
Neural Networks, Vol. 2, pp. 459-473, 1989 0893-6080/89 $3.00 + .(10
Printed in the USA. All rights reserved. Copyright ¢c 1989 Pergamon Press plc

ORIGINAL CONTRIB UTION

Optimal Unsupervised Learning in a Single-Layer Linear
Feedforward Neural Network

T E R E N C E D . S A N G E R

Massachusetts Institute of Technology

(Received 31 October 1988; revised and accepted 26 April 1989)

Abstraet--A new approach to unsupervised learning in a single-layer linear feedforward neural network is
discussed. An optimality principle is proposed which is based upon preserving maximal information in the output
units. An algorithm for unsupervised learning based upon a Hebbian learning rule, which achieves the desired
optimality is presented, The algorithm finds the eigenvectors of the input correlation matrix, and it is proven to
converge with probability one. An implementation which can train neural networks using only local "synaptic"
modification rules is described. It is shown that the algorithm is closely related to algorithms in statistics (Factor
Analysis and Principal Components Analysis) and neural networks (Self-supervised Backpropagation, or the
"encoder" problem). It thus provides an explanation of certain neural network behavior in terms of" classical
statistical techniques. Examples of the use of a linear network for solving image coding and texture segmentation
problems are presented. Also, it is shown that the algorithm can be used to find "visual receptive fields'" which
are qualitatively similar to those found in primate retina and visual cortex.

Keywords--Neural network, Unsupervised learning, Hebbian learning, Feedforward, Karhunen-Loeve Trans-
form, Image coding, Texture, Cortical receptive fields.

I N T R O D U C T I O N

Research into the behavior of feedforward multilayer
networks has increased dramatically since the dis-
covery of the backpropagat ion learning algorithm
(Rumelhart , Hinton, & Williams, 1986a, 1986b).
Backpropagation allows us to train the weights in a
feedforward network of arbitrary shape by following
a gradient descent path in weight space, where the
energy surface for the descent is usually defined by
the mean squared difference between desired and

Acknowledgements--The author would like to thank Tomaso
Poggio, Rich Sutton, Steve Grossberg, Tom Breuel, Eero Si-
moncelli, Bror Saxberg, and Joel Wein for their comments and
suggestions about the manuscript. The author was supported dur-
ing the early part of this research by a National Science Foundation
Graduate Fellowship, and later by a Medical Scientist Training
Program grant. This report describes research done at the Arti-
ficial Intelligence Laboratory of the Massachusetts Institute of
Technology. Support for the laboratory's artificial intelligence re-
search is provided in part by the Advanced Research Projects
Agency of the Department of Defense under Office of Naval
Research contract N00014-85-K-0124 and Army contract
DACA76-85-C-0010. Additional support is provided by the
Alfred P. Sloan Foundation, the Hughes Aircraft Corporation (S1-
801534-2), and the NATO Scientific Affairs Division (0403/87).

Requests for reprints should be sent to Terence D. Sanger,
MIT E25-534, Cambridge, MA 02139.

actual outputs of the network. There have been many
examples of successful use of backpropagation to
perform nontrivial tasks (Hinton, 1987; Lippmann,
1987, for review).

Unfortunately, backpropagat ion has three major
problems. The first is that the energy surface may
have many local minima, so the algorithm is not guar-
anteed to converge to the optimal solution (Sontag,
1988; Sontag & Sussmann, 1988). The second prob-
lem is that it is often difficult to analyze the behavior
of hidden units in such a network, since gradient
descent imposes no particular structure on the so-
lution. The third problem is that the backpropagation
algorithm is often slow. The reason for the slow
learning rests in the fact that the choice of weight
for any unit depends on all the weights both above
and below. Changing any single weight may require
modification of all other weights in the network,

These considerations lead us to look for algo-
rithms which can train each layer of the network
" independent ly" of the layers above.~ This suggests

For our purposes, a layer is defined to include a single layer
of weights together with the following set of node functions. For
example, a "two-layer" network has input, hidden, and output
units separated by two sets of weights.

459

400 T. D. Sanger

the use of unsupervised learning algorithms (e.g.,
Carpenter & Grossberg, 1988; Grossberg, 1976; Hin-
ton, 1987; Kohonen, 1982). To train a multilayer
network, we allow the training for each layer to de-
pend only upon the outputs of the layer below. The
entire multilayer network is then trained bottom-up,
one layer at a time. This approach has been used by
Linsker (1986) and Silverman and Noetzel (1988),
for example. Optimal training for any layer will be
defined in terms of the statistical properties of the
outputs of that layer. These properties will depend
upon the statistics of the outputs of the previous
layer, and the weights between the two layers.
Through bottom-up training, we can use an algo-
rithm for training a single layer to successively train
all the layers of a multilayer network.

In order to design each layer we need an "opti-
mality principle." For this paper, we will assume that
the network is linear, and that the structure is such
that each layer has fewer outputs than inputs. Under
these circumstances, we would like any given layer
to preserve as much information as possible subject
to the smaller number of outputs. Maximization of
output information was first suggested by Linsker
(1988) as a principle for the design of neural net-
works. For our purposes, we define an optimally
trained layer as one which allows linear reconstruc-
tion of the inputs to that layer with minimal mean
squared error. This is not equivalent to maximization
of the Shannon information rate which Linsker pro-
poses, but it is motivated by the same considerations.

With this optimality principle, we can find the
optimal solution in closed form. The solution is given
by the network whose weight vectors span the space
defined by the first few eigenvectors of the autocor-
relation matrix of the input. If the weights are the
eigenvectors themselves, then the outputs will be un-
correlated and their variance will be maximized (sub-
ject to constraints on the weight magnitudes).

In this paper we propose a neural network training
algorithm which converges to exactly this solution.
We prove that the network converges from any ini-
tially random set of weights to find the eigenvectors
of the input autocorrelation in eigenvalue order. The
algorithm is called "The Generalized Hebbian Al-
gorithm" (GHA), since it is based on well-known
Hebbian algorithms for neural adaptation. We de-
scribe why such algorithms are related to eigenvector
decomposition, and how the Generalized Hebbian
Algorithm operates. We show how the algorithm can
be implemented in a network with only local oper-
ations, and compare its behavior with that of other
well-known algorithms in the literature. Finally, we
present three examples of the application of single-
layer networks trained with GHA to simple tasks in
image coding, texture analysis, and feature extrac-
tion.

This paper shows the usefulness of eigenvector
decomposition applied to neural networks and dem-
onstrates the power of networks trained with the
Generalized Hebbian Algorithm. While the prop-
erties of eigenvectors and the Karhunen-Lo~ve
Transform are well-known in many fields, the exten-
sive applicability to neural networks has not yet been
fully appreciated. In the following discussion and ex-
amples, we hope to provide some insight into the
utility and practicality of this important technique.

1. GENERALIZED HEBBIAN ALGORITHM

We have developed an algorithm to train neural net-
works to find the eigenvectors of the autocorrelation
matrix of the input distribution, given only samples
from that distribution (Sanger, 1988). Each output
of a trained network represents the reponse to one
eigenvector, and the outputs are ordered by decreas-
ing eigenvalue. A network trained in this way will
allow linear reconstruction of the original input with
minimal mean-squared error (see section 3).

Let the inputs to a single-layer network be an N-
dimensional column vector x, the weights an M ×
N matrix C, and the outputs an M-dimensional col-
umn vector y = Cx with M < N. Assume values of
x are generated by a stationary white random vector
stochastic process with correlation matrix Q
E[xxZ]. Therefore, x and y are both time-varying,
and C will be time-varying as a result of adaptation
through the training algorithm. (For readability, we
will often not write the time argument explicitly.)

