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Learning AND-OR Templates for Object
Recognition and Detection

Zhangzhang Si and Song-Chun Zhu

Abstract—This paper presents a framework for unsupervised learning of a hierarchical reconfigurable image template — the AND-OR
Template (AOT) for visual objects. The AOT includes: (1) hierarchical composition as “AND” nodes, (2) deformation and articulation
of parts as geometric “OR” nodes, and (3) multiple ways of composition as structural “OR” nodes. The terminal nodes are hybrid
image templates (HIT) [17] that are fully generative to the pixels. We show that both the structures and parameters of the AOT model
can be learned in an unsupervised way from images using an information projection principle. The learning algorithm consists of
two steps: i) a recursive block pursuit procedure to learn the hierarchical dictionary of primitives, parts and objects, and ii) a graph
compression procedure to minimize model structure for better generalizability. We investigate the factors that influence how well the
learning algorithm can identify the underlying AOT. And we propose a number of ways to evaluate the performance of the learned AOTs
through both synthesized examples and real world images. Our model advances the state-of-the-art for object detection by improving
the accuracy of template matching.

F

1 INTRODUCTION

1.1 Motivation and Objective

V ISUAL objects are fundamentally compositional and
exhibit rich structural variations: cats may have

sharp or round ears; desks may have long or short
legs. Therefore object templates must be reconfigurable
to account for structural variabilities. In the literature,
deformable templates [3], [7], [6], [20], [5], [22], [21] and
compositional hierarchy [11], [12], [9], [23], [19], [16], [8],
[2] are widely used in object modeling with shared parts
among categories. Furthermore, generative image gram-
mar and AND-OR graphs [24] are proposed to facilitate
robust statistical modeling of images. In this article, we
propose a framework for learning AND-OR templates
(AOT) which combine compositionality represented as
AND nodes, and reconfigurability represented as OR
nodes.

We address the following issues associated with un-
supervised learning of the AOT:
• Identifying a hierarchical dictionary of visual parts

and objects;
• Deep mixing of AND, OR nodes, which implies

a rich mixture model with combinatorially many
configurations of templates;

• Localization accuracy of objects, parts and sub-parts;
• Efficient inference for template matching and object

detection in images.
Among these issues a most important challenge with
unsupervised learning is the pervasive ambiguity in
identifying which elements should be grouped as a
visual part. For example, it is hard to determine where to
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segregate the animal face or horse body into constituent
parts.

The proposed AOT model aims at extending our
previous work – active basis template (ABT) [20] and
hybrid image templates (HIT) [17]. An ABT consists of a
small number of Gabor basis elements (sketches) at select
locations and orientations, where these basis elements
are allowed to perturb their locations and orientations
locally. Si and Zhu [17] extended the ABT to a HIT
by including local texture patterns (gradient orientation
histograms), flatness and color. Both ABT and HIT can
be learned automatically from roughly aligned training
images. The main limitation of ABT and HIT is the
lack of reconfigurability. They can only deal with small
deformation, and fall short when there are large articula-
tions or structural changes. It would not be satisfactory
by simply enumerating all possible configurations by a
mixture model of HITs. These HITs do not share training
positives, and require more training images. As a related
example, in Felzenszwalb et. al. [5] the deformable parts
model is a mixture of object templates which do not
share training data. Instead of learning HITs directly
for object templates, we propose to use the HITs as
reusable building blocks — the terminal nodes of AOT,
for smaller visual parts that are relatively rigid.

1.2 Overview of proposed methodology
An AOT is a stochastic reconfigurable template that gen-
erates a set of valid configurations or object templates.
The AND nodes represent compositions of parts, while
the OR nodes account for articulation and structural
variation of parts. As an example, Figure 1 shows a
learned AOT from 320 animal face images without man-
ual labeling. The solid circles denote AND nodes and the
hollow ones denote OR nodes. The branching probabil-
ities are also shown at each OR node. The rectangles
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Fig. 1. An AND-OR Template (AOT) learned from 320 animal face images of four categories, with no manual labeling. Shaded
circles denote AND nodes, which are combinations of terminal nodes or children OR nodes. Empty circles means structural OR
nodes. Shaded rectangles are terminal nodes, which are hybrid image templates (HITs) for part appearances. Each terminal node is
also associated with a geometric OR node which accounts for its deformation and articulation. For clarity we removed the geometric
OR nodes and OR branches with probability less than 0.1.

denote terminal nodes, where the numbers index the
animal facial parts (e.g. eyes, ears) shown as HITs in the
third row of the figure. The hierarchical AOT generates
a large number of valid configurations.

The learning algorithm for AOT consists of two steps:
i) Block pursuit for hierarchical dictionaries of reusable

parts. Firstly we set up a data matrix (e.g. Figure 4)
using feature responses of positive training examples.
Each row in the data matrix corresponds to one training
example; and each column corresponds to one feature
(e.g. primitive, texture and color). The data matrix is
usually flat, i.e. with a small number of rows (e.g.
100) and a large number of columns (e.g. 106). The
entries in the data matrix, i.e. the feature responses,
are normalized to real numbers between 0 and 1. A
response of 1 indicates that a certain feature or part is
present in the image, while 0 indicates absence of such
feature. Each visual part corresponds to a rectangular
block in the data matrix. The block is specified by a
set of common features (columns) shared by a set of
examples (rows). The shared features form a template
of the block members. The summation over entries in
the block measures how significant and how frequent
it is. We find that pursuing large blocks with a lot of
1’s directly links to the information projection principle
[25], [20] and maximum likelihood estimation. Once we
pursue the blocks, i.e. the parts, we augment the data
matrix with new columns measuring the responses of
the parts. This procedure is done recursively until we

reach the scale of whole objects. It is worth to note that
the pervasive ambiguity of parts (i.e. where to segment
objects into parts) can be reduced or eliminated by jointly
pursuing for both objects and parts. We show this in the
one dimensional text example in Section 5.1.

ii) Graph compression on the AOT. After block pur-
suit, we encode the training images by a set of configu-
rations of parts (i.e. which parts appear and where they
appear). It is a flat and large AOT whose root node
has many branches. This flat AOT simply memorizes
data, so it suffers from large model complexity and thus
poor generalizability. We propose a graph compression
procedure to produce a compact AOT. There are two
operators in graph compression:

• Sharing. This operator restructures the AOT by shar-
ing parts (e.g. (A ∩B) ∪ (A ∩ C)⇒ A ∩ (B ∪ C)).

• Merging. This operator merges OR nodes with
similar branching probabilities, and re-estimate the
merged probabilities.

By applying the two operators, we reduce the model
complexity, which is measured by the number of nodes
in the AOT. This is accompanied by a slight loss in
likelihood. We use a parameter to control the trade-off
between data likelihood and model complexity. This is
closely related to Bayesian model selection methods like
BIC [15].
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1.3 Related work

The learning of hierarchical visual dictionaries has been
explored in recent literature, where meaningful visual
parts are learned from various image features, such
as image primitives [9], segmented image regions [19],
interest points [18], [23] and histogram of gradients
[5], [14]. Different learning algorithms have been used:
discriminative criterion[5], [14], data mining heuristics
[9], [19], maximum likelihood learning [18] where a
hierarchical latent Dirichlet process is assumed, deep
neural networks [11] and Grammar-Markov models [23].
These methods have demonstrated the usefulness of the
learned structures mainly through good classification
performance.

