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Konkoly Thege Miklós út 29–33, H-1121, Budapest, Hungary
4 Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Trumpington Street,

Cambridge, CB2 1 PZ, United Kingdom

Review
Human perception has recently been characterized as
statistical inference based on noisy and ambiguous sen-
sory inputs. Moreover, suitable neural representations
of uncertainty have been identified that could underlie
such probabilistic computations. In this review, we
argue that learning an internal model of the sensory
environment is another key aspect of the same statistical
inference procedure and thus perception and learning
need to be treated jointly. We review evidence for stat-
istically optimal learning in humans and animals, and re-
evaluate possible neural representations of uncertainty
based on their potential to support statistically optimal
learning. We propose that spontaneous activity can have
a functional role in such representations leading to a
new, sampling-based, framework of how the cortex
represents information and uncertainty.

Probabilistic perception, learning and representation of
uncertainty: in need of a unifying approach
One of the longstanding computational principles in neuro-
science is that the nervous system of animals and humans
is adapted to the statistical properties of the environment
[1]. This principle is reflected across all organizational
levels, ranging from the activity of single neurons to net-
works and behavior, and it has been identified as key to the
survival of organisms [2]. Such adaptation takes place on
at least two distinct behaviorally relevant time scales: on
the time scale of immediate inferences, as a moment-by-
moment processing of sensory input (perception), and on a
longer time scale by learning from experience. Although
statistically optimal perception and learning have most
often been considered in isolation, here we promote them
as two facets of the same underlying principle and treat
them together under a unified approach.

Although there is considerable behavioral evidence
that humans and animals represent, infer and learn
about the statistical properties of their environment effi-
ciently [3], and there is also converging theoretical and
neurophysiological work on potential neural mechanisms
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of statistically optimal perception [4], there is a notable
lack of convergence from physiological and theoretical
studies explaining whether and how statistically optimal
learning might occur in the brain. Moreover, there is a
missing link between perception and learning: there exists
virtually no crosstalk between these two lines of research
focusing on common principles and on a unified framework
down to the level of neural implementation. With recent
advances in understanding the bases of probabilistic cod-
ing and the accumulating evidence supporting probabilis-
tic computations in the cortex, it is now possible to take a
closer look at both the basis of probabilistic learning and its
relation to probabilistic perception.

We first provide a brief overview of the theoretical
framework as well as behavioral and neural evidence for
representing uncertainty in perceptual processes. To high-
light the parallels between probabilistic perception and
learning, we then revisit in more detail the same issues
with regard to learning. We argue that a main challenge is
to pinpoint representational schemes that enable neural
circuits to represent uncertainty for both perception and
learning, and compare and critically evaluate existing
proposals for such representational schemes. Finally, we
review a seemingly disparate set of findings regarding
variability of evoked neural responses and spontaneous
activity in the cortex and suggest that these phenomena
can be interpreted as part of a representational framework
that supports statistically optimal inference and learning.
Probabilistic perception: representing uncertainty,
behavioral and neural evidence
At the level of immediate processing, perception has long
been characterized as unconscious inference, where incom-
ing sensory stimuli are interpreted in terms of the objects
and features that gave rise to them [5]. Traditional
approaches treated perception as a series of classical signal
processing operations, by which each sensory stimulus
should give rise to a single perceptual interpretation [6].
However, because sensory input in general is noisy and
ambiguous, there is usually a range of different possible
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Glossary

Expected utility: the average expected reward associated with a particular

decision, a, when the state of the environment, y, is unknown. It can be

computed by calculating the average of the utility function, U(a, y), describing

the amount of reward obtained when making decision a if the true state of the

environment is y, with regard to the posterior distribution, p(yjx), describing

the degree of belief about the state of the environment given some sensory

input, x: R(a) = R U(a, y) p(yjx) dy.

Likelihood: the function specifying the probability p(xjy,M) of observing a

particular stimulus x for each possible state of the environment, y, under a

probabilistic model of the environment, M.

Marginalization: the process by which the distribution of a subset of variables,

y1, is computed from the joint distribution of a larger set of variables, {y1, y2}:

p(y1) = R p(y1, y2) dy2. (This could be important if, for example, different

decisions rely on different subsets of the same set of variables.) Importantly, in

a sampling-based representation, in which different neurons represent these

different subsets of variables, simply ‘‘reading’’ (e.g. by a downstream brain

area) the activities of only those neurons that represent y1 automatically

implements such a marginalization operation.

Maximum a posteriori (or MAP) estimate: in the context of probabilistic

inference, it is an approximation by which instead of representing the full

posterior distribution, only a single value of y is considered that has the

highest probability under the posterior. (Formally, the full posterior is

approximated by a Dirac-delta distribution, an infinitely narrow Gaussian,

located at its maximum.) As a consequence, uncertainty about y is no longer

represented.

Maximum likelihood estimate: as the MAP estimate, it is also an approxima-

tion, but the full posterior is approximated by the single value of y which has

the highest likelihood.

Posterior: the probability distribution p(yjx,M) produced by probabilistic

inference according to a particular probabilistic model of the environment,

M, giving the probability that the environment is in any of its possible states, y,

when stimulus x is being observed.

Prior: the probability distribution p(yjM) defining the expectation about the

environment being in any of its possible states, y, before any observation is

available according to a probabilistic model of the environment, M.

