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A new conceptual framework and a minimization princi-
ple together provide an understanding of computation in
model neural circuits. The circuits consist of nonlinear
graded-response model neurons organized into networks
with effectively symmetric synaptic connections. The neu-
rons represent an approximation to biological neurons in
which a simplified set of important computational prop-
erties is retained. Complex circuits solving problems
similar to those essential in biology can be analyzed and
understood without the need to follow the circuit dynam-
ics in detail. Implementation ofthe model with electronic
devices will provide a class of electronic circuits of novel
form and fimction.

K COMPLETE UNDERSTANDING OF HOW A NERVOUS SYSTEM
computes requires comprehension at several different levels.

arr (1) noted that the comnlitwnional problem the system
is attempting to solve (the probem`of stereopsis in vision, for
example) must be characterized. An understanding at this level
requires determining the input data, the solution, and the transfor-
mations necessary to compute the desired solution from the input.
The goal of computational neurobiology is to understand what
these transformations are and how they take place. Intermediate
computational results are represented in a pattern of neural activity.
These representations are a second, and system-specific, level of
understanding. It is important to understand how algorithms-
transformations between representations-can be carried out by
neural hardware. This understanding requires that one comprehend
how the properties of individual neurons, their synaptic connec-
tions, and the dynamics of a neural circuit result in the implementa-
tion of a particular algorithm. Recent theoretical and experimental
work attempting to model computation in neural circuits has
provided insight into how algorithms can be implemented. Here we
define and review one class of network models-nonlinear graded-
response neurons organized into networks with effectively symmet-
ric synaptic connections-and illustrate how they can implement
algorithms for an interesting class of problems (2).

Early attempts to understand biological computation were stimu-
lated by McCulloch and Pitts, who described (3) a "logical calculus
ofthe ideas immanent in nervous activity." In these early theoretical
studies, biological neurons were modeled as logical decision ele-
ments described by a two-valued state variable (on-off), which were
organized into logical decision networks that could compute simple
Boolean functions. The timing of the logical operations was con-
trolled by a system clock. In studies of the "perceptron" by
Rosenblatt (4), simple pattern recognition problems were solved by
logical decision networks that used a system offeed-forward synap-
tic connectivity and a simple learning algorithm. Several reviews of
McCulloch and Pitts and perceptron work are available (5). More
recent studies have used model neurons having less contrived
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properties, with continuous dynamics and without the computerlike
clocked dynamics. For example, Hartline et al. (6) showed that
simple linear models with continuous variables could explain how
lateral inhibition between adjacent photoreceptor cells enhanced the
detection of edges in the compound eye of Limulus. Continuous
variables and dynamics have been widely used in simulating mem-
brane currents and synaptic integration in single neurons (7) and in
simulating biological circuits, including central pattern generators
(8) and cortical structures (9). Both two-state (10, 11) and continu-
ous-valued nonlinear models (12) have been extensively studied in
networks organized to implement algorithms for associative memo-
ries and associative tasks (13).
The recent work being reviewed here has been directed toward an

understanding ofhow particular computations can be performed by
selecting appropriate pattems of synaptic connectivity in a simple
dynamical model system. Circuits can be designed to provide
solutions to a rich repertoire of problems. Early work (10) was
designed to examine the computational power of a model system of
two-state neurons operating with organized symmetric connections.
The inclusion of feedback connectivity in these networks distin-
guished them from perceptron-like networks, which emphasized
feed-forward connectivity. Graded-response neurons described by
continuous dynamics were combined with the synaptic organization
described by earlier work to generate a more biologically accurate
model (14) whose computational properties include those of the
earlier model. General principles for designing circuits to solve
specific optimization problems were subsequently developed (15-
17). These networks demonstrated the power and speed of circuits
that were based on the graded-response model. Unexpectedly, new
computational properties resulted (15) from the use of nonlinear
graded-response neurons instead of the two-state neurons of the
earlier models. The problems that could be posed and solved on
these neural circuits included signal decision and decoding prob-
lems, pattern recognition problems, and other optimization prob-
lems having combinatorial complexity (15-20).
One lesson learned from the study of these model circuits is that a

detailed description of synaptic connectivity or a random sampling
of neural activity is generally insufficient to determine how the
circuit computes and what it is computing. As an introduction to the
circuits we review, this analysis problem is illustrated on a simple
and well-understood model neural circuit. We next define and
discuss the simple dynamical model system and the underlying
assumptions and simplifications that relate this model to biological
neural circuits. A conceptual framework and minimization principle
applied to the model provide an understanding ofhow these circuits
compute, specifically, how they compute solutions to optimization
problems. The design and architecture of circuits for two specific
problems are presented, including the formerly enigmatic circuit
used earlier to illustrate the analysis problem.
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Understanding Computation in a Simple
Neural Circuit

Let us analyze the hypothetical neural circuit shown in Fig. 1 with
simulation experiments based on the tools and methods of neuro-

physiology and anatomy. The analysis will show that the usual
available neurobiological measures and descriptions are insufficient
to explain how even small circuits of modest complexity compute.
The seven-neuron circuit in Fig. 1 is designed to compute in a

specific way that will later be described. From a neurobiological
viewpoint, the basic anatomy of the circuit contains four principal
neurons (21), identified in the drawing as Po, PI, P2, and P3. Each
neuron has an axon leaving the circuit near the bottom of the figure.
The computational results of the circuit must be evident in the
activity of these neurons. The one input pathway, from a neuron

external to the circuit, is provided by axon Q. Neurons IN,, IN2,
and IN3 are intrinsic interneurons in the circuit.

