and accelerating in both facilitation of neurons encoding the contour elements and suppression of neurons responding to the 
background components. The enhancement of this figure-ground contrast in V1 was closely correlated with improved behavioral 
performance on a daily basis. Decoding accuracy of a simple linear classifier based on V1 population responses also paralleled 
the animal’s behavioral changes. Our results indicate that perceptual learning shapes the V1 population code to allow a more 
efficient readout of task-relevant information.

np
g

©
 2

01
4 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

http://www.nature.com/doifinder/10.1038/nn.3805
http://www.nature.com/natureneuroscience/


nature NEUROSCIENCE  VOLUME 17 | NUMBER 10 | OCTOBER 2014	 1381

a r t ic  l e s

stimulus—with equal probability—covered all of the simultaneously 
recorded RFs; the other stimulus was placed symmetrically around 
the fixation point in the opposite visual field. After a stimulus pres-
entation, the monkeys were required to indicate the CP by making 
a saccade to either of two dots corresponding to the two stimulus 
locations (Fig. 1b).

To minimize sampling bias in V1, the contour was embedded at 
either of two fixed positions in the randomly oriented bars (Fig. 1a,c). 
These two possible positions and the contour orientation were arbi-
trarily set in such a way that a considerable number of RFs lay on the 
contour as well as on the background with varying distances from the 
contour (Fig. 1a). To cover a range of task difficulties, we changed  
the number of collinear bars forming the contour and varied the  
spacing between them while keeping the density of bars in the  
stimulus pattern constant (Fig. 1c and Online Methods).

Six center-to-center spacings between collinear bars (1.0, 1.2, 1.4, 
1.6, 1.8 and 2.0× the height of a rhomboid compartment), four dif-
ferent contour lengths (1, 3, 5 and 7 collinear bars), and two possible 
locations for embedding the contour were combined into 48 condi-
tions with different degrees of contour saliency (Fig. 1c). Once the 
CP and the corresponding NP were defined for each condition, all 
stimuli were kept constant across all training sessions. Note that, in 
the one-bar contour conditions, the CP was identical to the NP (12 of 
the 48 conditions). In these control conditions, the monkey could only 
guess, with 50% chance level, which side was the CP. All 48 stimulus 
conditions were randomly mixed in a block of trials, in which each 
stimulus condition was repeated ten times. Given that the CPs (and 
NPs) were presented in equal amounts of trials on either the RF side 
or the opposite hemifield, the total number of trials in a training 
session was 48 × 10 × 2 = 960. The animals underwent four training 
sessions a day.

Before we collected the perceptual training data, the animals under-
went an operational training stage using highlighted contours with a 
luminance contrast against the complex background. After the ani-
mals fully understood the task (Online Methods), perceptual training 
and data collection began. The training lasted about 2 weeks, until the 
animals’ contour detection performance reached plateaus in most of 
the stimulus conditions (15 d for MG, 17 d for MJ).

Changes in behavioral performance with training
Expectedly, the animals’ performance on contour detection and the 
rate of learning depended on the geometry of the contour stimuli 
(Fig. 1d). For data analyses, we separated the 48 stimulus conditions 
into three groups by comparing the animal’s performance across days 
in each condition.

For contours of very high or very low saliencies, no significant 
change in detection performance was observed during the training 
(detection rates tested for significant increase using linear regres-
sion over days, F statistics of mean squared error fit, P > 0.05). These 
conditions were further categorized into three groups: the control 
conditions (that is, the one-bar contour conditions), the saturated 
conditions (in which the animals were able to reliably detect the 
contours in more than 90% of trials throughout the training; MG,  
n = 6; MJ, n = 3; Fig. 1e) and the non-learnable conditions (in which 
the animals’ performance was still near the chance level at the end 
of training; MG, n = 3; MJ, n = 10; Fig. 1e). Note that there were 
more non-learnable conditions and fewer saturated conditions in MJ 
than in MG. This could be a result of a larger eccentricity of stimulus 
in MJ, rendering contour detection more difficult26. The remaining 
conditions with intermediate contour saliencies were classified as 
the learned conditions, in which the animals showed a monotonic 
increase in contour detection performance (linear regression,  
F statistics, P < 0.05; MG, n = 27; MJ, n = 23; Fig. 1e).

Spatial layout of learning-induced changes in V1
As a pre-training control, we recorded V1 neuronal responses to the 
entire set of stimuli while the animal simply maintained fixation. After 
the operational training when the animals fully understood the detec-
tion task, we continuously recorded neuronal activity while the animals 
were being trained in the contour detection task for about 2 weeks.

At the end of perceptual training, we observed that the majority of 
recording sites responded differently to CP versus NP stimuli: most 
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Figure 1  Experimental design. (a) Visual-field locations of the recorded 
RFs in MG and MJ, respectively. Each small cluster of lines of the same 
color indicates a recording site, with the center and orientation of each 
line representing the RF center and preferred orientation measured on 
each training day by the same electrode. Different recording sites are 
marked by different colors. The two long black parallel lines show the 
two possible positions of the embedded contour and its orientation, with 
the black dot on each line indicating the center of the global collinear 
contour. The empty circle in the panel center shows the center of the 
entire stimulus pattern (MG, −4.5°, −3.2°; MJ, −2.8°, −6.6°). Note 
that the total number of electrodes that were able to pick up recordable 
spiking activity slightly fluctuated across days (Online Methods).  
(b) The timing of a trial in the contour detection task. When the animal 
was maintaining fixation, the contour and noise patterns were displayed 
simultaneously. The monkey indicated the contour pattern position by 
making a saccade to either of the two targets displayed at the end of the 
trial. (c) Sample contour patterns showing two possible contour positions 
(Pos1 and Pos2) and three spacings (Sp1.0, Sp1.4 and Sp1.8) between 
collinear bars (seven bars here). (d) Dependence of contour detection 
performance and learning rate on the number of collinear bars (left, 
sample conditions from MG) and on the spacing between collinear bars 
(right, sample conditions from MJ). (e) The two animals’ learning curves 
averaged across different conditions (red, n = 6 in MG, n = 3 in MJ; 
blue, n = 27 in MG, n = 23 in MJ; black, n = 3 in MG, n = 10 in MJ). 
The shaded areas represent s.e.m.
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V1 sites with RFs lying on the contour responded more vigorously 
to the CP than NP, whereas most sites on the background were sup-
pressed by the CP relative to the NP (Fig. 2a).