The "Generalized Hebbian Algorithm" (GHA) is
given by:

c,,(t ~ 1) - c,,(t)

+ ;,(t) y,(t)x,(t) - y,(t) ~ Ck,(t)yk(t) • (1)

We can write this in matrix form as:

/~C(t) ---),(t) (y(t)xT(t) - LT[y(t)y '(t)]C(t)) (2)

where LT[.] sets all elements above the diagonal of
its matrix argument to zero. thereby making it Lower
Triangular. Let y(t) be such that lim,~ ?,(t) = 0 and
E',-~, ~(t) = 2 Under these conditions, we can prove
the following (see section 2 for proof):

Theorem 1: I f C is assigned random weights at
time zero, then with probability 1, eqn (2) will con-
verge, and C will approach the matrix whose rows are
the first M eigenvectors o f the input correlation matrix
Q, ordered by decreasing eigenvalue.

The significance of the theorem is that we now
have a procedure which is guaranteed to find the
eigenvectors which we seek. We do not need to com-
pute the correlation matrix Q in advance, since the
eigenvectors are derived directly from the data. This

Optimal Unsupervised Learning 461

is an important feature, particularly if the number
of inputs is large so that computation and manipu-
lation of Q are not feasible. For instance, if a network
has 4000 inputs, then Q = E[xx r] has 16 million
elements, and it may be hard to find the eigenvectors
by traditional methods. However, GHA requires the
computation only of the outer products yx T and y y r
so that if the number of outputs is small the com-
putational and storage requirements can be corre-
spondingly decreased. If there are 16 outputs, for
example, yx r will have only 64,000 elements, and
yyr will have only 256. The Generalized Hebbian
Algorithm takes advantage of this network structure.
If the number of outputs of the network is close to
the number of inputs, then the algorithm may not
have a distinct advantage over other methods. But
when the number of inputs is large and the number
of required outputs is small, GHA provides a prac-
tical and useful procedure for finding eigenvectors.

In the field of signal processing, an almost equiv-
alent algorithm was proposed in Owsley (1978), Oja
(1983), and Oja and Karhunen (1985), although con-
vergence to the matrix of eigenvectors was never
proven, To our knowledge, the proof given here is
the first convergence proof for this algorithm.

There exist several different but closely related
algorithms for finding multiple eigenvectors which
have been proven to converge (Brockett, 1989; Kar-
hunen, 1984a, 1984b, 1985; Karhunen & Oja, 1982;
Kuusela & Oja, 1982; Oja, 1983; Oja & Karhunen,
1980, 1985). Proofs of convergence for some of these
algorithms, and an excellent summary of the differ-
ent methods may be found in Oja (1983) and
Karhunen (1984b). Recently, Brockett (1989) has
proposed a related algorithm which is similar but
which does not use the LT operator, and which he
has proven converges to the eigenvectors in any de-
sired order.

2. PROOF OF THEOREM 1

We must show that the algorithm

C(t + 1) : C(t)

+ -

converges to the matrix T whose rows are the first
M eigenvectors of Q = E[xx r] in descending eigen-
value order. C is an M × N matrix, y(t) = C(t)x(t) ,
LT[.] sets all entries of its matrix argument which
are above the diagonal to zero, x is a white bounded
vector stationary stochastic process with autocorre-
lation matrix Q, and {ek} is the set of eigenvectors
of Q indexed by k in order of descending eigenvalue

We will write

C(t + 1) = C(t) + ?,(t)h(C(t),x(t)) (4)

where

h(C(t), x(t)) ± y(t)xT(t) - LTly(t)yr(t)lC(t).

We now apply theorem 1 of Ljung (1977) which states
(in our notation):
If

1.),(t) is a sequence of positive real numbers such
that),(t) ~ 0, £~),(t)P < ~ for some p, and E,

7(0 = ~:;
2. x(t) is bounded with probability 1;
3. h(C, x) is continuously differentiable in C and x

and its derivative is bounded in time;
4. h(C) --' l im,~ E,[h(C, x)] exists for each C;
5. S is a locally asymptotically stable (Lyapunov

sense) set for the differential equation

with domain of attraction D{S}, and
6. C(t) enters some compact subset A C D{S} in-

finitely often w.p. 1 ;

Then with probability one,

lira C(t) c S

where C(t) is given by eqn (4). (A similar result is
found in theorem 2.4.1 of Kushner & Clark, 1978.)
This theorem allows us to study the evolution of a
difference equation in terms of a related differential
equation. This will simplify the discussion consid-
erably. Note that Ljung's theorem does not apply
directly to the convergence of matrices, but rather
was written to apply to vectors. However, we can
write the elements of the matrix C as a vector, and
allow the nonlinear function h to perform the shape
change from vector to matrix, and the theorem will
then be directly applicable.

To satisfy the requirements of the theorem, we
let),(t) = 1/t and, h(C) = limt._, E[h(C, x)] =
CQ - LT[CQCr]C. We now show that the domain
of attraction D{S} includes all matrices with bounded
entries. We will "hard-limit" the entries of C so that
their magnitudes remain below a certain threshold
a, and thus within a compact region of R ~'M. We will
thereby show that C converges to the matrix of ei-
genvectors T for any choice of initial matrix C(0).

We seek stable points of the differential equation

= CQ - LT[CQ('TIC. (5)

Fixed points exist for all C whose rows are permu-
tations of any set of eigenvectors of Q. We will show
that the domain of attraction of the solution given
by C = T whose rows are the first M eigenvectors
in descending eigenvalue order, includes all matrices
C with bounded entry magnitudes.

Oja showed that the first row of C will converge
to the principal eigenvector with probability 1. (This

462 T. D. Sanger

is not the only fixed point, but it is the only asymp-
totically stable one.) We will use induction to show
that if the first i - 1 rows converge to the first i -
l eigenvectors, then the ith row will converge to the
ith eigenvector. We assume that Q has N distinct
strictly positive eigenvalues with corresponding or-
thonormal eigenvectors. (The case of repeated or
zero eigenvalues is a straightforward generalization.)

The first row of the differential equation is given
by:

6T = c~Q - (c(Qc,)c~

which is equivalent to eqn (7) of (Oja, 1982). Oja
showed that this equation forces c~ to converge with
probability 1 to - ea , the normalized principal eigen-
vector of Q.

At any time t, for k < i write

c,(t) = e, + Ck(t)f~(t)

where e, is the kth eigenvector (or its negative), f ,
is a time-varying unit-length vector, and ek is a scalar.
We assume for the induction step that for k < i,

e~(t) ~ 0 as t--~ ~c. We must show that ci(t) --~ e~

as t--* ~.
Each row of eqn (5) can be written

~, = Qc, - ~ (cfOc~)c~.
k< t

Substituting Ck = e~ + ~kfk gives

i~i = Qc, - (cfQc,)c,

- ~ (c[Qek)e~ - O(e) + O0F) (6)
k<i

where Q e , = 2 ,e , , and e indicates a term converging
to zero at least as fast as the slowest row for k < i.
Expanding ci in terms of the entire orthonormal set
of eigenvectors gives

N

ci = ~ otkek
k l}

where ak = c r e , . Inserting this expression gives the
following equalities:

(cfQc,)c, = c, ~).,a~

Q Ci =

Qci - ~ 2 , (c f e ,) e , =
k<i

We now assume t is large

l< l i

N

k - 0

N

2,a,e~ - ~ X,a,e,
k = 9 k<i

2~a~ek.
k>~i

so we can ignore terms of

order e, and we write

N

k 0

g~gC~
k:~l \ l O ! k :6

Z ..~ .)

AtOt T Otke k + ~ }~sO~ o~ke ~ ,

If we multiply each side by e [for each k, the or-
thonormality of {ek} implies

&~ = ~ - a~ Z~, ,~qaf if k < i (7)

We can use eqn (7) to study the recursion relation
on the aks. We examine three cases: k < i, k > i,
and k = i.

Since Q is positive definite, all the eigenvalues 2k
are positive, so the term 7 Z~=~,)-k a 2 is always greater
than zero. Therefore, for k < i we have

&~ pla~

where q is strictly positive. This expression will con-
verge to zero for any initial value of a~.

When k > i, define 0, = e~ /a j . (Assume that
a~ # 0, which is true with probability o n e for ran-
domly chosen initial weights C(0)i) We have

Oh = (I/~,)(~, - o,~,)

Io,()

= 0~(,~ - L).

