
Neural Networks, Vol. 2, pp. 459-473, 1989 0893-6080/89 $3.00 + .(10 
Printed in the USA. All rights reserved. Copyright ¢c 1989 Pergamon Press plc 

ORIGINAL CONTRIB UTION 

Optimal Unsupervised Learning in a Single-Layer Linear 
Feedforward Neural Network 

T E R E N C E  D .  S A N G E R  

Massachusetts Institute of Technology 

(Received 31 October 1988; revised and accepted 26 April 1989) 

Abstraet--A new approach to unsupervised learning in a single-layer linear feedforward neural network is 
discussed. An optimality principle is proposed which is based upon preserving maximal information in the output 
units. An algorithm for unsupervised learning based upon a Hebbian learning rule, which achieves the desired 
optimality is presented, The algorithm finds the eigenvectors of  the input correlation matrix, and it is proven to 
converge with probability one. An implementation which can train neural networks using only local "synaptic" 
modification rules is described. It is shown that the algorithm is closely related to algorithms in statistics (Factor 
Analysis and Principal Components Analysis) and neural networks (Self-supervised Backpropagation, or the 
"encoder" problem). It thus provides an explanation of  certain neural network behavior in terms of" classical 
statistical techniques. Examples of  the use of  a linear network for solving image coding and texture segmentation 
problems are presented. Also, it is shown that the algorithm can be used to find "visual receptive fields'" which 
are qualitatively similar to those found in primate retina and visual cortex. 

Keywords--Neural network, Unsupervised learning, Hebbian learning, Feedforward, Karhunen-Loeve Trans- 
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I N T R O D U C T I O N  

Research into the behavior of feedforward multilayer 
networks has increased dramatically since the dis- 
covery of the backpropagat ion learning algorithm 
(Rumelhart ,  Hinton,  & Williams, 1986a, 1986b). 
Backpropagation allows us to train the weights in a 
feedforward network of arbitrary shape by following 
a gradient descent path in weight space, where the 
energy surface for the descent is usually defined by 
the mean squared difference between desired and 
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actual outputs of the network. There have been many 
examples of successful use of backpropagation to 
perform nontrivial tasks (Hinton, 1987; Lippmann,  
1987, for review). 

Unfortunately,  backpropagat ion has three major  
problems. The first is that the energy surface may 
have many local minima, so the algorithm is not guar- 
anteed to converge to the optimal solution (Sontag, 
1988; Sontag & Sussmann, 1988). The second prob- 
lem is that it is often difficult to analyze the behavior 
of hidden units in such a network, since gradient 
descent imposes no particular structure on the so- 
lution. The third problem is that the backpropagation 
algorithm is often slow. The reason for the slow 
learning rests in the fact that the choice of weight 
for any unit depends on all the weights both above 
and below. Changing any single weight may require 
modification of all other weights in the network, 

These considerations lead us to look for algo- 
rithms which can train each layer of the network 
" independent ly"  of the layers above.~ This suggests 

For our purposes, a layer is defined to include a single layer 
of weights together with the following set of node functions. For 
example, a "two-layer" network has input, hidden, and output 
units separated by two sets of weights. 
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the use of unsupervised learning algorithms (e.g., 
Carpenter & Grossberg, 1988; Grossberg, 1976; Hin- 
ton, 1987; Kohonen, 1982). To train a multilayer 
network, we allow the training for each layer to de- 
pend only upon the outputs of the layer below. The 
entire multilayer network is then trained bottom-up, 
one layer at a time. This approach has been used by 
Linsker (1986) and Silverman and Noetzel (1988), 
for example. Optimal training for any layer will be 
defined in terms of the statistical properties of the 
outputs of that layer. These properties will depend 
upon the statistics of the outputs of the previous 
layer, and the weights between the two layers. 
Through bottom-up training, we can use an algo- 
rithm for training a single layer to successively train 
all the layers of a multilayer network. 

In order to design each layer we need an "opti- 
mality principle." For this paper, we will assume that 
the network is linear, and that the structure is such 
that each layer has fewer outputs than inputs. Under 
these circumstances, we would like any given layer 
to preserve as much information as possible subject 
to the smaller number of outputs. Maximization of 
output information was first suggested by Linsker 
(1988) as a principle for the design of neural net- 
works. For our purposes, we define an optimally 
trained layer as one which allows linear reconstruc- 
tion of the inputs to that layer with minimal mean 
squared error. This is not equivalent to maximization 
of the Shannon information rate which Linsker pro- 
poses, but it is motivated by the same considerations. 

With this optimality principle, we can find the 
optimal solution in closed form. The solution is given 
by the network whose weight vectors span the space 
defined by the first few eigenvectors of the autocor- 
relation matrix of the input. If the weights are the 
eigenvectors themselves, then the outputs will be un- 
correlated and their variance will be maximized (sub- 
ject to constraints on the weight magnitudes). 

In this paper we propose a neural network training 
algorithm which converges to exactly this solution. 
We prove that the network converges from any ini- 
tially random set of weights to find the eigenvectors 
of the input autocorrelation in eigenvalue order. The 
algorithm is called "The Generalized Hebbian Al- 
gorithm" (GHA), since it is based on well-known 
Hebbian algorithms for neural adaptation. We de- 
scribe why such algorithms are related to eigenvector 
decomposition, and how the Generalized Hebbian 
Algorithm operates. We show how the algorithm can 
be implemented in a network with only local oper- 
ations, and compare its behavior with that of other 
well-known algorithms in the literature. Finally, we 
present three examples of the application of single- 
layer networks trained with GHA to simple tasks in 
image coding, texture analysis, and feature extrac- 
tion. 

This paper shows the usefulness of eigenvector 
decomposition applied to neural networks and dem- 
onstrates the power of networks trained with the 
Generalized Hebbian Algorithm. While the prop- 
erties of eigenvectors and the Karhunen-Lo~ve 
Transform are well-known in many fields, the exten- 
sive applicability to neural networks has not yet been 
fully appreciated. In the following discussion and ex- 
amples, we hope to provide some insight into the 
utility and practicality of this important technique. 

1. GENERALIZED HEBBIAN ALGORITHM 

We have developed an algorithm to train neural net- 
works to find the eigenvectors of the autocorrelation 
matrix of the input distribution, given only samples 
from that distribution (Sanger, 1988). Each output 
of a trained network represents the reponse to one 
eigenvector, and the outputs are ordered by decreas- 
ing eigenvalue. A network trained in this way will 
allow linear reconstruction of the original input with 
minimal mean-squared error (see section 3). 

Let the inputs to a single-layer network be an N- 
dimensional column vector x, the weights an M × 
N matrix C, and the outputs an M-dimensional col- 
umn vector y = Cx with M < N. Assume values of 
x are generated by a stationary white random vector 
stochastic process with correlation matrix Q 
E[xxZ]. Therefore, x and y are both time-varying, 
and C will be time-varying as a result of adaptation 
through the training algorithm. (For readability, we 
will often not write the time argument explicitly.) 