In attempting to understand the circuit's operation, we simulta-
neously monitor the activity (computer simulated) in each of the
seven neurons while providing for a controllable level of impulse
activity in the input axon Q. Results from this experiment on the
hypothetical circuit for several fixed levels of input activity are

shown in Fig. 2A. The top trace represents our controlled activity in
Q. In each time epoch this activity is progressively larger, as

illustrated by the increasing number of action potentials per unit
time. Although the activity of IN3 is steadily rising as the activity in
Q increases, the activities of the other neurons in the circuit are not
simply related to this input. From these results we know what the
output patterns of activity on the principal neurons are for specific

Fig. 1. "Anatomy" of a simple model neural circuit. Input axon Q has
excitatory synapses (direct or effective) on each of the principal neurons Po
through P3. Each of these principal neurons has inhibitory synapses (direct
or indirect) with all other principal neurons. Inhibitory synapses are shaded.
IN1 to IN3, intrinsic intemeurons.
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levels ofimpulse activity on the input axon Q, but we cannot explain
what computation the circuit is computing. Furthermore, we do not
know how the structure and organization ofthe circuit has provided
these particular patterns of neural activities for the different input
intensities.
Study ofthe synaptic organization ofthe connections between the

neurons by electrophysiological or ultrastructural techniques could
provide the numerical description of synaptic strengths shown in
Table 1. The results of these experiments would show that each
individual principal neuron Pi inhibits the other three principal
neurons (Pj). There is either monosynaptic inhibition from Pi to Pj
or polysynaptic inhibition by an excitatory synapse from Pi to an
interneuron (INk), which then forms an inhibitory synapse with Pj
(for example, the PI-to-P2 pathway in Fig. 1). This synaptic
organization provides an "effective" inhibitory synapse between any
two principal neurons; an action potential elicited in one principal
neuron always contributes to inhibition of each of the others.
Similar experiments measuring the strengths of the synaptic connec-
tions between the input axon Q and the Pi would show effective
excitatory connections (Table 1). While the organization between
principal neurons could be described classically as "lateral inhibi-
tion," the output patterns of activity in the Pi, shown in Fig. 2A for
different input intensities, cannot be explained by this qualitative
description.
Given the synaptic strengths in Table 1 and an appropriate

mathematical description of the neurons, we can simulate the model
neural circuit and produce the output activity patterns for the
different inputs. Such detailed simulations can also be done for real
neural circuits if the required parameters are known. In general, an
ability to correctly predict a complex result that relies solely on
simulation ofthe system provides a test ofthe simulation model, but
does not provide an understanding of the result. Thus, despite our
classical analysis of the simple neural circuit in Fig. 1, we still have
no understanding of why these particular synaptic strengths (Table
1) provide these particular relations between input and output
activity. Computation in the circuit shown in Fig. 1 can, however,
be defined and understood within the conceptual framework pro-
vided by an analysis of dynamics in the simple neural circuit model
we now discuss.

The Model Circuits and Their
Relation to Biology
Neurons are continuous, dynamical systems, and neuron models

must be able to describe smooth, continuous quantities such as
graded transmitter release and time-averaged pulse intensity. In
McCulloch-Pitts models, neurons were logical decision elements
described by a two-valued state variable (on-off) and received
synaptic input from a small number of other neurons. In general,
McCulloch-Pitts models do not capture two important aspects of
biological neurons and circuits: analog processing and high inter-
connectivity. While avoiding these limitations, we still want to
model individual neurons simply. In the absence of appropriate
simplifications, the complexities of the individual neurons will loom
so large that it will be impossible to see the effects of organized
synaptic interactions. A simplified model must describe a neuron's
effective output, input, internal state, and the relation between its
input and output.

In the face of the staggering diversity of neuronal properties, the
goal of compressing their complicated characteristics is especially
difficult. For the present, let us consider a prototypical biological
neuron having inputs onto its dendritic arborization from other
neurons and outputs to other neurons from synapses on its axon.
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Action potentials initiate near the soma and propagate along the
axon, activating synapses. Although we could model the detailed
synaptic, integrative, and spike-initiating biophysics of this neuron,
following, for example, the ideas of Rail (7), the first simplification
we make in our description of the neuron is to neglect electrical
effects attributable to the shape of dendrites and axon. (The axon
and dendrite space-constants are assumed to be very large.) Our
model neuron has the capacitances and conductances of the arbori-
zation added directly to those ofthe soma. The input currents from
all synaptic channels are simply additive; more complex interactions
between input currents are ignored. Membrane potential changes
are assumed to arrive at the presynaptic side of synapses at the same
time as they are initated at the soma. The second simplification is to
deal only with "fast" synaptic events. When a potential fluctuation
occurs in the presynaptic terminal ofa chemical synapse, a change in
the concentration of neurotransmitter is followed (with a slight
delay) by a current in the postsynaptic cell. In our model neurons we
presume this delay is much shorter than the membrane time
constant of the neuron.
These two suppositions on time scale mean that when a change in

potential is initiated at the soma of cell j, it introduces an effectively
istantaneous conductance change in a postsynaptic cell i. The
amount of the conductance change depends on the nature and
strength of the synapse from cell j to cell i.