To quantify these contour-related signals, neuronal responses to the 
CP stimulus were contrasted with those to the NP using the detecta-
bility measure d′. Defined by the difference of the mean responses to 
CP and NP stimuli normalized by the magnitude of the noise fluctua-
tions (Online Methods), a d′ value of 0 indicates no contour-induced 
activity, and a positive or negative value indicates facilitation or sup-
pression of neuronal responses induced by the embedded contour, 
respectively. This measure for the strength and sign of the contour 
modulation in individual V1 site was monitored across days to exam-
ine learning-induced changes.

We observed that perceptual learning systematically affected con-
tour modulation strength across the recorded neuronal population. 
Taking a typical learned stimulus condition as an example (Fig. 2b),  
we found that few V1 recording sites showed discernible contour-
related responses before training, regardless of whether their RFs were 
located on the contour or background. When the animals started 
to perform the task and their performance progressively improved 
with training, the contours elicited increasingly stronger modula-
tions of neuronal responses over the course of training: neurons with 
RFs lying over the contour were gradually facilitated (referred to as 
contour facilitation), whereas neurons with RFs on the background 
were gradually suppressed (referred to as background suppression). 
The contour facilitation and background suppression were generally 
observed for V1 sites with different orientation preferences, consistent 
with recent findings27.

Taking a typical saturated stimulus condition as another example 
(Fig. 2c), a similar modulatory pattern was weakly expressed before 
training, but it immediately became very pronounced on the first day, 

when perceptual learning just began. Subsequent extensive training 
had little effect on the strength of contour facilitation, but the back-
ground suppression was further enhanced over the population (see 
below). Compared with the learned and saturated conditions, for the 
non-learnable conditions, no clear or only very weak contour-induced 
modulatory effects evolved in V1 with training (Fig. 2d).

Quantification of learning-induced changes in V1
Binning the recording sites according to the distances between their 
RF centers and the contour (Fig. 3a), the separation into two opposite 
groups was evident: V1 sites on the contour showed facilitatory effects 
(defined as the near sites) and those on the complex background 
showed inhibitory effects (defined as the far sites). A boundary 
between the near and far groups of recording sites was quantitatively 
defined by fitting a difference of Gaussians curve to the modulatory 
profile, resulting in distances of 0.48° and 0.58° from the contour for 
MG and MJ, respectively (Fig. 3a). This boundary coincides with 
about half of the mean RF size, confirming that whether a V1 site is 
facilitated or inhibited by the global contour depends on whether its 
RF lies on the embedded contour or on the background.

Combining recording sites into the near and far groups allowed 
us to quantify the contour facilitation and background suppression 
over the course of training. For the learned conditions (Fig. 3b), the 
average contour modulation strengths on the first training day were 
significantly stronger than the pre-training values for both near and 
far sites in both animals (averaged d′ value, pre-training versus first 
day, one-tailed unpaired t test: MG near, 0.03 (n = 594) versus 0.11 
(n = 570), P = 3 × 10−6; MJ near, 0.01 (n = 459) versus 0.29 (n = 436), 
P < 10−6; MG far, −0.03 (n = 621) versus −0.08 (n = 564), P = 0.001; 
MJ far, 0.01 (n = 461) versus −0.08 (n = 461), P < 10−6). The same set 
of recording sites was included multiple times as a result of averaging 

Figure 2  Contour-related signals in V1 and 
their changes with training. Shown here are 
sample data from MG (upper row) and MJ 
(lower row). (a) Spike raster plots and PSTHs 
(5-ms bins smoothed by sliding a boxcar 
filter of three-bin width) from the two sample 
recording sites marked with + and × in c. 
Responses to the contour pattern (CP, red 
or blue) and noise pattern (NP, black) were 
compared for each site. Dashed lines indicate 
the stimulus exposure duration (0–500 ms); 
green lines on the PSTH mark the time  
window (100–550 ms) used for calculating  
the contour-related signals shown in b–d.  
(b) Contour-related signals defined as the d ′ 
value between CP and NP responses for  
each recording site in a typical learned 
condition. The six panels for each animal 
correspond to six selected time points  
(days of training and corresponding  
behavioral performance are indicated on  
top of each panel). The squares and circles 
in each panel represent the recorded V1 
sites showing contour-induced inhibitory 
and facilitatory modulation, respectively, 
with symbol size and color indicating the 
modulation strength. Symbols with black 
outlines indicate those sites showing a 
significant difference in response to the CP 
and NP stimuli (Wilcoxon rank-sum test,  
α = 0.05). Black lines show the position and orientation of the embedded contour; equally spaced dots along the line indicate the centers of 
collinear bars forming the middle segment of the contours. (c) Same recording sites as in b in a saturated condition. (d) A non-learnable condition.
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across multiple learned conditions. The contour-induced modula-
tions gradually increased over the course of training (linear regres-
sion using a robust fitting method, robustfit in Matlab, two-tailed 
one-sample t test whether the slope is different from zero: MG near, 
slope = 1.8 × 10−2, P = 2 × 10−3, t = 3.9; MG far, slope = −1.1 × 10−2,  
P = 2 × 10−4, t = −5.2; MJ near, slope = 0.6 × 10−2, P = 3 × 10−4,  
t = 4.6; MJ far, slope = −1.3 × 10−2, P < 10−6, t = −8.7; degrees of free-
dom in linear regression: 13 for MG, 15 for MJ; Fig. 3b).