Probabilistic inference: the process by which the posterior is computed. It

requires a probabilistic model, M, of stimuli x and states of the environment y,

containing a prior and a likelihood. It is necessary when environmental states

are not directly available to the observer: they can only be inferred from stimuli

through inverting the relationship between y and x through Bayes’ rule:

p(yjx,M) = p(xjy,M) p(yjM)/Z, where Z is a factor independent of y, ensuring

that the posterior is a well-defined probability distribution. Note, that the

posterior is a full probability distribution, rather than a single estimate over

environmental states, y. In contrast with approximate inference methods, such

as maximum likelihood or maximum a posteriori that compute single best

estimates of y, the posterior fully represents the uncertainty about the inferred

variables.

Probabilistic learning: the process of finding a suitable model for probabilistic

inference. This itself can be viewed as a problem of probabilistic inference at a

higher level, where the unobserved quantity is the model, M, including its

parameters and structure. Thus, the complete description of the results of

probabilistic learning is a posterior distribution, p(MjX), over possible models

given all stimuli observed so far, X. Even though approximate versions, such

as maximum likelihood or MAP, compute only a single best estimates of M,

they still need to rely on representing uncertainty about the states of the

environment, y. The effect of learning is usually a gradual change in the

posterior (or estimate) as more and more stimuli are observed, reflecting the

incremental nature of learning.
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interpretations compatible with any given input. A well-
known example is the ambiguity caused by the formation of
a two-dimensional image on our retina by objects that are
three-dimensional in reality (Figure 1a). When such
multiple interpretations arise, the mathematically appro-
priate way to describe them is to assign a probability value
to each of them that expresses how much one believes that
a particular interpretation might reflect the true state of
the world [7], such as the true three-dimensional shape of
an object in Figure 1a. Although the principles of prob-
ability theory have been established and applied to study-
ing economic decision-making for centuries [8], only
recently has their relevance to perception been appreci-
ated, causing a quiet paradigm shift from signal processing
120
to probabilistic inference as the appropriate theoretical
framework for studying perception.

Evidence has been steadily growing in recent years that
the nervous system represents its uncertainty about the
true state of theworld in a probabilistically appropriateway
and uses such representations in two cognitively relevant
domains: information fusion and perceptual decision-mak-
ing. When information about the same object needs to be
fused from several sources, inferences about the object
should rely on these sources commensurate with their
associated uncertainty. That is, more uncertain sources
shouldbe relied upon less (Figure1b). Suchprobabilistically
optimal fusion has been demonstrated in multisensory
integration [9,10] when the different sources are different
sensory modalities, and also between information coming
from the senses and being stored in memory [11,12].

Probabilistic representations are also key to decision-
making under risk and uncertainty [13]. Making a well-
informed decision requires knowledge about the true state
of the world. When there is uncertainty about the true
state, then the decision expected to yield the most reward
(or utility) can be computed by weighing the reward associ-
ated with each possible state of the world with their
probabilities (Figure 1c). Indeed, several studies demon-
strated that, in simple sensory and motor tasks, humans
and animals do take into account their uncertainty in such
a way [14].

The compelling evidence at the level of behavior that
humans and animals represent uncertainty during percep-
tual processes initiated intense research into the neural
underpinnings of such probabilistic representations. The
two main questions that have been addressed is how
sensory stimuli are represented in a probabilistic manner
by neural cell populations (i.e. how neural activities encode
probability distributions over possible states of the sensory
world), and how the dynamics of neural circuits implement
appropriate probabilistic inference with these representa-
tions [15,16]. As a result, there has been a recent surge of
converging experimental and theoretical work on the
neural bases of statistically optimal inference. This work
has shown that the activity of groups of neurons in particu-
lar decision tasks can be related to probabilistic repres-
entations and that dynamical changes in neural activities
are consistent with probabilistic computations with the
represented variables [4,17].

In summary, the study of perception as probabilistic
inference, for which the key is the representation of uncer-
tainty, provides an exemplary synthesis of a sound theor-
etical background with behavioral as well as neural
evidence.

Probabilistic learning: representing uncertainty
In contrast to immediate processing during perception, the
probabilistic approach to learning has been less explored in
a neurobiological context. This is surprising given the fact
that, from a computational standpoint, probabilistic infer-
ence based on sensory input is always made according to a
model of the sensory environment which typically needs to
be acquired by learning (Figure 2). Thus, the goal of
probabilistic learning can be defined as acquiring appro-
priate models for inference based on past experience.



Figure 1. Representation of uncertainty and its benefits. (a) Sensory information is inherently ambiguous. Given a two-dimensional projection on a surface (e.g. a retina), it

is impossible to determine which of the three different three-dimensional wire frame objects above cast the image (adapted with permission from [96]). (b) Cue integration.

Independent visual and haptic measurements (left) support to different degrees the three possible interpretations of object identity (middle). Integrating these sources of

information according to their respective uncertainties provides an optimal probabilistic estimate of the correct object (right). (c) Decision-making. When the task is to

choose the bag with the right size for storing an object, uncertain haptic information needs to be utilized probabilistically for optimal choice (top left). In the example shown,

the utility function expresses the degree to which a combination of object and bag size is preferable: for example, if the bag is too small, the object will not fit in, if it is too

large, we are wasting valuable bag space (bottom left, top right). In this case, rather than inferring the most probable object based on haptic cues and then choosing the bag

optimal for that object (in the example, the small bag for the cube), the probability of each possible object needs to be weighted by its utility and the combination with the

highest expected utility (R) has to be selected (in the example, the large bag has the highest expected utility). Evidence shows that human performance in cue combination

and decision-making tasks is close to optimal [10,97].
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Importantly, just as perception can be formalized as infer-
ring hidden states, variables, of the environment from the
limited information provided by sensory input (e.g. infer-
ring the true three-dimensional shape and size of the seat
of a chair from its two-dimensional projection on our
retinae), learning can be formalized as inferring somemore
persistent hidden characteristics, parameters, of the
environment based on limited experience. These infer-
ences could target concrete physical parameters of objects,
such as the typical height or width of a chair, or more
abstract descriptors, such as the possible categories to
which objects can belong (e.g. chairs and tables) (Figure 2).