Biological neurons that produce action potentials do so (in steady
state) at a rate determined by the net synaptic input current. This
current acts indirectly by charging the soma and changing the cell
potential. A characteristic charging or discharging time constant is
determined by the cell capacitance C and membrane resistance R.
The input current is "integrated" by the cell RC time constant to
determine a value of an effective "input-potential," u. Conceptually,
this potential u is the cell membrane potential after deletion of the
action potentials. Action potentials (and postsynaptic responses in
follower cells) are then generated at a rate dependent on the value of
u. Dependencies offiring rates on input currents (and hence u) vary
greatly, but have a generally sigmoid and monotonic form (Fig.
3A), rising continuously between zero and some maximum value
(22). The firing rate of cell i can be described by the functionfi(ui).
For processing in which individual action potentials are not syn-
chronized or highly significant, a model that suppresses the details
of action potentials should be adequate. In such a limiting case, two
variables describe the state of neuron i: the effective input potential
u1 and the output firing rate fi(u,). The strength of the synaptic
current into a postsynaptic neuronj due to a presynaptic neuron i is
proportional to the product of the presynaptic cells output Wf(ui)]
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Fig. 2. (A) Results of an experiment in which the activity in each neuron in
the circuit of Fig. 1 was simultaneously recorded (by simulation) as a
function ofthe strength ofthe input stimulus on axon Q. The strength ofthe
input stimulus is indicated by the numbers above each time epoch. (B) A
seective rearrangement of the data (A) illustratng the analog-binary
computation being performed by the circuit. The digital word V3V2V Vo is
caculated from the records.
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Table 1. Effective synaptc strengths for the circuit in Fig. 1.

Post-. Presynaptic neuron
synaptic
neuron PO P1 P2 P3 Q

PO -2 -4 -8 + 1
PI -2 -8 -16 +2
P2 -4 -8 -32 +4
P3 -8 -16 -32 +8

and the strength of the synapse from i to j. In our model, the
strength of this synapse is represented by the parameter Tu, so that
the postsynaptic current is given by Tu f(uj). The net result of our
description is that action potentials have their effects represented by
continuous variables, just as the usual equations describing the
behavior of electrical circuits replace discrete electrons by continu-
ous charge and current variables.
Many neurons, both central and peripheral, show a graded

response and do not normally produce action potentials (23). The
presynaptic terminals of these graded-response neurons secrete
neurotransmitters, and hence induce postsynaptic currents, at a rate
dependent on the presynaptic cell potential. The effective output of
such cells is also a monotonic sigmoid function of the net synaptic
input. Thus the model treats both neurons with graded responses
and those exhibiting action potentials with the same mathematics.
We can now describe the dynamics of an interacting system ofN

neurons. The following set of coupled nonlinear differential equa-
tions results from our simplifications and describes how the state
variables ofthe neurons (ui; i = 1,. . ., N) will change with time under
the influence of synaptc currents from other neurons in the circuit.

N

Cdu.F = Y,Ti,ijJ(uj) - I + Ii

These equations might be thought ofas a description of "classical"
neurodynamics (12, 14). They express the net input current charg-
ing the input capacitance Ci ofneuron i to potential ui as the sum of
three sources: (i) postsynaptic currents induced in i by presynaptic
activity in neuron j, (ii) leakage current due to the finite input
resistance Ri of neuron i, and (iii) input currents Ii from otfer
neurons external to the circuit. The time evolution ofany hypotheti-
cal circuit, defined by specific values of T., I,,f, C,, and R,, can be
simulated by numerical integration of these equations.
Some intuitive feeling for how a model neural circiit might

behave can be provided by considering the electrical circuit shown in
Fig. 3B, which obeys the same differential equation (Eq. 1). The
"neurons" consist ofamplifiers in conjunction with feedback circuits
composed of wires, resis'tors, and capacitors organized to represent
axons, dendritic arbonzation, and synapses connecting the neurons.
The firing rate function ofour model neurons Wf(ui)] is replaced in
the circuit by the output voltage Vi of amplifier i. This output is
Vi= V?" gi(ui), where the dimensionless function gi(ui) has the
same sigmoid monotonic shape (Fig. 3A) asfi(ui) and a maximum
value of 1. V?'9 is the electrical circuit equivalent of the maximum
firing rate of cell i. The input impedance of our model neuron is
represented in the circuit by an equivalent resistor pj and an input
capacitor Cj connected in parallel from the amplifier input to
ground. These components define the time constants ofthe neurons
and provide for the integrative analog summation of the synaptic
input currents from other neurons in the network. To provide for
both excitatory and inhibitory synaptic connections between neu-
rons while using conventional electrical components, each amplifier
is given two outputs-a normal (+) output and an inverted (-)
output of the same magirtude but opposite in sign. A synap.m
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between two neurons is defined by a conductance Tij, which
connects one of the two outputs of amplifier j to the input of
amplifier i. This connection is made with a resistor of value Rij =
l/lTijT. Ifthe synapse is excitatory (Ta> 0), this resistor is connected
to the normal (+) output of amplifierj. For an inhibitory synapse
(T, < 0), it is connected to the inverted (-) output of amplifierj.
Thus, the normal and inverted outputs for each neuron allow for the
construction of both excitatory and inhibitory connections through
the use of normal (positive valued) resistors. The circuits include a
wire providing an externally supplied input current Ii for each
neuron (Fig. 3B). These inputs can be used to set the general level of
excitability ofthe network through constant biases, which effectively
shift the input-output relation along the ui axis, or to provide direct
parallel inputs to drive specific neurons. As in Eq. 1, the net input
current to any neuron is the sum of the synaptic currents (flowing

fmax
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Input potential, u

Fig. 3. (A) The sigmoid monotonic input-output relation used for the model
neurons. (B) The model neural circuit in electrical components. The output
of any neuron can potentially be connected to the input of any other neuron.
Black squares at intersections represent resistive connections (with conduc-
tance TV) between outputs and inputs. Connections between inverted
outputs (represented by the circles on the amplifiers) and inputs represent
negative (inhibitory) connections.
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through the set ofresistors connecting its input to the outputs ofthe
other neurons), externally provided currents, and leakage current.