For the saturated conditions, the background suppression of the far 
sites also tended to increase with training regardless of the unchanged 
behavioral performance (t test as above: MG far, slope = −0.8 × 10−2, 
P = 0.12, t = −1.7; MJ far, slope = −1.6 × 10−2, P = 3 × 10−4, t = −4.6); 
however, the contour facilitation of the near sites was not significantly 
affected (MG near, P = 0.46, t = −0.7; MJ near, P = 0.33, t = 1.0).  
These results suggest that perceptual learning is able to enhance 
V1 coding efficiency even when the behavioral performance has 
reached the ceiling and that this is mainly achieved by suppression of  
the background.

For the non-learnable conditions, the contour-induced modula-
tions slowly evolved with training, but they were much weaker than 
the learned conditions (t test as above: MG near, slope = 1.2 × 10−2, 
P = 0.01, t = 2.8; MG far, slope = −0.4 × 10−2, P = 0.17, t = −1.5; MJ 
near, slope = 0.4 × 10−2, P = 0.04, t = 2.2; MJ far, slope = −0.3 × 10−2, 
P = 0.06, t = −2.0).

These results were derived from pooling stimulus conditions. To 
assess the changes of contour modulation strength for individual 
conditions, we defined the figure-ground contrast by subtracting the 
mean d′ value (with sign) of far sites from that of the near sites for 
each stimulus condition. The figure-ground contrast increased sig-
nificantly (measuring the slope across days as above, P < 0.05) in 24 
of 27 (MG) and 14 of 23 (MJ) of the learned conditions.

The arising of a clear profile of figure-ground contrast over the 
course of training in individual learned conditions (Fig. 2b) suggests 
that the increase of the site-averaged modulation strength (Fig. 3a,b) 
is a result of a gradual response change of the whole population of 
recorded cells rather than a marked change in a few selected and fixed 
units. To quantify the contribution of individual sites, we counted, for 
each day, the percentage of sites that showed a significant difference 
in response to CP and NP stimuli (Wilcoxon rank sum test, P < 0.05). 
Before training, only a small proportion of near sites was weakly mod-
ulated by the contours in the learned conditions, and an even smaller 
proportion of far sites were modulated (Fig. 3c). The percentage of 
significant sites, both near and far, progressively increased during 
learning (slope significantly larger than 0, t test as above: MG near, 
slope = 1.4 × 10−2, P = 4 × 10−5, t = 6.1; MG far, slope = 1.5 × 10−2,  
P = 6 × 10−5, t = 5.8; MJ near, slope = 0.7 × 10−2, P = 7 × 10−5, t = 5.4; 
MJ far, slope = 1.4 × 10−2, P < 10−6, t = 9.8; Fig. 3c).

Changes in the temporal dynamics of V1 responses
We next examined the extent to which the temporal dynamics of the 
figure-ground contrast was systematically modified by perceptual 
learning. We grouped V1 data into three training intervals (days 
1–5, 6–10 and 11–15) and constructed the population peri-stimulus 
time histograms (PSTHs) for the near and far sites in response to the 
CP and NP stimuli, respectively (Fig. 4a). Consistent with previous 
analyses, training led to an increase of near sites’ responses and a 
decrease of far sites’ responses (Fig. 4b). These contour-induced 
facilitatory and inhibitory modulations, which are measured rela-
tive to the baseline control of NP stimulation, seemed to covary 
after stimulus onset. However, the raw population responses of 
the near and far sites to the CP stimulus were actually very similar  
in their temporal structures (Fig. 4a): the initial peaks of their  
population PSTHs were nearly superimposed and their delayed 
response components were approximately parallel with a constant 
difference (Fig. 4b). Conversion of the differences of mean firing 
rates into the discriminability measure (d′) generated very simi-
lar temporal profiles (Fig. 4c). These data indicate that, despite the 
complex temporal dynamics of contour facilitation and background 
suppression relative to the NP baseline, the temporal evolution 
of the figure-ground contrast during CP stimulation was simple 
and almost constant, and was systematically elevated by training  
(Fig. 4b,c). The strengthening of the figure-ground contrast was 
highly correlated with improved behavioral performance (Pearson 
correlation across days and learned conditions: MG, r = 0.91,  
P < 10−6; MJ, r = 0.76, P < 10−6).

In addition to enhancing the figure-ground contrast, perceptual 
learning also substantially shortened the latency of the contour  
integration process in V1. By estimating the time point relative to 
stimulus onset when the contour modulation first became significant 
(Fig. 4d), we found that the onset latency for both the contour facilita-
tion of near sites and the background suppression of far sites decreased 
progressively with training. The latency decrease over days could be 
well fitted with an exponential decline (Fig. 4d). When comparing 
the first and the last available day on the basis of the exponential fit 
(that is, the two end points of the exponential curves), the latency of 
contour facilitation decreased by 35 ms in MG (from 128 to 93 ms) 
and 16 ms in MJ (from 104 to 88 ms). The latency of background 
suppression, which was considerably longer than contour facilitation, 
also became shorter with training (decreased by 51 ms in MG, from 
178 to 127 ms; 69 ms in MJ, from 189 to 120 ms).

Training improves both encoding and readout
From the perspective of information processing, the visual signals 
encoded by V1 should be accessible to higher order areas, and a hypo-
thetical decision unit should be able to decode task-relevant stimulus 

Figure 3  Quantification of learning-induced changes in V1 for the 
learned conditions. (a) Daily changes in contour modulation (d ′ value) 
for recording sites binned by RF-to-contour distances (vertical axis, 
0.005° bin, smoothed with a Gaussian of 0.2° s.d.). A clear separation 
and strengthening of contour facilitation and background suppression 
was noticeable in both monkeys. Dashed line indicates the border 
between near and far sites (Online Methods). (b) A progressive increase 
with training in the mean strength of contour modulation for near and 
far sites, respectively (averaged for the learned conditions; error bars 
indicate s.e.m.). The isolated data points on the left show the pre-training 
modulation strengths. The slope of a linear regression of data points 
across days was used as a measure of learning-induced changes in facilitation of near sites and suppression of far sites. (c) A progressive increase with 
training in percentage of V1 sites showing significant contour facilitation and background suppression (Wilcoxon rank sum test, α = 0.05). Percentages 
were calculated by pooling all the learned conditions.
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information based on the output signals from V1 neurons. In princi-
ple, there are two possible mechanisms for how perceptual learning 
could improve this readout process. One way is selective re-weighting 
of the sensory outputs from V1 (ref. 13): information about the stim-
uli could remain unchanged in V1 throughout behavioral training, 
whereas downstream cortical areas—initially limited in their readout 
capabilities—gradually adjust their weighting to more efficiently read 
out the existing task-relevant information entangled in V1 responses 
(Fig. 5a). Another way is input selection in V1 (ref. 28): training 
could selectively increase information conveyed by V1 neurons about 
task-relevant stimulus features (Fig. 5b). These two mechanisms for 
selection of task-related signals are not mutually exclusive.