To analyze the merits and limitations of the above
methods with respect to the proposed model, we char-
acterize them by five aspects. Table 1 is a side-by-side
comparison.

i) Compositional hierarchy.
ii) Unsupervised learning.

iii) Deep mixing of AND/OR nodes.
iv) Fully generative.
v) Probabilistic model.
In [9], [19], [18], [23], [14], a compositional hierar-

chy is learned by unsupervised learning. However, the
OR nodes for structural variations are largely omit-
ted or oversimplified. And there is no deep mixing
of AND/OR nodes, i.e. OR nodes across all levels of
compositional hierarchy. Another limitation of the above
methods is that they do not build on a fully generative
model to the level of pixels. For example, in [18] a local
bag-of-words model summarizes local geometry and
appearance as a pooled histogram, but detailed object
deformation is discarded during computation of his-
tograms. As a result, it is difficult to visualize the learned
structures to ensure they are semantically meaningful.
Many state-of-the-art object detection systems use a part-
based latent SVMs model [5] with multi-scale HoG [4]
features. They are capable of modeling certain amount of
object articulation, but the localization of object bound-
aries is imprecise because of the local histogram pooling
in computing the HoG feature. Another limitation of
such models is that their performance relies on training
on large amount of negative training examples. The AOT
is aimed at addressing these issues.

1.4 Contribution

The contributions of our paper include:
• We propose a fully generative and reconfigurable

AOT for object modeling. The AOT includes both
structural variabilities (e.g. different co-appearances
of parts) and geometric variabilities (articulation of
parts). They are modeled by two disjoint sets of OR
nodes to enable efficient inference on testing images.

• We present an unsupervised learning algorithm for
AND nodes, OR nodes and terminal nodes of the

TABLE 1
A comparison with previous work.

[9], [19],
[14]

[18] [23] [5] [20] ours

compositional
hierarchy

√ √ √ √
X

√

unsupervised
learning

√ √ √
X

√ √

deep mixing
of AND/OR

X X X X X
√

fully genera-
tive

X X X X
√ √

probabilistic
model

X
√ √

X
√ √

AOT under a principled framework of information
projection.

• We study a key issue in unsupervised learning: the
identifiability of parts and thus the AOT. We de-
sign comprehensive experiments to evaluate several
factors that influence the identifiability of AOT, i.e.
how well the learning algorithm can identify the
underlying AOT.

• In experiments, we show the proposed AOT ad-
vances the state-of-the-art in object detection by
improving the accuracy of template matching on
challenging public benchmarks.

The rest of the paper is organized as follows. Section
2 introduces the representation of the terminal nodes
and the graphical structure of the AOT model. Section
3 explains the unsupervised learning algorithm of AOT.
Section 4 explains the inference algorithm of AOT for
object detection. In Section 5, we show that the AOT
can be reliably identified from both synthesized data and
real-world images, and it performs on par with state-of-
the-art object detection systems on public benchmarks.

2 REPRESENTATION

2.1 Hybrid image templates (HIT) as terminal nodes

In our representation, the terminal nodes of the AOT are
HITs (hybrid image templates) [17], which we explain in
the following.

Image alphabet. An image I is divided into many
small image patches {IΛ}, where {Λ} are domains of
local regions (e.g. 112 ∼ 192 pixels). The space of small
image patches are quantized into four categories: sketch,
texture, flatness and color.

Definition 1 The image alphabet, denoted as ∆(1), is the
set of feature prototypes that are typical and appear
frequently in small image patches. They include sketch,
texture, flatness and color:

∆(1) = {Bj} ∪ {htxt
j } ∪ {hflt

j } ∪ {hclr
j }

{Bj} are image primitives or sketches (e.g. Gabor
wavelets), which often appear near strong edges and
object boundaries. {htxt

j } are histograms of gradient
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Fig. 2. A more detailed illustration of the animal AOT shown in Figure 1. For OR nodes, we illustrate typical templates with
structural variations and geometric transforms. The AND nodes are denoted by solid blue circles. The terminal nodes are individual
parts (e.g. ear, mouth) which are represented by automatically learned hybrid image templates.

orientations (e.g. HoG) which are suitable to represent
more complex textures inside objects (e.g. fur and hair).
{hflt

j } are flatness features which often appear in empty
image patches like cloudless sky. {hclr

j } are histograms
of color, which are most capable of describing objects
with distinctive colors (e.g. tomatoes).

HIT model. A HIT is a fully generative probabilistic
image model, which consists of a small number of atomic
feature prototypes at selected locations and orientations.
See Figure 3 for two HITs learned from tomato and pear
images. A HIT is specified by a list:

HIT = {(B1, x1, y1, o1), (h2, x2, y2),

(h3, x3, y3), (B4, x4, y4, o4), ...}

where B1, B4, ... are image primitives and h2,h3, ... are
histogram descriptors for texture, flatness and color.
{(xj , yj)} denote the selected locations and {oj} are
the selected orientations. Though local deformation is
allowed for its individual elements, the HIT itself does
not deal with large articulation or structural variation.
The proposed AOT is aimed at addressing this issue, and
the HITs serve as terminal nodes of AOT. Each AOT is
an object template consist of a few HITs as parts.

structure texture flatness color

Fig. 3. HITs for tomato and pear [17]. Best viewed in color.

Feature responses. Within a window (e.g. 150 by 150
pixels) of visual object, the image is divided into small

image patches using a regular grid. For each patch, we
measure a one-dimensional response r(I) which indi-
cates how likely each feature prototype in ∆(1) appears
in this patch. r measures the similarity between the
image patch and feature prototype, and it is normalized
to a value between 0 and 1. Larger value of r means this
feature prototype appears with higher probability.

For image primitives {Bj}, we compute feature re-
sponse r as the Euclidean distance between the image
patch and the primitive. For texture, color and flatness,
we compute locally pooled histograms in the image
patch. We refer to [17] for parameters of atomic features
and how to compute the one dimensional response r(I).

Let D be the total number of feature responses (i.e.
number of patches times the dictionary size |∆(1)| ) on
one image. D is often on the order of 106 or more. The
feature responses of image I is organized in a vector:

R(I) = (r1(I), ..., rD(I)).

From the D candidate features we select a small subset to
compose a HIT. Let {j1, ...jT } ⊂ {1, ..., D} be indexes of
the selected features. T is the number of selected atomic
features, and it is usually on the order of 10. To simplify
notation, we will use rt to denote rjt when there is no
ambiguity.

Probability model. Let X+ = {I1, ..., IN} be positive
example images (e.g. animal faces) governed by the
underlying target distribution f(I). Let X− be a large
set of generic natural images governed by the reference
distribution q(I). Our objective of learning is to pursue
a model p(I) to approximate f(I) in a series of steps:

q(I) = p0(I)→ p1(I)→ · · · pT (I) = p(I) ≈ f(I)

starting from q.
The model p after T iterations contains T selected fea-

tures {rt : t = 1, ..., T}. If the selected feature responses
capture all information about image I, it can be shown
by variable transformation [20] that:

p(I)

q(I)
=
p(r1, ..., rT )

q(r1, ..., rT )
. (1)

So p can be constructed by reweighting q with the
marginal likelihood ratio on selected features.
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Under the maximum entropy principle, p(I) can be
expressed in the following log-linear form:

p(I) = q(I)

T∏
t=1

[
1

zt
exp {βtrt(I)}

]
. (2)

where βt is the parameter for the t-th selected feature rt
and zt (zt > 0) is the individual normalization constant
determined by βt:

zt =
∑
rt

q(rt) exp{βtrt}. (3)

It is an expectation over the reference distribution q(rt).
In practice, as a pre-processing step prior to model
learning, we estimate q(rt) in the form of a histogram
using a large number of random training examples. And
we can compute zt using Monte Carlo estimation.

For simplicity, we will use an aggregated normalizing
constant Z =

∏T
t=1 zt when there is no ambiguity.

