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Abstract

Images are ambiguous at each of many levels of a contextual hi-
erarchy. Nevertheless, the high-level interpretation of most scenes
is unambiguous, as evidenced by the superior performance of hu-
mans. This observation argues for global vision models, such as de-
formable templates. Unfortunately, such models are computation-
ally intractable for unconstrained problems. We propose a composi-
tional model in which primitives are recursively composed, subject
to syntactic restrictions, to form tree-structured objects and object
groupings. Ambiguity is propagated up the hierarchy in the form
of multiple interpretations, which are later resolved by a Bayesian,
equivalently minimum-description-length, cost functional.

1 Bayesian decision theory and compositionality

In his Essay on Probability, Laplace (1812) devotes a short chapter|his \Sixth
Principle"|to what we call today the Bayesian decision rule. Laplace observes
that we interpret a \regular combination," e.g., an arrangement of objects that
displays some particular symmetry, as having resulted from a \regular cause" rather
than arisen by chance. It is not, he argues, that a symmetric con�guration is less
likely to happen by chance than another arrangement. Rather, it is that among all
possible combinations, which are equally favored by chance, there are very few of
the regular type: \On a table we see letters arranged in this order, Constantinople,
and we judge that this arrangement is not the result of chance, not because it is

less possible than the others, for if this word were not employed in any language



we should not suspect it came from any particular cause, but this word being in use

amongst us, it is incomparably more probable that some person has thus arranged

the aforesaid letters than that this arrangement is due to chance." In this example,
regularity is not a mathematical symmetry. Rather, it is a convention shared among
language users, whereby Constantinople is a word, whereas Ipctneolnosant, a string
containing the same letters but arranged in a random order, is not.

Central in Laplace's argument is the observation that the number of words in the
language is smaller, indeed \incomparably" smaller, than the number of possible
arrangements of letters. Indeed, if the collection of 14-letter words in a language
made up, say, half of all 14-letter strings|a rich language indeed|we would, upon
seeing the string Constantinople on the table, be far less inclined to deem it a word,
and far more inclined to accept it as a possible coincidence. The sparseness of al-
lowed combinations can be observed at all linguistic articulations (phonetic-syllabic,
syllabic-lexical, lexical-syntactic, syntactic-pragmatic, to use broadly de�ned levels),
and may be viewed as a form of redundancy|by analogy to error-correcting codes.
This redundancy was likely devised by evolution to ensure e�cient communication
in spite of the ambiguity of elementary speech signals. The hierarchical composi-
tional structure of natural visual scenes can also be thought of as redundant: the
rules that govern the composition of edge elements into object boundaries, of in-
tensities into surfaces etc., all the way to the assembly of 2-D projections of named
objects, amount to a collection of drastic combinatorial restrictions. Arguably, this
is why in all but a few|generally hand-crafted|cases, natural images have a unique
high-level interpretation in spite of pervasive low-level ambiguity|this being amply
demonstrated by the performances of our brains.

In sum, compositionality appears to be a fundamental aspect of cognition (see also
von der Malsburg 1981, 1987; Fodor and Pylyshyn 1988; Bienenstock, 1991, 1994,
1996; Bienenstock and Geman 1995). We propose here to account for mental com-
putation in general and scene interpretation in particular in terms of elementary

composition operations, and describe a mathematical framework that we have de-
veloped to this e�ect. The present description is a cursory one, and some notions
are illustrated on two simple examples rather than formally de�ned|for a detailed
account, see Geman et al. (1996), Potter (1997). The binary-image example refers
to an N �N array of binary-valued pixels, while the Laplace-Table example refers
to a one-dimensional array of length N , where each position can be �lled with one
of the 26 letters of the alphabet or remain blank.

2 Labels and composition rules

The objects operated upon are denoted !i; i = 1; 2; : : : ; k. Each composite object
! carries a label, l = L(!), and the list of its constituents, (!1; !2; � � �). These
uniquely determine !, so we write ! = l(!1; !2; � � �). A scene S is a collection of
primitive objects. In the binary-image case, a scene S consists of a collection of
black pixels in the N�N array. All these primitives carry the same label, L(!) = p
(for \Point"), and a parameter �(!) which is the position in the image. In Laplace's
Table, a scene S consists of an arrangement of characters on the table. There are 26
primitive labels, \A",\B",: : :,\Z", and the parameter of a primitive ! is its position
1 � �(!) � N (all primitives in such a scene must have di�erent positions).