There are two different ways in which representing
uncertainty is important for learning. First, learning about
our environment modifies the perceptual inferences we
draw from a sensory stimulus. That is, the same stimulus
gives rise to different uncertainties after learning. For
example, having learned about the geometrical properties
of chairs and tables allows us to increase our confidence
that an unusually looking stool is really more of a chair
than a table (Figure 2). At the neural level, this constrains
learning mechanisms to change neural activity patterns
such that they correctly encode the ensuing changes in
perceptual uncertainty, thus keeping the neural repres-
entation of uncertainty self-consistent before and after
learning. Second, representing uncertainty does not just
constrain but also benefits learning. For example, if there
is uncertainty as to whether an object is a chair or a table,
our models for both of these categories should be updated,
rather than only updating the model of the most probable
category (Figure 2). Crucially, the optimal magnitude of
these updates depends directly (and inversely) on the
uncertainty about the object belonging to each category:
the model of the more probable category should be updated
to a larger degree [18].

Thus, probabilistic perception implies that learning
must also be probabilistic in nature. Therefore, we now
examine behavioral and neural evidence for probabilistic
learning.

Probabilistic learning: behavioral level
Evidence for humans and animals being sensitive to the
probabilistic structure of the environment ranges from
low-level perceptual mechanisms, such as visual grouping
mechanisms conforming with the co-occurrence statistics
of line edges in natural scenes [19], to high-level cognitive
decisions such as humans’ remarkably precise predictions
about the expected life time of processes as diverse as cake
baking or marriages [20]. A recent survey demonstrated
how research in widely different areas ranging from clas-
sical forms of animal learning to human learning of sen-
sorimotor tasks found evidence of probabilistic learning
[21]. It has been found that configural learning in animals
[22], causal learning in rats [23] as well as in human
infants [24] and a vast array of inductive learning phenom-
ena fit comfortably with a hierarchical probabilistic frame-
work, in which probabilistic learning is performed at
increasingly higher levels of abstraction [25].
121



Figure 2. The link between probabilistic inference and learning. (Top row) Developing internal models of chairs and tables. The plot shows the distribution of parameters (two-

dimensional Gaussians, represented by ellipses) and object shapes for the two categories. (Middle row) Inferences about the currently viewed object based on the input and the

internal model. (Bottom row) Actual sensory input. Red color code represents the probability of a particular object part being present (see color scale on top left). T1–T4, four

successive illustrative iterations of the inference–learning cycle. (T1) The interpretation of a natural scene requires combining information from the sensory input (bottom) and

the internal model (top). Based on the internal models of chairs and tables, the input is interpreted with high probability (p = 0.9) as a chair with a typical size but missing

crossbars (middle). (T2) The internal model of the world is updated based on the cumulative experience of previous inferences (top). The chair in T1, being a typical example of a

chair, requires minimal adjustments to the internal model. Experience with more unusual instances, as for example the high chair in T2, provokes more substantial changes (T3,

top). (T3) The representation of uncertainty allows to update the internal model taking into account all possible interpretations of the input. In T3, the stimulus is ambiguous as it

could be interpreted as a stool, or a square table. The internal model needs to be updated by taking into account the relative probability of the two interpretations: that there exist

tables with a more square shape or that some chairs miss the upper part. Since both probabilities are relatively high, both internal models will be modified substantially during

learning (see the change of both ellipses). (T4) After learning, the same input as in T1 elicits different responses owing to changes in the internal model. In T4, the input is

interpreted as a chair with significantly higher confidence, as experience has shown that chairs often lack the bottom crossbars.
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Aparticularly direct line of evidence for humans learning
complex, high-dimensional distributions of many variables
by performing higher-order probabilistic learning, not just
naı̈ve frequency-based learning, comes from the domain of
visual statistical learning (Box 1). An analysis of a series of
visual statistical learning experiments showed that beyond
the simplest results, recursive pairwise associative learning
is inadequate for replicating human performance, whereas
Bayesian probabilistic learning not only accurately repli-
cates these results but it makes correct predictions about
human performance in new experiments [26].

These examples suggest a common core representational
and learning strategy for animals and humans that shows
remarkable statistical efficiency. However, such behavioral
studies provide no insights as to how these strategies might
be implemented in the neural circuitry of the cortex.

Probabilistic learning in the cortex: neural level
Although psychophysical evidence has been steadily grow-
ing, there is little direct electrophysiological evidence
showing that learning and development in neural systems
is optimal in a statistical sense even though the effect of
122
learning on cortical representations has been investigated
extensively [27,28]. One of the main reasons for this is that
there have been very few plausible computational models
proposed for a neural implementation of probabilistic
learning that would provide easily testable predictions
(but see Refs [29,30]). Here, we give a brief overview of
the computational approaches developed to capture prob-
abilistic learning in neural systems and discuss why they
are unsuitable in their current form for being tested in
electrophysiological experiments.