By the information projection principle [13], [25], [20],
we adopt a step-wise procedure to for feature selection.
In particular, the t-th feature rt is selected and model pt
is updated by:

pt = arg max K(pt|pt−1)

s.t. Ept [rt] =
1

N

N∑
i=1

rt(Ii) (4)

where K denotes the Kullback-Leibler divergence, and
by maximizing it over all candidate features, we select
a most informative feature rt to augment pt−1 towards
pt. The constraint equation in Eq. (4) ensures that the
updated model is consistent with the observed training
examples on marginal statistics. The optimal βt can be
found by a simple line search or gradient descent to
satisfy the constraint in Eq. (4).

It is convenient to rewrite Eq. (2) using a long and
sparse vector β of length D, with only few non-zero en-
tries at the indexes {j1, ..., jT } corresponding to selected
features:

p(I) = q(I)

D∏
j=1

[
1

zj
exp{βjrj(I)}

]
(5)

And the logarithm of normalizing constants
(log z1, ..., log zD) is also sparse, with log zj = 0
(i.e. zj = 1) whenever βj = 0. Since β encodes both
indexes and multiplicative weights of selected features,
we may simply consider β itself as an HIT.

Definition 2 The terminal nodes of AOT, denoted as ∆(2),
is the set of HITs,

∆(2) = {HITk : k = 1, ...,K},

which are automatically learned from images. Each entry
in ∆(2) is a part template composed of elements in ∆(1)

at selected locations and orientations. K can also be
learned, which will be explained in Section 3. See the
third row of Figure 1 for an example of ∆(2).

In [17] it is shown that the HIT performs well on
object categorization. With fewer features and parame-
ters, it achieves on par or better accuracy compared with
state-of-the-art methods like HoG + SVM [4] on public
benchmarks, especially when there are a small number
of training examples.

2.2 AOT: reconfigurable object templates
An AOT consists of a number of configurations of parts,
which include

i) structural variabilities (i.e. what parts appear);
ii) geometric variabilities (i.e. where they appear).

The AOT embodies a stochastic context free grammar
to regulate the structural and geometric variabilities. It
can efficiently capture high-order interaction of parts and
compositionality.

Figure 2 illustrates an AOT for animal faces. The
terminal nodes are shown as shaded rectangles. AND
nodes are denoted as blue solid circles. OR nodes (for
both geometric and structural variabilities) are drawn
with dashed boxes together with typical configurations.
The root node is an OR node with all the valid config-
urations of animal faces. It is branched into several sets
of valid structural configurations as well as geometric
configurations (represented as AND nodes) of two sub-
parts: upper face (B) and mouth (C). As we move down
the AOT, the upper face is in turn decomposed into left
ear (D), right ear (E) and forehead (F). The structural and
geometric configurations are not observed in training
images, and thus are modeled by two separate sets of
latent random variables:

Definition 3 The structural configuration b of AOT is
a binary activation vector of length K (K = |∆(2)|),
indicating which parts in ∆(2) are activated. bk = 1
means HITk is activated and appears in the image.

Definition 4 The geometric configuration τ of AOT is
a list of transforms (translation, rotation and scaling)
applied to the parts in ∆(2).

The AOT (e.g. in Figure 2) defines a set of valid config-
urations for b and τ , and puts a probability distribution
p(τ ,b; AOT) on this set.

The complete likelihood for an AOT is defined as

p(I, τ ,b|AOT,β) = p(τ ,b|AOT) · p(I|τ ,b,β), (6)

and the image likelihood conditioned on the configura-
tion (τ ,b) is a log-linear form following Eq. (5):

p(I|τ ,b,β) =

exp
{ K∑
k=1

bk

 D∑
j=1

βk,jrτ (j)(I)− logZk

}q(I), (7)

Here we slightly abuse the notation and use τ as a
warping function that maps {1, ..., D} to an integer-
valued index. This in effects matches a location (and
orientation, scale) in the template to a location in the
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Fig. 4. The data matrix R measured on images.

image. For out-of-bound situation, rτ (j) = 0 if τ (j) < 1
or τ (j) > D. β is a K×D real-valued matrix denoting a
set of K HITs for part templates. β is extremely sparse,
and there are only around 10 ∼ 30 out of D (D can
easily exceed 106) non-zero entries in each row. Zk’s are
normalizing constants.

We shall call the log-likelihood ratio log p
q as a template

matching score, which measures the information gain of
explaining the image by the foreground object model
instead of the background model:

Score(I) = log
p(I|τ ,b,β)

q(I)
=

K∑
k=1

Score(HITk, I) (8)

where

Score(HITk, I) = bk

 D∑
j=1

βk,jrτ (j)(I)− logZk

 . (9)

We assume that the structural configuration is inde-
pendent from the geometric configuration, and thus

p(τ ,b|AOT) = p(τ |AOTgeo) · p(b|AOTstr), (10)

where AOTgeo is a sub-AOT consisting of only geometric
OR nodes (see Figure 2), and AOTstr consisting of only
structural OR nodes. This facilitates fast inference. In our
work, AOTgeo is a hierarchical deformation tree similar
to the active basis model [20].

3 LEARNING AOT FROM IMAGES

The terminal nodes ∆(2) and the non-terminal nodes in
AOT are learned automatically from training images.
We first describe how to learn ∆(2) (the HITs for part
templates) using an EM-type block pursuit algorithm.
The same algorithm is applied recursively to learn ∆(3)

(compositions of HITs) . Then we introduce a graph
compression algorithm to learn a compact set of non-
terminal AND/OR nodes.

3.1 Block pursuit on data matrix

Data matrix. The learning is performed on the data
matrix R as shown in Figure 4. Each row of R is a
feature vector for an image in X+. R is not necessarily a
rectangular matrix, as images of different sizes produce
feature vectors of varying lengths. But for simplicity, we
assume all positive training images are roughly aligned
and have the same size as the object template (this
assumption is released in Section 3.2). Therefore R is a
matrix with N (number of positive examples) rows and
D (number of all candidate features) columns, and each
entry Rij = rj(Ii) is a feature response (0 ≤ Rij ≤ 1).
Larger value of Rij means feature j appears in image Ii
with higher probability.

On the data matrix, we pursue large blocks {Bk : k =
1, ...,K} with lots of 1’s, which correspond to HITs that
appear frequently and with high confidence. A block is
specified by a set of common features (columns) shared
by a set of examples (rows). The significance of block Bk
is measured by the summation over the block:

Score(Bk) =
∑

i ∈ rows(Bk)

j ∈ cols(Bk)

(βk,jRi,j − log zk,j) (11)

where rows(·) and cols(·) denote the rows and columns
of block Bk. cols(Bk) corresponds to the selected features
in HITk; and rows(Bk) are the examples on which HITk is
activated. βk,j is the multiplicative parameter of feature
j in HITk, and zk,j is the individual normalizing constant
determined by βk,j . See Eq. 3 for estimation of zk,j .

The score of Bk is equal with the summation of Eq. (9)
over positive examples {Ii : i = 1, ..., N}:

Score(Bk) =

N∑
i=1

Score(HITk, Ii). (12)

If we have already identified K blocks {Bk : k =
1, ...,K}, then the total score for all the blocks is equal
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with the summation of Eq. (8) over positive examples:

K∑
k=1

Score(Bk) =

N∑
i=1

Score(Ii) =

N∑
i=1

log
p(Ii)

q(Ii)
. (13)

So pursuing blocks by maximizing Eq. (13) corre-
sponds to maximum likelihood estimation and the in-
formation projection principle.