The "Generalized Hebbian Algorithm" (GHA) is 
given by: 

c,,(t ~ 1) - c,,(t) 

+ ;,(t) y,(t)x,(t) - y,(t) ~ Ck,(t)yk(t) • (1) 

We can write this in matrix form as: 

/~C(t) --- ),(t) (y(t)xT(t) - LT[y(t)y '( t)]C(t))  (2) 

where LT[.] sets all elements above the diagonal of 
its matrix argument to zero. thereby making it Lower 
Triangular. Let y(t) be such that lim,~ ?,(t) = 0 and 
E',-~, ~(t) = 2 Under these conditions, we can prove 
the following (see section 2 for proof): 

Theorem 1: I f  C is assigned random weights at 
time zero, then with probability 1, eqn (2) will con- 
verge, and C will approach the matrix whose rows are 
the first M eigenvectors o f  the input correlation matrix 
Q, ordered by decreasing eigenvalue. 

The significance of the theorem is that we now 
have a procedure which is guaranteed to find the 
eigenvectors which we seek. We do not need to com- 
pute the correlation matrix Q in advance, since the 
eigenvectors are derived directly from the data. This 
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is an important feature, particularly if the number 
of inputs is large so that computation and manipu- 
lation of Q are not feasible. For instance, if a network 
has 4000 inputs, then Q = E[xx r] has 16 million 
elements, and it may be hard to find the eigenvectors 
by traditional methods. However, GHA requires the 
computation only of the outer products yx T and y y r  
so that if the number of outputs is small the com- 
putational and storage requirements can be corre- 
spondingly decreased. If there are 16 outputs, for 
example, yx r will have only 64,000 elements, and 
yyr  will have only 256. The Generalized Hebbian 
Algorithm takes advantage of this network structure. 
If the number of outputs of the network is close to 
the number of inputs, then the algorithm may not 
have a distinct advantage over other methods. But 
when the number of inputs is large and the number 
of required outputs is small, GHA provides a prac- 
tical and useful procedure for finding eigenvectors. 

In the field of signal processing, an almost equiv- 
alent algorithm was proposed in Owsley (1978), Oja 
(1983), and Oja and Karhunen (1985), although con- 
vergence to the matrix of eigenvectors was never 
proven, To our knowledge, the proof given here is 
the first convergence proof for this algorithm. 

There exist several different but closely related 
algorithms for finding multiple eigenvectors which 
have been proven to converge (Brockett, 1989; Kar- 
hunen, 1984a, 1984b, 1985; Karhunen & Oja, 1982; 
Kuusela & Oja, 1982; Oja, 1983; Oja & Karhunen, 
1980, 1985). Proofs of convergence for some of these 
algorithms, and an excellent summary of the differ- 
ent methods may be found in Oja (1983) and 
Karhunen (1984b). Recently, Brockett (1989) has 
proposed a related algorithm which is similar but 
which does not use the LT operator, and which he 
has proven converges to the eigenvectors in any de- 
sired order. 

2. PROOF OF THEOREM 1 

We must show that the algorithm 

C(t + 1) : C(t) 

+ - 

converges to the matrix T whose rows are the first 
M eigenvectors of Q = E[xx r] in descending eigen- 
value order. C is an M × N matrix, y(t)  = C(t)x(t) ,  
LT[.] sets all entries of its matrix argument which 
are above the diagonal to zero, x is a white bounded 
vector stationary stochastic process with autocorre- 
lation matrix Q, and {ek} is the set of eigenvectors 
of Q indexed by k in order of descending eigenvalue 

We will write 

C(t + 1) = C(t) + ?,(t)h(C(t),x(t)) (4) 

where 

h(C(t), x(t)) ± y(t)xT(t) - LTly(t)yr(t)lC(t). 

We now apply theorem 1 of Ljung (1977) which states 
(in our notation): 
If 

1. ),(t) is a sequence of positive real numbers such 
that ),(t) ~ 0, £~ ),(t)P < ~ for some p, and E, 

7(0 = ~:; 
2. x(t)  is bounded with probability 1; 
3. h(C, x) is continuously differentiable in C and x 

and its derivative is bounded in time; 
4. h(C)  --' l im,~ E,[h(C, x)] exists for each C; 
5. S is a locally asymptotically stable (Lyapunov 

sense) set for the differential equation 

with domain of attraction D{S}, and 
6. C(t) enters some compact subset A C D{S} in- 

finitely often w.p. 1 ; 

Then with probability one, 

lira C(t) c S 

where C(t) is given by eqn (4). (A similar result is 
found in theorem 2.4.1 of Kushner & Clark, 1978.) 
This theorem allows us to study the evolution of a 
difference equation in terms of a related differential 
equation. This will simplify the discussion consid- 
erably. Note that Ljung's theorem does not apply 
directly to the convergence of matrices, but rather 
was written to apply to vectors. However, we can 
write the elements of the matrix C as a vector, and 
allow the nonlinear function h to perform the shape 
change from vector to matrix, and the theorem will 
then be directly applicable. 

To satisfy the requirements of the theorem, we 
let ),(t) = 1/t and, h(C) = limt._, E[h(C, x)] = 
CQ - LT[CQCr]C. We now show that the domain 
of attraction D{S} includes all matrices with bounded 
entries. We will "hard-limit" the entries of C so that 
their magnitudes remain below a certain threshold 
a, and thus within a compact region of R ~'M. We will 
thereby show that C converges to the matrix of ei- 
genvectors T for any choice of initial matrix C(0). 

We seek stable points of the differential equation 

= CQ - LT[CQ('TIC. (5) 

Fixed points exist for all C whose rows are permu- 
tations of any set of eigenvectors of Q. We will show 
that the domain of attraction of the solution given 
by C = T whose rows are the first M eigenvectors 
in descending eigenvalue order, includes all matrices 
C with bounded entry magnitudes. 

Oja showed that the first row of C will converge 
to the principal eigenvector with probability 1. (This 
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is not the only fixed point, but it is the only asymp- 
totically stable one.) We will use induction to show 
that if the first i - 1 rows converge to the first i - 
l eigenvectors, then the ith row will converge to the 
ith eigenvector. We assume that Q has N distinct 
strictly positive eigenvalues with corresponding or- 
thonormal eigenvectors. (The case of repeated or 
zero eigenvalues is a straightforward generalization.) 

The first row of the differential equation is given 
by: 

6T = c~Q - (c(Qc,)c~ 

which is equivalent to eqn (7) of (Oja, 1982). Oja 
showed that this equation forces c~ to converge with 
probability 1 to - ea ,  the normalized principal eigen- 
vector of Q. 