Since the eigenvalues are numbered in decreasing
order, 2, is the largest eigenvalue in { X ~ , . . . , 7.~,},
2, > 2, for all k > i, and we see that 0k --~ 0 for
k > i .

Next, we examine the behavior of a~ (case k =
i). This is described by

&, = a ~ (L - ~ ;,aT)

= Og, 2 i -- ~ . i O l { - ~lOg .

But we know that ak ---~ 0 for k < i; We therefore
drop terms in a , for k < i, which gives

&~ = a, L - 2~a7 - ,..,ala~J

But Ok --+ 0 for k > i, so the last term above ap=

Optimal Unsupervised Learning 463

proaches zero, and we therefore drop it as well,
giving

~, = ; . , (a , - ~) .

To show that this converges, note that

V = (c~ - 1):

is a Lyapunov function, since

~2 = 4),,(c~{ - c~,)(c~,- a {) < 0

and V has a m i n i m u m at a, = - 1. There fo re , ai --*
-+1 as t--~ zc. Since 0, --> 0 fo r k > i, we also have
ak --, 0 fo r k > i. Thus for large t, the on ly s igni f icant
a is ai , so ci w i l l converge to -+ei, as desired. Th is
completes the induc t ion step and proves that the di f -
ferent ia l eqn (5) converges to the matrix T of eigen-
vectors of Q. The domain of attraction of T includes
all matrices with bounded weights.

We must now show that there exists a compact
subset A of the set of all matrices such that C(t)
A infinitely often with probability 1. Define the norm
of C by IlC(t)N - maxi.j]c,j(t)[. Let A be the compact
subset of R 'vM given by the set of matrices with norm
less than or equal to some constant a. It can be shown
that for a sufficiently large, if [[C(t - 1)[[> a then
I[C(t)[[< IlC(t - 1)[I w.p.1. Thus C will eventually
be within A , and it will remain inside A (infinitely
often) with probability 1, as t becomes large. Since
the domain of attraction includes all matrices with
bounded norm, A C D{S} and condition (6) of
Ljung's theorem is satisfied.

We have now satisfied all the conditions of Ljung's
(1977) theorem. This proves that, under the as-
sumptions given above, eqn (3) will cause C to con-
verge with probability 1 to the matrix T whose rows
are the first M eigenvectors in descending eigenvalue
order.

Note that theorem 2.3.1 of Kushner and Clark
(1978) and the assumptions given above imply that
the averaged form of the algorithm, given by

C(t + 1) -- C(t) + C(t)Q - LT[C(t)QCr(t)]C(t) (8)

will also cause C to converge with probability 1 to
the matrix of eigenvectors.

3. OPTIMALITY

Linsker (1988) has suggested that maximization of
the output information may be a fundamental prin-
ciple for the organization of biological neural net-
works. Inspired by this idea, we have defined "opt-
imal" unsupervised learning as learning which allows
us to linearly reconstruct the inputs to a layer from
its outputs with minimal error. To make this more
precise, we will make some specific assumptions
about the structure of the neural networks we con-
sider, and how we want them to behave.

We now consider only single-layer linear feedfor-
ward networks whose operation is described by the
equation y = Cx where x represents the input data
(a white vector stochastic process), and the network
computes the outputs y. We assume that the number
of inputs and outputs has been specified, and that
there are fewer outputs than inputs. The only aspect
of the network which is subject to training is the
matrix C which should be adapted according to some
goal for network processing. We choose this goal to
be that the outputs allow subsequent linear process-
ing to reconstruct the input x with minimal mean-
squared error. The assumption that there are fewer
outputs than inputs requires that there will be some
error, but a proper choice of the matrix C can reduce
it. The assumption that subsequent processing must
be linear means that this criterion is not equivalent
to maximizing the Shannon information in the out-
puts, except in certain special cases (Linsker, 1988).

We know the optimal choice of weights which min-
imizes the linear reconstruction error from standard
results in linear algebra. Let x be a randomly chosen
vector of N inputs, C an M x N matrix of weights,
and y the vector of M < N outputs such that y =
Cx. Assume that x is zero-mean with correlation ma-
trix Q. Then the linear least squares estimate (LLSE)
of x given y is

fc = QCr(CQC T)-' y

and the mean squared error E[(x - /) 2] is minimized
when the rows of C span the first M eigenvectors of
Q (Bourlard & Kamp, 1988; Fukunaga, 1972; Golub
& Van Loan, 1983; Kazakos, 1983).

If the rows of C actually are the first M eigen-
vectors, then CC r = I, and Q = CTAC where A is
the diagonal matrix of eigenvalues of Q in descending
order. This defines the "eigenvector decomposition"
of Q, and we say that y = Cx is the "Karhunen-
Lo6ve Transform" (KLT) of the input. This is what
the Generalized Hebbian Algorithm accomplishes.
The correlation matrix of the outputs is CQC ~ = A
which is diagonal, so we see that the outputs are
uncorrelated and have variance equal to the eigen-
values. (See Watanabe, 1965 for a theoretical de-
scription of the KLT and some remarks on its
applications.)

Very often in designing a neural network we do
not know how wide to make a given layer of the
network. If a layer has been trained to compute the
KLT, then all the outputs are uncorrelated, and their
variance (eigenvalue) is a measure of the "useful-
ness" of that particular output. The entropy term

M

- ~ E[y~]log E[y~]
i 1

is minimized for all values of M (Watanabe, 1965),

464 "£ l). Sanger

so that information is concentrated in the first few
outputs . The variance of the outputs decreases
quickly with i, and we can select only the first few
outputs whose variance is greater than some chosen
threshold. Once we find an output whose variance
is below the threshold, we can stop computing ad-
ditional terms since all later outputs will have vari-
ances which are even lower and may decrease our
approximation accuracy (Brailovsky, 1983a, 1983b,
1985). We can therefore choose the width of a layer
based on the actual information conveyed by the
outputs of that layer. For information transmission,
we can quantize the different outputs with different
numbers of bits and thereby gain significant compres-
sion factors (see section 7.1 for an example).

The KLT can give some understanding of what a
network has learned. Since the high-variance outputs
represent significant components of the input, it
seems reasonable to believe that these outputs re-
spond to "features" in the input space which convey
useful information about the data. The algorithm will
find vectors which "explain the variance" in the in-
put. As mentioned above, these vectors are useful
for reconstructing the original data from fewer out-
puts. But they can also be used to analyze the data
and separate it into uncorrelated components which
may represent underlying physical processes in the
environment (see sections 7.2 and 7.3 for examples).

4. HEBBIAN ALGORITHMS

The Generalized Hebbian Algorithm is closely re-
lated to classical Hebbian Learning algorithms. Heb-
bian learning rules modify the connection between
two units by an amount proportional to the product
of the activation of those units (Hebb, 1949). In our
notation, if x is the activation of the input nodes and
C is the weight matrix, then y -- Cx is the activation
at the outputs. Hebbian algorithms modify C using

g \ /

c (t + 1) = c (t) + (9)
f

where y determines the rate of change of the weights.
Oja has shown that if we maintain the diagonal

elements of CC r equal to 1 (so that the norm of each
row is 1), then a Hebbian learning rule will cause
the rows of C to converge to the principal eigenvector
of Q (Oja, 1982, 1983; Oja & Karhunen, 1980). He
proposed a network learning algorithm (Oja, 1982):

ac, = ,,'(y,x - y~c,) (10)

where cf is a row of C, and y~ = c[x (Oja, 1982).
(In the following, we will often refer to (10) as "the
Oja learning rule.") Oja claims that (10) can be ap-
proximated under certain conditions on x and ~, by
a differential equation (in our notation)

b,(t) = Qci (t) - (c ,(t)7-Qc,(t))c,(t) (11)

where Q = E[xxr]. He then proves that for an ar-
bitrary choice of initial weights, c~ will converge to
the principal eigenvector e~ (or its negative) so long
as ci(O)re~ ~ 0 at time zero (Oja, 1982, 1983: Oja &
Karhunen, 1980).