Classical work on connectionist models aimed at devis-
ing neural networks with simplified neural-like units that
could learn about the regularities hidden in a stimulus
ensemble [31]. This line of research has been developed
further substantially and demonstrated explicitly how
dynamical interactions between neurons in these networks
correspond to computing probabilistic inferences, and how
the tuning of synaptic weights corresponds to learning the
parameters of a probabilistic model of input stimuli [32–

34]. A key common feature in these statistical neural net-
works is that inference and learning are inseparable:
inference relies on the synaptic weights encoding a useful



Box 1. Visual statistical learning in humans

In experimental psychology, the term ‘‘statistical learning’’ refers to a

particular type of implicit learning that emerged from investigating

artificial grammar learning. It is fundamentally different from traditional

perceptual learning and was first used in the domain of infant language

acquisition [72]. The paradigm has been adapted from auditory to other

sensory modalities such as touch and vision, to different species and

various aspects of statistical learning have been explored such as

multimodal interactions [73], effects of attention, interaction with

abstract rule learning [74], together with its neural substrates [75].

The emerging consensus based on these studies is that statistical

learning is a domain-general, fundamental learning ability of humans

and animals that is probably a major component of the process by

which internal representations of the environment are developed.

The basic idea of the statistical learning paradigm is to create an

artificial mini-world by using a set of building blocks to generate

several composite inputs that represent possible instances in this

world. In the case of visual statistical learning (VSL), artificial visual

scenes are composed from abstract shape elements where the

building blocks are two or more such shapes always appearing in

the same relative configuration (Figure I). An implicit learning

paradigm is used to test how internal visual representations emerge

through passively observing a large number of such composite

scenes without any instruction as to what to pay attention to. After

being exposed to the scenes, when subjects have to choose between

two fragments of shape combinations based on familiarity, they

reliably more often choose fragments that were true building blocks

of the scenes compared to random combinations of shapes [76].

Similar results were found in 8-month-old infants [77,78] suggesting

that humans from an early age can automatically extract the

underlying structure of an unknown sensory data set based purely

on statistical characteristics of the input.

Investigations of VSL provided evidence of increasingly sophisti-

cated aspects of this learning, setting it apart from simple frequency-

based naı̈ve learning methods. Subjects not only automatically

become sensitive to pairs of shapes that appear more frequently

together, but also to pairs with elements that are more predictive of

each other even when the co-occurrence of those elements is not

particularly high [76]. Moreover, this learning highly depends on

whether or not a pair of elements is a part of a larger building

structure, such as a quadruple [79]. Thus, it appears that human

statistical learning is a sophisticated mechanism that is not only

superior to pairwise associative learning but also potentially capable

to link appearance-based simple learning and higher-level ‘‘rule-

learning’’ [26].

Figure I. Visual statistical learning. (a) An inventory of visual chunks is defined as a set of two or more spatially adjacent shapes always co-occurring in scenes. (b) Sample

artificial scenes composed of multiple chunks that are used in the familiarization phase. Note that there are no obvious low-level segmentation cues giving away the identity of

the underlying chunks. (c) During the test phase, subjects are shown pairs of segments that are either parts of chunks or random combinations (segments on the top). The

three histograms show different statistical conditions. (Top) There is a difference in co-occurrence frequency of elements between the two choices; (middle) co-occurrence is

equated, but there is difference in predictability (the probability of one symbol given that the other is present) between the choices; (bottom) both co-occurrence and

predictability are equated between the two choices, but the completeness statistics (what percentage of a chunk in the inventory is covered by the choice fragment) is different

– one pair is a standalone chunk, the other is a part of a larger chunk. Subjects were able to use cues in any of these conditions, as indicated by the subject preferences below

each panel. These observations can be accounted for by optimal probabilistic learning, but not by simpler alternatives such as pairwise associative learning (see text).
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probabilistic model of the environment, whereas learning
proceeds by using the inferences produced by the network
(Figure 3a).

Although statistical neural networks have considerably
grown in sophistication and algorithmic efficiency in recent
years [35], providing cutting-edge performance in some
challenging real-world machine learning tasks, much less
attention has been devoted to specifying their biological
substrates. At the level of general insights, these models
suggestedways in which internally generated spontaneous
activity patterns (‘‘fantasies’’) that are representative of
the probabilistic model encoded by the neural network can
have important roles in the fine tuning of synapses during
off-line periods of functioning. They also clarified that
123



Figure 3. Neural substrates of probabilistic inference and learning. (a) Functional mapping of learning and inference onto neural substrates in the cortex. (b) Probabilistic

inference for natural images. (Top) A toy model of the early visual system (based on Ref. [43]). The internal model of the environment assumes that visual stimuli, x, are

generated by the noisy linear superposition of two oriented features with activation levels, y1 and y2. The task of the visual system is to infer the activation levels, y1 and y2,

of these features from seeing only their superposition, x. (Bottom left) The prior distribution over the activation of these features, y1 and y2, captures prior knowledge about

how much they are typically (co-)activated in images experienced before. In this example, y1 and y2 are expected to be independent and sparse, which means that each

feature appears rarely in visual scenes and independently of the other feature. (Bottom middle) The likelihood function represents the way the visual features are assumed

to combine to form the visual input under our model of the environment. It is higher for feature combinations that are more likely to underlie the image we are seeing