At any time t, for k < i write 

c,( t )  = e, + Ck(t)f~(t) 

where e, is the kth eigenvector (or its negative), f ,  
is a time-varying unit-length vector, and ek is a scalar. 
We assume for the induction step that for k < i, 

e~(t) ~ 0 as t--~ ~c. We must show that ci(t) --~ e~ 

as t--* ~. 
Each row of eqn (5) can be written 

~, = Qc, - ~ (cfOc~)c~. 
k< t  

Substituting Ck = e~ + ~kfk gives 

i~i = Qc, - (cfQc,)c,  

- ~ (c[Qek)e~ - O(e)  + O0F ) (6) 
k<i 

where Q e ,  = 2 ,e , ,  and e indicates a term converging 
to zero at least as fast as the slowest row for k < i. 
Expanding ci in terms of the entire orthonormal set 
of eigenvectors gives 

N 

ci = ~ otkek 
k l} 

where ak = c r e , .  Inserting this expression gives the 
following equalities: 

(cfQc,)c,  = c, ~ ).,a~ 

Q Ci = 

Qci - ~ 2 , ( c f e , ) e ,  = 
k<i 

We now assume t is large 

l< l i  

N 

k - 0 

N 

2,a,e~ - ~ X,a,e,  
k = 9  k<i 

2~a~ek. 
k>~i 

so we can ignore terms of 

order e, and we write 

N 

k 0 

g~gC~ 
k:~l \ l  O ! k :6  

Z ..~ . ) 

AtOt T Otke k + ~ }~sO~ o~ke ~ , 

If we multiply each side by e [  for each k, the or- 
thonormality of {ek} implies 

&~ = ~ - a~ Z~, ,~qaf if k < i (7) 

We can use eqn (7) to study the recursion relation 
on the aks. We examine three cases: k < i, k > i, 
and k = i. 

Since Q is positive definite, all the eigenvalues 2k 
are positive, so the term 7 Z~=~, )-k a 2 is always greater 
than zero. Therefore,  for k < i we have 

&~ . . . . .  pla~ 

where q is strictly positive. This expression will con- 
verge to zero for any initial value of a~. 

When k > i, define 0, = e~ /a j .  (Assume that 
a~ # 0, which is true with probability o n e  for ran- 
domly chosen initial weights C(0)i) We have 

Oh = (I/~,)(~, - o,~,) 

Io,( ) 

= 0~(,~ - L). 

Since the eigenvalues are numbered in decreasing 
order,  2, is the largest eigenvalue in { X ~ , . . . ,  7.~,}, 
2, > 2, for all k > i, and we see that 0k --~ 0 for 
k > i .  

Next, we examine the behavior of a~ (case k = 
i). This is described by 

&, = a ~ ( L -  ~ ;,aT) 

= Og, 2 i -- ~ . i O l { -  ~lOg . 

But we know that ak ---~ 0 for k < i; We therefore  
drop terms in a ,  for k < i, which gives 

&~ = a, L -  2~a7 - ,..,ala~J 

But Ok --+ 0 for k > i, so the last term above ap= 
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proaches zero, and we therefore drop it as well, 
giving 

~, = ; . , (a , -  ~) .  

To show that this converges, note that 

V = (c~ - 1): 

is a Lyapunov function, since 

~2 = 4),,(c~{ - c~,)(c~,- a { ) <  0 

and V has a m i n i m u m  at a, = - 1. There fo re ,  ai  --* 
-+1 as t--~ zc. Since 0, --> 0 fo r  k > i, we also have 
ak --, 0 fo r  k > i. Thus  for  large t, the on ly  s igni f icant  
a is ai ,  so ci w i l l  converge to -+ei, as desired. Th is  
completes the induc t ion  step and proves that  the di f -  
ferent ia l  eqn (5) converges to the matrix T of eigen- 
vectors of Q. The domain of attraction of T includes 
all matrices with bounded weights. 

We must now show that there exists a compact 
subset A of the set of all matrices such that C(t)  
A infinitely often with probability 1. Define the norm 
of C by IlC(t)N - maxi.j ]c,j(t)[. Let A be the compact 
subset of R 'vM given by the set of matrices with norm 
less than or equal to some constant a. It can be shown 
that for a sufficiently large, if [[C(t - 1)[[ > a then 
I[C(t)[[ < IlC(t - 1)[I w.p.1. Thus C will eventually 
be within A ,  and it will remain inside A (infinitely 
often) with probability 1, as t becomes large. Since 
the domain of attraction includes all matrices with 
bounded norm, A C D{S} and condition (6) of 
Ljung's theorem is satisfied. 

We have now satisfied all the conditions of Ljung's 
(1977) theorem. This proves that, under the as- 
sumptions given above, eqn (3) will cause C to con- 
verge with probability 1 to the matrix T whose rows 
are the first M eigenvectors in descending eigenvalue 
order. 

Note that theorem 2.3.1 of Kushner and Clark 
(1978) and the assumptions given above imply that 
the averaged form of the algorithm, given by 

C(t + 1) -- C(t) + C(t)Q - LT[C(t)QCr(t)]C(t) (8) 

will also cause C to converge with probability 1 to 
the matrix of eigenvectors. 

3. OPTIMALITY 

Linsker (1988) has suggested that maximization of 
the output information may be a fundamental prin- 
ciple for the organization of biological neural net- 
works. Inspired by this idea, we have defined "opt- 
imal" unsupervised learning as learning which allows 
us to linearly reconstruct the inputs to a layer from 
its outputs with minimal error. To make this more 
precise, we will make some specific assumptions 
about the structure of the neural networks we con- 
sider, and how we want them to behave. 

We now consider only single-layer linear feedfor- 
ward networks whose operation is described by the 
equation y = Cx where x represents the input data 
(a white vector stochastic process), and the network 
computes the outputs y. We assume that the number 
of inputs and outputs has been specified, and that 
there are fewer outputs than inputs. The only aspect 
of the network which is subject to training is the 
matrix C which should be adapted according to some 
goal for network processing. We choose this goal to 
be that the outputs allow subsequent linear process- 
ing to reconstruct the input x with minimal mean- 
squared error. The assumption that there are fewer 
outputs than inputs requires that there will be some 
error, but a proper choice of the matrix C can reduce 
it. The assumption that subsequent processing must 
be linear means that this criterion is not equivalent 
to maximizing the Shannon information in the out- 
puts, except in certain special cases (Linsker, 1988). 

We know the optimal choice of weights which min- 
imizes the linear reconstruction error from standard 
results in linear algebra. Let x be a randomly chosen 
vector of N inputs, C an M x N matrix of weights, 
and y the vector of M < N outputs such that y = 
Cx. Assume that x is zero-mean with correlation ma- 
trix Q. Then the linear least squares estimate (LLSE) 
of x given y is 

fc = QCr(CQC T)-' y 

and the mean squared error E[(x  - / ) 2 ]  is minimized 
when the rows of C span the first M eigenvectors of 
Q (Bourlard & Kamp, 1988; Fukunaga, 1972; Golub 
& Van Loan, 1983; Kazakos, 1983). 

If the rows of C actually are the first M eigen- 
vectors, then CC r = I, and Q = CTAC where A is 
the diagonal matrix of eigenvalues of Q in descending 
order. This defines the "eigenvector decomposition" 
of Q, and we say that y = Cx is the "Karhunen- 
Lo6ve Transform" (KLT) of the input. This is what 
the Generalized Hebbian Algorithm accomplishes. 
The correlation matrix of the outputs is CQC ~ = A 
which is diagonal, so we see that the outputs are 
uncorrelated and have variance equal to the eigen- 
values. (See Watanabe, 1965 for a theoretical de- 
scription of the KLT and some remarks on its 
applications.) 