Information projection. Recall that we pursue a series
of models starting from q(I) to approximate the target
distribution f(I) governing training positives X+. This
corresponds to maximizing the log-likelihood log p(I)
on X+. Initially p = q, and the data matrix has a log-
likelihood L0(R). After pursuing K blocks, the resulting
image log-likelihood is

L(R,β,b) = L0(R) +

K∑
k=1

Score(Bk). (14)

In the above equation, we have used the vector
representation in Eq. (5) and (7). Here we denote the
dictionary of HITs in a K ×D real-valued sparse matrix
β. And we denote the structural configurations on all
N images in a K ×N binary sparse matrix b. The k-th
block can then be denoted as a pair of sparse vectors(
bk,: ,βk,:

)
, where the non-zero items in βk,: denotes

columns of Bk, and the non-zero items in bk,: denote
the rows of Bk.

Block pursuit is a penalized maximum likelihood es-
timation problem, minimizing a two-term cost function:

−L(R,β,b) + penalty(β), (15)

which measures how well the dictionary of templates
∆(2) (encoded in β) explain the data matrix through their
activations b. The penalty term is an l0 penalty on β:

penalty(β) = η ·
D∑
j=1

1β 6=0 (16)

where 1() is an indicator function. η controls the trade-
off between the two terms, and we find η = 0.1 usually
leads to good learning results.

In a fully expanded form, the optimization problem in
(15) is:

min
b,β
− 1

N

 N∑
i=1

∑
k

bk,i

D∑
j=1

βk,jRi,j − logZk


+0.1 ·

∑
k,j

1βk,j 6=0 (17)

where Zk =
1

|X−|
∑
I∈X−

exp


D∑
j=1

βk,jrj(I)


We also enforce that the coefficients βk,: of HITk is
confined within a local region of the object window (e.g.
the top-left subwindow in the 3 by 3 grid in Figure 8) ,
and for each local region exactly one block is activated

for each image example, so that the activated HITs do
not overlap.

Due to the highly non-convex l0 penalty, a naive
global optimization algorithm would result in exponen-
tial complexity of O(2K×D). Inspired by the matching
pursuit algorithm for signal reconstruction under sparse
constraints, we propose a shared matching pursuit al-
gorithm generalized from the one used in [20]. This
algorithm greedily selects blocks with largest scores, and
has a linear complexity O(KD).

EM-type iterations. The rows of blocks (i.e. activations
of parts b) are not observed on training images, and we
need to repeatedly infer them using the estimated AOT
model. So the block pursuit algorithm as outlined below
is an EM-type algorithm that alternate between model
parameters β and latent variables b:

Algorithm: Block Pursuit for part learning
Input: data matrix R, initialization of structural configuration

b(0), the number of blocks K.
Output: Coefficient matrix β(T ) and structural configuration

b(T ) after T iterations.
I1 t← 1. Compute the correlation matrix Corr between each

pair (j, j′) of features.
I2 For each candidate feature rj , and for a grid of possible

values {β(m)} for the coefficient β, compute the correspond-
ing normalizing constant zmj , and the corresponding expec-
tations {E

[
rj ;β

(m)
]
} for all m:

E
[
rj ;β

(m)
]

=
1

|X−|
∑
I∈X−

rj(I) exp{β(m)rj(I)}

M1 For k = 1, ...,K, compute the average response on
activated positive examples

r̄+k,j =
1

N

N∑
i=1

bk,iRi,j , ∀j

and find the best βk,j and zk,j by β∗k,j ← β(µ), z∗k,j ← z
(µ)
j

where
µ = arg min

m
(E
[
rj ;β

(m)
]
− r̄+k,j)

2.

Then compute the gain of feature j for the k-th block:

gaink,j =

{
β∗k,j r̄

+
k,j − log z∗k,j j ∈ Sc(t)

0 otherwise

M2 β ← 0. For k = 1, ...,K, update βk,: iteratively:

j∗ ← arg max
j

gaink,j

β
(t)
k,j ← β∗k,j , z

(t)
k,j ← z∗k,j

gaink,j′ ← 0, ∀j′ s.t. Corr(j, j′) > Thres = 0.9

until maxj gaink,j < γ, or the maximum allowed number of
selected features is reached.

E1 b← 0. For i = 1, ..., N , repeat:

k∗ ← arg max
k

∑
j

β
(t)
k,jRi,j − log z

(t)
k,j ,

b
(t)
k∗,i ← 1,

set b(t)
k,i = 0 if non-zero entries of βk,: and βk∗,: overlap.

until all values in b are assigned.
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Terminate t ← t + 1. Iterate from M1 through E1 until b
converges.

The learned blocks can be ranked by the score (or
information gain) in Eq. (11) and the blocks with small
scores are discarded.

3.2 Deformable block pursuit

In the previous subsection, we assume the images are
aligned so that the the visual parts of different images
appear in similar locations. To apply the block pursuit
algorithm for non-aligned images or images with articu-
lated objects, we expand the E1 step in the baseline block
pursuit algorithm by inferring both geometric and struc-
tural configurations. Now the input is a set of feature
vectors R = {R1,:, ...,RN,:} with different dimensions,
but the coefficient matrix remains to be K ×D. Similar
to Eq. (15), the objective is:

min
β,b,τ

−L(R,β,b, τ ) + penalty(β), (18)

where

L(R,β,b, τ ) = L0(R) +
N∑
i=1

∑
k

bk,i

D∑
j=1

(
βk,jRi,τ i(j) − log zk,j

)
. (19)

In the E step, we not only solve for the best struc-
tural configuration b but also infer the best geometric
configuration τ i on each positive example Ri,: using the
inference algorithm in Section 4. τ i denotes the localiza-
tion (i.e. position x, y, rotation o, scale s ) for the object
bounding box, part bounding boxes as well as primitives
on image Ii. Part bounding boxes sit at canonical loca-
tions relative to the object center. Each part is subject to
a random local perturbation (∆x,∆y,∆o,∆s), which is
independent from other parts. Similarly, primitives are
subject to independent local perturbations around their
canonical locations inside their parent part bounding
box. The inference algorithm contains one round of
bottom-up steps followed by one round of top-down
steps. In the bottom-up steps, the local perturbations
are accounted in local maximizations (Up-2, Up-4). The
optimal localization of object bounding box is first in-
ferred (Up-6); then the optimal localizations of parts are
obtained by retrieving the arg-max perturbations of parts
(Down-5). The optimal localizations of primitives are
found similarly.

3.3 Recursive block pursuit

Now we have pursued K blocks or terminal nodes
∆(2) = {HITk, k = 1, ...,K}. We then augment the data
matrix by K new columns consisting of responses on
the HITs. For clarity, we denote R as R(1) to indicate
responses on ∆(1). And we denote R(2) as the newly

Fig. 5. Block pursuit on images.

computed responses on ∆(2) for the N images. Each
entry of R(2) is a template matching score:

R
(2)
i,k = Score(HITk, Ii). (20)

The block pursuit algorithm or its deformable version
can be carried on recursively on R(2). This leads to
a compositional hierarchy. In our experiments we find
the simple three level (object-part-primitive) hierarchy
works well for detecting articulated objects in cluttered
images.

Fig. 6. Graph compression by sharing.

Fig. 7. Graph compression by merging.

3.4 Graph compression
So far we are focused on pursuing blocks to identify
meaningful parts from the training images and assume
a trivial structural AOT which allows for any activation
patterns of parts as long as they don’t overlap. This can
be problematic as the parts that co-appear in different
locations are usually correlated, and certain structural
configurations of parts should be prohibited (e.g. bear’s
left ear + cat’s right ear). In particular, such a flexible
model may easily match a cluttered background patches
and cause a large number of false positives. To learn the
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structural AOT from examples, we extend the optimiza-
tion problem of block pursuit by adding a prior model
p(b; AOTstr) for structural configuration b and a hyper
prior controlling the complexity of AOTstr. This results
in an objective function with four terms:

min
β,b,τ ,AOTstr

−L(R,b,β, τ ) + penalty(β,b)

− log p(b; AOTstr) + γ|AOTstr| (21)

where |AOTstr| denotes the total number of nodes in the
AOT, and the first two terms are exactly the block pursuit
cost function and penalty in Eq. (19). To solve (21),
we adopt a coordinate descent method which alternate
between (β,b) and AOTstr:

i) Given AOTstr, solve for (β,b) using the block pur-
suit algorithm. Here we need to adapt the E1 step,
such that b is inferred using dynamic programming
on AOTstr.

ii) Given (β,b), solve for AOTstr by minimizing
− log p(b; AOTstr) + γ|AOTstr|.