To examine these mechanisms, we trained artificial classifiers to 
distinguish the CP from the NP responses and thereby simulated the 
trial-by-trial choice of a hypothetical decision unit. If perceptual learn-
ing would be solely a process of readout re-weighting in higher areas  
(Fig. 5a) and available information in V1 would not change, an artifi-
cial classifier trained on the V1 data would show constant performance 
across days. On the other hand, if perceptual learning could improve 
sensory encoding so that more and more information about task-
related stimulus features is made available in V1 (Fig. 5b), the decoding 
performance of an artificial classifier would increase accordingly.

We used the mean responses (100–550 ms after stimulus onset) 
of individual recording sites as inputs to the classifiers (Online 
Methods). We first used a powerful nonlinear classifier (support 
vector machine, SVM, with a radial-basis function kernel), which 
is capable of incorporating information from individual recording 
sites as well as from their potential nonlinear interactions. The overall 
classification performance of the SVM classifier averaged across the 
learned conditions and all training days well matched the behavioral 
data in monkey MG (SVM, 74.6% ± 0.8%, mean ± s.e.m.; behavior, 
77.5% ± 0.9%; Fig. 5c); the classification performance was on average 
even better than the behavioral performance in MJ (SVM, 73.5% ± 
0.8%; behavior, 68.9% ± 0.8%; Fig. 5d).

By comparing the classification performance of SVM with the 
animal’s performance day by day (Fig. 5c,d), evidence for both 
hypotheses of the neural mechanisms underlying perceptual learn-
ing could be found. On the one hand, the classifier’s performance 
increased significantly with training in both monkeys, as was seen 
in data averaged over the learned conditions (Fig. 5c,d), and in the 
great majority of individual conditions (Wilcoxon rank-sum test 
of whether the median performance of the first 5 d was smaller 
than that of the last 5 d, P < 0.05; 26 of 27 significant conditions 
in MG, 20 of 23 in MJ). This indicates that the contour informa-
tion contained in V1 responses indeed greatly increased during 
perceptual learning. On the other hand, at least in MJ, the clas-
sifier’s performance was much better than the animal’s behavior 
during the first few days of training (Fig. 5d), indicating that the 
readout system was not adjusted well enough initially to access all 
existing contour information in V1. However, MJ’s performance 
gradually caught up with the classifier, suggesting that, in addition 
to enhanced V1 population code, the readout process is improved 
by training as well.

Training enhances signal, but does not reduce internal noise
Each neuron’s responses to repeated stimulus presentations are noisy 
in nature, fluctuating around a mean value (Fig. 6a). In principle, 
there are two simple strategies to enhance the signal-to-noise ratio 
for improving the classification performance: increasing the distance 
between the mean values of the responses to CP and NP stimuli (that 
is, increasing the signal strength), and reducing the trial-to-trial 
fluctuations of the responses along the direction orthogonal to the 
decision line that separates the CP and NP responses (that is, decreas-
ing the harmful components of noise fluctuations). We asked what 
strategy was chosen in V1 during perceptual learning.

If one assumes that the noise fluctuations of neuronal responses 
to both CP and NP stimuli are normally distributed, a simple linear 
classification method, such as Fisher linear discriminant (FLD), can 

Figure 4  Learning-induced changes in  
temporal dynamics of V1 responses.  
(a) Population PSTHs (5-ms bin with 
spontaneous activity subtracted) averaged  
over the learned conditions for the near (red) 
and far (blue) sites in responses to the CP  
(solid curves) and NP (dashed curves). The  
data are grouped into three training periods  
(corresponding to three columns) for each 
animal. (b) Contour-induced modulations  
directly measured as firing rate changes  
by comparing the PSTHs shown in a.  
Top, differential PSTHs between the CP  
and NP stimulus conditions showing the contour 
facilitation of near sites (upward curves) and  
background suppression of far sites (downward 
curves). Three curves in each group represent  
different training periods. Vertical dashed lines 
delimit the stimulus exposure duration. Bottom, 
the overall modulation strength measured as  
the distance between corresponding upward  
and downward curves shown in the top panels. 
(c) Data presented as in b, but the contour-
induced modulations were measured as  
the d ′ values rather than firing rate changes.  
(d) Shortening of latencies of contour-related  
V1 responses. The time course (2.5-ms bin) of d ′ 
values (color coded) was calculated by pooling all available spike trains across the learned conditions on each day for the near (upper) and far (lower) sites, 
respectively (Online Methods). Symbols (o and ×) indicate the time at which the contour modulation first became significant (determined by bootstrapping, 
Online Methods). This time point was defined as the latency of contour-related responses. The data points are fitted by an exponential function.
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be used to optimize the signal-to-noise ratio of the neural population 
for the detection task (Fig. 6a,b). FLD projects multi-dimensional 
data (CP and NP responses of all V1 sites) onto a one-dimensional 
space (termed the FLD direction) that maximizes the ratio of the 
signal strength to the noise hampering the signal (the s.d. of the noise 
fluctuations along the FLD direction). In other words, FLD finds a 
set of optimum weights (or synaptic strengths) for the recorded V1 
neurons connecting to a hypothetical linear readout neuron. As a 
result, this readout neuron would have the highest detectability (d′ 
value), among all possible weight configurations, in decoding CP and 
NP stimuli on the basis of the outputs of V1 neurons.