Hebbian learning rules tend to maximize the vari-
ance of the output units. The response to the prin-
cipal component yj = e~x has larger variance than
the response to any other unit-length vector. The
variance of the output is E[(e~x) ~] eTQe~. To see
why the Oja algorithm maximizes the variance, we
can define an energy function by

1
~ = - 5 c / Q c ,

This is just the variance of the output y~, so if 6 is
minimized subject to cTc, = 1, then the output y~ =
cYx has maximum variance subject to this constraints,
If we perform gradient descent on ~; for each element
c!i of c~ we obtain

3t die,

= [QcA,

where [Qc~]j is the j th element of the vector Qc~. We
can then write

- - = = ¢ _ 2 C
3t

which we see is the first term of (11). This term is
therefore performing gradient descent on an energy
function which will maximize the output variance.
The second term tends to keep cfci close to 1. The
combination of the two terms has fixed points at all
eigenvectors, but the only asymptotically stable so-
lution is e~, which maximizes the variance (Oja,
1982).

The Oja algorithm only finds the first eigenvector,
so if we are given a network with more than one
output, we need an extension of this algorithm which
will allow us to find the other eigenvectors, The Gen,
eralized Hebbian Algorithm wag designed to do this
by combining the Oja learning rule (10) and a Gram-
Schmidt orthogonalization process. We can write the
Gram-Schmidt process in matrix form as follows:

~ C (t) = - l o w e r [C O) C r (t)] C (t) (12)

where C is an M × N matrix whose rows are to be
orthogonalized, t indexes discrete steps, and it is as-
sumed that the rows of C are kept normalized to
length 1 by some other process, ~ e lower[-] oper-
ation sets all elements on or above the diagonal of
its matrix argument to zero. Equation (12)wil l or-
thogonalize C in M - 1 steps i f the row norms are
maintained equal to 1.

The Generalized Hebbian Algorithm (2) is a corn-

Optimal Unsupervis'ed Learning 465

bination of (12) and the matrix version of the Oja
algorithm, given by

~'(t) = C (t) Q - d i a g (C (t) Q C (t) r) c (t)

which applies the Oja algorithm to each row of C
independently and thus causes all rows to converge
to the principal eigenvector.

5. LOCAL IMPLEMENTATION

To help understand the operation of the Generalized
Hebbian Algorithm, we rewrite (1) as

- ?(t)yi(t)Gi(t) . (13)

In this form, we see that the algorithm is equivalent
to performing the Oja (1982) learning rule (10) using
a modified version of the input given by

x;(t) = x,(t) - ~ %(t)y~(t) (14)
k * i

or, in matrix form

x ' (O : x (O - ~ ck(tly~(t)
k i

where ck is the kth row of the matrix C. The modified
input which trains output i is formed by subtracting
the components ck(t) which contributed to the pre-
vious outputs yk(t) for k < i. If the first i - 1 outputs
respond to the first i - 1 eigenvectors, then the ith
output "sees" an input from which those eigenvec-
tors have been removed. The principal component
of the modified input is now the ith eigenvector of
the original input. When the Oja algorithm is applied
to the modified input, it causes the ith output to learn
the ith eigenvector, as desired. (This method of find-
ing successive eigenvectors is similar to a technique
known as "Hotellings's Deflation" (Kreyszig, 1988).)

Equation (13) shows how we can implement the
algorithm using only local operations. This ability is
important for training neural networks using parallel
hardware, We can compute the outputs in order for
each training presentation, and subtract the com-
ponents Ck(t)yk (t) progressively from the input as
we go. This corresponds to "using up" some of the
input "energy" as we train each of the outputs. A
local synapse-like structure which can perform this
operation is shown in Figure 1. A given input xt is
connected to several outputs. As each output y, is
activated, it inhibits the input unit x~ by an amount
proportional to the output activation. (The weights
for forward propagation and reciprocal inhibition
must be maintained equal and be modified together.)
If the outputs learn in sequence, then each subse-
quent output sees an attenuated input. This leads to
training according to (13) which is performed using

t .

(
+

FIGURE 1. Network implementation of the Generalized Heb-
bian Algorithm.

only local "synaptic'" operations. The fact that such
a local implementation exists for this algorithm dis-
tinguishes it from other algorithms for computing the
Karhunen-Lo6ve transform and contributes to its im-
portance for training neural networks.

Although we do not have any quantitative results
concerning the rate of convergence to acceptable val-
ues of the matrix C, we can make some qualitative
predictions. Training of a particular output is depen-
dent on the training of the other outputs only through
the modifications of the input given by (14). There-
fore, we would expect all the outputs to train at the
same rate independently of each other, so that train-
ing time for the entire network should be indepen-
dent of the number of outputs. (Note that successive
outputs do not "wait" for previous ones to converge,
but rather learn simultaneously.) However, modifi-
cation of the input by (14) effectively decreases the
variance of the input used to train higher-numbered
outputs. Decreasing the variance of the input is
mathematically equivalent to decreasing ~,, so we ex-
pect that the learning rate should decrease for the
later outputs. In practice, training time (in terms of
the number of input samples) is roughly proportional
to the number of outputs.

6. RELATED ALGORITHMS

6.1. Eigenvector Decomposition

There are many fields which make use of eigenvector
decomposition (the Karhunen-Lo~ve Transform),
and there are many algorithms for computing it. In
statistics, the techniques of Factor Analysis and Prin-
cipal Components Analysis (PCA) are commonly
used tools which are closely related to the KLT. Most
algorithms involve estimating the data correlation

460 I~ D. Sanger

matrix Q and then finding the eigenvector decom-
position using matrix techniques (see Golub and Van
Loan (1983) or Kreyszig (1988) for review). These
methods are computationally difficult if the number
of inputs is large, since Q becomes unmanageable
(see section 1). Algorithms exist which can find the
eigenvectors given only samples of the input distri-
bution, without the need to explicitly compute Q.
Oja (1983) and others proposed an iterative method
called "Stochastic Gradient Ascent" based on mul-
tiplication by an estimated correlation matrix fol-
lowed by Gram-Schmidt or thonormal iza t ion .
Another such algorithm involves finding the first ei-
genvector (principal component) using a method
equivalent to the Oja algorithm (10), subtracting this
component from the data sample, and then learning
the next component (Kreyszig, I988). This is equiv-
alent to the procedure used here, except that here
all the components converge at the same time~ A
summary of other related algorithms may be found
in (Oja, 1983).

To our knowledge, the Generalized Hebbian Al-
gorithm (GHA) is the first KLT algorithm for which
a network implementation exists that can be used to
train a neural network using only local operations.
This may be the first application of such an algorithm
to the field of neural networks. It must be remem-
bered that in actual use with finite training times,
GHA will only be able to approximate the eigen-
vectors and that errors in finding the first few eigen-
vectors will magnify the errors in finding subsequent
eigenvectors. In other words, the algorithm has poor
numerical accuracy for all but the first few eigen-
vectors. If greater accuracy is needed, or exhaustive
computation of all the eigenvectors is desired, then
classical matrix techniques may be more suitable. But
if the input has high dimensionality, samples are
readily available, and only the first few eigenvectors
are needed, then GHA provides a considerably eas-
ier and faster computational alternative.

6.2. Winner-Take-All Networks

Winner-take-all networks which are based upon
Hebbian learning rules may have some functional
similarities to the algorithm presented here. In a win-
ner-take-all network, usually only the output with
largest value has its weights modified. This technique
is used to ensure that different outputs learn different
functions of the input (Barrow, 1987; Grossberg,
1976; Kohonen, 1982, 1988, among others). Al-
though the convergence properties of such algo-
rithms are often not welt understood, we suspect that
there may be a strong underlying relationship be-
tween the Generalized Hebbian Algorithm and win-
ner-take-all algorithms. The learning rule is often not

explicitly Hebbian, but rather modifies the weights
of the winning unit to move them closer to the input
which caused it to win. But for a unit to win, it must
have a positive output, and therefore modifying the
weights by the input is equivalent up to a scale factor
to true Hebbian learning. We would therefore expect
that any output would tend to converge to the prin-
cipal eigenvector of the subset of the input data for
which that output wins. Different outputs would con-
verge to the principal eigenvectors of different sub-
sets of the data. Note that this is not the same as
converging to other eigenvectors, since different out-
puts will usually not be uncorrelated.