Step ii) is a penalized maximum likelihood problem
with log-likelihood term Lstr = log p(b; AOTstr). It is
solved by a graph compression procedure as follows.
Initially we form a giant AOT that has one root OR
node branching over the object configurations in ∆(3).
For example:

AOT0 = (1, 6, 20, 41) ∪ (1, 6, 34, 49) ∪ (6, 18, 27, 52)...

where ∪ means OR, and each vector means non-zero
entries of b (i.e. activated parts) in one configuration
from ∆(3).

We call this AOT0 a memorization AOT since it simply
memorizes the observed structural configurations. Since
the number of configurations is combinatorial, this AOT
is huge and tends to overfit. Then we apply an iterative
compression procedure that includes two operators:
• Sharing. This operator restructures the AOT by shar-

ing parts. For example, (1, 6, 20, 41)∪ (1, 6, 34, 49)⇒
(1, 6, ((20, 41) ∪ (34, 49))).

• Merging. This operator merges OR nodes with
similar branching probabilities, and re-estimate the
merged probabilities.

The two operators are illustrated in Figure 6 and
7. Each of the two operators results in a loss in log-
likelihood ∆Lstr ≤ 0 and a reduction in model complex-
ity (number of nodes) ∆|AOTstr| < 0. We decide to apply
the merging or sharing operator if

∆Lstr − γ ·∆|AOTstr| > 0 (22)

i.e. the reduction in complexity outweighs the loss of
log-likelihood.

Re-parameterization of the γ factor. Directly opti-
mizing Eq.(22) requires fine tuning of the γ parameter,
and the optimal value of γ ∈ [0,+∞) is very sensitive to
the training data. We adopt a robust re-parameterization
of γ using another parameter α ∈ [0, 1]. Observing that
Eq.22 is essentially testing whether two distributions are

the same, we propose to use the χ2 test with significance
level 1−α (where α ∈ [0, 1]) to approximately implement
the decision in Eq.(22). If the branching probabilities of
the two OR nodes are : (a1, ..., aM ) and (b1, ..., bM ) with∑
i ai = 1,

∑
i bi = 1, ai > 0, bi > 0,∀i, then the χ2

test statistic is computed as χ2 =
∑
i(ai − bi)

2/a2
i . We

compare this value to FM−1,1−α which can be looked up
in the F-table. If χ2 < FM−1,1−α, then we decide merge
these two OR nodes. In the experiments, we use α as the
control parameter for model complexity instead of γ.

4 INFERENCE ON AOTS

As the AOT is a tree structured graphical model, so a
dynamic programming procedure is in place for efficient
inference. In particular, the dynamic programming takes
the form of recursive SUM and MAX operations, which
has been commonly used in hierarchical object models
[16], [20], [5] with variations. The inference algorithm
is an interleaved procedure between dynamic program-
ming on AOTgeo and dynamic programming on AOTstr:

Algorithm: Inference by recursive SUM-MAX
Input: Testing image I, AOT, β and {Zk}.
Output: i) Geometric configuration τ : detected location, ro-

tation and scaling for the whole object, activated parts and
activated primitives. ii) Structural configuration b: which
parts are activated.

Up-1 Compute atomic feature response rj(I) =
SUM1(xj , yj , oj , sj) for all locations (xj , yj), rotations
oj and scalings sj of the atomic filter (e.g. image primitive).

Up-2 Perform local maximization on SUM1 maps over local
translation, rotation and scaling to obtain MAX1(x, y, o, s)
and ARGMAX1(x, y, o, s), where MAX1 stores local maxi-
mum responses and ARGMAX1 stores the local transforma-
tion of primitives that result in the local maxima.

Up-3 For each part k (k = 1, ...,K), compute part score maps
SUM2k(x, y, o, s) for all locations, orientations and scales by
transforming the sparse part template (i.e. HIT template) βk,:
by translation (x, y), rotation o and scaling s and computing
the dot product between βk,: and the portion of MAX1 map
under the transformed part window:

SUM2k(x, y, o, s) =
D∑
j=1

βk,jMAX1(τx,y,o,s(xj , yj , oj , sj))− logZk,

where τx,y,o,s(xj , yj , oj , sj)) the destination transformation
of the primitive (xj , yj , oj , sj) after it moves with the tem-
plate, which itself is transformed by translation (x, y), rota-
tion o and scaling s.

Up-4 Compute MAX2, ARGMAX2 maps for all parts by local
maximization on SUM2 maps.

Up-4.5 For each transformation (x, y, o, s) of the object, collect
the all the part scores as a K dimensional vector r(2) =

(r
(2)
1 , ..., r

(2)
K ). Infer the best structural configuration b∗ using

AOTstr based on r(2).
Up-5 For each transformation (x, y, o, s) of the object, com-

pute the SUM3 score by applying the object filter specified
by b̂:

SUM3(x, y, o, s) =

K∑
k=1

b∗k · r
(2)
k ,
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Fig. 8. Inference of AOT on an observed image. The top row: the dictionary of parts displayed with different colors in the border.
Showing top 20 of them. The bottom row: the parsing procedure with the structural AOT and geometric AOT. The structural AOT
stores an AND-OR grammar that generates a set of admissible configuration (i.e. activation of parts) on an image. In this AOT, we
divide the object template into a 3 by 3 grid, and within each of the 9 cells only one part is allowed to be activated. A parse from the
structural AOT results in a structural configuration (k1, ..., k9) illustrated as a 3 by 3 color code. A parse from the geometric AOT
results in the geometric configuration of activated primitives shown as black bars overlayed on the image. We also show the whole
geometric parse tree by displaying the transformed object and part bounding boxes.

where r(2) is the collected vector of MAX2 scores of parts
and b̂ is the best structural configuration both computed in
Up-4.5.

Up-6 Compute the global maximum of SUM3 score maps
over all object transformations (x, y, o, s).

Down-6 Retrieve the detected (absolute) transformation
(x̂, ŷ, ô, ŝ) of the object from the maximization in Up-6.

Down-5 Compute the temporary transformation
{τ x̂,ŷ,ô,ŝ(xk, yk)} for each activated part k (such that
bk > 0) on I by letting the part move with the object, where
(xk, yk) is the canonical location of the part center relative
to the object center.

Down-4 For each activated part k ∈ {k : bk > 0}, retrieve
the detected (absolute) transformation (x̂k, ŷk, ôk, ŝk) of the
k-th part from ARGMAX2 maps computed in Up-4.

Down-3 For each activated part k, for each of its activated
primitive j ∈ {βk,j > 0}, compute its temporary transfor-
mation {τ x̂k,ŷk,ôk,ŝk (xj , yj , oj)} on I by letting the primitive
move with the part, where (xj , yj , oj) is the canonical loca-
tion and rotation of the j-th primitive in the part template.

Down-2 For each activated part k, for each of its activated
primitive j, retrieve its detected (absolute) transformation
(x̂j , ŷj , ôj , ŝj) on I.