An example of a composite ! in the binary-image case is an arrangement composed



of a black pixel at any position except on the rightmost column and another black
pixel to the immediate right of the �rst one. The label is \Horizontal Linelet,"
denoted L(!) = hl, and there are N(N � 1) possible horizontal linelets. Another
non-primitive label, \Vertical Linelet," or vl, is de�ned analogously. An example
of a composite ! for Laplace's Table is an arrangement of 14 neighboring primi-
tives carrying the labels \C"; \O"; \N"; \S"; : : : ; \E" in that order, wherever that
arrangement will �t. We then have L(!) = Constantinople, and there are N � 13
possible Constantinople objects.

The composition rule for label type l consists of a binding function, Bl, and a set
of allowed binding-function values, or binding support, Sl: denoting by 
 the set
of all objects in the model, we have, for any !1; � � � ; !k 2 
, Bl(!1; � � � ; !k) 2
Sl , l(!1; � � � ; !k) 2 
. In the binary-image example, Bhl(!1; !2) = Bvl(!1; !2) =
(L(!1); L(!2); �(!2) � �(!1)), Shl = f(p; p; (1; 0))g and Svl = f(p; p; (0; 1))g de�ne
the hl- and vl-composition rules, p+p! hl and p+p! vl. In Laplace's Table, C+
O+ � � �+E ! Constantinpole is an example of a 14-ary composition rule, where we
must check the label and position of each constituent. One way to de�ne the binding
function and support for this rule is: B(!1; � � � ; !14) = (L(!1); � � � ; L(!14); �(!2)�
�(!1); �(!3)� �(!1); � � � ; �(!14)� �(!1)) and S = (C; � � � ; E; 1; 2; � � � ; 13).

We now introduce recursive labels and composition rules: the label of the composite
object is identical to the label of one or more of its constituents, and the rule may
be applied an arbitrary number of times, to yield objects of arbitrary complexity.
In the binary-image case, we use a recursive label c, for Curve, and an associated
binding function which creates objects of the form hl+p! c, vl+p! c, c+p! c,
p + hl ! c, p + vl ! c, p + c ! c, and c + c ! c. The reader may easily
�ll in the details, i.e., de�ne a binding function and binding support which result
in \c"-objects being precisely curves in the image, where a curve is of length at
least 3 and may be self-intersecting. In the previous examples, primitives were
composed into compositions; here compositions are further composed into more
complex compositions. In general, an object ! is a labeled tree, where each vertex
carries the name of an object, and each leaf is associated with a primitive (the
association is not necessarily one-to-one, as in the case of a self-intersecting curve).

Let M be a model|i.e., a collection of labels with their binding functions and
binding supports|and 
 the set of all objects in M. We say that object ! 2

 covers S if S is precisely the set of primitives that make up !'s leaves. An
interpretation I of S is any �nite collection of objects in 
 such that the union
of the sets of primitives they cover is S. We use the convention that, for all M
and S, I0 denotes the trivial interpretation, de�ned as the collection of (unbound)
primitives in S. In most cases of interest, a modelM will allow many interpretations
for a scene S. For instance, given a long curve in the binary-image model, there
will be many ways to recursively construct a \c"-labeled tree that covers exactly
that curve.

3 The MDL formulation

In Laplace's Table, a scene consisting of the string Constantinople admits, in
addition to I0, the interpretation I1 = f!1g, where !1 is a \Constantinople"-
object. We wish to de�ne a probability distribution D on interpretations such that
D(I1) >> D(I0), in order to realize Laplace's \incomparably more probable". Our



de�nition of D will be motivated by the following use of the Minimum Description
Length (MDL) principle (Rissanen 1989). Consider a scene S and pretend we want
to transmit S as quickly as possible through a noiseless channel, hence we seek to
encode it as e�ciently as possible, i.e., with the shortest possible binary code c. We
can always use the trivial interpretation I0: the codeword c(I0) is a mere list of n
locations in S. We need not specify labels, since there is only one primitive label in
this example. The length, or cost, of this code for S is jc(I0)j = n log2(N

2).

Now however we want to take advantage of regularities, in the sense of Laplace,
that we expect to be present in S. We are speci�cally interested in compositional
regularities, where some arrangements that occur more frequently than by chance
can be interpreted advantageously using an appropriate compositional model M.
Interpretation I is advantageous if jc(I)j < jc(I0)j. An example in the binary-image
case is a linelet scene S. The trivial encoding of this scene costs us jc(I0)j = 2[log2 3+
log2(N

2)] bits, whereas the cost of the compositional interpretation I1 = f!1g is
jc(I1)j = log2 3+log2(N(N�1)), where !1 is an hl or vl object, as the case may be.
The �rst log2 3 bits encode the label L(!1) 2 fp; hl; vlg, and the rest encodes the
position in the image. The compositional fp; hl; vlgmodel is therefore advantageous
for a linelet scene, since I1 a�ords us a gain in encoding cost of about 2 log2N bits.