We performed the FLD analysis for each of the learned condi-
tions in each day and plotted the mean signal strength (averaged 
across the learned conditions) and the corresponding mean noise 
fluctuation over days (Fig. 6c). Notably, we found that perceptual 
learning in the contour detection task predominantly enhanced the 
signal strength rather than decreased the noise fluctuations. In both 
monkeys, the increase of the signal strength was highly significant 
(slope of linear regression is larger than 0, t test, P = 10−6 for MG, 
P = 7 × 10−5 for MJ), but no change in the noise fluctuations was 
detected (MG, P = 0.28; MJ, P = 0.59). Note that the noise fluctuation 
magnitudes measured here are only those components—among the 
noise fluctuations in all possible directions—that hamper the deci-
sion, as they interfere with reading out the task-relevant information 
from the population activity. The structure of noise fluctuations as 
a whole might nevertheless be affected by perceptual learning in 
other dimensions that are irrelevant to the readout process. Indeed, 
we found that the noise correlation between any two recording sites 

markedly decreased over the course of training (Online Methods), 
consistent with a recent study29.

Simple readouts suffice to extract information in V1
It is well known that a single neuron has the computational capabili-
ties to build a simple linear classifier: the synaptic strengths, together 
with a spiking threshold, form a weighted linear summation of inputs 
and a subsequent binary classification30,31. Could a downstream read-
out neuron with such a simple summation and classification property 
extract the task-relevant information from V1 to the same degree as 
the powerful nonlinear SVM?

The FLD method introduced above can be used to implement such 
a linear classifier when one adds a simple mechanism to classify the 
projected one-dimensional data (Fig. 6a,b and Online Methods). 
The FLD performance averaged across the last 3 d and the learned 
conditions was very close to the SVM method (only 2.5% and 2.3% 
lower in MG and MJ, respectively, although the small difference was 
statistically significant, paired t test, P < 10−6 in MG, P = 1 × 10−5  
in MJ; Figs. 5c,d and 6d). This indicates that task-relevant  
information is indeed accessible to simple linear readouts and that 
high-dimensional nonlinear interactions between neurons potentially 
have only a minor role in the V1 population code.

Given that enhancing signal strength was more important than 
reducing the noise fluctuations, we tested whether even simpler 
readouts could perform the task as well. Instead of finding the FLD 
direction, and thus an optimal decision line, readout units might alter-
natively ignore the noise fluctuation structure altogether and only 
focus on maximizing the signal strengths. To test this, we projected  
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Figure 5  Decoding V1 population responses. (a,b) Two hypothetical 
mechanisms of perceptual learning. The readout reweighting scheme is shown 
in a: information encoded in V1 is unaffected by training, but the downstream 
readout process is adjusted to access the task-relevant information. The input 
selection scheme is shown in b: task-relevant information in V1 is increased 
with training. (c,d) Comparison of the decoding performance with the animals’ 
behavior in the learned stimulus conditions. Classification accuracy of the 
SVM is presented here together with the results from two other types of simple 
linear classifiers, FLD and DoM (Fig. 6). Note the close similarities between 
the much simpler (DoM) and more complex (SVM and FLD) decoders over the 
entire course of training. The classifiers were retrained for each day. Error bars 
indicate s.e.m. (across classifier’s training-testing repeats over the learned 
conditions, see Online Methods).

Figure 6  Further decoding analyses. (a) Analysis 
of the contributions of signal enhancement and 
internal noise reduction to perceptual learning. 
A simplified two-dimensional example (that is, 
two recording sites) showing how firing rates 
to CP and NP stimuli fluctuated around the 
mean values (two small circles) across trials 
(individual dots). Noise fluctuations were 
fitted by a two-dimensional normal distribution 
(ellipses). Although the FLD method adjusts 
the decision line (magenta, solid) to the noise 
variance, the DoM decision line (magenta, 
dashed) ignores it, simply orthogonal to the line 
connecting the two means (solid gray line).  
(b) Data in a were projected onto an axis orthogonal to the decision line and then fitted with two Gaussians. After this one-dimensional projection  
of the CP and NP responses, trials could be classified on the basis of their likelihood ratios. Note that one could either increase the distance between 
the two Gaussians (the signal strength) or decrease the variance of the Gaussians (the noise fluctuations) to get a better detection performance.  
(c) Changes with training in signal strength (red) and noise fluctuation (blue) estimated with the FLD method described in a and b (averaged for the 
learned conditions and every 2 d, shading indicates s.e.m.). (d) Quantitative comparison of detection performance among three different classifiers and 
the animals’ behavior. The lower and upper ends of each bar indicate the mean performance averaged for the first 3 and last 3 d of training, respectively 
(for daily performance, see Fig. 5c,d). Error bars indicate s.e.m. (one-tailed paired t test, *P < 0.05, **P < 0.01, ***P < 0.001).
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the data onto the axis simply connecting the CP and NP mean 
responses and calculated the difference of means (DoM; Fig. 6a), 
thereby ignoring any potential information provided by the shape of 
the noise fluctuations. This method resulted in a decision line that was 
normally different from the other more powerful classifiers (Fig. 6a).  
The performance of this simpler DoM classifier was very similar to 
the FLD method: only 1.5% worse in MG (one-tailed paired t test,  
P = 0.006) and even 1.8% better in MJ (P = 0.001) when averaged 
across the learned conditions in the last 3 training days (Figs. 5c,d 
and 6d). The comparable performance of DoM to the FLD and SVM 
suggests that this simplest readout method suffices to extract contour-
related information contained in V1 population responses.

DISCUSSION
Learning-induced visual cortical changes remain poorly under-
stood and controversial. Here, by chronic recording from mul-
tiple sites in V1, we revealed how spatiotemporal properties of 
neuronal populations were progressively modified by learning a 
visual contour detection task. Our results indicate that perceptual 
learning of contour detection selectively modifies the activity of 
neuronal populations in V1. The consequence is an increment of  
task-relevant information in V1 as well as an acceleration of the 
integration process, which could enable and facilitate simple rea-
douts at later processing stages. Behavioral improvement is largely 
driven by an increase in signal strength rather than by a decrease of 
trial-by-trial noise fluctuations.