according to the equation on the top. (Bottom right) The goal of the visual system is to infer the posterior distribution over y1 and y2. By Bayes’ theorem, the posterior

optimally combines the expectations from the prior with the evidence from the likelihood. Maximum a posteriori (MAP) estimate, used by some models [40,43,47], denoted

by a + in the figure neglects uncertainty by using only the maximum value instead of the full distribution. (c) Simple demonstration of two probabilistic representational

schemes. (Black curve) The probability distribution of variable y to be represented. (Red curve) Assumed distribution by the parametric representation. Only the two

parameters of the distribution, the mean m and variance s are represented. (Blue ‘‘x’’-s and bars) Samples and the histogram implied by the sampling-based representation.
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useful learning rules for such tuning always include Heb-
bian as well as anti-Hebbian terms [32,33]. In addition,
several insightful ideas about the roles of bottom-up,
recurrent, and top-down connections for efficient inference
and learning have also been put forward [36–38], but they
were not specified at a level that would allow direct exper-
imental tests.

Learning internal models of natural images has
traditionally been one area where the biological relevance
of statistical neural networks was investigated. As these
studies aimed at explaining the properties of early sensory
areas, the ‘‘objects’’ they learned to infer were simple
localized and oriented filters assumed to interact mostly
additively in creating images (Figure 3b). Although these
representations are at a lower level than the ‘‘true’’ objects
constituting our environment (such as chairs and tables)
that typically interact in highly non-linear ways as they
form images (owing to e.g. occlusion [39]), the same prin-
ciples of probabilistic inference and learning also apply to
this level. Indeed, several studies showed how probabilistic
learning of natural scene statistics leads to representa-
tions that are similar to those found in simple and complex
cells of the visual cortex [40–44]. Although some early
studies were not formulated originally in a statistical
framework [40,41,43], later theoretical developments
showed that their learning algorithms were in fact special
cases of probabilistic learning [45,46].

The general method of validation in these learning
studies almost exclusively concentrated on comparing
the ‘‘receptive field’’ properties of model units with those
of sensory cortical neurons and showing a good match
between the two. However, as the emphasis in many of
these models is on learning, the details of the mapping of
124
neural dynamics to inference were left implicit (with some
notable exceptions [44,47]). In cases where inference has
been defined explicitly, neurons were usually assumed to
represent single deterministic (so-called ‘‘maximum a pos-
teriori’’) estimates (Figure 3b). This failure to represent
uncertainty is not only computationally harmful for infer-
ence, decision-making and learning (Figures 1–2) but it is
also at odds with behavioral data showing that humans
and animals are influenced by perceptual uncertainty.
Moreover, this approach constrains predictions to be made
only about receptive fields which often says little about
trial-by-trial, on-line neural responses [48].

In summary, presently a main challenge in probabilistic
neural computation is to pinpoint representational
schemes that enable neural networks to represent uncer-
tainty in a physiologically testable manner. Specifically,
learning with such representations on naturalistic input
should provide verifiable predictions about the cortical
implementation of these schemes beyond receptive fields.

Probabilistic representations in the cortex for inference
and learning
The conclusion of this review so far is that identifying the
neural representation of uncertainty is key for understand-
ing how the brain implements probabilistic inference and
learning. Crucially, because inference and learning are
inseparable, a viable candidate representational scheme
should be suitable for both. In line with this, evidence is
growing that perception and memory-based familiarity
processes once thought to be linked to anatomically clearly
segregated cortical modules along the ventral pathway of
the visual cortex could rely on integrated multipurpose
representations within all areas [49]. In this section, we
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review the two main classes of probabilistic representa-
tional schemes that are the best candidates for providing
neural predictions and investigate their suitability for
inference and learning.

Theoretical proposals of how probabilities can be
represented in the brain fall into two main categories:
schemes in which neural activities represent parameters
of the probability distribution describing uncertainty in
sensory variables, and schemes under which neurons
represent the sensory variables themselves, such as
models based on sampling. A simple example highlighting
the core differences between the two approaches can be
given by describing our probabilistic beliefs about the
height of a chair (as in Figure 2). A parameter-based
description starts with assuming that these beliefs can
be described by one particular type of probability distri-
bution, for example a Gaussian, and then specifies values
for the relevant parameters of this distribution, for
example the mean and (co)variance (describing our aver-
age prediction about the height of the chair and the ‘‘error
bars’’ around it) (Figure 3c). A sampling-based description
does not require that our beliefs can be described by one
particular type of probability distribution. Rather, it spe-
cifies a series of possible values (samples) for the vari-
able(s) of interest themselves, here the height of the
particular chair viewed, such that if one constructed a
histogram of these samples, this histogram would even-
tually trace out the probability distribution actually
describing our beliefs (Figure 3c).

Probabilistic population codes (PPCs) are well-known
examples of parameter-based descriptions and they are
widely used for probabilistic modeling of inference making
[16]. Recently, neurophysiological support for PPCs in
cortical areas related to decision-making was also reported
[50]. The key concept in PPCs, just as in their predecessors,
kernel density estimator codes [51] and distributional
population codes [15], is that neural activities encode
parameters of the probability distribution that is the result
of probabilistic inference (Box 2). As a consequence, a full
probability distribution is represented at any moment in
time and therefore changes in neural activities encode
dynamically changing distributions as inferences are
updated based on continuously incoming stimuli. Several
recent studies explored how such representations can be
used for optimal perceptual inference and decision-making
in various tasks [52]. However, a main shortcoming of
PPCs is that, at present, there is no clear option to imple-
ment learning within this framework.