In general, the gain realized by encoding f!g = fl(!1; !2)g instead of f!1; !2g may
be viewed as a binding energy, measuring the a�nity that !1 and !2 exhibit for
each other as they assemble into !. This binding energy is El = jc(!1)j+ jc(!2)j �
jc(l(!1; !2))j, and an e�cientM is one that contains judiciously chosen cost-saving
composition rules. In e�ect, if, say, linelets were very rare, we would be better
o� with the trivial model. The inclusion of non-primitive labels would force us
to add at least one bit to the code of every object|to specify its label|and this
would increase the average encoding cost, since the infrequent use of non-primitive
labels would not balance the extra small cost incurred on primitives. In practical
applications, the construction of a sound M is no trivial issue. Note however
the simple rationale for including a rule such as p + p ! hl. Giving ourselves the
label hl renders redundant the independent encoding of the positions of horizontally
adjacent pixels. In general, a good model should allow one to hierarchically compose
with each other frequently occurring arrangements of objects.

This use of MDL leads in a straightforward way to an equivalent Bayesian formula-
tion. Setting P 0(!) = 2�jc(!)j=

P
!02
 2

�jc(!0)j yields a probability distribution P 0

on 
 for which c is approximately a Shannon code (Cover and Thomas 1991). With
this de�nition, the decision to include the label hl|or the label Constantinople|
would be viewed, in principle, as a statement about the prior probability of �nding
horizontal linelets|or Constantinople strings|in the scene to be interpreted.

4 The observable-measure formulation

The MDL formulation however has a number of shortcomings; in particular, com-
puting the binding energy for composite objects can be problematic. We outline
now an alternative approach (Geman et al. 1996, Potter 1997), where a probabil-
ity distribution P (!) on 
 is de�ned through a family of observable measures Ql.
These measures assign probabilities to each possible binding-function value, s 2 Sl,
and also to the primitives. We require

P
l2M

P
s2Sl

Ql(s) = 1, where the notion of
binding function has been extended to primitives via Bprim(!) = �(!) for primitive



!. The probabilities induced on 
 by Ql are given by P (!) = Qprim(Bprim(!))
for a primitive !, and P (!) = Ql(Bl(!1; !2))P

2(!1; !2jBl(!1; !2)) for a composite
object ! = l(!1; !2).

1 Here P 2 = P �P is the product probability, i.e., the free, or
not-bound, distribution for the pair (!1; !2) 2 
2. For instance, with C+ � � �+E !
Constantinople, P 14(!1; !2; : : : ; !14jBCons:::(!1; : : : ; !14) = (C;O; � � � ; 13)) is the
conditional probability of observing a particular string Constantinople, under the
free distribution, given that (!1; : : : ; !14) constitutes such a string. With the rea-
sonable assumption that, under Q, primitives are uniformly distributed over the
table, this conditional probability is simply the inverse of the number of possible
Constantinople strings, i.e., 1=(N � 13).

The binding energy, de�ned, by analogy to the MDL approach, as El =
log2(P (!)=(P (!1)P (!2))), now becomes El = log2(Ql(Bl(!1; !2))) � log2(P �
P (Bl(!1; !2))). Finally, if I is the collection of all �nite interpretations I � 
, we
de�ne the probability of I 2 I asD(I) = �!2IP (!)=Z, with Z =

P
I02I �!2I0P (!).

Thus, the probability of an interpretation containing several free objects is obtained
by assuming that these objects occurred in the scene independently of each other.
Given a scene S, recognition is formulated as the task of maximizing D over all the
I 's in I that are interpretations of S.

We now illustrate the use of D on our two examples. In the binary-image example
with model M = fp; hl; vlg, we use a parameter q; 0 � q � 1, to adjust the prior
probability of linelets. Thus, Qprim(Bprim(!)) = (1 � q)=N2 for primitives, and
Qhl((p; p; 0; 1)) = Qvl((p; p; 1; 0)) = q=2 for linelets. It is easily seen that regardless
of the normalizing constant Z, the binding energy of two adjacent pixels into a

linelet is Ehl = Evl = log2(q=2) � log2[
(1�q)2

N4 N(N � 1)]. Interestingly, as long as
q 6= 0 and q 6= 1, the binding energy, for large N , is approximately 2 log2N , which
is independent of q. Thus, the linelet interpretation is \incomparably" more likely
than the independent occurrence of two primitives at neighboring positions. We
leave it to the reader to construct a prior P for the model fp; hl; vl; cg, e.g. by
distributing the Q-mass evenly between all composition rules. Finally, in Laplace's
Table, if there are M equally likely non-primitive labels|say city names|and q is
their total mass, the binding energy for Constantinople is ECons::: = log2

q

M(N�13)�

log2[
1�q
26N ]14, and the \regular" cause is again \incomparably" more likely.