In the model represented by Eq. 1 and Fig. 3, the properties of
individual model neurons have been oversimplified, in comparison
with biological neurons, to obtain a simple system and set of
equations. However, essential features that have been retained
include the idea of a neuron as transducer of input to output, with a
smooth sigmoid response up to a maximum level of output; the
integrative behavior of the cell membrane; large numbers of excit-
atory and inhibitory connections; the reentrant or fedback nature of
the connections; and the ability to work with both graded-response
neurons and neurons that produce action potentials. None of these
features was the result of approximations. Their inclusion in a
simplified model emphasizes features of the biological system we
believe important for computation. The model retains the two
important aspects for computation: dynamics and nonlinearity.
The model of Eq. 1 and Fig. 3 has immense computing power,

achieved through organized synaptic interactions between the neu-
rons. The model neurons lack many complex features that give
biological neurons, taken individually, greater computational capa-
bilities. It seems an appropriate model for the study of how the
cooperative effects of neuronal interactions can achieve computa-
tional power.

A New Concept for Understanding the
Dynamics of Neural Circuitry
A specific circuit ofthe general form described by Eq. 1 and Fig. 3

is defined by the values of the synapses (TV) and input currents (Ii).
Given this architecture, the state of the system of neurons is defined
by the values of the outputs Vi (or, equivalently, the inputs ui) of
each neuron. The circuit computes by changing this state with time.
In a geometric space with a Cartesian axis for each neural output Vi,
the instantaneous state of the system is represented by a point. A
given circuit has dynamics that can be pictured as a time history or
motion in this state space. For a circuit having arbitrarily chosen
values for the synaptic connections, these motions can be very
complex, and no simplifying description has been found. A broad
class of simplified circuits, however, has a unifying principle of
behavior while remaining capable of powerful computation. These
circuits are literally or effectively symmetric.
A symmetric circuit is defined as having synaptic strength and

sign (excitation or inhibition) of the connection from neuron i toj
the same as fromj to i. The two neurons need not, however, have
the same input-output relation, threshold, or capacitance. Our
model circuit (Fig. 3B) is symmetric if, for all i andj, Tij is equal to
Tji. This symmetry refers only to connections between neurons in
the circuit. It specifically excludes the input connections (represent-
ed in Fig. 3B as the input currents Ii) and any output connections
from the circuit.
Symmetry of the connections results in a powerful theorem about

the behavior of the system. The only additional conditions necessary
are that the input-output relation of the model neurons be mono-
tonic and bounded and that the external inputs Ii (if any) should
change only slowly over the time of the computation. The theorem
shows that a mathematical quantityE, which might be thought of as
the "computational energy," decreases during the change in neural
state with time described by Eq. 1. Started in any initial state, the
system will move in a generally "downhill" direction of the E
function, -reach a state in which E is a local minimum, and stop
changing with time. The system cannot oscillate. This concept can
be illustrated graphically by a flow map in a state-space diagram.
Each line corresponds to a possible time-history of the system, with
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Fig. 4. (A) Energy-ter-
rain contour map for the
flow map shown in (B).
(B) Typical flow map
of neural dynamics for
the circuit of Fig. 3 for
symmetric connections
(T, = Tjf). (C) More
complicated dynamics
that can occur for unre-
stricted (Tij). Limit cy-
cles are possible.

arrows showing the direction of motion. The structure imposed on
the flow map for a circuit with symmetry is illustrated for a two-
dimensional state space in Fig. 4. With symmetric connections, the
flow map of the neural dynamics resembles Fig. 4B. Such a flow, in
which each trajectory goes to stable points and stops, results from
always going "downhill" on an "energy-terrain," coming to the
bottom of a local valley, and stopping. The contour map of an E
function that matches the flow in Fig. 4B is shown in Fig. 4A; it
shows separated hills and valleys. The valleys are located where the
trajectories in Fig. 4B stop. For a nonsymmetric circuit, the
complications illustrated in the flow map in Fig. 4C can occur. This
flow map has trajectories corresponding to complicated oscillatory
behaviors. Such trajectories are undoubtedly important in neural
computations, but as yet we lack the mathematical tools to manipu-
late and understand them at a computational level. The motion of a

neural circuit comprising N neurons must be pictured in a space of
N dimensions rather than the two dimensions of Fig. 4, but the
qualitative picture of the effects of symmetric synaptic strengths is
exactly the same.

The computational energy is a global quantity not felt by an

individual neuron. The states of individual neurons simply obey the
neural equations of motion (Eq. 1). The computational energy is
our way of understanding why the system behaves as it does. A
similar situation occurs in the concept ofentropy in a simple gas. We
understand that when a nonequilibrium state is set up with all the air
molecules in one corner of the room, a uniform distribution will
rapidly result. We explain that fact by the tendency ofthe entropy of
isolated systems to increase whenever possible, but the individual
molecules know nothing of entropy. They simply follow their
Newtonian equations of motion.