The alternative, sampling-based approach to represent-
ing probability distributions is based on the idea that each
neuron represents an individual variable from a high-
dimensional multivariate distribution of external vari-
ables, and, therefore, each possible pattern of network
activities corresponds to a point in this multivariate ‘‘fea-
ture’’ space (Box 2). Uncertainty is naturally encoded by
network dynamics that stochastically explore a series of
neural activity patterns such that the corresponding fea-
tures are sampled according to the particular distribution
that needs to be represented. Importantly, there exist
worked out examples of how learning can be implemented
in this framework: almost all the classical statistical
neural networks have already been using this representa-
tional scheme implicitly [32,33,37]. The deterministic
representations used in some of the most successful stat-
istical receptive field models [42,43] can also be conceived
as approximate versions of the sampling-based representa-
tional approach.

Despite its appeal for learning, there have been rela-
tively few attempts to explicitly articulate the predictions
of a sampling-based representational scheme for neural
activities [53–55]. On the level of general predictions,
sampling models provide a natural explanation for neural
variability and co-variability [56], as stochastic samples
vary in order to represent uncertainty. They also provide
an account of bistable perception, and its neural correlates
[57]: multiple interpretations of the input correspond to
multiple modes in the probability distribution over fea-
tures; sequential sampling from such a distribution would
produce in alternation samples from one of the peaks, but
not from both at the same time [54,58]. Although to date
there is no direct electrophysiological evidence reinforcing
the idea that the cortex represents distributions through
samples, sampling-based representations have been
recently invoked to account for several psychophysical
and behavioral phenomena including stochasticity in
learning, language processing and decision-making [59–

61].
Thus, although sampling-based representations are a

promising alternative to PPCs, their neurobiological rami-
fications are much less explored at present. In the next
section, we turn to spontaneous activity in the cortex, a
phenomenon so far not discussed in the context of neural
representation of uncertainty, and review its potential role
in developing a sound theory of sampling- based models of
probabilistic neural coding.

Spontaneous activity and sampling-based
representations
Modeling neural variability in evoked responses is an
important first step in going beyond the modeling of recep-
tive fields, and it is increasingly recognized as a critical
benchmark for models of cortical functioning, including
those positing probabilistic computations [16,48]. Another
major challenge in this direction is to accommodate spon-
taneous activity recorded in the awake nervous system
without specific stimulation (Box 3). From a signal proces-
sing standpoint, spontaneous activity has been long con-
sidered as nuisance elicited by various aspects of stochastic
neural activity [62], even though some proposals exist that
discuss potential benefits of noise in the nervous system
[63]. However, several recent studies showed that the level
of spontaneous activity is surprisingly high in some areas,
and that it has a pattern highly similar to that of stimulus-
evoked activity (Box 3). These findings suggest that a very
large component of high spontaneous activity is probably
not noise but might have a functional role in cortical
computation [64,65].

Under a sampling-based representational account,
spontaneous activity could have a natural interpretation.
In a probabilistic framework, if neural activities represent
samples from a distribution over external variables, this
distribution must be the so-called ‘‘posterior distribution’’.
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Box 2. Probabilistic representational schemes for inference and learning

Representing uncertainty associated with sensory stimuli requires

neurons to represent the probability distribution of the environmental

variables that are being inferred. One class of schemes called

probabilistic population codes (PPCs) assumes that neurons corre-

spond to parameters of this distribution (Figure Ia). A simple but

highly unfeasible version of this scheme would be if different neurons

encoded the elements of the mean vector and covariance matrix of a

multivariate Gaussian distribution. At any given time, the activities of

neurons in PPCs provide a complete description of the distribution by

determining its parameters, making PPCs and other parametric

representational schemes particularly suitable for real-time inference

[80–82]. Given that, in general, the number of parameters required to

specify a multivariate distribution scales exponentially with the

number of its variables, a drawback of such schemes is that the

number of neurons needed in an exact PPC representation would be

exponentially large and with fewer neurons the representation

becomes approximate. Characteristics of the family of representable

probability distributions by this scheme are determined by the

characteristics of neural tuning curves and noisiness [16] (Table I).

An alternative scheme to represent probability distributions in

neural activities is based on each neuron corresponding to one of the

inferred variables. For example, each neuron can encode the value of

one of the variables of a multivariate Gaussian distribution. In

particular, the activity of a neuron at any time can represent a sample

from the distribution of that variable and a ‘‘snapshot’’ of the activities

of many neurons therefore can represent a sample from a high-

dimensional distribution (Figure Ib). Such a representation requires

time to take multiple samples (i.e. a sequence of firing rate

measurements) for building up an increasingly reliable estimate of

the represented distribution which might be prohibitive for on-line

inference, but it does not require exponentially many neurons and —

given enough time — it can represent any distribution (Table I). A

further advantage of collecting samples is that marginalization, an

important case of computing integrals that infamously plague

practical Bayesian inference, learning and decision-making, becomes

a straightforward neural operation. Finally, although it is unclear how

probabilistic learning can be implemented with PPCs, sampling based

representations seem particularly suitable for it (see main text).