6.3. Self-Supervised Backpropagation

Several authors have experimented with the tech-
nique of Self-supervised Backpropagation (SSBP),
also known as the "encoder" problem (e.g.. Ballard.
1987; Cottrell. Munro. & Zipser. 1987: Hinton.
1987). This algorithm seems to have optimal data
coding properties similar to those of the algorithm
presented here. Its prevalence in the literature merits
a detailed discussion of the relation to the Gener-
alized Hebbian Algorithm (GHA).

In linear SSBP, a two-layer network is trained to
perform the identity mapping, yet the number of
hidden units is set to be fewer than the number of
inputs. The hidden units must therefore discover an
efficient encoding of the input data. Since efficient
coding is also the goal for the Generalized Hebbian
Algorithm. we would expect both algorithms to pro-
duce similar results. Bourlard and Kamp (1988) have
shown that a set of vectors which span the Singular
Value Decomposition (which is equivalent to the
KLT as used here) gives the optimal set of hidden
units of such a network. Baldi and Hornik (1989)
proved that the backpropagation energy function has
a unique minimum at this solution. There are many
possible sets of weights, however, and SSBP wild
choose one based on the initial random choice of
weights for the network. The GHA finds the unique
set of weights which is both optimal and gives un-
correlated outputs. Therefore it is clear that in the
linear case. SSBP and the GHA converge to almost
equivalent solutions. We will now show that the
equations describing the two algorithms are similar.

Define a three-layer linear network of N input
units x, M hidden units y, and N output units ~. The
weight matrices are W1 and W> so that y = W~x and
2 = W2y. We train the network using backpropa-
gation and error function E[(x - 2) r (x - ~)]. Then.
using the notation of Rumelhart et al. (t986a), we
adapt the weights at each layer using ~WI = v161x r

and AW2 = v262y r w h e r e 62 = x - 2 and &~ =

Optimal Unsupervised Learning 467

W~6:. We then have:

AW: = v:(x - 2) y r

= v2(x - W z y) y r

- v z (x y f _ W, y y r)

A W l = v:(.vx r - yyrW~) . (15)

This is similar to (2), except that we do not force the
matrix y y r to be lower triangular, and W [is not the
matrix used to generate y from x. The following dis-
cussion will show that Wf and W~ are related so that
it is reasonable to assume (15) is almost equivalent
to (2).

Assume that w < v~, so that W2 converges much
slower than WI. We then have:

AW~ = r~W~J:x j

= viWqx - ~)x ~

= r~W~(.r- W~WlX)X ~

v,(WLr - W~W2W, x) x 7

= v,(W~ - W ~ W ~ W ,) x x ~

E[AW~ l - v , (W ~ , - W ~ W : W ,) Q .

Since Q is positive definite, it can be shown that this
equation will cause W f W 2 W ~ to approach W[(for v~
decreasing to 0 as l / t) . If we substitute W [-~

W ~ W 2 W ~ into (15), we see that this is similar to (2)
except for the lack of the LT[] operator and the
inclusion of the positive definite scaling matrix
W ~ W 2 .

Although the above discussion is not a rigorous
proof, it gives us some insight into the reason for the
close relationship between G H A and SSBP. The two
algorithms are related both by the results they
achieve and by their mechanisms of action. This
means that our understanding of the convergence
properties of G H A can be used to analyze certain
baekpropagation networks as well.

The major difference in function between G H A
and SSBP is that G H A produces the first M eigen-
vectors themselves in eigenvalue order, while SSBP
produces a linear combination of the first M eigen-
vectors. This difference can be important. Several
authors have noted that SSBP tends to produce hid-
den units which have approximately equal variance
(Baldi & Hornik, 1989; Cottrell et al., 1987). The
variances do not descend by eigenvalue as they do
for the KLT. The solution may not be unique, and
although it spans the first few eigenveetors, the actual
matrix which is learned cannot be predicted. In ad-
dition, the hidden units are not uncorrelated. It may
be difficult to interpret the network as representing
significant features of the environment, since the hid-
den units and their correlations may depend upon

the initial randomly chosen weights as well as on the
sequence of training examples.

These factors may reduce the usefulness of SSBP-
trained hidden units for data coding applications.
Because the hidden units all have approximately
equal variance, bits must be allocated evenly among
them, and noise cannot be eliminated by removing
the units with lowest variance. If the network is de-
signed with too many hidden units (in the sense of
Brailovsky, 1983a, 1983b, 1985) then the additional
error introduced is spread evenly throughout the
units and cannot be easily detected or removed by
looking at the signal to noise ratio of the individual
units. Cottrell et al. (1987) point out that if channel
errors affect certain units more than others, then it
may be an advantage to distribute the information
evenly so that high-variance channels are not cor-
rupted excessively. If multiplicative noise is present
in different amounts on different channels, then in-
deed this will be true. For additive noise, however,
the KLT allows much easier reconstruction of the
original "clean" signal, since the signal-to-noise ratio
is maximized.

7. EXAMPLES

We now present examples of the use of single-layer
linear networks which have been trained using the
Generalized Hebbian Algorithm. The networks are
used to solve problems in image coding, texture seg-
mentation, and receptive field modeling.

7.1. Image Coding

Figure 2 shows an original image taken from part of
an Eisenstadt photograph and digitized to form a
256 x 256 image with 256 greylevels. We use a single-

FIGURE 2. 256 x 256 pixel (8 bit) test image for coding.

406' 7'. D. Sanger

layer linear neural network with 64 inputs and 8 out-
puts. 8 x 8 blocks of the image are used as training
samples, with the image being scanned from left to
right and top to bottom. The sample blocks do not
overlap, and the image is scanned twice to allow time
for the network to converge (giving 2048 samples).
(Although in principle the rate term ~, in the algorithm
should decrease to zero as 1 / t , in all of the examples
7, is held fixed at a value between 0.1 and 0.01 which
is chosen empirically to provide good convergence,
and which depends on the number of inputs and the
average input variance.)

The weights which the network learns are repre-
sented as 8 x 8 masks shown in Figure 3. Each mask
shows the set of weights associated with a single out-
put. White indicates positive weights, black indicates
negative, and grey indicates zero. In our notation,
the masks are the rows cg of the 8 x 64 weight matrix
C after it has converged.

To code the image, each 8 x 8 block of the image
is multiplied by each of the eight masks to generate
eight coefficients for coding. The coefficients for the
block starting at position n , m in the image I are thus
given by

p I q : l

The coefficients] j n , m are then uniformly quantized
with a number of bits approximately proportional to
the log of the variance of that coefficient over the
image. This results in the first two masks being as-
signed five bits each, the third mask three bits. and
the remaining masks two bits each. Therefore, each
8 x 8 block of pixels is coded using a total of 23
bits, so the data rate is 0.36 bits per pixel. To re-
construct the image from the quantized coefficients
~.m, each block of the image is re-formed by adding
together all the masks weighted by their quantized
coefficients:

~Xn+p,m+ q ~ ^n,m Ct,p~SqYi •

i 1

FIGURE 3 .8 x 8 masksleamedbysnetwo~tra lnedon
F~um 2.

i?)?

FIGURE 4. Image of Figure 2 coded at .36 bits per pixel.

The resulting image is shown in Figure 4, We cal-
culate the normalized mean square error (NMSE) as
in (Cottrell et al., 1987) to be the ratio of the error
variance to the data variance

NMSE ~ E [(I - I,,.,,,): i
E[:~,,:!

which is 0.043 for this image.
The network has learned a linear coding for the

input data which approximates the optimal KLT. The
masks are the "eigenvectors" of the input image, and
they represent most of the varrance m the 8 x 8
blocks which were used for training. Because the
network outputs have high variance, they convey
much of the input information, and we only need to
use a few outputs (eight, in this case) to estimate the
input data. This is the meaning of data coding; we
have reduced 64 eight-bit pixels (512 bits total) to
eight coefficients quantized with from two to five bits
(23 bits total). The network chose masks which allow
only 23 bits to represent most of the information in
the original 512 bits.