Very often in designing a neural network we do 
not know how wide to make a given layer of the 
network. If a layer has been trained to compute the 
KLT, then all the outputs are uncorrelated, and their 
variance (eigenvalue) is a measure of the "useful- 
ness" of that particular output. The entropy term 

M 

- ~  E[y~]log E[y~] 
i 1 

is minimized for all values of M (Watanabe, 1965), 
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so that information is concentrated in the first few 
outputs .  The variance of the outputs  decreases 
quickly with i, and we can select only the first few 
outputs whose variance is greater than some chosen 
threshold. Once we find an output whose variance 
is below the threshold, we can stop computing ad- 
ditional terms since all later outputs will have vari- 
ances which are even lower and may decrease our 
approximation accuracy (Brailovsky, 1983a, 1983b, 
1985). We can therefore choose the width of a layer 
based on the actual information conveyed by the 
outputs of that layer. For information transmission, 
we can quantize the different outputs with different 
numbers of bits and thereby gain significant compres- 
sion factors (see section 7.1 for an example). 

The KLT can give some understanding of what a 
network has learned. Since the high-variance outputs 
represent significant components of the input, it 
seems reasonable to believe that these outputs re- 
spond to "features" in the input space which convey 
useful information about the data. The algorithm will 
find vectors which "explain the variance" in the in- 
put. As mentioned above, these vectors are useful 
for reconstructing the original data from fewer out- 
puts. But they can also be used to analyze the data 
and separate it into uncorrelated components which 
may represent underlying physical processes in the 
environment (see sections 7.2 and 7.3 for examples). 

4. HEBBIAN ALGORITHMS 

The Generalized Hebbian Algorithm is closely re- 
lated to classical Hebbian Learning algorithms. Heb- 
bian learning rules modify the connection between 
two units by an amount proportional to the product 
of the activation of those units (Hebb, 1949). In our 
notation, if x is the activation of the input nodes and 
C is the weight matrix, then y -- Cx is the activation 
at the outputs. Hebbian algorithms modify C using 

g \ / 

c ( t  + 1) = c ( t )  + (9) 
f 

where y determines the rate of change of the weights. 
Oja has shown that if we maintain the diagonal 

elements of CC r equal to 1 (so that the norm of each 
row is 1), then a Hebbian learning rule will cause 
the rows of C to converge to the principal eigenvector 
of Q (Oja, 1982, 1983; Oja & Karhunen, 1980). He 
proposed a network learning algorithm (Oja, 1982): 

ac, = ,,'(y,x - y~c,) (10) 

where cf is a row of C, and y~ = c[x (Oja, 1982). 
(In the following, we will often refer to (10) as "the 
Oja learning rule.") Oja claims that (10) can be ap- 
proximated under certain conditions on x and ~, by 
a differential equation (in our notation) 

b,(t) = Qci ( t )  - (c ,( t )7-Qc,( t))c,( t )  (11) 

where Q = E[xxr]. He then proves that for an ar- 
bitrary choice of initial weights, c~ will converge to 
the principal eigenvector e~ (or its negative) so long 
as ci(O)re~ ~ 0 at time zero (Oja, 1982, 1983: Oja & 
Karhunen, 1980). 

Hebbian learning rules tend to maximize the vari- 
ance of the output units. The response to the prin- 
cipal component yj = e~x has larger variance than 
the response to any other unit-length vector. The 
variance of the output is E[(e~x) ~] eTQe~. To see 
why the Oja algorithm maximizes the variance, we 
can define an energy function by 

1 
~ = - 5 c / Q c ,  

This is just the variance of the output y~, so if 6 is 
minimized subject to cTc, = 1, then the output y~ = 
cYx has maximum variance subject to this constraints, 
If we perform gradient descent on ~; for each element 
c!i of c~ we obtain 

3t die, 

= [QcA, 

where [ Qc~]j is the j th element of the vector Qc~. We 
can then write 

- -  = =  ¢ _ 2 C  
3t 

which we see is the first term of (11). This term is 
therefore performing gradient descent on an energy 
function which will maximize the output variance. 
The second term tends to keep cfci close to 1. The 
combination of the two terms has fixed points at all 
eigenvectors, but the only asymptotically stable so- 
lution is e~, which maximizes the variance (Oja, 
1982). 

The Oja algorithm only finds the first eigenvector, 
so if we are given a network with more than one 
output, we need an extension of this algorithm which 
will allow us to find the other eigenvectors, The Gen, 
eralized Hebbian Algorithm wag designed to  do this 
by combining the Oja learning rule (10) and a Gram- 
Schmidt orthogonalization process. We can write the 
Gram-Schmidt process in matrix form as follows: 

~ C ( t )  = - l o w e r [ C O ) C r ( t ) ] C ( t )  (12) 

where C is an M × N matrix whose rows are to be 
orthogonalized, t indexes discrete steps, and it is as- 
sumed that the rows of C are kept normalized to 
length 1 by some  other process, ~ e  lower[-] oper- 
ation sets all elements on or above the diagonal of  
its matrix argument to zero. Equation (12)wil l  or- 
thogonalize C in M - 1 steps i f the  row norms are 
maintained equal to 1. 

The Generalized Hebbian Algorithm (2) is a corn- 
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bination of (12) and the matrix version of the Oja 
algorithm, given by 

~'(t) = C ( t ) Q  - d i a g ( C ( t ) Q C ( t ) r ) c ( t )  

which applies the Oja algorithm to each row of C 
independently and thus causes all rows to converge 
to the principal eigenvector. 

5. LOCAL IMPLEMENTATION 

To help understand the operation of the Generalized 
Hebbian Algorithm, we rewrite (1) as 

- ?(t)yi( t )Gi(t) .  (13) 

In this form, we see that the algorithm is equivalent 
to performing the Oja (1982) learning rule (10) using 
a modified version of the input given by 

x;( t )  = x,(t) - ~ %( t )y~( t )  (14) 
k * i  

or, in matrix form 

x ' ( O  : x (O - ~ ck(tly~(t) 
k i 

where ck is the kth row of the matrix C. The modified 
input which trains output i is formed by subtracting 
the components ck(t)  which contributed to the pre- 
vious outputs yk( t )  for k < i. If the first i - 1 outputs 
respond to the first i - 1 eigenvectors, then the ith 
output "sees" an input from which those eigenvec- 
tors have been removed. The principal component 
of the modified input is now the ith eigenvector of 
the original input. When the Oja algorithm is applied 
to the modified input, it causes the ith output to learn 
the ith eigenvector, as desired. (This method of find- 
ing successive eigenvectors is similar to a technique 
known as "Hotellings's Deflation" (Kreyszig, 1988).) 