Symmetric chemical synapses are observed in neural systems (24).
Nonrectifying electrical synapses are intrinsically symmetric synap-
ses of positive sign (25). Lateral inhibition in the visual system of
Limulus is implemented with symmetric inhibitory synapses (6). An
asymmetric network can also behave as though it were symmetric. In
the olfactory bulb, the local circuit of mitral cell to granule cell to
mitral cell provides an equivalent symmetric inhibitory connection
between the pair ofmitral cells (26). A similar situation occurs in the
circuit shown in Fig. 1, where a direct equivalence between a neural
circuit which is manifestly not symmetric and one which is effective-
ly symmetric can be made if the inhibitory interneurons (IN,, IN2)
are faster than other neurons.

The requirement of symmetry for this theorem can also be
weakened. We have proven stability for a wide class of circuits
having organized asymmetry between two sets of neurons with
different time constants (16). (A neurobiological example would be
the existence, in mammalian systems, of fast inhibitory intemeurons
that could provide effective symmetric inhibitory connections be-
tween neurons that are otherwise excitatory.) In one potentially
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useful example (16), stability could be guaranteed even though the
sign of Tij was always opposite that of Tji. Also, there is a family of
transformations by which a broader class of synaptic organizations
can be made equivalent to symmetric ones (27). From an empirical
viewpoint, moderate disorganized asymmetry (for example, having
a random set of connections missing in an otherwise symmetric
associative memory circuit) has little experimental effect on dynamic
stability (28). Because the general features of symmetric circuits
persist in circuits that are only equivalently symmetric, and real
neural circuits can often be so viewed (except for inputs and
outputs), the behavior of symmetric circuit models should be of
direct use in trying to understand how neural computation is done
in biology.

In general, systems having organized asymmetry can exhibit
oscillation and chaos (29). In some neural systems like central
pattern generators (8), coordinated oscillation is the desired compu-
tation of the circuit. Processing in the olfactory bulb also seems to
make explicit use of oscillatory patterns (30). In such a case, proper
combinations of symmetric synapses can enforce chosen phase
relationships between different oscillators, an effect similar to those
presented above.

Hard Problems Naturally Solved by Model
Neural Circuits

In thinking about how difficult computational problems can be
done on such networks, it is useful to recall the simple problem of
associative memory, which these networks implement in a "natural"
fashion (10, 13). This naturalness has two aspects. (i) The symmetry
of the networks is natural because, in simple associations, if A is
associated with B, B is symmetrically associated with A. (ii) If the
desired memories can be made the stable states of a network, the
desired computation (given partial information as input, find the
memory that most resembles it) can be directly visualized as a
motion toward the nearest stable state whose position is the recalled
memory. Finally, the way the connection strengths must be chosen
for a given set of memories can be easily implemented by learning
rules (13) such as the one proposed by Hebb (31).
To what extent can more difficult computations-for example,

those relevant to object recognition or speech perception-be
carried out naturally on these model neural circuits? One of the
characteristics of such computations seems to be a combinatorial
explosion-the huge number of possible answers that must be
considered. The desired computation (for example, matching a set
ofwords to a sound pattern) can often be stated as an optimization.
Although it is not yet known how to map most biological problems
onto model circuits, it is now possible to design model circuits to
solve nonbiological problems having combinatorial complexity.
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Because well-defined problems have been used, the effectiveness of
the neural circuit computation can be quantified. We will review
two circuit examples.
The idea of most algorithms or procedures for optimization is to

move in a space of possible configurations representing solutions,
progress in a direction that tends to decrease the cost function being
minimized, and hope that the space and method of moving are
smooth enough that a good solution will ultimately be reached.
Such ideas lie behind conventional computer optimization algo-
rithms and the recent work in simulated annealing (32) and Bayesian
image analysis (33). In our approach (15-17), the optimization
problem is mapped onto a neural network in such a way that the
network configurations correspond to possible solutions to the
problem. An E function appropriate to the problem is then con-
structed. The form of the E function is chosen so that at configura-
tions representing possible solutions, E is proportional to the cost
function of the problem. Since, in general, E is minimized as the
circuit computes, the dynamics produce a path through the space
that tends to minimize the energy and therefore the cost function.
Eventually, a stable-state configuration is reached that corresponds
to a local minimum in theE function. The solution to the problem is
then decoded from this configuration.

It is particularly easy to construct appropriate E functions when
the sigmoid input-output relation is steep, because in this "high-
gain" limit, each neuron will be either very near 0 output or very
near its maximal output when the system is in a low E stable state
(14). In the high-gain case, the energy function is

E = -2 Ti ViV1-> Vj (2)

When lower gain is considered, terms containing the functiongi(ui)
must be included inE (14). The following two examples make use of
this high-gain limit.
The simple seven-neuron circuit described in Fig. 1 was designed

according to this conceptual framework to be a four-bit analog-to-
binary (A-B) converter. Given an analog input to the circuit
represented by the time-averaged impulse activity in the input axon
Q, the neural circuit is organized to adjust the firing rates in the
principal neurons so that they can be interpreted as the binary
number numerically equal to the time-averaged input activity.
Reorganization of the data in Fig. 2A will illustrate this computa-
tion. In each time epoch in. Fig. 2A, assign the value 0 or 1 to the
variable Vi representing the output of Pi; if Pi is firing strongly,
Vi = 1; if it is quiescent, Vi = 0. Represent the activity in axonQ by
a continuous variable X. The value of the binary word interpreted
from the ordered list of numbers (V3V2V1Vo) is plotted in Fig. 2B
for each of the different values of input strength X. The data points
(asterisks) lie on a staircase function (dotted line) characteristic ofan
A-B converter. (Although not shown, the outputs computed for any
other input would also lie on this curve.)
Through the consideration of a specific energy function in the

high-gain limit and the synaptic strengths and inputs listed in Table
1, the behavior of the neural circuit can be predicted and under-
stood. We decide in advance that outputs V3V2VIVo of P3 through
Po are interpreted as a computed binary word. The problem to be
solved is stated as an optimization: Given analog input X, which
binary word (set of outputs) best represents the numerical value of
X? The solution is provided when the following E is minimized
(16):

