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Abstract

The development of sensory receptive fields has been modeled in the past by a

variety of models including normative models such as sparse coding or indepen-

dent component analysis and bottom-up models such as spike-timing dependent

plasticity or the Bienenstock-Cooper-Munro model of synaptic plasticity. Here we

show that the above variety of approaches can all be unified into a single common

principle, namely Nonlinear Hebbian Learning. When Nonlinear Hebbian Learning

is applied to natural images, receptive field shapes were strongly constrained by

the input statistics and preprocessing, but exhibited only modest variation across

different choices of nonlinearities in neuron models or synaptic plasticity rules.

Neither overcompleteness nor sparse network activity are necessary for the de-

velopment of localized receptive fields. The analysis of alternative sensory modal-

ities such as auditory models or V2 development lead to the same conclusions.

In all examples, receptive fields can be predicted a priori by reformulating an ab-

stract model as nonlinear Hebbian learning. Thus nonlinear Hebbian learning and

natural statistics can account for many aspects of receptive field formation across

models and sensory modalities.
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Introduction

Neurons in sensory areas of the cortex are optimally driven by stimuli with characteristic features

that define the ’receptive field’ of the cell. While receptive fields of simple cells in primary visual

cortex (V1) are localized in visual space and sensitive to the orientation of light contrast1, those

of auditory neurons are sensitive to specific time-frequency patterns in sounds2. The concept of a

receptive field is also useful when studying higher-order sensory areas, for instance when analyzing

the degree of selectivity and invariance of neurons to stimulus properties3,4.

The characteristic receptive fields of simple cells in V1 have been related to statistical properties

of natural images5. These findings inspired various models, based on principles as diverse as

sparse sensory representations6, optimal information transmission7, or synaptic plasticity8. Several

studies highlighted possible connections between biological and normative justifications of sensory

receptive fields9–12, not only in V1, but also in other sensory areas13, such as auditory14,15 and

secondary visual cortex (V2)16.

Since disparate models appear to achieve similar results, the question arises whether there ex-

ists a general underlying concept in unsupervised learning models15,17. Here we show that the

principle of nonlinear Hebbian learning is sufficient for receptive field development under rather gen-

eral conditions. The nonlinearity is defined by the neuron’s f-I curve combined with the nonlinearity

of the plasticity function. The outcome of such nonlinear learning is equivalent to projection pur-

suit18–20, which focuses on features with non-trivial statistical structure, and therefore links receptive

field development to optimality principles.

Here we unify and broaden the above concepts and show that plastic neural networks, sparse

coding models and independent component analysis can all be reformulated as nonlinear Hebbian

learning. For natural images as sensory input, we find that a broad class of nonlinear Hebbian rules

lead to orientation selective receptive fields, and explain how seemingly disparate approaches may

lead to similar receptive fields. The theory predicts the diversity of receptive field shapes obtained

in simulations for several different families of nonlinearities. The robustness to model assumptions

also applies to alternative sensory modalities, implying that the statistical properties of the input

strongly constrain the type of receptive fields that can be learned. Since the conclusions are robust

to specific properties of neurons and plasticity mechanisms, our results support the idea that synaptic

plasticity can be interpreted as nonlinear Hebbian learning, implementing a statistical optimization
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of the neuron’s receptive field properties.

Results

The effective Hebbian nonlinearity

In classic rate models of sensory development6,8,21, a first layer of neurons, representing the sensory

input x, is connected to a downstream neuron with activity y, through synaptic connections with

weights w (Fig. 1a). The response to a specific input is y = g(wTx), where g is the frequency-

current (f-I) curve. In most models of Hebbian plasticity22,23, synaptic changes ∆w of the connection

weights depend on pre- and post-synaptic activity, with a linear dependence on the pre-synaptic and

a nonlinear dependence on the post-synaptic activity, ∆w ∝ x h(y), in accordance with models of

pairing experiments10,24. The learning dynamics arise from a combination of the neuronal f-I curve

y = g(wTx) and the Hebbian plasticity function ∆w ∝ x h(y):

∆w ∝ x h(g(wTx)) = x f(wTx) (1)

where we define the effective Hebbian nonlinearity f := h ◦ g as the composition of the nonlinearity

in the plasticity rule and the neuron’s f-I curve. In an experimental setting, the pre-synaptic activity x

is determined by the set of sensory stimuli (influenced by, e.g., the rearing conditions during sensory

development25). Therefore, the evolution of synaptic strength, Eq. 1, is determined by the effective

nonlinearity f and the statistics of the input x.