Equation (13) shows how we can implement the 
algorithm using only local operations. This ability is 
important for training neural networks using parallel 
hardware, We can compute the outputs in order for 
each training presentation, and subtract the com- 
ponents Ck( t )yk ( t )  progressively from the input as 
we go. This corresponds to "using up" some of the 
input "energy" as we train each of the outputs. A 
local synapse-like structure which can perform this 
operation is shown in Figure 1. A given input xt is 
connected to several outputs. As each output y, is 
activated, it inhibits the input unit x~ by an amount 
proportional to the output activation. (The weights 
for forward propagation and reciprocal inhibition 
must be maintained equal and be modified together.) 
If the outputs learn in sequence, then each subse- 
quent output sees an attenuated input. This leads to 
training according to (13) which is performed using 

t .  

( 
+ 

FIGURE 1. Network implementation of the Generalized Heb- 
bian Algorithm. 

only local "synaptic'" operations. The fact that such 
a local implementation exists for this algorithm dis- 
tinguishes it from other algorithms for computing the 
Karhunen-Lo6ve transform and contributes to its im- 
portance for training neural networks. 

Although we do not have any quantitative results 
concerning the rate of convergence to acceptable val- 
ues of the matrix C, we can make some qualitative 
predictions. Training of a particular output is depen- 
dent on the training of the other outputs only through 
the modifications of the input given by (14). There- 
fore, we would expect all the outputs to train at the 
same rate independently of each other, so that train- 
ing time for the entire network should be indepen- 
dent of the number of outputs. (Note that successive 
outputs do not "wait" for previous ones to converge, 
but rather learn simultaneously.) However, modifi- 
cation of the input by (14) effectively decreases the 
variance of the input used to train higher-numbered 
outputs. Decreasing the variance of the input is 
mathematically equivalent to decreasing ~,, so we ex- 
pect that the learning rate should decrease for the 
later outputs. In practice, training time (in terms of 
the number of input samples) is roughly proportional 
to the number of outputs. 

6. RELATED ALGORITHMS 

6.1. Eigenvector Decomposition 

There are many fields which make use of eigenvector 
decomposition (the Karhunen-Lo~ve Transform), 
and there are many algorithms for computing it. In 
statistics, the techniques of Factor Analysis and Prin- 
cipal Components Analysis (PCA) are commonly 
used tools which are closely related to the KLT. Most 
algorithms involve estimating the data correlation 
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matrix Q and then finding the eigenvector decom- 
position using matrix techniques (see Golub and Van 
Loan (1983) or Kreyszig (1988) for review). These 
methods are computationally difficult if the number 
of inputs is large, since Q becomes unmanageable 
(see section 1). Algorithms exist which can find the 
eigenvectors given only samples of the input distri- 
bution, without the need to explicitly compute Q. 
Oja (1983) and others proposed an iterative method 
called "Stochastic Gradient Ascent" based on mul- 
tiplication by an estimated correlation matrix fol- 
lowed by Gram-Schmidt  or thonormal iza t ion .  
Another such algorithm involves finding the first ei- 
genvector (principal component) using a method 
equivalent to the Oja algorithm (10), subtracting this 
component from the data sample, and then learning 
the next component (Kreyszig, I988). This is equiv- 
alent to the procedure used here, except that here 
all the components converge at the same time~ A 
summary of other related algorithms may be found 
in (Oja, 1983). 

To our knowledge, the Generalized Hebbian Al- 
gorithm (GHA) is the first KLT algorithm for which 
a network implementation exists that can be used to 
train a neural network using only local operations. 
This may be the first application of such an algorithm 
to the field of neural networks. It must be remem- 
bered that in actual use with finite training times, 
GHA will only be able to approximate the eigen- 
vectors and that errors in finding the first few eigen- 
vectors will magnify the errors in finding subsequent 
eigenvectors. In other words, the algorithm has poor 
numerical accuracy for all but the first few eigen- 
vectors. If greater accuracy is needed, or exhaustive 
computation of all the eigenvectors is desired, then 
classical matrix techniques may be more suitable. But 
if the input has high dimensionality, samples are 
readily available, and only the first few eigenvectors 
are needed, then GHA provides a considerably eas- 
ier and faster computational alternative. 

6.2. Winner-Take-All Networks 

Winner-take-all networks which are based upon 
Hebbian learning rules may have some functional 
similarities to the algorithm presented here. In a win- 
ner-take-all network, usually only the output with 
largest value has its weights modified. This technique 
is used to ensure that different outputs learn different 
functions of the input (Barrow, 1987; Grossberg, 
1976; Kohonen, 1982, 1988, among others). Al- 
though the convergence properties of such algo- 
rithms are often not welt understood, we suspect that 
there may be a strong underlying relationship be- 
tween the Generalized Hebbian Algorithm and win- 
ner-take-all algorithms. The learning rule is often not 

explicitly Hebbian, but rather modifies the weights 
of the winning unit to move them closer to the input 
which caused it to win. But for a unit to win, it must 
have a positive output, and therefore modifying the 
weights by the input is equivalent up to a scale factor 
to true Hebbian learning. We would therefore expect 
that any output would tend to converge to the prin- 
cipal eigenvector of the subset of the input data for 
which that output wins. Different outputs would con- 
verge to the principal eigenvectors of different sub- 
sets of the data. Note that this is not the same as 
converging to other eigenvectors, since different out- 
puts will usually not be uncorrelated. 

6.3. Self-Supervised Backpropagation 

Several authors have experimented with the tech- 
nique of Self-supervised Backpropagation (SSBP), 
also known as the "encoder" problem (e.g.. Ballard. 
1987; Cottrell. Munro. & Zipser. 1987: Hinton. 
1987). This algorithm seems to have optimal data 
coding properties similar to those of the algorithm 
presented here. Its prevalence in the literature merits 
a detailed discussion of the relation to the Gener- 
alized Hebbian Algorithm (GHA). 

In linear SSBP, a two-layer network is trained to 
perform the identity mapping, yet the number of 
hidden units is set to be fewer than the number of 
inputs. The hidden units must therefore discover an 
efficient encoding of the input data. Since efficient 
coding is also the goal for the Generalized Hebbian 
Algorithm. we would expect both algorithms to pro- 
duce similar results. Bourlard and Kamp (1988) have 
shown that a set of vectors which span the Singular 
Value Decomposition (which is equivalent to the 
KLT as used here) gives the optimal set of hidden 
units of such a network. Baldi and Hornik (1989) 
proved that the backpropagation energy function has 
a unique minimum at this solution. There are many 
possible sets of weights, however, and SSBP wild 
choose one based on the initial random choice of 
weights for the network. The GHA finds the unique 
set of weights which is both optimal and gives un- 
correlated outputs. Therefore it is clear that in the 
linear case. SSBP and the GHA converge to almost 
equivalent solutions. We will now show that the 
equations describing the two algorithms are similar. 