Possible role of feedback and top-down modulations
Even after 2 weeks of extensive training, the onset of contour modula-
tion was still significantly delayed relative to visual response latencies 
of V1 neurons, suggesting that contour integration involves feedback 
or recurrent mechanisms as opposed to a simple feedforward process 
and that modification of synaptic weights of reentrant connections 
are responsible for learning-induced improvement. Delayed response 
components have been generally observed in V1 of awake monkeys 
during processes that involve grouping and segregating of complex 
image components, such as contour integration24,32,33 and surface 
segmentation34–36. These delayed response components are closely 
correlated with the animal’s performance on target detection in the 
presence of a complex background6,24,37–39. It has been suggested 
that these figure-ground signals derive from complex interactions 
between feedback projections to V1 and intrinsic connections in V1 
(refs. 33,36,39,40). In particular, using simultaneous recording from 
monkey V1 and V4, we recently found interdependent feedforward 
and feedback processes that operate synergistically to enhance the 
contour signals, resulting in a parallel increment of contour informa-
tion in both cortical areas27.

Given the presence of feedforward and feedback interactions, we 
cannot exclude the possibility that the learning-induced changes in 
V1 are also associated with changes in higher order cortical areas. 
It has been shown that perceptual learning of orientation discrimi-
nation can selectively enhance neuronal selectivity for the trained 
stimulus orientation in both V1 (refs. 4,23) and V4 (refs. 10,11). Task-
dependent top-down influences mediated by feedback connections 
are known to dynamically affect contextual modulation in V1 by 
selectively enhancing task-relevant stimulus features and suppress-
ing irrelevant ones5,28; thus, a refinement in top-down control may 
also contribute to the learning-induced changes in V1. In fact, top-
down modulation and perceptual learning show some similar effects 
on visual cortical processing (see reviews, refs. 3,41,42), although 
they operate on different timescales. Moreover, selective attention to 

task-related stimulus feature is usually required for learning-induced 
behavioral improvement43,44 and corresponding cortical changes4,6. 
Thus, a plausible account of the perceptual learning mechanisms is 
that short-term cortical dynamics under top-down influences, when 
repeatedly exercised, will result in long-term enhancement in effi-
ciency of sensory encoding, signal readout and attentional control, 
leading to improvement in perceptual ability as well as automatization 
of the perceptual task.

Despite a possible chain of interconnected changes across multi-
ple processes during perceptual training, our findings indicate that 
V1 substantially contributes to the transformation of these changes 
into a more efficient and informative sensory representation of 
the learned stimulus. These changes at the earliest stage of visual  
cortical processing would in turn contribute to a more efficient and 
less effortful readout at subsequent processing stages and to better 
behavioral performance.

We found that contour-induced modulation of V1 responses  
was already significantly stronger on the first training day than 
the pre-training strength, especially for the saturated conditions. 
This rapid change may reflect a fast learning phase45,46, which is 
very unlikely to be mediated by massive plastic changes of synaptic 
connections; rather, it could result from task-dependent top-down 
influences, which have been shown to be able to dynamically alter 
response properties of V1 neurons to meet the requirements of the 
perceptual task28,33. In addition to this fast learning phase, extensive 
training continuously strengthened the figure-ground contrast over 
the course of training, suggesting a second and relatively slow phase 
of perceptual learning.

The neural code for perceptual learning
Earlier human imaging studies have shown that perceptual learning 
increases16–19 or decreases20,21 activation in early retinotopic areas. It 
has also been reported that training initially enhances V1 activation, 
and that after the observers’ behavioral performance is saturated fur-
ther training results in decreased V1 activation22. Our current study 
showed that perceptual learning both facilitated neurons encoding the 
target and inhibited those responding to the background; therefore, 
the overall activation in V1 would depend on the balance of excita-
tion and inhibition. In particular, for contours of high saliencies the 
facilitation of near sites was little affected by training but the suppres-
sion of far sites was gradually increased, suggesting that task difficulty 
would affect the overall activation in V1. Our findings, together with 
previous mixed imaging results, suggest that an overall increase and 
decrease in V1 population activity are not reliable neural correlates 
of perceptual learning. It is the enhancement in selectivity of the  
neuronal ensemble that contributes to the improved discrimination  
ability; increasing the signal strength for a particular task might 
involve facilitation as well as suppression of neural responses.

An ongoing debate on perceptual learning is whether the improve-
ment takes place at the stage of sensory encoding or readout47,48. Our 
decoding analyses suggest that perceptual training does increase the 
task-relevant information encoded at the earliest stage of visual cortical 
processing. Notably, monkey MJ’s performance at the initial training 
stage was worse than an artificial classifier, implying that the readout 
system in the animal was suboptimal. However, the convergence of 
MJ’s performance with the classifier at the end of training suggests 
that the readout and decision processes are refined as well. Our obser-
vations therefore support the idea that perceptual learning modifies 
multiple stages of information processing, from encoding to readout.

Another debate on the neural code of perceptual learning is about 
the role of internal noise reduction. Some behavioral and modeling 
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studies suggest that a reduction in internal noise could contribute to 
improved perceptual ability48,49, but it has been argued that perceptual 
learning does not affect the internal noise50. Our series of decoding 
analyses revealed that enhancement in neural signals associated with 
population figure-ground contrast largely accounts for the learning-
induced improvement in contour detection and that a decrease in 
noise fluctuations has a minimal role. This finding is consonant with 
a recent study showing that a general reduction of noise correlation 
in trained animals has little contribution to decoding of population 
responses in a multisensory cortical area29.