Many existing models can be formulated in the framework of Eq. 1. For instance, in a clas-

sic study of simple-cell formation8, the Bienenstock-Cooper-Munro (BCM) model22 has a quadratic

plasticity nonlinearity, h(y) = y(y − θ), with a variable plasticity threshold θ, and a sigmoidal f-I

curve, σ(wTx), which combine into nonlinear Hebbian learning dynamics, ∆w ∝ x h(σ(wTx)).

More realistic cortical networks have dynamical properties which are not accounted for by rate

models. By analyzing state-of-the-art models of cortical neurons and synaptic plasticity, we in-

spected whether plastic spiking networks can be reduced to nonlinear Hebbian learning. We consid-

ered a generalized leaky integrate-and-fire model (GIF), which includes adaptation, stochastic firing
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and predicts experimental spikes with high accuracy26, and we approximate its f-I curve by a linear

rectifier, g(u) = a(u− θ)+, with slope a and threshold θ (Fig. 1b).

As a phenomenological model of synaptic plasticity grounded on experimental data27, we imple-

mented triplet spike-timing dependent plasticity (STDP)24. In this STDP model, the dependence of

long-term potentiation (LTP) upon two post-synaptic spikes induces in the corresponding rate model

a quadratic dependence on the post-synaptic rate, while long-term depression (LTD) is linear. The

resulting rate plasticity24 is h(y) = y2 − by, with an LTD factor b (post-synaptic activity threshold

separating LTD from LTP, Fig. 1c), similar to the classic BCM model8,22.

Composing the f-I curve of the GIF with the h(y) for the triplet plasticity model, we have an

approximation of the effective learning nonlinearity f = h ◦ g in cortical spiking neurons (Fig 1d),

that can be described as a quadratic rectifier, with LTD threshold given by θ1 = θ and LTP threshold

given by θ2 = θ+ b/a. Interestingly, the f-I slope a and LTD factor b are redundant parameters of the

learning dynamics: only their ratio counts in nonlinear Hebbian plasticity. Metaplasticity can control

the LTD factor24,28, thus regulating the LTP threshold.

If one considers a linear STDP model29,30 instead of the triplet STDP24, the plasticity curve is

linear23, as in standard Hebbian learning, and the effective nonlinearity is shaped by the properties

of the f-I curve (Fig. 2a).

Sparse coding as nonlinear Hebbian learning

Beyond phenomenological modeling, normative principles that explain receptive fields development

have been one of the goals of theoretical neuroscience31. Sparse coding6 starts from the assump-

tions that V1 aims at maximizing the sparseness of the activity in the sensory representation, and

became a well-known normative model to develop orientation selective receptive fields9,12,13. We

demonstrate that the algorithm implemented in the sparse coding model is in fact a particular exam-

ple of nonlinear Hebbian learning.

The sparse coding model aims at minimizing an input reconstruction error E = 1
2
||x−Wy||2 +

λS(y), under a sparsity constraint S with relative importance λ > 0. For K hidden neurons yj, such

a model implicitly assumes that the vector wj of feed-forward weights onto neuron j are mirrored by

hypothetical "reconstruction weights", W = [w1 . . .wK ]. The resulting encoding algorithm can be

recast as a neural model32, if neurons are embedded in a feedforward model with lateral inhibition,

4



f := h ◦ g
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Figure 1: The effective Hebbian nonlinearity of plastic cortical networks. (a) Receptive field
development between an input layer of neurons with activities xi, connected by synaptic projections
wi to a neuron with firing rate y, given by an f-I curve y = g(wTx)). Synaptic connections change
according to a Hebbian rule ∆wi ∝ xi h(y). (b) f-I curve (blue) of a GIF model26 of a pyramidal
neurons in response to step currents of 500 ms duration (dashed line: piece-wise linear fit, with
slope a = 143 Hz/nA and threshold θ = 0.08 nA). (c) Plasticity function of the triplet STDP model24

(blue), fitted to visual cortex plasticity data24,27, showing the weight change ∆wi as a function of
the post-synaptic rate y, under a constant pre-synaptic stimulation xi (dashed line: fit by quadratic
function, with LTD factor b = 22.1 Hz). (d) The combination of the f-I curve and plasticity function
generates the effective Hebbian nonlinearity (dashed line: quadratic nonlinearity with LTD threshold
θ1 = 0.08 nA, LTP threshold θ2 = 0.23 nA).

y = g(wTx − vTy), where v are inhibitory recurrent synaptic connections (see Methods). In the

case of a single output neuron, its firing rate is simply y = g(wTx). The nonlinearity g of the f-I curve

is threshold-like, and determined by the choice of the sparsity constraint32, such as the Cauchy, L0

, or L1 constraints (Fig 2a, see Methods).