1 3 3

E = -2 (X-E 2 Vj)2 + E 2-') [Vj(l -Vj)] (3)2 j=O j=O

The second term in E is minimized (and numerically equal to 0)
when all Vj are either close to 0 or close to 1. SinceE is minimized as

the circuit converges, stable states having the correct "syntax" tend
to develop. Since the first term in E is a minimum when the
expression in the parentheses vanishes, this term biases the circuit
towards the states closest, in the least-squares sense, to the analog
value ofX. TheE in Eq. 3 is like that in Eq. 2, a quadratic in the Vi.
Rearranging Eq. 3 and comparing it with this general form yields
values for Tij and Ii for a circuit of the form in Fig. 3B that can be
deduced within a common scale factor as

= -2(i+J); Ii = (-2(2i-2 ) + 2'X) (4)

The coefficient ofX in Ii is the synaptic strength from the input axon
Q to the principal neurons. These specific values are equal to the
strengths of the "effective" synapses tabulated in Table 1. Knowl-
edge that E is minimized as the circuit computes provides an
undestanding of how this synaptic organization both enforces the
necessary syntax and biases the network to choose the optimum
solution.
Our second example is a neural circuit that computes solutions to

the traveling salesman problem (TSP) (15). In this frequently
studied optimization problem (34), a salesman is required to visit in
some sequence each of n cities; the problem is to determine the
shortest closed tour in which every city is visited only once. Specific
problems are defined by the distances (dij) between pairs of cities (i,
1). Assigning letters to the cities in a TSP permits a solution to be
specified by an ordered list of letters. For example, the list CAFGB is
interpreted as "visit C, then A, then F, then G, then B, and finally
return to C." For an n-city TSP, this list can be decoded from the
outputs ofN = n2 neurons if we let a single neuron correspond to
the hypothesis that one of the n cities is in a particular one of the n
possible positions in the final tour list. This rule suggests the
arrangement illustrated in Fig. 5 for displaying the neural output
states. The output of a neuron (Vi ) is graphically illustrated by
shading; a filled square represents a neuron which is "on" and firing
strongly. An empty square represents a neuron that is not firing. The
output states of the n neurons in each row are interpreted as
information about the location of a particular city in the tour
solution. The output states of the n neurons in each column are
interpreted as information about what cities are to be associated
with a particular position in the tour. If the neuron from column 5
in row C is "on," the hypothesis that city C is in position 5 in the
final tour solution is true.

Hypothetically, each of the n cities could indicate its position in
any one of the n possible tour locations. Therefore, 2N possible
"neural states" could conceivably be represented by these outputs.
However, only a subset of these actually correspond to valid
solutions to the TSP (valid tours): a city must be in one, and only
one, position in a valid tour, and any position must be filled by one
and only one city. This constraint implies that only output states in
which only one neuron is "on" in every row and in every column are
of the correct "syntax" to represent valid solutions to the TSP. A
TSP circuit that is to operate correctly must have synapses favoring
this subset of states. Simple lateral inhibition between neurons
within each row and column will provide this bias. For example, if
VB,2 (representing city B in position 2) is "on," all other neurons in
row B and column 2 should be inhibited. This can be provided by
the inhibitory connections from neuron VB,2 drawn in Fig. 5 (red
lines). Similar row and column inhibitory connections are drawn for
neuron VD,5. A complex "topology" of syntax-enforcing connec-
tions is generated. We can also think of these connections as
contributing a term to the E function for the circuit. For example, a
term +A Vxji Vyji in E makes a contribution -A to the synaptic
strength Tx,i;y,i and represents a mutual lateral inhibition between
neurons (X,i) and (Y,i). The term is positive (higher E) when both
of these neurons are "on," but contributes nothing if only one of the

SCIENCE, VOL. 233630

on A
pril 24, 2019

 
http://science.sciencem

ag.org/
D

ow
nloaded from

 

http://science.sciencemag.org/


two is "on." The proper combination of similar terms in an E
function can specify the synapses that coordinate correct syntax.

In a syntactically correct state representing a valid solution (tour),
if neurons Vx,i and VyE+1 are both "on," the salesman travels from
cityX directly to city Y. Therefore, the distance dx. y between these
two cities is induded in the total tour length for that solution. A
term of the form +dxyr Vx, Vyj+I in the E function provides a
"distance" contribution of d,Y to the value ofE when these neurons
are "on." Similar terms, properly summed, will add to E a value
equal to the length of the tour. Since the circuit minimizes E, the
final state will be biased toward those valid solutions representing
short tours. Such inhibitory connections are drawn in Fig. 5 with
blue lines for neurons VB,2 and VD,S. In TSP and in the earlier
example, the rules of syntax are expressed in inhibitory connections.
It seems easier to define what these systems should not do (by
inhibitory connections), and to define what they should do by
default, rather than to define what they should do by writing syntax
in excitatory connections.
The inhibitory synapses define the computational connections for

the TSP circuit. With a common sigmoid gain curve, R, and C for
each neuron, the description of the circuit is complete. The gain
curve is chosen so that with zero input, a neuron has a nonzero but
modest output. This circuit can rapidly compute good solutions to a
TSP problem (15). When started from an initial "noise" state
favoring no particular tour, the network rapidly converges to a
steady state describing a very short tour. The state of the circuit at
several time points in a typical convergence is illustrated in Fig. 6. In
a 30-city problem, there are about 1030 possible tours-the combi-
natorial problem has gotten completely out of hand. But the circuit
of 900 neurons can find one of the best ao7 solutions in a single