In Up-4.5 the procedure to infer the best structural con-
figuration b also takes the form of recursive SUM-MAX.
The input is a K dimensional vector r(2) = (r

(2)
1 , ..., r

(2)
K )

of all candidate part scores. For notational convenience,
we represent the sparse binary vector b as its non-zero
entries (k1, k2, ...) ⊂ {1, ...,K}. By induction, assume
for all the OR nodes in level l we have found the
its best parse tree that generates the sub-configuration
(k1, ..., kl) with exactly l parts being activated. We have
also computed the scores of these OR nodes achieved by

the best parse trees. Then for an OR node ORl+1 in level
l+ 1 (the parent level), we find its best parse tree by the
following two steps:

SUM Identify this OR node’s children nodes, which are AND
nodes. For each of the AND nodes ANDl+1

i , compute its
score by summation of :

Score(ANDl+1
i ) =

∑
ORl

j
∈Children(ANDl+1

i
)

Score(ORl
j)

MAX Find the best branch of this OR node by maximization:

i∗ = arg max
i

Score(ANDl+1
i ).

Retrieve the best parse tree by concatenating the best
sub-parse-trees in Children(ANDl+1

i∗ ). From this parse tree,
we get the non-zero entries (k∗1 , ..., k

∗
l+1) of the best sub-

configuration b∗. We then compute the best score of this
OR node by:

Score(ORl+1) =

K∑
k=1

b∗kr
(2)
k

5 EXPERIMENT

We evaluate the AOT model in both supervised and
unsupervised settings.

In the supervised setting, the ground truth label for
training images and object bounding boxes are given. We
measure the performance of classification and detection
for articulated objects. On challenging object detection



FOR REVIEW: IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

tasks with lots of occlusion and clutter, we perform
on par with state of art methods for localization of
objects, parts and key points, while using a much smaller
number of features.

Evaluating the learned AOT in the unsupervised
learning is a non-trivial problem, as we often don’t have
a unique ground-truth, e.g. how an object should be
divided into parts. We start from the 1D text example,
because we have the underlying generating AOT for the
training data, which enables us to conduct a thorough
numerical evaluation. Then we evaluate the image AOT
learned without supervision for both objects and parts,
comparing to human subjects.

5.1 The synthesized 1D example

Fig. 9. A stochastic AND-OR template for generating a
sentence composed by three parts: subject + linking verb +
adjective/present participle, such as “hamster is now jumping”.
Shaded circles denote AND nodes. Empty circles represent OR
nodes. Shaded rectangles are terminal nodes.

To study the identifiability issue, we synthesize a 1D
example where we know the underlying AOT as ground
truth that generates the training data. Let AOT∗ be the
true AOT. Figure 9 shows AOT∗ for sentences composed
of three parts: subject + linking verb + adjective/present
participle (e.g. winter is now leaving). The three parts
are correlated, such that not all combinations of the
three parts are admissible. For example, the combination
spring is now jumping is not allowed. Each part is in
turn composed of a prefix and a postfix. Each part,
prefix/postfix and letter can be missing (i.e. occluded by
random letters) with a small probability (0.01). Finally,
random letters of varying lengths are inserted between
the three parts of the sentence.

5.1.1 The data and data matrix
Table 2 shows several example strings generated by this
underlying AOT. Our goal is to learn an AOT from
the sampled example strings, and compare the learned
AOT with the underlying one in Figure 9 to study the
effectiveness of the learning algorithm in identifying its
parts and composite structures.

5.1.2 Recursive block pursuit for text data
We first identify frequent substrings of length l (l = 3
or 4), such as “ing”, “ster”, as significant blocks in the

TABLE 2
String examples.

1. nkfnwknspringyzxyxuwas nowjvzeawarmertgprh
2. oqsdq bovhamsteriwxwowas nowtdxtzbyccomingbjxp
3. lhtuwbcdzfzhamsteraquo is nowzgoclujumpingmmqrlu
4. jlmzzrslwintervmqdleis nownaplaleavingdouggkwh

Fig. 12. The effect of the separation parameter s and training
sample size n on learned dictionary. Left: ROC curves for
different separation parameters. Right: AUC as a function of
separation s and sample size n.

data matrix. These blocks are selected into the first level
dictionary ∆(1) (Figure 10).

Once ∆(1) is learned, the strings are re-encoded using
the entries in ∆(1). We then construct a new data matrix
by collecting co-occurrences of ∆(1) entires. As a result,
frequent combinations such as “spr”+“ing” are identi-
fied as significant blocks and selected into the second
level word dictionary ∆(2). An entry in the word level
dictionary covers 6 to 8 letters. The word dictionary
contains many duplicate or overlapping entries, such
as “hamster” and “amster”. The nuance entries like
“amster” are pruned by a greedy procedure of finding
best matching and local inhibition. In the end, only
high frequency words remain in the top of ∆(2) (Figure
10). Notice that compared to ∆(1), ∆(2) contains much
less ambiguity. Finally the level 3 dictionary (sentences)
∆(3) = {“spring is now coming”, · · · } is easily obtained
by identifying frequent combinations of words.

5.1.3 Evaluation on the text example

In this experiment, we are interested in studying the
following factors that influence model identifiability:
• n: training sample size.
• s: the average length of random letters inserted

between two words (see Table 2) in the underlying
AOT. When s is small, words are hard to separate,
which results in large ambiguity. s implies the artic-
ulation and separation of parts in images.

• α: the parameter controlling model complexity.
n and s are parameters of training data, and α is a
parameter of the learning algorithm.

We design a comprehensive experiment with about
105 combinations of parameters. And the results are
summarized in Figure 12 and 13.

Evaluating the learned terminal nodes of AOT. To com-
pare the underlying true terminal nodes ∆true with the
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Fig. 10. Left: The learned dictionary of terminal nodes ∆(1) for three/four letter groupings (white space is included). We only
show the top ones, together with their frequencies and information gains side by side, up to a constant multiple. Middle: The
learned second level dictionary ∆(2) for words composed by entries in the children dictionary ∆(1). Right: The learned dictionary
for sentences as combinations of ∆(2) entries.
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(a) initial AOT
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(b) compressed AOT

Fig. 11. Left: the initial AOT naı̈vely constructed. Right: the compressed AOT. Both are obtained from the same 100
training sequences sampled from the underlying AOT in Figure 9. The model complexity parameter α is set to 0.05.
The initial AOT has 13 free parameters. The compressed AOT has only 9 free parameters and successfully recovers
the structure of true underlying AOT.

learned terminal nodes ∆. We use the ROC curve and
AUC (area under ROC curve) to evaluate the difference
between manually labeled ground-truth ∆true and the
learned ∆ with entries ranked by information gain.
Figure 12 (left figure) plots three ROC curves for three
different values of s for sample size n = 100. After
repeating this for different n, we obtain a series of ROC
comparisons. To summarize this, Figure 12 (right figure)
shows the isolines of AUC as a function of two variables:
s the separation parameter, and n the training sample
size. Take the two points A, B as an example, when the
separation decreases by 1 from A to B, we need about
twice (100.3) as many training examples to achieve the
same AUC.

We find that the block pursuit algorithm can success-
fully identify the terminal nodes ∆ for n > 100 and s > 2,
up to an accuracy of AUC = 0.99.

Evaluating on the graph topology and branching probabili-
ties of the learned structural AOT. Another important factor
is the parameter α which controls model complexity.
We set α to different values and compress the sentence-
level dictionary ∆(3) into a series of AOTs with varying
complexity. We then compute the distance between the
learned AOT and the underlying true AOT∗ shown in
Figure 9. We use the Kullback-Leibler divergence as the
distance between AOTs, which is estimated by Monte-

Fig. 13. The effect of the model complexity α and training
sample size n on model generalizability. Left: Error of learned
model (KL divergence) as a function of model complexity α,
plotted on training and testing data respectively. Right: KL
divergence as a function of n and α.

Carlo simulation on their samples. We first sample m
configurations from AOT∗:

{b1, ...,bm} ∼ p(b; AOT∗).