Taken together, our findings shed light on the neural mechanisms 
of visual perceptual learning by showing that training can shape neu-
ral population code in early visual cortex, leading to a marked increase 
in task-related signals at the earliest stage of sensory processing and 
allowing for a more efficient readout of task-relevant information.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Animal preparations. The animals were prepared under general anesthesia 
induced with ketamine (10 mg per kg of body weight) and maintained, after 
intubation, by ventilation with O2 (100%) mixed with isoflurane (1.5–2.5%).  
A titanium post was attached to the skull with bone screws for immobilizing the 
animal’s head during training and experiments. The monkeys were first trained 
to perform a simple fixation task by maintaining their fixation at a small fixa-
tion point (FP) and responding to a slight change in luminance of the FP. After 
the fixation training, a 6 × 8 microelectrode array (Blackrock Microsystems) 
was implanted in the superficial layers of V1. The microelectrodes were 0.5 mm 
long and 0.4 mm apart. All experimental procedures were conducted in compli-
ance with the US National Institutes of Health Guide for the Care and Use of 
Laboratory Animals and were approved by the Institutional Animal Care and 
Use Committee of Beijing Normal University.

Visual stimuli and behavioral tasks. Visual stimuli were generated by a stimulus 
generator (ViSaGe, Cambridge Research Systems) on a 22-inch CRT monitor 
(Iiyama Vision Master Pro 514, 1,200 × 900 pixels, 100-Hz refresh rate, 100-cm 
viewing distance).

The stimuli were circular patterns with a diameter of 8.5° (for monkey MG)  
or 7.5° (for MJ), composed of white (13.32 cd m−2) line segments on a gray 
(4.44 cd m−2) background (Fig. 1c). A visual contour was formed by 1, 3, 5 or 
7 collinear bars embedded in a background of randomly oriented bars. Each 
bar was 0.25° long and 0.05° wide, distributed in hidden rhomboid grids with  
equal base and height of 0.5°. The center-to-center spacing between collinear 
bars was 1.0, 1.2, 1.4, 1.6, 1.8 or 2.0× the height of a rhomboid compartment, 
which was adjusted by introducing a skew angle to the hidden rhomboid  
grids dividing the stimulus pattern (for details, see ref. 24). In addition to the 
stimulus pattern containing an embedded contour (CP), another stimulus pat-
tern without any embedded contour (NP) was also displayed simultaneously in a  
trial (Fig. 1b). With equal probability and in a pseudorandom sequence, either 
of the two patterns was centered on the cluster of RFs recorded by the micro-
electrode array while the other pattern was presented in the opposite visual field. 
Note that the location of the stimulus patterns was fixed in the visual field; the 
orientation and position of the embedded contour were precisely adjusted by 
rotation and translation of the invisible rhomboid grids.

On each trial a 0.1° FP was displayed in the CRT center. Eye positions  
were sampled at 30 Hz by an infrared tracking system (Matsuda, K., Nagami, T.,  
Kawano, K. & Yamane, S. A new system for measuring eye position on a per-
sonal computer. Soc. Neurosci. Abstr. 744.2, 2000). A trial began when the animal  
fixated at the FP in an invisible circular window of 0.6° in radius around the FP. 
After the animal maintained its fixation for 300 ms, a pair of CP and NP stimuli 
was displayed for 500 ms, followed by a blank interval of 300 ms. A trial was 
aborted if the animal’s fixation moved outside the fixation window. After the 
fixation period, two bright dots were displayed at the two locations where the CP 
and NP stimuli had been presented (Fig. 1b). The animal was required to make 
a saccade to the dot corresponding to the CP location in 800 ms in exchange 
for a reward of a drop of juice. If the number of collinear lines in the CP was 
one (the control conditions), the two stimulus patterns were exactly identical; 
the animal was randomly rewarded with equal probability by choosing either 
of the two targets.

Operational training. To let the monkeys understand the contour detection task, 
they had to go through a stage of operational or procedural training (for details, 
see ref. 6). Two measures were taken to minimize the effects of perceptual learn-
ing before data collection. First, the operational training was carried out in the 
other two visual-field quadrants orthogonal to those two used for examining the 
perceptual learning effects (based on a previous finding that contour detection 
learning in monkeys is specific to the trained visual-field location6). Second, the 
embedded collinear contours were highlighted by a noticeable luminance contrast 
with the noise background. About a week later, when the monkeys could reliably 
choose highlighted contours of various orientations and lengths, the two stimuli 
were moved to the visual-field quadrants to be examined, and the luminance of 
both contour and background components was set and fixed at 13.32 cd m−2. To 
ensure that perceptual learning indeed took place at the new stimulus locations, 
we monitored the animal’s daily mean detection rate in each stimulus condi-
tion. Compared with the first day at the new stimulus locations, if the detection 

rate in any of the stimulus conditions significantly increased (χ2 test, P < 0.05),  
the preceding day was considered to be the first day of perceptual training.  
For monkey MG, a significant learning effect occurred in the second day at the 
new stimulus locations, so the first day was taken as the start point of perceptual 
learning. For monkey MJ, no significant learning effect was seen until the sixth 
day; that is, there was no significant improvement during the first 5 d in any of 
the 48 stimulus conditions, so the fifth day was taken as the start of perceptual 
learning (that is, day 1 in all the figures).

Electrophysiological recording. The spiking signals were amplified and band-
pass filtered (250–7,500 Hz) by a data acquisition system (Cerebus, Blackrock 
Microsystems). We set a voltage threshold to include as many spike waveforms as 
possible, which were sampled at 30 kHz for further offline denoising. To remove 
noise from the recorded waveforms, we adopted a robust method51, which uses 
mixtures of multivariate t distributions to model the statistics of spike waveforms, 
and uses an expectation-maximization based mixture decomposition algorithm 
to sort neural spikes from noise. No attempt was made to isolate single units, but 
this would not affect examination of learning-induced changes in V1.