We might now ask whether this same set of masks
would be useful on a different image. Figure 5 is an
image of a dog, and Figure 6 shows the image after
it has been reconstructed from quantized coefficients
derived from the set of masks in Figure 3. Note that
the network was never trained on the image of Figure
5. In this case, the output of the first two masks was
quantized using seven pixels each, the third with five
pixels, the fourth with four pixels, and the remaining
coefficients with three pixels each. ~ gives atotal
of 35 bits, or a bit rate of 0.55 bits per pixet. The
NMSE is 0.023 here which is actually lower than the
error for the image of Figure i, due to the increased
number of bits used for coding. The fact that the
same set of masks can be used to code two diffe rent
pictures is an example of "generalization" of the net-

Optimal Unsupervised Learning

FIGURE 5. 256 x 256 pixel (8 bit) test image for coding.

work. Although the images are different, their sta-
tistics may be similar enough that their respective
KLTs are similar. A network trained on either image
will compute a set of masks which will be useful for
the other. This generalization property is a direct
consequence of the statistical similarity of the two
images.

Filters similar to those given in Figure 3 have been
used for image coding by many authors. The Discrete
Cosine Transform masks are qualitatively similar
(see Lira, in press for a description), and Daugman
(1988) has performed image coding using two-di-
mensional Gabor filters which are also similar to the
masks which the network learned.

Cottrell et al, (1987) used self-supervised back-
propagation to perform image coding, with bit rates
as low as 0.625 bits per pixel. They used a network
with 64 inputs, 8 hidden units, and 64 outputs. Their
training samples were, as here, 8 x 8 blocks of the

469

image, and the network was trained to approximate
the input data at the output units. As mentioned
above, such a network will not actually find the KLT,
but will tend to converge to outputs which represent
linear combinations of the KLT vectors (Baldi &
Hornik, 1989). Since the hidden units will all have
approximately equal variance (Baldi & Hornik,
1989; Cottrell et al., 1987), it is not possible to quan-
tize them with different numbers of bits, as it was
for the KLT. This fact significantly reduces the max-
imum compression rate which can be achieved. It
should also be noted that Cottrell et al. (1987) trained
their network for 150,000 iterations, while the net-
work which learned the masks of Figure 3 was trained
for 2048 iterations.

7.2. Texture Segmentation

Since the Generalized Hebbian Algorithm finds the
eigenvectors of the input distribution, we would ex-
pect that the outputs of the network will respond to
"significant" features of the environment. The out-
puts will have high variance, and can be used for
separating the input into different classes. To illus-
trate these ideas, we demonstrate the use of such a
network to perform a simple texture segmentation
task.

Figure 7 shows a 128 × 128 image formed from
two different textures consisting of randomly placed
horizontal and vertical line segments. (The image has
been filtered with a narrow Gaussian with standard
deviation of one-half pixel, since this was found to
improve the convergence rate of the network.) We
construct a single-layer linear network with 64 inputs
and 4 outputs. The network is trained on 1000 over-
lapped 8 x 8 blocks of the image. However, before
presenting any block to the network, it is multiplied
by a Gaussian window with standard deviation of
two pixels. This is done so that the network will
become sensitive to the central region of any block.
The weights which are learned are shown in Figure
8a represented as 8 x 8 masks. The first mask is a
low-pass filter, the second and third are horizontal

FIGURE 6. Image of Figure 5 coded at .55 bits per pixel using
the same masks as in Figure 3. FIGURE 7. 128 × 128 test image for texture segmentation.

470 I: D. Sanger

(a)

(b)

(c)

.]

FIGURE 8. (a) masks learned by a network trained on Figure
7. (b) Convolution of masks in (a) with Figure 7. (c) Estimate
of local variance of (b).

and vertical "edge-detectors," and the fourth is a
horizontal "bar-detector."

We next convolve each of the masks with the orig-
inal image in Figure 7 to show which regions of the
image give high response for each mask. The con-
volution results are shown in Figure 8b. To estimate
the local variance, we full-wave rectify the images of
Figure 8b, and low-pass filter the results with a Gaus-
sian of standard deviation 4 pixels. This gives a mea-
sure of local "energy" or variance, and the result is
shown in Figure 8c for each mask. Here we can
clearly see that certain masks respond preferentially
to one or the other of the two textures in the image.
The first mask is a low-pass filter, which achieves
equal and maximal variance everywhere in the im-
age. The next three masks have larger variance when
responding to a particular texture (lines of one or
the other orientation). Note that the texture pref-
erence of a mask is not immediately apparent from
the convolution result in Figure 8b. We must ap-
proximate the local variance as in Figure 8c in order
to distinguish the texture regions.

An equivalent technique was developed by Turner
(1986), although he used a fixed set of masks which
were not learned. His masks were Gabor filters, and
he computed the squared amplitude of the response
to a given filter at different points in the image. This
operation is almost equivalent to taking the absolute
value and low-pass filtering as we have done here.
Both techniques find an estimate of the local ampli-
tude (variance) of the response to a filter. Gabor
filters were also used in (Daugman, 1988) to perform
texture segmentation, although the local variance or
response amplitude was not explicitly computed.
Similarly, Voorhees (1987) and Voorhees and Poggio
(1988) used 72G filtering to di~riminate texture re-
gions, while Bergen and Adetson (I988) used a cen-
ter-surround with a rectification nonlinearity.

7.3. J t ~ t ' tetes

There have been many attempts to provide mecha-
nisms which explain the development of the receptive
fields of retinal and visual cortical cells (Barrow.
1987, Bienenstock, Cooper, & Munro. 1982; Kam-
men & Yuille, 1988; Linsker. 1986; Yuille. Kammen.
& Cohen, in press, among others). We here present
yet another attempt. An important difference be-
tween our method and most previous ones is that we
not only provide a model for the development of
receptive fields, but we show that this model implies
that these receptive fields have optimality properties
associated with the KLT.

The training examples are similar to those used
in (Linsker. 1986). Each sample is formed by gen-
erating a 64 x 64 image of random white Gaussian
noise. This is then low-pass filtered bv convolving
with a Gaussian of standard deviation of 3 pixels.
The resulting image is windowed by multiplication
with another Gaussian with standard deviation of 6
pixels. A network with 4096 inputs and 16 outputs
is trained on 2000 such input samples. The resulting
masks are shown in Figure 9. 111 Figure 1() we see
cross-sections through the major axes of the first.
third, and sixth masks of Figure 9. The first cross-
section is qualitatively similar to the receptive field
shapes of retinal ganglion cells shown in Enroth-Cu-
gell and Robson (1966). The second and third cross-
sections appear similar to the receptive field shapes
of cortical simple cells shown in Andrews and Pollen
(1979). Many of the remaining masks which the net-
work has learned do not correspond to any receptive
field shape which has been found in primate visual
cortex (see Sanger, in press for further discussion of
these issues.)

RGUme 9, ~ lS ~ . e t d ~ ~ a~ork
with ~ ~ (Ol~er i a ~ ~ , tep-to.bottem,)

Optimal Unsupervised Learning 47I

(al

+
(b)

FIGURE 10. (a) First, third, and sixth receptive fields from
Figure 9. (b) Cross-sections of (a) through major axes.

These results are not meant to imply that the vis-
ual system develops through an adaptation mecha-
nism similar to the Generalized Hebbian Algorithm:
we have no evidence for such a claim. Rather, we
claim only that our results imply that there exist sim-
ple algorithms through which the observed receptive
field shapes can develop.

Since the Generalized Hebbian Algorithm finds
the eigenvectors of the input distribution, the masks
which it learns must be the eigenvectors of the data
we presented. Since these masks may be similar to
the actual observed receptive fields, it follows that
the receptive fields may actually be performing an
eigenvector decomposition of the input and therefore
have the optimality properties of the KLT (if we
assume that visual input can be modeled as bandpass
filtered white noise). Note that the masks of Figure
3 and Figure 9 are similar, which indicates that the
statistics of the picture in Figure 2 and the random
input used to train the network of Figure 9 are re-
lated.