If weights are updated through gradient descent so as to minimize E, the resulting plasticity

rule is Oja’s learning rule33, ∆w ∝ x y − w y2. The second term −w y2 has a multiplicative

effect on the strength of synapses projecting onto the same neuron (weight rescaling), but does not

affect the receptive field shape, whereas the first term x y drives feature selectivity and receptive

field formation. Together, these derivations imply that the one-unit sparse coding algorithm can be

implemented by an effective nonlinear Hebbian rule combined with weight normalization. Although

the plasticity mechanism is linear, ∆w ∝ x y, a nonlinearity arises from the f-I curve, y = g(wTx),
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so that the effective plasticity is

∆w ∝ x g(wTx) (2)

This analysis reveals an equivalence between sparse coding models and neural networks with

linear plasticity mechanisms, where the sparsity constraint is determined by the f-I curve g.

Similarly, algorithms performing independent component analysis (ICA), a model class closely

related to sparse coding, also perform effective nonlinear Hebbian learning, albeit inversely, with lin-

ear neurons and a nonlinear plasticity rule34. For variants of ICA based on information maximization7

or kurtosis34 different nonlinearities arise (Fig. 2a), but Eq. 2 applies equally well. Hence, various

instantiations of sparse coding and ICA models not only relate to each other in their normative as-

sumptions35, but when implemented as iterative gradient update rules, they all employ nonlinear

Hebbian learning.

Simple cell development for a large class of nonlinearities

Since the models described above can be implemented by similar plasticity rules, we hypothesized

nonlinear Hebbian learning to be a general principle that explains the development of receptive field

selectivity. Nonlinear Hebbian learning with an effective nonlinearity f is linked to an optimization

principle with a function F =
´
f 19,20. For an input ensemble x, optimality is achieved by weights w̃

that maximize 〈F (w̃Tx)〉, where angular brackets denote the average over the input statistics. Non-

linear Hebbian learning is a stochastic gradient ascent implementation of this optimization process,

called projection pursuit18–20:

w̃ = maxw〈F (wTx)〉 =⇒ ∆w ∝ x f(wTx) (3)

Motivated by results from ICA theory36 and statistical properties of whitened natural images5, we

selected diverse Hebbian nonlinearities f (Fig. 2a) and calculated the corresponding optimization

value 〈F (wTx)〉 for different features of interest that we consider as candidate RF shapes, with a

whitened ensemble of patches extracted from natural images as input (see Methods). These include

a random connectivity pattern, a non-local oriented edge (as in principal components of natural

images) and localized oriented edges (as in cat and monkey simple cells in the visual cortex), shown
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in Fig. 2b. The relative value of 〈F (wTx)〉 between one feature and another was remarkably

consistent across various choices of the nonlinearity f , with localized orientation-selective receptive

fields as maxima (Fig. 2b). Furthermore, we also searched for the maxima through gradient ascent,

so as to confirm that the maxima are orientation selective (Fig. 2c, left). Our results indicate that

receptive field development of simple cells is mainly governed by the statistical properties of natural

images, while robust to specific model assumptions.

The relevant property of natural image statistics is that the distribution of a feature derived from

typical localized oriented patterns has high kurtosis5,6,37. Thus to establish a quantitative measure

whether a nonlinearity is suitable for feature learning, we define a selectivity index (SI), which mea-

sures the relative value of 〈F (.)〉 between a variable l with a Laplacian distribution and a variable g

with Gaussian distribution36: SI = (〈F (l)〉−〈F (g)〉)/σF (see Methods). The Laplacian variable has

higher kurtosis than the Gaussian variable, serving as a prototype of a kurtotic distribution. Since

values obtained by filtering natural images with localized oriented patterns have a distribution with

longer tails than other patterns5, as does the Laplacian variable compared to the Gaussian, positive

values SI > 0 indicate good candidate functions for learning simple cell-like receptive fields from

natural images. We find that each model has an appropriate parameter range where SI > 0 (Fig.

3). For example the quadratic rectifier nonlinearity needs an LTP threshold θ2 below some critical

level, so as to be useful for feature learning (Fig. 3a).