Define a three-layer linear network of N input 
units x, M hidden units y, and N output units ~. The 
weight matrices are W1 and W> so that y = W~x and 
2 = W2y. We train the network using backpropa- 
gation and error function E[(x  - 2 ) r ( x  - ~)]. Then. 
using the notation of Rumelhart et al. (t986a), we 
adapt the weights at each layer using ~WI = v161x r 

and AW2 = v262y r w h e r e  62 = x - 2 and &~ = 
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W~6:. We then have: 

AW: = v:(x - 2 ) y r  

= v2(x - W z y ) y  r 

- v z ( x y f _  W, y y  r) 

A W l  = v:(.vx r - yyrW~) .  (15) 

This is similar to (2), except that we do not force the 
matrix y y  r to be lower triangular, and W [  is not the 
matrix used to generate y from x. The following dis- 
cussion will show that Wf and W~ are related so that 
it is reasonable to assume (15) is almost equivalent 
to (2). 

Assume that w < v~, so that W2 converges much 
slower than WI. We then have: 

AW~ = r~W~J:x j 

= viWqx - ~)x ~ 

= r~W~(.r- W~WlX)X ~ 

v,(WLr - W~W2W, x ) x  7 

= v,(W~ - W ~ W ~ W , ) x x  ~ 

E[AW~ l - v , ( W ~ ,  - W ~ W : W , ) Q .  

Since Q is positive definite, it can be shown that this 
equation will cause W f W 2 W ~  to approach W[ (for v~ 
decreasing to 0 as l / t ) .  If we substitute W [  -~ 

W ~ W 2 W ~  into (15), we see that this is similar to (2) 
except for the lack of the LT[] operator and the 
inclusion of the positive definite scaling matrix 
W ~ W 2 .  

Although the above discussion is not a rigorous 
proof, it gives us some insight into the reason for the 
close relationship between G H A  and SSBP. The two 
algorithms are related both by the results they 
achieve and by their mechanisms of action. This 
means that our understanding of the convergence 
properties of G H A  can be used to analyze certain 
baekpropagation networks as well. 

The major difference in function between G H A  
and SSBP is that G H A  produces the first M eigen- 
vectors themselves in eigenvalue order,  while SSBP 
produces a linear combination of the first M eigen- 
vectors. This difference can be important. Several 
authors have noted that SSBP tends to produce hid- 
den units which have approximately equal variance 
(Baldi & Hornik, 1989; Cottrell et al., 1987). The 
variances do not descend by eigenvalue as they do 
for the KLT. The solution may not be unique, and 
although it spans the first few eigenveetors, the actual 
matrix which is learned cannot be predicted. In ad- 
dition, the hidden units are not uncorrelated. It may 
be difficult to interpret the network as representing 
significant features of the environment,  since the hid- 
den units and their correlations may depend upon 

the initial randomly chosen weights as well as on the 
sequence of training examples. 

These factors may reduce the usefulness of SSBP- 
trained hidden units for data coding applications. 
Because the hidden units all have approximately 
equal variance, bits must be allocated evenly among 
them, and noise cannot be eliminated by removing 
the units with lowest variance. If the network is de- 
signed with too many hidden units (in the sense of 
Brailovsky, 1983a, 1983b, 1985) then the additional 
error introduced is spread evenly throughout the 
units and cannot be easily detected or removed by 
looking at the signal to noise ratio of the individual 
units. Cottrell et al. (1987) point out that if channel 
errors affect certain units more than others, then it 
may be an advantage to distribute the information 
evenly so that high-variance channels are not cor- 
rupted excessively. If multiplicative noise is present 
in different amounts on different channels, then in- 
deed this will be true. For additive noise, however, 
the KLT allows much easier reconstruction of the 
original "clean" signal, since the signal-to-noise ratio 
is maximized. 

7. EXAMPLES 

We now present examples of the use of single-layer 
linear networks which have been trained using the 
Generalized Hebbian Algorithm. The networks are 
used to solve problems in image coding, texture seg- 
mentation, and receptive field modeling. 

7.1. Image Coding 

Figure 2 shows an original image taken from part of 
an Eisenstadt photograph and digitized to form a 
256 x 256 image with 256 greylevels. We use a single- 

FIGURE 2. 256 x 256 pixel (8 bit) test image for coding. 
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layer linear neural network with 64 inputs and 8 out- 
puts. 8 x 8 blocks of the image are used as training 
samples, with the image being scanned from left to 
right and top to bottom. The sample blocks do not 
overlap, and the image is scanned twice to allow time 
for the network to converge (giving 2048 samples). 
(Although in principle the rate term ~, in the algorithm 
should decrease to zero as 1 / t ,  in all of the examples 
7, is held fixed at a value between 0.1 and 0.01 which 
is chosen empirically to provide good convergence, 
and which depends on the number of inputs and the 
average input variance.) 

The weights which the network learns are repre- 
sented as 8 x 8 masks shown in Figure 3. Each mask 
shows the set of weights associated with a single out- 
put. White indicates positive weights, black indicates 
negative, and grey indicates zero. In our notation, 
the masks are the rows cg of the 8 x 64 weight matrix 
C after it has converged. 

To code the image, each 8 x 8 block of the image 
is multiplied by each of the eight masks to generate 
eight coefficients for coding. The coefficients for the 
block starting at position n ,  m in the image I are thus 
given by 

p I q : l  

The coefficients ] j n , m  are then uniformly quantized 
with a number of bits approximately proportional to 
the log of the variance of that coefficient over the 
image. This results in the first two masks being as- 
signed five bits each, the third mask three bits. and 
the remaining masks two bits each. Therefore, each 
8 x 8 block of pixels is coded using a total of 23 
bits, so the data rate is 0.36 bits per pixel. To re- 
construct the image from the quantized coefficients 
~.m, each block of the image is re-formed by adding 
together all the masks weighted by their quantized 
coefficients: 

~Xn+p,m+ q ~ ^n,m Ct,p~SqYi • 

i 1 

FIGURE 3 .8  x 8 masksleamedbysnetwo~tra lnedon 
F~um 2. 

i?)? 

FIGURE 4. Image of Figure 2 coded at .36 bits per pixel. 

The resulting image is shown in Figure 4, We cal- 
culate the normalized mean square error (NMSE) as 
in (Cottrell et al., 1987) to be the ratio of the error 
variance to the data variance 

NMSE ~ E [ ( I  .... - I,,.,,,): i 
E[:~,,:! 

which is 0.043 for this image. 
The network has learned a linear coding for the 

input data which approximates the optimal KLT. The 
masks are the "eigenvectors" of the input image, and 
they represent most of the varrance m the 8 x 8 
blocks which were used for training. Because the 
network outputs have high variance, they convey 
much of the input information, and we only need to 
use a few outputs (eight, in this case) to estimate the 
input data. This is the meaning of data coding; we 
have reduced 64 eight-bit pixels (512 bits total) to 
eight coefficients quantized with from two to five bits 
(23 bits total). The network chose masks which allow 
only 23 bits to represent most of the information in 
the original 512 bits. 