This interpretation of the role of the visual cortex
unifies several other disparate views of its compu-
tations. Some authors believe that the visual cortex
recognizes simple features in the environment which
represent significant parts of the image such as edges
or blobs (e.g., Hubel & Wiesel, 1962; Marr, 1982).
Other authors consider the early stages of the visual
system to be performing a localized spatial-frequency
decomposition of the image, or a sort of "local Four-
ier transform" (Pollen & Ronner, 1983; Shapley &
Lennie, 1985, for review). However, these two seem-
ingly different viewpoints are both equivalent to the
observation that simple cells represent the eigenvec-
tors of the input distribution. It is well known that
the eigenvectors of any stationary distribution are

given by complex exponentials, which is the same
basis as that of the Fourier transform (see Kazakos,
1983 and Yuille et al., 1988 for a detailed discussion).
Therefore, the Generalized Hebbian Algorithm will
learn a set of filters which can perform a spatial-
frequency analysis of the input image. Also, if the
input image has statistically significant features such
as edges, maximization of variance will produce
"edge-detectors. "' By comparing Figure 9 and Figure
8a we see that spatial-frequency detectors and edge
detectors can have very similar shapes.

The significance of the filters learned by the Gen-
eralized Hebbian Algorithm is thus greater than
either spatial frequency analysis or feature detection.
Both types of decomposition of the image occur si-
multaneously due to the maximization of output w~ri-
ance. The algorithm chooses its representation of the
input based upon the true statistics of the input. For
real scenes, these statistics include features as well
as spatial frequency components.

The theoretical mechanism for receptive field de-
velopment presented here differs from the mecha-
nism proposed by Linsker (1986). Here, all the cells
develop in a single layer, whereas Linsker's network
requires multiple layers. Each cell in a given layer
finds the principal component of the autocorrelation
of the previous layer. All the cells of any given layer
have similar receptive field shapes. At the seventh
layer, orientation-tuned cells develop which have
shapes like those shown in Figure 9. Kammen and
Yuille (1988) have explained the evolution of ori-
ented cells in Linsker's network in terms of sym-
metry-breaking caused by unstable critical points in
an energy function.

Barrow (1987) has proposed a model of receptive
field development which is qualitatively very similar
to that presented here, His input is bandpass-filtered
white noise, and he hypothesizes that the bandpass
operation occurs in retina and lateral geniculate. He
uses a Hebbian learning rule and maintains the row
norms at one. To avoid having all the outputs con-
verge to the same set of weights, Barrow uses a win-
ner-take-all strategy in which only the strongest
output has its weights updated. We suspect that this
form of competitive learning may be formally equiv-
alent to the Generalized Hebbian Algorithm, Bar-
row's algorithm does not order the outputs by
decreasing variance, but it is possible that the actual
eigenvectors are discovered, rather than a linear
combination of them. It is not clear whether or not
the outputs of his network are orthogonal, but his
results seem very similar to Figures 9 and 10.

Recently, Yuille et al. (1988) have proposed a
model for cortical cell development based on a Heb-
bian learning rule and lateral interactions between
pairs of cells. Their algorithm learns quadrature-

472 7". D. Sanger

phase pairs of cells, as are found in primate visual
cortex (Pollen & Ronner, 1981). Their equation 24
is similar to the Generalized Hebbian Algorithm, and
may be formally equivalent.

CONCLUSION

In this paper we have presented a simple network
learning algorithm based on a Hebbian learning rule.
Analysis of the algorithm leads to two important new
results. First, we proved that the algorithm converges
to a network which satisfies an optimality principle
based on maximizing the ability to recover the input
data. And second, we showed that the algorithm can
be implemented using only local network operations.

The algorithm generalizes the Oja (1982) network
algorithm to the multiple-output case, and verifies
conjectures of Linsker (1988) and Baldi and Hornik
(1988) about the existence of such an algorithm. Al-
though several similar algorithms have been pro-
posed in the field of signal processing (Brockett,
1989; Oja & Karhunen, 1985; Owsley, 1978; Oja,
1983, among others), we have shown that there is a
fundamental relationship between these algorithms
and well-known Hebbian learning rules for neural
networks. We have used the Generalized Hebbian
Algorithm to generate a local learning rule, and we
have shown that it can be an important and useful
method for training unsupervised networks.

A network trained according to the Generalized
Hebbian Algorithm computes the Karhunen-Lo~ve
transform of the input distribution. The well-known
properties of the KLT provide a general framework
for analyzing the behavior of such networks. We can
then make use of the extensive literature in other
fields to help understand the behavior of unsuper-
vised neural networks. The relation to statistical pro-
cedures such as Factor Analysis or Principal Compo-
nents Analysis makes clear the fundamental nature
of the theory. The power of the KLT allows us to
use a simple single-layer linear network to begin an
approach to such problems as image coding, texture
segmentation, and feature discovery.

Once the applicability of the KLT to neural nets
is understood, we can use it to analyze the behavior
of hidden units trained in "encoder" networks (Baldi
& Hornik, 1989; Bourlard & Kamp, 1988). For many
practical applications, the ability of the Generalized
Hebbian Algorithm to find uncorrelated outputs of
maximal variance gives it advantages over encoder
networks trained with self-supervised back-propa-
gation.

Although we have only considered the simplest
case of a single-layer linear network, the techniques
developed and the interpretation of the network are
useful for understanding the behavior of more com-
plex networks. Much work needs to be done to apply

this research to multi-layer networks with nonlinear
node functions, but the linear case gives us some
clues as to how to proceed (Sanger, 1989b).

REFERENCES

Andrews, B. W., & Pollen, D. A. (1979). Relationship between
spatial frequency selectivity and receptive field profile of sim-
ple cells. Journal of Physiology, 287, 163-176.

Baldi, P., & Hornik, K. (1989). Neural networks and principal
component analysis: Learning from examples without local
minima, Neural Networks, 2, 53-58.

Ballard, D, H. (1987). Modular learning m neural networks. In
Proceedings of the Sixth National Conference on Artificial In-
telligence (AAAI-87) (Vol. 1, pp. 27%-284). l,os Altos. CA:
Morgan Kaufman.

Barrow, H. G. (1987). Learning receptive helds. In Proceeding.~
of the IEEE 1st Annual Conference on Neural Networks (Vol,
4, pp. 115-121). Washington. DC: IEEE Computer Society
Press.

Bergen, J. R., & Adelson, E. H. (1988), Early vision and texture
perception. Nature, 333, 363-364.

Bienenstock. E. L.. Cooper. L. N.. & Munro. P. W. ~1982).
Theory for the development of neuron selectivity: Orientation
specificity and binocular interaction in visual cortex, Journal
of Neuroscience, 2, 32-48.

Bourlard. H., & Kamp, Y. (1988). Auto-association by multilayet
perceptrons and singular value decomposition. Biological Cy-
bernetics, 59, 291-294.

Brailovsky, V. (1983a). On the problem of function approxmlauon
bv sample set processing for an incompletely determined
model, Annals" of the New York Academy of,Science. 410, 137-
147.

Brailovsky, V. (1983b). On the problem of function system se-
lection for function approximation based on the use of a sample
set with defects, Annals of the New York Academy of Science.
410. 149-161.

Brailovsky, V. L. (1985). On an incompletely determined model
for function approximation by experimental data Annat~ of
the New York Academy of Science. 452, 316-333.

Brockett. R. W, ~1989). Dynamical systems that sort lists, diagon-
alize matrices, and solve linear programming problems. Un-
published manuscript, Harvard University, Cambridge. MA.

Carpenter, G. A.. & Grossberg, S. (1988). The ART of adaptive
pattern recognition by a self-organizing neural network. Com-
puter, 21.77-88.