A sigmoidal function with threshold at zero has negative SI, but a negative sigmoid, as used

in ICA studies7, has SI > 0. More generally, whenever an effective nonlinearity f is not suited

for feature learning, its opposite −f should be, since its SI will have the opposite sign (Fig. 2c).

This implies that, in general, half of the function space could be suitable for feature learning36,

i.e. it finds weights w such that the distribution of the feature wTx has a long tail, indicating high

kurtosis ("kurtotic feature"). The other half of the function space learns the least kurtotic features

(e.g. random connectivity patterns for natural images, Fig. 2b,c).

This universality strongly constrains the possible shape of receptive fields that may arise during

development for a given input dataset. For whitened natural images, a learnable receptive field is in

general either a localized edge detector or a non-localized random connectivity pattern.

An important special case is an effective linear curve, f(u) = u, which arises when both f-I

and plasticity curves are linear21. Because the linear model maximizes variance 〈(wTx)2〉, it can

perform principal component analysis33, but does not have any feature selectivity on whitened input
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Figure 2: Simple cell development from natural images regardless of specific effective Heb-
bian nonlinearity. (a) Effective nonlinearity of five common models (arbitrary units): quadratic rec-
tifier (green, as in cortical and BCM models, θ1 = 1., θ2 = 2.), linear rectifier (dark blue, as in L1

sparse coding or networks with linear STDP, θ = 3.), Cauchy sparse coding nonlinearity (light blue,
λ = 3.), L0 sparse coding nonlinearity (orange, λ = 3.), and negative sigmoid (purple, as in ICA
models). (b) Relative optimization value 〈F (wTx)〉 for each of the five models in a, for different pres-
elected features w, averaged over natural image patches x. Candidate features are represented as
two-dimensional receptive fields. For all models, the optimum is achieved at the localized oriented
receptive field. Inset: Example of natural image and image patch (red square) used as sensory
input. (c) Receptive fields learned in four trials for ten effective Hebbian functions f (from top: the
five functions considered above, u3, −sin(u), u, (|u|−2)+, −cos(u)) (left column), and their oppo-
sites−f (right column). The first seven functions (above the dashed line) lead to localized oriented
filters, while a sign-flip leads to random patterns. Linear or symmetric functions are exceptions and
do not develop oriented filters (bottom rows).
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datasets, where variance is constant (Fig. 2c).

Symmetric effective nonlinearities, f(u) = f(−u), are also exceptions, since their corresponding

optimization functions are asymmetric, F (u) = −F (−u), so that for datasets with symmetric statis-

tical distributions, P (x) = P (−x), the optimization value will be zero, 〈Fasym.(w
Txsym.)〉 = 0. As

natural images are not completely symmetric, localized receptive fields do develop, though without

orientation selectivity, as illustrated by a cosine function and a symmetric piece-wise linear function

as effective nonlinearities (Fig. 2c, bottom rows).
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Figure 3: Selectivity index for different effective nonlinearities. (a) Quadratic rectifier (small
graphic, three examples with different LTP thresholds) with LTD threshold at θ1 = 1: LTP threshold
must be below 3.5 to secure positive selectivity index (green region, main Fig) and learn localized
oriented receptive fields (inset). A negative selectivity index (red region) leads to a random connec-
tivity pattern (inset) (b) Linear rectifier: activation threshold must be above zero. (c) Sigmoid: center
must be below a = −1.2 or, for a stronger effect, above a = +1.2. The opposite conditions apply
to the negative sigmoid. (d) Cauchy sparse coding nonlinearity: positive but weak feature selectivity
for any sparseness penalty λ > 0. Insets show the nonlinearities for different choices of parameters.
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Receptive field diversity

Sensory neurons display a variety of receptive field shapes38, and recent modeling efforts9,12 have

attempted to understand the properties that give rise to the specific receptive fields seen in experi-

ments. We show here that the shape diversity of a model can be predicted by our projection pursuit

analysis, and is primarily determined by the statistics of input representation, while relatively robust

to the specific effective nonlinearity.

We studied a model with multiple neurons in the second layer, which compete with each other

for the representation of specific features of the input. Each neuron had a piece-wise linear f-I curve

and a quadratic rectifier plasticity function (see Methods) and projected inhibitory connections v onto

all others. These inhibitory connections are learned by anti-Hebbian plasticity and enforce decorre-

lation of neurons, so that receptive fields represent different positions, orientations and shapes39–41.

For 50 neurons, the resulting receptive fields became diversified (Fig. 4a-c, colored dots). In an

overcomplete network of 1000 neurons, the diversity further increased (Fig. 4d-f, colored dots).