Figure I. Two approaches to neural representations of uncertainty in the cortex. (a) Probabilistic population codes rely on a population of neurons that are tuned to the

same environmental variables with different tuning curves (populations 1 and 2, colored curves). At any moment in time, the instantaneous firing rates of these neurons

(populations 1 and 2, colored circles) determine a probability distribution over the represented variables (top right panel, contour lines), which is an approximation of

the true distribution that needs to be represented (purple colormap). In this example, y1 and y2, are independent, but in principle, there could be a single population with

neurons tuned to both y1 and y2. However, such multivariate representations require exponentially more neurons (see text and Table I). (b) In a sampling based

representation, single neurons, rather than populations of neurons, correspond to each variable. Variability of the activity of neurons 1 and 2 through time represents

uncertainty in environmental variables. Correlations between the variables can be naturally represented by co-variability of neural activities, thus allowing the

representation of arbitrarily shaped distributions.

Table I. Comparing characteristics of the two main modeling approaches to probabilistic neural representations

PPCs Sampling-based

Neurons correspond to Parameters Variables

Network dynamics required (beyond the first layer) Deterministic Stochastic (self-consistent)

Representable distributions Must correspond to a particular

parametric form

Can be arbitrary

Critical factor in accuracy of encoding a distribution Number of neurons Time allowed for sampling

Instantaneous representation of uncertainty Complete, the whole distribution is

represented at any time

Partial, a sequence of samples

is required

Number of neurons needed for representing

multimodal distributions

Scales exponentially with the

number of dimensions

Scales linearly with the number of

dimensions

Implementation of learning Unknown Well-suited
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Box 3. Spontaneous activity in the cortex

Spontaneous activity in the cortex is defined as ongoing neural activity

in the absence of sensory stimulation [83]. This definition is the clearest

in the case of primary sensory cortices where neural activity has

traditionally been linked very closely to sensory input. Despite some

early observations that it can influence behavior, cortical spontaneous

activity has been considered stochastic noise [84]. The discovery of

retinal and later cortical waves [85] of neural activity in the maturing

nervous system has changed this view in developmental neuroscience,

igniting an ongoing debate about the possible functional role of such

spontaneous activity during development [86].

Several recent results based on the activities of neural populations

initiated a similar shift in view about the role of spontaneous activity

in the cortex during real-time perceptual processes [65]. Imaging and

multi-electrode studies showed that spontaneous activity has large

scale spatiotemporal structure over millimeters of the cortical surface,

that the mean amplitude of this activity is comparable to that of

evoked activity and it links distant cortical areas together [64,87,88]

(Figure I). Given the high energy cost of cortical spike activity [89],

these findings argue against the idea of spontaneous activity being

mere noise. Further investigations found that spontaneous activity

shows repetitive patterns [90,91], it reflects the structure of the

underlying neural circuitry [67], which might represent visual

attributes [66], that the second order correlational structure of

spontaneous and evoked activity is very similar and it changes

systematically with age [64]. Thus, cell responses even in primary

sensory cortices are determined by the combination of spontaneous

and bottom-up, external stimulus-driven activity.

The link between spontaneous and evoked activity is further

promoted by findings that after repetitive presentation of a sensory

stimulus, spontaneous activity exhibits patterns of activity reminis-

cent to those seen during evoked activity [92]. This suggests that

spontaneous activity might be altered on various time scales leading

to perceptual adaptation and learning. These results led to an

increasing consensus that spontaneous activity might have a func-

tional role in perceptual processes that is related to internal states of

cell assemblies in the brain, expressed via top-down effects that

embody expectations, predictions and attentional processes [93] and

manifested in modulating functional connectivity of the network [94].

Although there have been theoretical proposals of how bottom-up

and top-down signals could jointly define perceptual processes

[55,95], the rigorous functional integration of spontaneous activity

in such a framework has emerged only recently [53].

Figure I. Characteristics of cortical spontaneous activity. (a) There is a significant correlation between the orientation map of the primary visual cortex of anesthetized

cat (left panel), optical image patterns of spontaneous (middle panel) and visually evoked activities (right panel) (adapted with permission from [66]). (b) Correlational

analysis of BOLD signals during resting state reveals networks of distant areas in the human cortex with coherent spontaneous fluctuations. There are large scale

positive intrinsic correlations between the seed region PCC (yellow) and MPF (orange) and negative correlations between PCC and IPS (blue) (adapted with permission

from [98]). (c) Reliably repeating spike triplets can be detected in the spontaneous firing of the rat somatosensory cortex by multielectrode recording (adapted with

permission from [91]). (d) Spatial correlations in the developing awake ferret visual cortex of multielectrode recordings show a systematic pattern of emerging strong

correlations across several millimeters of the cortical surface and very similar correlational patterns for dark spontaneous (solid line) and visually driven conditions

(dotted and dashed lines for random noise patterns and natural movies, respectively) (adapted with permission from [64]).
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The posterior distribution is inferred by combining infor-
mation from two sources: the sensory input, and the prior
distribution describing a priori beliefs about the sensory
environment (Figure 3b). Intuitively, in the absence of
sensory stimulation, this distribution will collapse to the
prior distribution, and spontaneous activity will represent
this prior (Figure 4).

This proposal linking spontaneous activity to the prior
distribution has implications that can address many of the
issues developed in this review. It provides an account of
spontaneous activity that is consistent with one of its main
features: its remarkable similarity to evoked activity
[64,66,67]. A general feature of statistical models that
are appropriately describing their inputs is that the prior
distribution and the average posterior distribution closely
match each other [68]. Thus, if evoked and spontaneous
activities represent samples from the posterior and prior
distributions, respectively, under an appropriate model of
the environment, they are expected to be similar [53]. In
addition, spontaneous activity itself, as prior expectation,
should be sufficient to evoke firing in some cells without
sensory input, as was observed experimentally [67].