Cottrell. G. W.. Munro. P.. Zipser. D. ~ 1987). Learning internal
representations from gray-scale images: An example of exten-
sional programming. In Proceedings of the 9th Annual Con-
ference of the Cognitive Science Society (pp. 461-473).

Daugman, J. G. (1988). Complete discrete 2-D Gabor transforms
by neural networks for image analysis and compression. IEEE
Transactions on Acoustics. Speech. and Signal Processing,
36(7), 1169-1179,

Enroth-Cugell, C.. & Robson. J. B. (1966). The contrast sensi-
tivity of retinal ganglion ceils of the cat. Journal of Physiology,
187. 517-552.

Fukunaga, K. (1972). Introduction of statistical pattern reco~m-
lion. New York: Academic Press.

Golub. G. H., Van Loan, C. F. (1983). Matrix computations,
Oxford: North Oxford Academic Press.

Grossberg, S. (1976). On the development of feature detectors
in the visual cortex with applications to learning and reaction-
diffusion systems. Biological Cybernetics, 21, 145-159.

Hebb, D. O. (1949). The organization ~¢ behavior New York:
Wiley.

Optimal Unsupervised Learning 473

Hinton, G. E, (1987). Conneetionist learning procedures, (Tech.
Rep. No. CS-87-115). Carnegie-Mellon University, Pitts-
burgh~ PA.

Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular
interactiom and functional architecture in the cat's visual cor-
tex. Journal of Physiology, 160, 106-154.

Kammen, D. M., & Yuille, A. L. (1988). Spontaneous symmetry-
breaking energy functions and the emergence of orientation
selective cortical cells. Biological Cybernetics, 59.23-3 i .

Karhuncn, J. (1984a). Adaptive algorithms for estimating eigen-
vectors of correlation type matrices. In Proceedings of the 1984
IEEE International Conj?rence on Acoustics, Speech, attd
Signal Processing. (pp. 14.6.1-14.6.4). New York: IEEE
Press.

Karhuncn, J. (1984b). Recursive estimation of eigenvectors q/'cor-
relation type matrices for signal processing applications. Ph. D.
thesis, Helsinki University of Technology, Espoo, Finland.

Karhunen. J. (1985). Simple gradient o'pe algorithms J`or data-
adaptive eigenvector estimation. (Tech. Rep. No. TKK-F-
A584). Finland: Helsinki University of Technology.

Karhunen, J., & Oja, E. (1982). New methods for stochastic
approximation of truncated Karhunen-Lo6ve expansions, In
Proceedings of the 6th International Conference on Pattern
Recognition (pp. 550-553). New York: Springcr-Verlag.

Kazakos, D. (1983). Optimal constrained representation and fil-
tering of signals. Signal Processing, 5, 347-353.

Kohonen, T. (1982). Self-organized formation of topologically
correct teaturc maps. Biological Cybernetics, 43, 59-69.

Kohonen, T. (1988). T h e - n e u r a l " phonetic typewriter. Corn-
purer, 21, I 1-22.

Krcyszig, E. (1988). Advanced engineering mathematics. New
York: Wiley.

Kushncr, ft. J. & (?lark, D. S, (1978). Stochastic approximatiop~
methods ['or constrained and unconstrained systems. New York:
Springer-Verlag.

Kuuscla, M., & Oja. E. (19821. Thc averaged learning subspace
method for spectral pattern recognition. In Proceedings of the
oth International Conference on Pattern Recognition (pp. 134-
137). New York: Springer-Verlag.

Lira, J. S, (in press). Two-dimensional signal and intage process-
ing. Englewood Cliffs, N J: Prentice Hall.

Linsker, R. (1986). From basic network principles to neural ar-
chitecture. Proceedings of the National Academy ~[Science,
USA, 83, 7508-7512. 8390 8394, 8779-8783.

Linsker. R. (1988). Self-organization in a perceptual network.
Computer, 21. 1(t5-117.

Lippmann, R. P., (1987). An introduction to computing with
neural nets. IEEE ASSP Magazine, 4, 4-22.

l,iung. L. (1977). Anah,'sis of rccursive stochastic algorithms.
IEEE 7)'an.saction~s on Automatic Control, AC-22, 551
575,

Mart, D. (1982). Vision. San Francisco: W.H. Freeman and Co.
Oja, E, (1982). A simplified neuron model as a principal com-

ponent analvzcr. Jourlzal of Mathematic.s and Biology, 15,267-
273.

Oja, E. (1983). Suh~'paee methods qf pattern recognition. Letch-
worth, Hertforshire, UK: Research Studies Press.

Oia, E., & Karhunen, ,I. (1980). Recursive construction of Kar-
huncn-Lo,Sve expansions for pattern recognition purposes. In

Proceedings of the 5th International Conference on Pattern Rec-
ognition (pp. 1215-1218). New York: Springer-Verlag.

Oja, E., & Karhunen, J. (1985). On stochastic approximation of
the eigenvectors and eigenvalues of the expectation of a ran-
dom matrix. Journal of Mathematical Analysis and Applica-
tions, 106. 69-84.

Owsley, N. L., (1978). Adaptive data orthogonalization. In Pro-
ceedings of the 1978 IEEE International ('onj~'rence on Acous-
tics, Speech, attd Signal Processing (pp. 109-112). New York:
IEEE Press.

Pollen, D. A,, & Ronner, S. F. (1981). Phase relationships be-
tween adjacent simple cells in the visual cortex. Scienee, 212,
1409-1411.

Pollen, D. A., & Ronner, S, F. (1983). Visual cortical neurons
as localized spatial frequency filters. IEEE Transactions on
Systems, Man, and Cybernetics, 13,907 916,

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (Eds.).
(1986a). Learning internal representations by error propaga-
tion. In Parallel distributed processing (chap. 8, pp. 318-362).
Cambridge, MA: MIT Press.

Rumelhart, D. E., Hinton, G. E., & Williams R. J. (1986b).
Learning representations by back-propagating errors. Nature,
323, 533-536.

Sanger, T. D. (1988). Optimal unsupervised learning. Neural Net-
works, 1 (Supl. 1), 127.

Sanger, T. D. (in press). Neural networks, principal components
analysis, and Gabor filters in low-level vision. Biological Cy-
bernetics.

Sanger, T. D. (1989b). An optimality principle for unsupervised
learning. In D. Touretzky (Ed.), Advances in neural infor-
mation processing systern,~. San Marco, CA: Morgan Kauf-
m a n n .

Shapley, R., & Lennic, P. [1985), Spatial frequency analysis in
the visual system. Annual Review of Neuroscience. 8,547-583.

Silverman, R. H., & Noetzel, A. S. (1988), Time-sequential self-
organization of hierarchical neural net~,,orks. In D. Z. An-
derson (Ed.). Neural inJormation processing .sTstems (pp. 709-
714). New York: American Institute of Physics.

Sontag. E. D. (1988). Some remarks on the hackpropagation al-
gorithm]or neural net learning (Tech. Rep. No. SYCON-88-
2). New Jersey: Rutgcrs Center lk)r Systems and Control.

Sontag, E. D., & Sussmann, H. J. (1988). Backpropagation ean
give rise to spurious local minima even .l~r networks without
hidden layers (Tech. Rep. No. SYCON-88-08). New Jersey:
Rutgers Center lk~r Systems and Control.

Turner, M. R. (1986). Texture discrimination by Gabor functions.
Biological Cybernetics, 55, 71-82.

Voorhees, H., & Poggio T. (1988). Computing texture boundaries
from images. Nature, 333, 364-367.

Voorhees, H. (1987). Finding texture boundaries in images" (Tech.
Rep. No. 968). MIT AI Lab, Cambridge, MA.

Watanabe, S. (1965). Karhunen-Lo6ve expansion and factor anal-
ysis: Thcoretical remarks and applications. Transactions o/'the
4th Prague ConJ~'rence on htj~>rmation Theory (pp. 635-66(I).
Prague: Publishing House of the Czechoskwak Academy of
Sciences.

Yuille, A. L., Kammen, D. M., & Cohen, D. (in press). Quad-
rature and the development of orientation selective cortical
cells by Hebb rules. Biological Cybernetics,