We might now ask whether this same set of masks 
would be useful on a different image. Figure 5 is an 
image of a dog, and Figure 6 shows the image after 
it has been reconstructed from quantized coefficients 
derived from the set of masks in Figure 3. Note that 
the network was never trained on the image of Figure 
5. In this case, the output of the first two masks was 
quantized using seven pixels each, the third with five 
pixels, the fourth with four pixels, and the remaining 
coefficients with three pixels each. ~ gives atotal 
of 35 bits, or a bit rate of 0.55 bits per pixet. The 
NMSE is 0.023 here which is actually lower than the 
error for the image of Figure i,  due to the increased 
number of bits used for coding. The fact that the 
same set of masks can be used to code two diffe rent 
pictures is an example of "generalization" of the net- 
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FIGURE 5. 256 x 256 pixel (8 bit) test image for coding. 

work. Although the images are different, their sta- 
tistics may be similar enough that their respective 
KLTs are similar. A network trained on either image 
will compute a set of masks which will be useful for 
the other. This generalization property is a direct 
consequence of the statistical similarity of the two 
images. 

Filters similar to those given in Figure 3 have been 
used for image coding by many authors. The Discrete 
Cosine Transform masks are qualitatively similar 
(see Lira, in press for a description), and Daugman 
(1988) has performed image coding using two-di- 
mensional Gabor filters which are also similar to the 
masks which the network learned. 

Cottrell et al, (1987) used self-supervised back- 
propagation to perform image coding, with bit rates 
as low as 0.625 bits per pixel. They used a network 
with 64 inputs, 8 hidden units, and 64 outputs. Their 
training samples were, as here, 8 x 8 blocks of the 
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image, and the network was trained to approximate 
the input data at the output units. As mentioned 
above, such a network will not actually find the KLT, 
but will tend to converge to outputs which represent 
linear combinations of the KLT vectors (Baldi & 
Hornik, 1989). Since the hidden units will all have 
approximately equal variance (Baldi & Hornik, 
1989; Cottrell et al., 1987), it is not possible to quan- 
tize them with different numbers of bits, as it was 
for the KLT. This fact significantly reduces the max- 
imum compression rate which can be achieved. It 
should also be noted that Cottrell et al. (1987) trained 
their network for 150,000 iterations, while the net- 
work which learned the masks of Figure 3 was trained 
for 2048 iterations. 

7.2. Texture Segmentation 

Since the Generalized Hebbian Algorithm finds the 
eigenvectors of the input distribution, we would ex- 
pect that the outputs of the network will respond to 
"significant" features of the environment. The out- 
puts will have high variance, and can be used for 
separating the input into different classes. To illus- 
trate these ideas, we demonstrate the use of such a 
network to perform a simple texture segmentation 
task. 

Figure 7 shows a 128 × 128 image formed from 
two different textures consisting of randomly placed 
horizontal and vertical line segments. (The image has 
been filtered with a narrow Gaussian with standard 
deviation of one-half pixel, since this was found to 
improve the convergence rate of the network.) We 
construct a single-layer linear network with 64 inputs 
and 4 outputs. The network is trained on 1000 over- 
lapped 8 x 8 blocks of the image. However, before 
presenting any block to the network, it is multiplied 
by a Gaussian window with standard deviation of 
two pixels. This is done so that the network will 
become sensitive to the central region of any block. 
The weights which are learned are shown in Figure 
8a represented as 8 x 8 masks. The first mask is a 
low-pass filter, the second and third are horizontal 

FIGURE 6. Image of Figure 5 coded at .55 bits per pixel using 
the same masks as in Figure 3. FIGURE 7. 128 × 128 test image for texture segmentation. 
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(a) 

(b) 

(c) 

. . . . . . .  ] 

FIGURE 8. (a) masks learned by a network trained on Figure 
7. (b) Convolution of masks in (a) with Figure 7. (c) Estimate 
of local variance of (b). 

and vertical "edge-detectors," and the fourth is a 
horizontal "bar-detector." 

We next convolve each of the masks with the orig- 
inal image in Figure 7 to show which regions of the 
image give high response for each mask. The con- 
volution results are shown in Figure 8b. To estimate 
the local variance, we full-wave rectify the images of 
Figure 8b, and low-pass filter the results with a Gaus- 
sian of standard deviation 4 pixels. This gives a mea- 
sure of local "energy" or variance, and the result is 
shown in Figure 8c for each mask. Here we can 
clearly see that certain masks respond preferentially 
to one or the other of the two textures in the image. 
The first mask is a low-pass filter, which achieves 
equal and maximal variance everywhere in the im- 
age. The next three masks have larger variance when 
responding to a particular texture (lines of one or 
the other orientation). Note that the texture pref- 
erence of a mask is not immediately apparent from 
the convolution result in Figure 8b. We must ap- 
proximate the local variance as in Figure 8c in order 
to distinguish the texture regions. 

An equivalent technique was developed by Turner 
(1986), although he used a fixed set of masks which 
were not learned. His masks were Gabor filters, and 
he computed the squared amplitude of the response 
to a given filter at different points in the image. This 
operation is almost equivalent to taking the absolute 
value and low-pass filtering as we have done here. 
Both techniques find an estimate of the local ampli- 
tude (variance) of the response to a filter. Gabor 
filters were also used in (Daugman, 1988) to perform 
texture segmentation, although the local variance or 
response amplitude was not explicitly computed. 
Similarly, Voorhees (1987) and Voorhees and Poggio 
(1988) used 72G filtering to di~riminate texture re- 
gions, while Bergen and Adetson (I988) used a cen- 
ter-surround with a rectification nonlinearity. 

7.3. J t ~  t ' tetes 

There have been many attempts to provide mecha- 
nisms which explain the development of the receptive 
fields of retinal and visual cortical cells (Barrow. 
1987, Bienenstock, Cooper, & Munro. 1982; Kam- 
men & Yuille, 1988; Linsker. 1986; Yuille. Kammen. 
& Cohen, in press, among others). We here present 
yet another attempt. An important difference be- 
tween our method and most previous ones is that we 
not only provide a model for the development of 
receptive fields, but we show that this model implies 
that these receptive fields have optimality properties 
associated with the KLT. 

The training examples are similar to those used 
in (Linsker. 1986). Each sample is formed by gen- 
erating a 64 x 64 image of random white Gaussian 
noise. This is then low-pass filtered bv convolving 
with a Gaussian of standard deviation of 3 pixels. 
The resulting image is windowed by multiplication 
with another Gaussian with standard deviation of 6 
pixels. A network with 4096 inputs and 16 outputs 
is trained on 2000 such input samples. The resulting 
masks are shown in Figure 9. 111 Figure 1() we see 
cross-sections through the major axes of the first. 
third, and sixth masks of Figure 9. The first cross- 
section is qualitatively similar to the receptive field 
shapes of retinal ganglion cells shown in Enroth-Cu- 
gell and Robson (1966). The second and third cross- 
sections appear similar to the receptive field shapes 
of cortical simple cells shown in Andrews and Pollen 
(1979). Many of the remaining masks which the net- 
work has learned do not correspond to any receptive 
field shape which has been found in primate visual 
cortex (see Sanger, in press for further discussion of 
these issues. ) 

RGUme 9, ~ lS ~ . e t d ~ ~  a~ork 
with ~ ~  (Ol~er i a ~ ~ ,  tep-to.bottem,) 
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FIGURE 10. (a) First, third, and sixth receptive fields from 
Figure 9. (b) Cross-sections of (a) through major axes. 