Statistical neural networks also suggest that sampling
from the prior can be more than just a byproduct of
probabilistic inference: it can be computationally advan-
tageous for the functioning of the network. In the absence
of stimulation, during awake spontaneous activity,
sampling from the prior can help with driving the network
close to states that are probable to be valid inferences once
input arrives, thus potentially shortening the reaction time
of the system [69]. This ‘‘priming’’ effect could present an
alternative account of why human subjects are able to sort
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Figure 4. Relating spontaneous activity in darkness to sampling from the prior,

based on the encoding of brightness in the primary visual cortex. (a) A statistically

more efficient toy model of the early visual system [47,99] (Figure 3b). An

additional feature variable, b, has a multiplicative effect on other features,

effectively corresponding to the overall luminance. Explaining away this

information removes redundant correlations thus improving statistical efficiency.

(b–c) Probabilistic inference in such a model results in a luminance-invariant

behavior of the other features, as observed neurally [100] as well as perceptually

[101]: when the same image is presented at different global luminance levels (left),

this difference is captured by the posterior distribution of the ‘‘brightness’’

variable, b (center), whereas the posterior for other features, such as y1 and y2,

remains relatively unaffected (right). (d) In the limit of total darkness (left), the

same luminance-invariant mechanism results in the posterior over y1 and y2

collapsing to the prior (right). In this case, the inferred brightness, b, is zero (center)

and as b explains all of the image content, there is no constraint left for the other

feature variables, y1 and y2 (the identity in a becomes 0 = 0 (y1�w1 + y2�w2), which is

fulfilled for every value of y1 and y2).

Box 4. Questions for future research

� Exact probabilistic computation in the brain is not feasible. What

are the approximations that are implemented in the brain and to

what extent can an approximate computation scheme still claim

that it is probabilistic and optimal?

� Probabilistic learning is presently described at the neural level as

a simple form of parameter learning (so-called maximum like-

lihood learning) at best. However, there is ample behavioral

evidence for more sophisticated forms of probabilistic learning,

such as model selection. These forms of learning require a

representation of uncertainty about parameters, or models, not

just about hidden variables. How do neural circuits represent

parameter uncertainty and implement model selection?

� Highly structured neural activity in the absence of external

stimulation has been observed both in the neocortex and in the

hippocampus, under the headings ‘‘spontaneous activity’’ and

‘‘replay’’, respectively. Despite the many similarities these

processes show there has been little attempt to study them in a

unified framework. Are the two phenomena related, is there a

common function they serve?

� Can a convergence between spontaneous and evoked activities be

predicted from premises that are incompatible with spontaneous

activity representing samples from the prior, for example with

simple correlational learning schemes?

� Can some recursive implementation of probabilistic learning link

learning of low-level attributes, such as orientations, with high-

level concept learning, that is, can it bridge the subsymbolic and

symbolic levels of computation?

� What is the internal model according to which the brain is

adapting its representation? All the probabilistic approaches have

preset prior constraints that determine how inference and

learning will work. Where do these constraints come from? Can

they be mapped to biological quantities?
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images into natural/non-natural categories in a matter of
�150 ms [70], which is traditionally taken as evidence for
the dominance of feed-forward processing in the visual
system [71]. Finally, during off-line periods, such as sleep-
ing, sampling from the prior could have a role in tuning
synaptic weights thus contributing to the refinement of the
internal model of the sensory environment as suggested by
statistical neural network models [32,33].

Importantly, the proposal that spontaneous activity
represents samples from the prior also provides a way to
test a direct link between statistically optimal inference
and learning. A match between the prior and the average
posterior distribution in a statistical model is expected to
develop gradually as learning proceeds [68], and this gra-
dual match could be tracked experimentally by comparing
128
spontaneous and evoked population activities at successive
developmental stages. Such testable predictions can
confirm if sampling-based representations are present in
the cortex and verify the proposed link between spon-
taneous activity and sampling-based coding.

Concluding remarks and future challenges
In this review, we have argued that in order to develop a
unified framework that can link behavior to neural pro-
cesses of both inference and learning, a key issue to resolve
is the nature of neural representations of uncertainty in
the cortex. We compared potential candidate neural codes
that could link behavior to neural implementations in a
probabilistic way by implementing computations with and
learning of probability distributions of environmental fea-
tures. Although explored to different extents, these coding
frameworks are all promising candidates, yet each of them
has shortcomings that need to be addressed in future
research (Box 4). Research on PPCs needs to make viable
proposals on how learning could be implemented with such
representations, whereas themain challenge for sampling-
based methods is to demonstrate that this scheme could
work for non-trivial, dynamical cases in real time.

Most importantly, a tighter connection between
abstract computational models and neurophysiological
recordings in behaving animals is needed. For PPCs, such
interactions between theoretical and empirical investi-
gations have just begun [50]; for sampling-based methods
it is still almost non-existent beyond the description of
receptive fields. Present day data collection methods, such
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as modern imaging techniques and multi-electrode record-
ing systems, are increasingly available to provide the
necessary experimental data for evaluating the issues
raised in this review. Given the complex and non-local
nature of computation in probabilistic frameworks, the
main theoretical challenge remains to map abstract prob-
abilistic models to neural activity in awake behaving
animals to further our understanding of cortical repres-
entations of inference and learning.
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