A

B

C

D

convergence-a few time constants of the circuit. It selects good
answers and rejects bad ones by a factor of 1023.
The continuous response characteristic of the analog neurons in

the TSP circuit represents partial knowledge or belief. A value for
Vx, j between 0 and 1 represents the "strength" of the hypothesis
that city X is in position j of the tour. During an analog conver-
gence, several conflicting solutions or propositions can be simulta-
neously considered through the continuous variables. It is as though
the logical operations of a calculation could be given continuous
values between "true" and "false" and evolve toward certainty only
near the end of the calculation. This is evident during the TSP
convergence process (Fig. 6) and is important for finding good
solutions to this problem (15). If the gain is greatly increased, the
output of any given neuron will usually be either 1 or 0, and the
potential analog character ofthe network will not be utilized. Whean-
operated in this mode, the paths found are little better than random.
The analog nature ofthe neural response is in this problem essential
to its computational effectiveness. This use of a continuous variable
between true and false is similar to the theory offizzy sets (35) and
to the use of evidence voting for the truth of competing proposi-
tions in Bayesian inference and connectionist modeling in cognitive
psychology (36). Two-state neurons do not capture this computa-
tional feature.

Discussion
The work reviewed here has shown that a simple model of

nonlinear neurons organized into networks with effectively symmet-
ric connections has a "natural" capacity for solving optimization
problems. The general behavior can be readily adapted to particular
problems by appropriately selecting the synaptic connections. Opti-

Position mization problems are ubiquitous where goals are attempted in the
____________________________________________ presence of conflicting constraints, and they arise in problems of

1 2 3 4 5 6 perception (What three-dimensional shape "best" describes a given
shading pattern in a two-dimensional image?), behavioral choice,
and motor control (What is the optimum trajectory to move an

L]i L] ~4LI] 0 [71 ,4[ appendage to minimize internal stresses?). Hence circuits consistentI vr '{v ~ with this model could efficiently solve problems important in
--J,$..4.LI

VB2

-
VD5

Sn--l n
> i I I I

F d

Fig. 5. A stylized picture of the syntax and connections of the TSP neural
circuit. Each neuron is symbolically indicated by a square. The neurons are

arranged in an n by n array. Each city is associated with n neurons in a row,
and each position in the final tour is assocated with n neurons in a column.
A given ncuron (Vx,j) represents the hypothesis that cityX is in positionj in
the solution. The pattems of synaptic connection for two different neurons
are indicated.
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biological information processing.
Biologically relevant problems in vision have already been formu-

lated in terms ofoptimization problems. Edge-detection, stereopsis,
and motion detection can be described as "ill-posed" problems, and
solutions can be found by minimizing appropriate quadratic func-
tionals (37). The emphasis in these formulations has been simple
convex problems with a single minimum in the energy. Networks
solving these problems can be implemented by linear circuits having
local connections. The nonlinear circuits described here can imple-
ment solutions to much more complex problems and have recently
been used to solve the object-discontinuity problem in early vision
(18).
The concept of an energy finction and its use in circuit design

provide an understanding of how model neural circuits rapidly
compute solutions to optimization problems. The state of cach
neuron changes in time in a simple way determined by the state of
neurons to which it is connected, but the organization of the
synapses results in collective dynamics that minimize an E function
relevant to the optimization problem. Knowledge ofthis E function
helps us understand the collective dynamics. The two circuit exam-
ples reviewed here, the A-B converter and TSP circuit, were-
"forward-engineered." Given the optimization problem, a represen-
tation of hypothetical solutions to the problem as a particular set of
neural states was constructed. Synaptic connections in the operating
circuit move the neural state toward these solution states and, bias
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Fig. 6. The convergence of a ten-city analog circuit to a tour. The linear
dimension of each square is proportional to the value of Vx, j. (A to C)
Intermediate times. (D) The final state. Indices illustrate how the final state
is decoded into a tour (solution of the TSP).

this motion toward the best solution. The values of these synaptic
strengths were summarized in the single algebraic statement ofthe E
function. [The two problems illustrate different ways in which
"data" modulate the circuit parameters: as input currents in the A-B
converter or as changes in the connection strengts in the TSP
circuit (17).] Forward-engineered examples ofmodel neural circuits
add to the known repertoire of computational circuits that seem

neurobiologically plausible. The general problem ofneurobiology is
"reverse engineering"-to understand the operation of a complex
biological circuit with unknown design principles and intemal
representations. In general, the set ofneural circuits whose function-
ing is understood provides an information base for hypothesizing
function in biological neural circuits in the same way that the study
of understood electrical circuits aids the attempt to understand or

reverse engineer an unfamiliar electrical circuit diagram.
When a problem falls naturally onto a neural circuit, its conver-

gence to a collective analog decision in a few time constants
represents immense computation for the amount of hardware
involved. For example, the 30-city TSP can be done on a network of
900 neurons. When that kind of combinatorial problem occurs in
perception and pattem recognition, the input to the system will
occur in parallel and take little time. A biological neural network of
this structure would converge to an answer in a few neural time
constants, thus in about 0.1 second. An electronic circuit ofthe same
structure would converge in about 1 psec. A comparably good
solution to this problem, with conventional algorithms used for the
TSP, can be found in about 0.1 second on a typical microcomputer
having IO0 times as many devices. The effectiveness of the neural
system on the basis of computations per device per time constant is
great in comparison with the usual general-purpose digital machine.
The ability ofthe model networks to compute effectively is based on
large connectivity, analog response, and reciprocal or reentrant
connections. The computations are qualitatively different from those
performed by Boolean logic.