For the analysis of the simulation results, we refined our inspection of optimal oriented receptive

fields for natural images by numerical evaluation of the optimality criterion 〈F (wTx)〉 for receptive

fields w = wGabor, described as Gabor functions of variable length, width and spatial frequency. For

all tested nonlinearities, the optimization function for single-neuron receptive fields varies smoothly

with these parameters (Fig 4, grey-shaded background). The single-neuron optimality landscape

was then used to analyze the multi-neuron simulation results. We found that receptive fields are

located in the area where the single-neuron optimality criterion is near its maximum, but spread out

so as to represent different features of the input (Fig. 4). Thus the map of optimization values,

calculated from the theory of effective nonlinearity, enables us to qualitatively predict the shape

diversity of receptive fields.

Although qualitatively similar, there are differences in the receptive fields developed for each

model, such as smaller lengths for the L0 sparse coding model (Fig. 4c). While potentially sig-

nificant, these differences across models may be overwhelmed by differences due to other model

properties, including different network sizes or input representations. This is illustrated by observing

that receptive field diversity for a given model differ substantially across network sizes (Fig. 4), and

the difference is even greater from simulations with an input that is not completely white (Fig. 5c).

Thus our results suggests that efforts to model receptive field shapes observed experimentally9,12,38
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should focus on network size and input representation, which potentially have a stronger effect than

the nonlinear properties of the specific model under consideration.
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Figure 4: Optimal receptive field shapes in model networks induce diversity. (a-f) Gray level
indicates the optimization value for different lengths and widths (see inset in a) of oriented receptive
fields for natural images, for the quadratic rectifier (left, see Fig. 2a), linear rectifier (middle) and L0

sparse coding (right). Optima marked with a black cross. (a-c) Colored circles indicate the receptive
fields of different shapes developed in a network of 50 neurons with lateral inhibitory connections.
Insets on the right show example receptive fields developed during simulation. (d-f) Same for a
network of 1000 neurons.

We also studied the variation of receptive field position and orientation. For all five nonlineari-

ties considered, the optimization value is equal for different positions of the receptive field centers,

confirming the translation invariance in the image statistics, as long as the receptive field is not too

close to the border of the anatomically allowed fan-in of synaptic connections (Fig. 6b). Also, all

nonlinearities reveal the same bias towards the horizontal and vertical orientations (Fig. 6c). These
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Figure 5: Receptive fields for non-whitened natural images.Images were preprocessed as in the
original sparse coding study35. We simulated linear rectifier neurons (θ = 0.5) with a quadratic
plasticity nonlinearity (b = 0.5). (a) Multiple-neuron simulations, with 4 neurons. The principal
components dominate the optimization and receptive fields are not local, since they extend over
most of the image patch. With 50 (b) and 1000 (c) neurons, lateral inhibition promotes diversity,
and more localized receptive field are formed. (insets) Sample receptive fields developed for each
simulation.

optimality predictions are confirmed in single neuron simulations, which lead mostly to either hor-

izontal or vertical orientations, at random positions (Fig. 6d). When the network is expanded to

50 neurons, recurrent inhibition forces receptive fields to cover different positions, though excluding

border positions, and some neurons have non-cardinal orientations (Fig. 6e). With 1000 neurons,

receptive fields diversify to many possible combinations of position, orientation and length (Fig. 6f).

Beyond V1 simple cells

Nonlinear Hebbian learning is not limited to explaining simple cells in V1. We investigated if the

same learning principles apply to receptive field development in other visual or auditory areas or

under different rearing conditions.

For auditory neurons14, we used segments of speech as input (Fig. 7a) and observed the de-

velopment of spectrotemporal receptive fields localized in both frequency and time2 (Fig. 7d). The

statistical distribution of input patterns aligned with the learned receptive fields had longer tails than

for random or non-local receptive fields, indicating temporal sparsity of responses (Fig. 7d). Simi-

lar to our simple cell results, the learned receptive fields show higher optimization value for all five
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Figure 6: Diversity of receptive field size, position and orientation. (a) The optimization value
of localized oriented receptive fields, within a 16x16 pixel patch of sensors, as a function of size
(see Methods), for five nonlinearities (colors as in Fig. 2a). Optimal size is a receptive field of width
around 3 to 4 pixels (filled triangles). (b) The optimization value as a function of position of the
receptive field center, for a receptive field width of 4 pixels, indicates invariance to position within the
16x16 patch, except near the borders. (c) The optimization value as a function of orientation shows
preference toward horizontal and vertical directions, for all five nonlinearities. (d) Receptive field
position, orientation and length (colored bars) learned for 50 single-neuron trials. The color code
indicates different orientations. (e) Receptive field positions and orientations learned in a 50 neuron
network reveal diversification of positions, except at the borders. (f) With 1000 neurons, positions
and orientations cover the full range of combinations (top). Selecting 50 randomly chosen receptive
fields highlights the diversification of position, orientation and size (bottom). Receptive fields were
learned through the quadratic rectifier nonlinearity (θ1 = 1., θ2 = 2.).
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effective nonlinearities (Fig 7g).