There are several advantages to this reformulation from codewords into probabilities
using the Q-parameters. First, the Q-parameters can in principle be adjusted to
better account for a particular world of images. Second, we get an explicit formula
for the binding energy, (namely log2(Q=P � P )). Of course, we need to evaluate
the product probability P � P , and this can be highly non-trivial|one approach
is through sampling, as demonstrated in Potter (1997). Finally, this formulation
is well-suited for parameter estimation: the Q's, which are the parameters of the
distribution P , are indeed observables, i.e., directly available empirically.

5 Concluding remarks

The approach described here was applied by X. Xing to the recognition of \on-
line" handwritten characters, using a binary-image-type model as above, enriched

1This is actually an implicit de�nition. Under reasonable conditions, it is well de�ned|
see Geman et al. (1996).



with higher-level labels including curved lines, straight lines, angles, crossings, T-
junctions, L-junctions (right angles), and the 26 letters of the alphabet. In such
a model, the search for an optimal solution cannot be done exhaustively. We ex-
perimented with a number of strategies, including a two-step algorithm which �rst
generates all possible objects in the scene, and then selects the \best" objects, i.e.,
the objects with highest total binding energy, using a greedy method, to yield a �nal
scene interpretation. (The total binding energy of ! is the sum of the binding ener-
gies El over all the composition rules l used in the composition of !. Equivalently,
the total binding energy is the log-likelihood ratio log2(P (!)=�iP (!i)), where the
product is taken over all the primitives !i covered by !.)

The �rst step of the algorithm typically results in high-level objects partly over-
lapping on the set of primitives they cover, i.e., competing for the interpretation of
shared primitives. Ambiguity is thus propagated in a \bottom-up" fashion. The
ambiguity is resolved in the second \top-down" pass, when high-level composition
rules are used to select the best compositions, at all levels including the lower ones.
A detailed account of our experiments will be given elsewhere. We found the re-
sults quite encouraging, particularly in view of the potential scope of the approach.
In e�ect, we believe that this approach is in principle capable of addressing unre-
stricted vision problems, where images are typically very ambiguous at lower levels
for a variety of reasons|including occlusion and mutual overlap of objects|hence
purely bottom-up segmentation is impractical.

Turning now to biological implications, note that dynamic binding in the nervous
system has been a subject of intensive research and debate in the last decade. Most
interesting in the present context is the suggestion, �rst clearly articulated by von
der Malsburg (1981), that composition may be performed thanks to a dual mech-
anism of accurate synchronization of spiking activity|not necessarily relying on
periodic �ring|and fast reversible synaptic plasticity. If there is some neurobio-
logical truth to the model described in the present paper, the binding mechanism
proposed by von der Malsburg would appear to be an attractive implementation.
In e�ect, the use of �ne temporal structure of neural activity opens up a large realm
of possible high-order codes in networks of neurons.

In the present model, constituents always bind in the service of a new object, an
operation one may refer to as triangular binding. Composite objects can engage in
further composition, thus giving rise to arbitrarily deep tree-structured constructs.
Physiological evidence of triangular binding in the visual system can be found in Sil-
lito et al. (1994); Damasio (1989) describes an approach derived from neuroanatom-
ical data and lesion studies that is largely consistent with the formalism described
here.

An important requirement for the neural representation of the tree-structured ob-
jects used in our model is that the doing and undoing of links operating on some
constituents, say !1 and !2, while a�ecting in some useful way the high-order pat-
terns that represent these objects, leaves these patterns, as representations of !1 and
!2, intact. A family of biologically plausible patterns that would appear to satisfy
this requirement is provided by syn�re patterns (Abeles 1991). We hypothesized
elsewhere (Bienenstock 1991, 1994, 1996) that syn�re chains could be dynamically
bound via weak synaptic couplings; such couplings would synchronize the wave-like
activities of two syn�re chains, in much the same way as coupled oscillators lock



their phases. Recursiveness of compositionality could, in principle, arise from the
further binding of these composite structures.
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