632

Other specific circuit designs have been studied. Many problems
in signal processing can be described as the attempt to detect the
presence or absence of a waveform having a known stereotyped
shape in the presence of other waveforms and noise. (The recogni-
tion of phonemes in a stream of speech is conceptually similar, but
fraught with large problems ofvariability from the stereotype form.)
We have described the general organization of neural circuits that
could solve this task (16). Energy functions have been described for
other combinatorial optimization problems, including graph color-
ing (17), the Euclidean-match problem (17), and the transposition
code problem (15). Circuits that relax the restriction on a symmetric
connection matrix (as biology does) have also been studied. A
circuit designed to provide solutions to linear programming prob-
lems (16) functions without oscillation when the characteristic times
of these elements are properly specified, even though its computing
elements have antisymmetric connection strengths. The associative
memory originally discussed (10) and used in a model of learning in
a simple invertebrate (38) can be described as an optimization
problem (15). The same conceptual framework can seemingly be
applied to a large number of different problems.

Because the basic idea ofthe model neural circuit can be expressed
as an electrical circuit, there have been efforts to build such
hardware. Associative memories of 32 neurons (amplifiers) have
been built in conventional electrical circuit technology (39). A 22-
neuron circuit has been successfully microfabricated on a single
silicon chip (40). Shrinking this kind of network to a compact size
seems possible (41). The most compact and useful form of such a
device would involve an electrically writable resistance change in a
two-terminal device, which would function approximately as a
Hebbian (31) synapse. Examples of such material fabrications exist
(42). A 32-neuron system has been fabricated that uses optics to
implement connections (43). Technological questions have so far
focused chiefly on associative memory. Similar circuits could be used
to solve problems in signal detection and analysis, such as artificial
visual systems, in which there tends to be immense data overload
and where concurrent distributed processing is desired.

In both biological neural systems and man-made computing
structures, hierarchy and rhythmic or timed behaviors are impor-
tant. The addition of rhythms, adaptation, and timing provides a
mechanism for moving from one aspect ofa computation to another
and for dealing with time-dependent inputs and will lead to new
computational abilities even in small networks. Hierarchy is neces-
sary to keep the number of synaptic connections to a reasonable
level. To extend the present ideas from neural circuit to neural
system, such notions will be essential.
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Arctic Research in the National Interest

A. L. WASHBURN AND GUNTER WELLER

The Arctic Research and Policy Act of 1984 was designed
to advance arctic research in the national interest. Some of
the research fields that require attention are weather and
climate; national defense; renewable and nonrenewable
resources; transportation; communications and space-
disturbance effects; environmental protection; health,
culture, and socioeconomics; and international cooper-
ation. A research framework recommended by the Arctic
Research Commission includes, in order ofpriority, inte-
grated investigations to understand: (i) the Arctic Ocean
(induding the marginal seas, sea ice, and seabed) and how
the ocean and atmosphere operate as coupled components
ofthe arctic system; (ii) the coupled atmosphere and land
components and how their interaction governs the terres-
trial environment; and (iii) the high-latitude upper atmo-
sphere and its extension into the magnetosphere with
emphasis on predicting and mitigating effects on commu-
nications and defense systems. A separate recommenda-
tion is for high priority research to resolve the major
health, behavioral, and cultural problems related to the
arctic environment. Recommendations are also made
concerning support services and management.

8 AUGUST 1986

T HE ARCrIC is IMPORTANT FOR MANY REASONS-DEFENSE,
economic, political, and scientific (1-4). The Arctic Research
and Policy Act of 1984 has now put some of these interests

into sharper focus. Its stated purposes are "to establish national
policy, priorities, and goals and to provide a Federal program plan
for basic and applied scientific research with respect to the Arctic,
including natural resources and materials, physical, biological and
health sciences, and social and behavioral sciences" [5, Section
102(b)(1)]. The act established two cooperating groups to carry out
its intent: (i) an advisory Arctic Research Commission consisting of
five presidential appointees and the director of the National Science
Foundation, who serves as an ex officio, nonvoting member, and (ii)
an executive Interagency Arctic Research Policy Committee, con-
sisting of a representative from ten named federal agencies and
possibly others, which is chaired by the National Science Founda-
tion representative.

Passage of the act reflected an increasing awareness in Alaska, in
Washington, and among scientists and others that U.S. arctic

A. L. Washbum is a professor emeritus in the Department of Geological Sciences andf
the Quatemary Research Center, Univcrsity ofWashington, Seattle,WA 98195, and is-
a member of the U.S. Arctic Research Commission. G. Weller is a professor in te
Geophysical Institute, University of Alska, Fairbanks, AK 99701, and is chairman of
the Polar Research Board of the National Research Council.
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