RF mapping. The RF location and size along the horizontal (azimuth) and verti-
cal (elevation) axes for each recording site were quantitatively mapped using a 
narrow (0.3° × 7°) band of drifting gratings27. Neuronal responses as a function of 
stimulus position were fitted with a Gaussian function. The RF center was defined 
as the Gaussian center, and the RF width and length as 2 × 1.96 s.d. (95% confi-
dence interval). The mean RF sizes along the horizontal and vertical axes were 
0.98 ± 0.39° (mean ± s.d.) and 0.75 ± 0.26° in MG at eccentricities between 4.8° 
and 6.2°, and were 1.08 ± 0.34° and 1.04 ± 0.30° in MJ at eccentricities between 
6.4° and 8.2° (Fig. 1a). Orientation tuning curves of all the sites were determined 
by presenting a circular patch of drifting gratings (6° in diameter) centered on the 
cluster of recorded RFs. Only recording sites that showed clear RF profiles and 
orientation tuning curves (the R2 of the Gaussian fitting ≥ 0.7) were included in 
data analyses. The total number of electrodes that were able to pick up recordable 
spiking activity slightly fluctuated across days (MG, 37–43; MJ, 39–43; over more 
than 2 weeks of experimental period, likely due to slight changes of electrode 
depth). Nevertheless, the RF centers and preferred orientations, as long as meas-
urable, were very stable over the course of training (Fig. 1a).

Calculating the d′ value. The detectability d′, which measures the discriminabil-
ity between two distributions of neuronal responses S1 and S2, is defined as

d
E S E S
V S V S

′ =
[ ] [ ]

. ( [ ] [ ])
1 −

+
2

1 20 5

where E denotes the mean firing rate (100–550 ms after stimulus onset) averaged 
across trials, and V represents the corresponding variance. In this study, S1 and 
S2 correspond to the CP and NP responses, respectively.

Separating the near and far sites. To determine which sites belonged to the 
near or far group, we calculated the d′ value of individual sites and binned them 
according to the RF-contour distance (Fig. 3a). Aggregating all data from the 
learned conditions in the last 5 d of training, we fitted a Difference of Gaussians 
(DoG) function to the response profile across the near and far sites. The point 
where the DoG curve intersected the line corresponding to zero d′ value was 
taken as the boundary of the near and far sites. Defined in this manner, the total 
numbers of near and far sites were comparable for each contour position despite 
a small fluctuation across days (Pos1: MG near, 18–22; MG far, 16–23; MJ near, 
17–23; MJ far, 20–24; Pos2: MG near, 16–23; MG far, 19–24; MJ near, 19–23;  
MJ far, 17–22; Fig. 1a).

Calculating the onset time of contour modulation. To assess the time point 
when the contour modulation became significant after stimulus onset, we pooled 
all available spike trains across the learned conditions and recording sites (sepa-
rately for near and far sites, and for CP and NP responses). We binned the spike 
trains into 2.5-ms consecutive intervals and computed the d′ values between CP 
and NP responses for each time bin and each day (Fig. 4d). To determine whether 
the binned d′ values were significantly different from zero, we randomly shuffled 
the labels of CP and NP stimuli and computed bootstrapped d′ values (1,000 itera-
tions). The original d′ value was regarded as significant if it was beyond the 95% 
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confidence interval of the bootstrapped data. This process was repeated for each 
time bin. We defined the onset latency of contour facilitation and background 
suppression as the time point when three adjacent time bins first became signifi-
cantly larger or smaller than zero (Fig. 4d).

Decoding V1 population responses using different classifiers. Mean firing rates 
(100–550 ms) were extracted from individual electrodes, with the population 
mean subtracted to remove any overall bias. CP and NP responses were labeled 
to train the classifiers on data collected from each condition and on each day (that 
is, the classifiers were retrained for each condition and each day). This re-training 
process ensured that the decoder was capable of adjusting to changed population 
code. Data was randomly divided into ten subsets to avoid overfitting. One set 
was used for testing and the others for training. After cycling through the data 
sets so that each subset of data was used once for testing, the mean classification 
rate was calculated. We repeated this entire procedure five times and averaged the 
resulting mean performances to reduce variability. For SVM calculations using 
Matlab’s svmtrain function, the radial-basis function kernel widths were set to 
half of the median class distance estimated from the training data set, which has 
been shown to yield satisfactory results52,53. The FLD direction was computed 
by solving a generalized eigenvector equation54. DoM (difference of means) and 
FLD directions were estimated from the training data set. Since the inverse of 
a covariance matrix determines the FLD, we needed a robust estimate of the 
covariance. We thus neglected those dimensions with very low fluctuations by 
preprocessing the data with a principal component analysis (PCA) and keeping 
the 30 largest components (from ~40 recording sites per day). After projection of 
the data according to the DoM and FLD methods, the data points were fitted by 
normal distributions, and classification was made based on the likelihood ratios 
(using Matlab’s classify function).

Noise correlation. We first binned the responses of each site in each trial into 
50-ms bins and computed the trial-to-trial noise correlation using the correlation 
coefficient between binned spike counts from any two recording sites. We then 
averaged the resulting values between 100–550 ms after stimulus presentation 
and across the learned conditions, for pairs of sites less than 0.5° apart. The paired 
sites were classified into three groups according to their RF locations relative to 
the contour: near-near (N-N), near-far (N-F) and far-far (F-F) sites. Using an 
iterative least-squares algorithm (Matlab’s robustfit), we determined the slope 
of noise correlation change over days. We found that the noise correlations in 
all cases about halved toward the end of training (one sample t test, whether 
slope is different from zero): for MG, the noise correlation on the first day was 
0.14 (N-N), 0.16 (N-F) and 0.14 (F-F), and it decreased by 35% (P = 7 × 10−4), 
44% (P = 2 × 10−4) and 64% (P = 0.009), respectively, on the last day of train-
ing; similarly, for MJ, the mean noise correlations decreased from 0.06 (N-N), 
0.07 (N-F) and 0.06 (F-F) by 57% (P = 4 × 10−5), 52% (P = 5 × 10−5) and 77%  
(P = 0.001), respectively.

A Supplementary Methods Checklist is available.
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mixtures of multivariate t-distributions. J. Neurosci. Methods 127, 111–122 
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