Then we compute:

K(AOT∗|AOT) ≈
m∑
i=1

log
p(bi; AOT∗)

p(bi; AOT)

For each bi (i = 1, ...,m) we compute p(b; AOT) and
p(b; AOT∗) by the product of branching probabilities
along the paths of AOT that generates b.
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We perform 105 repeated cross validations to com-
pare training error and testing error. Different from
the classification scenario, the training error for AOT
is defined as the KL divergence K(f̂ train

n ‖AOT) be-
tween the learned AOT and training data f̂ train

n . Here
f̂ train
n denotes the empirical distribution on the train-

ing data {btrain
1 , ...,btrain

n }. The testing error for AOT
is defined as the KL divergence K(f̂ test

m ‖AOT), where
f̂ test
m = {btest

1 , ...,btest
m } is another independent sample

from AOT∗. And m >> n. In Figure 13 (left), the
horizontal axis is the logarithm of α which is sampled at
seven points (10−6, 10−3, 10−2, 0.1, 0.2, 0.5, 0.8), and the
vertical axis denotes the model error computed as KL
divergence. Recall that large α results in larger more
complexity. When the model becomes more complex,
the training error always decreases, but the testing error
would first decrease but then increase due to overfitting.
Figure 13 (right) shows at what sample size and what
α values can we successfully recover the generating
grammar. The horizontal axis is the logarithm of training
sample size log10 n, and the vertical axis is logα. The
color intensity in this 2D contour map denotes the testing
error.

We find that the graph compression algorithm can
successfully identify the AOT for n > 100 and 10−6 <
α < 10−2, up to a tolerance of 0.1 in KL divergence.

5.2 Unsupervised learning of image AOT
Interesting practical issues arise from learning image
AOT in the unsupervised setting. Firstly, for the learning
algorithm to scale to a large dataset, an online version of
the learning algorithm is desirable. Secondly, it is inter-
esting to see how the learned part dictionary grows with
the number of training examples. Thirdly, we care about
the stability of the learning algorithm with respect to
perturbations in the training sequence. We also compare
our learning algorithm with state-of-the-art latent SVMs
methods for discovering hidden clusters in image data.

Fig. 14. Online learning of AOT.

Fig. 15. Sub-linear growth of the learned dictionary.

Fig. 16. Robustness of AOT learning evaluated by perturbation
in KL divergence.

Online AOT learning. We implemented an online
version of both block pursuit for part dictionary and
graph compression. When a new training example comes
in, we first try to explain it using existing dictionary
and AOTs. If the likelihood of the AOT or a part scores
a low likelihood on the new image, we then update
both the dictionary and the AOT. The online dictionary
learning is achieved by an incremental version of EM
algorithm. The incremental updating of the stochastic
AOT is carried out by inserting the new configuration
into the current AOT, creating new OR branches and
updating branching probabilities. Figure 14 gives the
first, second and sixth updates of the AOT using 320
animal face images.

Dictionary growth. With the online learning algo-
rithm, we are able to observe the size of the dictionary
as a function of the number of training examples (Figure
15). The sub-linear growth of the dictionary shows that
the learned dictionary of parts is highly re-usable and
shared by several animal face categories. The number
of nodes in the learned AOT scales linearly with the
dictionary size. Thus the complexity of AOT also grows
sub-linearly to the number of training examples.

Robustness of AOT learning. Another important
question is, how many training examples are needed so
that the AOT is reliably learned. We study this question
by performing the following cross validation: two inde-
pendent samples of size n are drawn from the training
data of animal faces, from which two AOTs are learned.
Both AOTs are then evaluated on a third independent
sample of data (testing examples) by KL divergence.
The difference in KL divergence is recorded. A smaller
difference indicates that the learned AOT is closer to
convergence, and thus more identifiable. We do this for 5
repetitions and for different training sizes n. The result
is summarized in Figure 16. The AOT is increasingly
identifiable as n grows, and when n reaches 100 an AOT
can be reliably identified up to a KL divergence of 0.1
(bits). The KL divergence is computed by Monte Carlo
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Fig. 17. Training examples from 20 animal face categories.

estimation:

K(AOT∗|AOT) ≈
m∑
i=1

log
p(bi; AOT∗)

p(bi; AOT)

Evaluating learned AOTs by performance of clus-
tering. For the object dictionary, we evaluate on two
examples of unsupervised clustering on i) 142 cat and
wolf images, and ii) 100 rabbit images. The rabbit images
contain two distinct types with standing ears and relaxed
ears. For both examples, the number of clusters is 2. We
use the labeling cost by [10] to measure the performance
of clustering. This cost reflects the labeling effort needed
for a user to label all the images, given the clustering
result. The user is assumed to be able to use two buttons:
one to assign a single label to all images in a cluster,
and one to assign a label to a single image. In Table
3, we compare the label cost of clustering for AOT
and latent SVMs. We also show the cost for an optimal
clustering (e.g. cats in one cluster, wolves in the other)
and a random clustering. From this result, we can see
that the learned AOT is able to identify meaningful
object clusters more reliably. On a larger scale, Figure
1 shows the learned AOT from a mixture of 320 animal
face images (bear, cat, wolf and cow) without knowing
their categories. The AOT successfully identifies the four
hidden clusters.

TABLE 3
Cost of unsupervised clustering.

AOT LSVM optimal random
cat & wolf 3 2 2 61

rabbit 5 36 2 38

5.3 Animal faces classification
We perform classification experiments on the LHI-
Animal-Faces dataset1 [17]. Figure 17 is an overview
of the dataset, which consists of about 2200 images for
20 categories of animal faces. Compared to other bench-
marks, LHI-Animal-Faces has several desirable proper-
ties: (1) the animal face categories are similar to each
other due to evolutional relationship and shared parts,
and it is a challenging task to discern them; (2) the
animal face categories exhibit interesting within-class
variation, which includes (i) rotation and flip transforms,
e.g. rotated panda faces and left-or-right oriented pigeon

1. http://www.stat.ucla.edu/∼zzsi/hit/exp5.html

TABLE 4
Classification accuracy on animal faces.

HoG+SVM [4] HIT [17] LSVM [5] AOT
70.8% 75.6% 77.6% 79.1%

Fig. 18. Reconstructed image generated by AOT tem-
plates matched to objects. For each pair of images, the
observed image is shown on the left, followed by the
reconstructed image is on the right.

heads; (ii) posture variation, e.g. rabbits with standing
ears and relaxed ears; and (iii) sub-types, e.g. male and
female lions.

In Table 4, we compare the classification accuracy to
three related works: (i) HoG feature trained with linear
SVM [4], (ii) our prevoius work HIT [17] and (iii) part-
based HoG features trained with latent SVM [5]. For
all methods, we use 30 positive training images for
each category, and we use the rest as testing examples.
For AOT, the log-likelihood ratio score in Eq. (8) is
used for evluating the classification performance. We use
parameter η = 0.1 as the stopping criterion for feature
selection, i.e. stop when the information gain of newly
selected feature is below 0.1 (bits). For each category, the
number of selected primitive features are around 200,
and the number of selected blocks are around 20.

Our AOT model is fully generative to the pixels. In
Figure 18 we show several examples of reconstructed
image generated from the inferred (or matched) AOT.
The reconstructed image captures rich information of the
articulated object.

While the AOT shows competitive performance on ob-
ject categorization against state-of-the-art methods, it re-
quires training to be carried out separately per category.
This poses heavy computational burden when scaling
up to hundreds or thousands of categories. One way
to tackle this problem is to use a dictionary of shared
parts, in the hope that the number of distinctive parts
grows sub-linearly to the number of object categories. In
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Figure 15 we show an example of this sub-linear growth
of shared dictionary. We are working on using shared
dictionary to improve the learning of AOT models.