These results are not meant to imply that the vis- 
ual system develops through an adaptation mecha- 
nism similar to the Generalized Hebbian Algorithm: 
we have no evidence for such a claim. Rather, we 
claim only that our results imply that there exist sim- 
ple algorithms through which the observed receptive 
field shapes can develop. 

Since the Generalized Hebbian Algorithm finds 
the eigenvectors of the input distribution, the masks 
which it learns must be the eigenvectors of the data 
we presented. Since these masks may be similar to 
the actual observed receptive fields, it follows that 
the receptive fields may actually be performing an 
eigenvector decomposition of the input and therefore 
have the optimality properties of the KLT (if we 
assume that visual input can be modeled as bandpass 
filtered white noise). Note that the masks of Figure 
3 and Figure 9 are similar, which indicates that the 
statistics of the picture in Figure 2 and the random 
input used to train the network of Figure 9 are re- 
lated. 

This interpretation of the role of the visual cortex 
unifies several other disparate views of its compu- 
tations. Some authors believe that the visual cortex 
recognizes simple features in the environment which 
represent significant parts of the image such as edges 
or blobs (e.g., Hubel & Wiesel, 1962; Marr, 1982). 
Other authors consider the early stages of the visual 
system to be performing a localized spatial-frequency 
decomposition of the image, or a sort of "local Four- 
ier transform" (Pollen & Ronner, 1983; Shapley & 
Lennie, 1985, for review). However, these two seem- 
ingly different viewpoints are both equivalent to the 
observation that simple cells represent the eigenvec- 
tors of the input distribution. It is well known that 
the eigenvectors of any stationary distribution are 

given by complex exponentials, which is the same 
basis as that of the Fourier transform (see Kazakos, 
1983 and Yuille et al., 1988 for a detailed discussion). 
Therefore, the Generalized Hebbian Algorithm will 
learn a set of filters which can perform a spatial- 
frequency analysis of the input image. Also, if the 
input image has statistically significant features such 
as edges, maximization of variance will produce 
"edge-detectors. "' By comparing Figure 9 and Figure 
8a we see that spatial-frequency detectors and edge 
detectors can have very similar shapes. 

The significance of the filters learned by the Gen- 
eralized Hebbian Algorithm is thus greater than 
either spatial frequency analysis or feature detection. 
Both types of decomposition of the image occur si- 
multaneously due to the maximization of output w~ri- 
ance. The algorithm chooses its representation of the 
input based upon the true statistics of the input. For 
real scenes, these statistics include features as well 
as spatial frequency components. 

The theoretical mechanism for receptive field de- 
velopment presented here differs from the mecha- 
nism proposed by Linsker (1986). Here, all the cells 
develop in a single layer, whereas Linsker's network 
requires multiple layers. Each cell in a given layer 
finds the principal component of the autocorrelation 
of the previous layer. All the cells of any given layer 
have similar receptive field shapes. At the seventh 
layer, orientation-tuned cells develop which have 
shapes like those shown in Figure 9. Kammen and 
Yuille (1988) have explained the evolution of ori- 
ented cells in Linsker's network in terms of sym- 
metry-breaking caused by unstable critical points in 
an energy function. 

Barrow (1987) has proposed a model of receptive 
field development which is qualitatively very similar 
to that presented here, His input is bandpass-filtered 
white noise, and he hypothesizes that the bandpass 
operation occurs in retina and lateral geniculate. He 
uses a Hebbian learning rule and maintains the row 
norms at one. To avoid having all the outputs con- 
verge to the same set of weights, Barrow uses a win- 
ner-take-all strategy in which only the strongest 
output has its weights updated. We suspect that this 
form of competitive learning may be formally equiv- 
alent to the Generalized Hebbian Algorithm, Bar- 
row's algorithm does not order the outputs by 
decreasing variance, but it is possible that the actual 
eigenvectors are discovered, rather than a linear 
combination of them. It is not clear whether or not 
the outputs of his network are orthogonal, but his 
results seem very similar to Figures 9 and 10. 

Recently, Yuille et al. (1988) have proposed a 
model for cortical cell development based on a Heb- 
bian learning rule and lateral interactions between 
pairs of cells. Their algorithm learns quadrature- 
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phase pairs of cells, as are found in primate visual 
cortex (Pollen & Ronner, 1981). Their equation 24 
is similar to the Generalized Hebbian Algorithm, and 
may be formally equivalent. 

CONCLUSION 

In this paper we have presented a simple network 
learning algorithm based on a Hebbian learning rule. 
Analysis of the algorithm leads to two important new 
results. First, we proved that the algorithm converges 
to a network which satisfies an optimality principle 
based on maximizing the ability to recover the input 
data. And second, we showed that the algorithm can 
be implemented using only local network operations. 

The algorithm generalizes the Oja (1982) network 
algorithm to the multiple-output case, and verifies 
conjectures of Linsker (1988) and Baldi and Hornik 
(1988) about the existence of such an algorithm. Al- 
though several similar algorithms have been pro- 
posed in the field of signal processing (Brockett, 
1989; Oja & Karhunen, 1985; Owsley, 1978; Oja, 
1983, among others), we have shown that there is a 
fundamental relationship between these algorithms 
and well-known Hebbian learning rules for neural 
networks. We have used the Generalized Hebbian 
Algorithm to generate a local learning rule, and we 
have shown that it can be an important and useful 
method for training unsupervised networks. 

A network trained according to the Generalized 
Hebbian Algorithm computes the Karhunen-Lo~ve 
transform of the input distribution. The well-known 
properties of the KLT provide a general framework 
for analyzing the behavior of such networks. We can 
then make use of the extensive literature in other 
fields to help understand the behavior of unsuper- 
vised neural networks. The relation to statistical pro- 
cedures such as Factor Analysis or Principal Compo- 
nents Analysis makes clear the fundamental nature 
of the theory. The power of the KLT allows us to 
use a simple single-layer linear network to begin an 
approach to such problems as image coding, texture 
segmentation, and feature discovery. 

Once the applicability of the KLT to neural nets 
is understood, we can use it to analyze the behavior 
of hidden units trained in "encoder" networks (Baldi 
& Hornik, 1989; Bourlard & Kamp, 1988). For many 
practical applications, the ability of the Generalized 
Hebbian Algorithm to find uncorrelated outputs of 
maximal variance gives it advantages over encoder 
networks trained with self-supervised back-propa- 
gation. 

Although we have only considered the simplest 
case of a single-layer linear network, the techniques 
developed and the interpretation of the network are 
useful for understanding the behavior of more com- 
plex networks. Much work needs to be done to apply 

this research to multi-layer networks with nonlinear 
node functions, but the linear case gives us some 
clues as to how to proceed (Sanger, 1989b). 
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