5.4 Detection of AOT

5.4.1 Weizmann horse
We apply our learning algorithm for the Weizmann horse
dataset [1] and perform detection of articulated horses.
There are 328 horses in the dataset. We train on the
first 100 images, and test it on the rest of horse images
and large generic images. Figure 19 shows the precision-
recall curves for horse detection. Again, we compare
with the active basis [20], which is the closest work
to ours. The proposed AOT model compares favorably
with the active basis which has no compositional hierar-
chy. In computing the precision-recall measurement, we
use 8.9 × 104 negative examples collected from random
background images. A detection is counted correct if
the bounding box overlaps with ground-truth by 80%.
The comparison is more evident when one inspects the
detailed template matching result in Figure 20, in which
we also show the learned AOT (parts illustrated with
different colors) together with the active basis template.
For most testing images, the AOT can capture the ar-
ticulation more accurately, while the active basis model
only allows local deformation and does not capture the
articulation as well.

Fig. 19. Precision-recall curves for horse detection on the
Weizmann horse dataset.

5.4.2 More challenging datasets
We test the detection performance of AOT on three more
challenging datasets: egret, deer and side-view PASCAL
VOC 2007 bikes, in comparison to the state-of-the-art
part-based latent SVMs model (LSVM) [5]. In particular,
the VOC bike dataset contains some difficult examples
with large occlusion. For all the three categories, we use
a small training set of around 20 images. More detailed
setting for the training/testing split can be found in
Table 5.

Figure 21 and Figure 22 are the learned object tem-
plates for the egret and VOC bike using AOT and the

Fig. 20. Learned common templates and their deformed
versions registered on testing images of the Weizmann horse
dataset. For both AOT and active basis the total number of
Gabor elments is 60.

TABLE 5
Training and testing sizes for the detection experiment.

egret deer bike
train 25 15 20
test 67 128 161

(a) AOT

(b) LSVM

Fig. 21. Templates learned for egret. (a) AOT. 4 (deformed)
templates from AOT are shown on the top row, and the learned
part templates are shown on the bottom row. (b) Part-based
model learned by Latent SVM.

(a) AOT

(b) LSVM

Fig. 22. Templates learned for VOC bike. (a) AOT. 4 sampled
(deformed) templates from AOT are shown on the top row, and
the learned part templates are shown on the bottom row. (b)
Part-based model learned by Latent SVM.
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part-based latent SVMs. In contrast to the discrimina-
tively trained system [5] which uses a large number of
features (O(104)), the AOT learned for each category
only contains less than 200 features in total. It takes
less than 10 minutes to learn an AOT with around 20
positive example images, on a machine with Intel i5
processor (3GHz) and 8GB RAM. On the same machine,
detection in one image takes half a minute. No negative
examples are used in training as the computation of
the normalizing constant is put in the pre-computation
stage. While for latent SVMs, a large number of negative
examples need to be used and going over them in
each optimization iteration requires heavy computation.
So despite the highly optimized implementation of the
training algorithm, it takes much more time (several
hours) to train a latent SVMs model.

Fig. 23. Measuring the accuracy object localization with key
points.

(a) AOT (b) LSVM

Fig. 24. 2D scatter plots of localization error (normalized by the
object size) for the second key point of the egret.

Evaluating the accuracy of localizing objects, parts
and keypoints. We evaluate the localization of objects,
parts and pixel-level key points as the performance met-
ric for detection. This is done using manually selected
key points that are easy to be identified by a human
labeler. Figure 23 shows the ground truth key point
labelings (in total 6 key points), along sided with the
detected key points by AOT and by latent SVMs. The key
point labeling is only used in evaluating the detection
results, and not used in the training of either models.
After the AOT model is learned, we find the nearest edge
element to each key point in the training images, and
record the most likely location of the key point relative
to that edge element. For the latent SVMs, we find the
nearest part for each key point and record the most likely
location of the key point relative to that part. We then
use this information to locate the key points for each
testing image.

Figure 24 shows the detections for the second key

point (joint of neck and head) of egret using the two
methods. Each red dot in the point cloud denotes one
detection, and its coordinate means the displacement in
horizontal and vertical directions. The displacements are
normalized by dividing the size of the object. The AOT
can locate the key points much more accurately.

To numerically measure the performance of localiza-
tion, we use an imprecision-recall curve. A higher curve
indicates better performance. In this curve, the horizon-
tal axis is the tolerance for normalized displacement√

∆x2 + ∆y2 by dividing the object size. We restrict the
range to be [0, 1] for convenience. The vertical axis is
the recall rate (between 0 and 1), i.e. the percentage of
correctly detected points that fall within the specified
displacement tolerance. As we tolerate more displace-
ment, the recall rate increases. We use the area under
curve (AUC) to measure the average recall rate.

Figure 25 shows the imprecision-recall curves for 6
key points (tip of beak, joint of head and neck, joint of
neck and body, tail, top of standing leg, and bottom of
standing leg) of egret. We also show the curves for 4
parts (head, neck, body, and leg) and the whole object. To
get the curves for parts and the object, the displacement
of the part is computed by averaging the displacements
of key points associated with that part; and the dis-
placement of the object is computed by averaging the
displacements of all the key points. Our model performs
localization consistently better than the latent SVMs, for
all the parts and key points and for all the imprecision
values (displacement tolerances). Table 6 provides a
numerical comparison for egret, deer and VOC bikes,
using the area under curve (AUC) measure. The part
and key point AUCs are computed by averaging over
all parts and key points. We also measured the average
precision using PASCAL standard criteria on VOC2007
bikes, with AOT getting an average precision of 60.8%
vs. 59.5% for LSVM.

TABLE 6
AUCs for localization of object, parts and key points.

object part keypoint
AOT LSVM AOT LSVM AOT LSVM

egret .93 .80 .88 .76 .88 .73
deer .93 .83 .91 .79 .90 .75
bike .78 .76 .70 .66 .68 .61

In Figure 26, 27 and 28 we show the detection results
on several challenging testing images. From these ex-
amples we can see that the AOT can locate the object
boundary and inner structures with a higher precision,
which leads to more accurate localization overall.

6 CONCLUSION

We propose a hierarchical reconfigurable object template
called the AND-OR Template (AOT) model, which can
capture rich structural variations and shape variations of
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Fig. 25. Egret: the quantitative performance measure for localization of object, parts and key points.

Fig. 26. Detection results on VOC bikes. For AOT, we show the detected bounding boxes for objects and parts, as well as individual
sketches. As a comparison, we also show detection results by latent SVMs model [5]. Best viewed in color.

Fig. 27. Detection results on Deer. For AOT, we show the detected bounding boxes for objects and parts, as well as individual
sketches. As a comparison, we also show detection results by latent SVMs model [5]. Best viewed in color.

Fig. 28. Detection results on Egrets. For AOT, we show the detected bounding boxes for objects and parts, as well as individual
sketches. As a comparison, we also show detection results by latent SVMs model [5]. Best viewed in color.

objects. We propose an unsupervised learning algorithm
for learning AOTs from only images and no manual
labeling. In our learning algorithm, the pervasive am-
biguity of parts is overcome by 1) articulation of parts,
2) alternative compositions, both of which imply the
importance of OR nodes. This is a major contribution of
our work. We investigate the factors that influence how

well the learning algorithm can identify the underlying
AOT, and we design a number of ways to evaluate the
performance of the proposed learning algorithm through
both synthesized examples and real world images. The
proposed AOT model achieves good performance on
par with state-of-the-art systems in public benchmarks
for object detection. Moreover, the AOT model has the
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advantage of significantly less training time and fewer
parameters. In future work, we will allow the parts
of visual objects to be non-square regions and search
for the optimal part segmentation with flexible shape
decompositions.
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