For a study of receptive field development in the secondary visual cortex (V2)16, we used natural

images and the standard energy model42 of V1 complex cells to generate input to V2 (Fig. 7b). The

learned receptive field was selective to a single orientation over neighboring positions, indicating a

higher level of translation invariance. When inputs were processed with this receptive field, we found

longer tails in the feature distribution than with random features or receptive fields without orientation

coherence (Fig 7e), and the learned receptive field had a higher optimization value for all choices of

nonlinearity (Fig 7h).

Another important constraint for developmental models are characteristic deviations, such as

strabismus, caused by abnormal sensory rearing. Under normal binocular rearing conditions, the

fan-in of synaptic input from the left and right eyes overlap in visual space (Fig 7c). In this case,

binocular receptive fields with similar features for left and right eyes develop. In the strabismic

condition, the left and right eyes are not aligned, modeled as binocular rearing with non-overlapping

input from each eye (Fig. 7c). In this scenario, a monocular simple cell-like receptive field developed

(Fig. 7f), as observed in experiments and earlier models43. The statistical distributions confirm that

for disparate inputs the monocular receptive field is more kurtotic than a binocular one, explaining its

formation in diverse models44 (Fig 7f,i).

Our results demonstrate the generality of the theory across multiple cortical areas. Selecting

a relevant feature space for an extensive analysis, as we have done with simple cells and natural

images, may not be possible in general. Nonetheless, nonlinear Hebbian learning helps to explain

why some features (and not others) are learnable in network models15.

Discussion

Historically, a variety of models have been proposed to explain the development and distribution of

receptive fields. We have shown that nonlinear Hebbian learning is a parsimonious principle which is

implicitly or explicitly present in many developmental models6–12,24,36,39,44. The fact that receptive field

development is robust to the specific nonlinearity highlights a functional relation between different

models. It also unifies feature learning across sensory modalities: receptive fields form around

features with a long-tailed distribution.
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Figure 7: Nonlinear Hebbian learning across sensory modalities. (a) The auditory input is mod-
eled as segments over time and frequency (red) of the spectrotemporal representation of speech
signals. (b) The V2 input is assembled from the output of modeled V1 complex cells at different
positions and orientations. Receptive fields are represented by bars with size proportional to the
connection strength to the complex cell with the respective position and orientation. (c) Strabismic
rearing is modeled as binocular stimuli with non-overlapping left and right eye input patches (red).
(d-f) Statistical distribution (log scale) of the input projected onto three different features for speech
(d), V2 (e) and strabismus (f). In all three cases, the learned receptive field (blue, inset) is character-
ized by a longer tailed distribution (arrows) than the random (red) and comparative (green) features.
(g-i) Relative optimization value for five nonlinearities (same as in Fig. 2), for the three selected pat-
terns (insets). The receptive fields learned with the quadratic rectifier nonlinearity (θ1 = 1., θ2 = 2.)
are the maxima among the three patterns, for all five nonlinearities, for all three datasets.
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Relation to previous studies

Earlier studies have already placed developmental models side by side, comparing their normative

assumptions, algorithmic implementation or receptive fields developed. Though consistent with their

findings, our results lead to revised interpretations and predictions.

The similarities between sparse coding and ICA are clear from their normative correspondence35.

Nevertheless, the additional constraint in ICA, of having at most as many features as inputs, makes

it an easier problem to solve, allowing for a range of suitable algorithms34. These differ from algo-

rithms derived for sparse coding, in which the inference step is difficult due to overcompleteness. We

have shown that regardless of the specific normative assumptions, it is the common implementation

of nonlinear Hebbian learning that explains similarities in their learning properties.

In contrast to the idea that in sparse coding algorithms overcompleteness is required for devel-

opment of localized oriented edges35, we have demonstrated that a sparse coding model with a

single neuron is mathematically equivalent to nonlinear Hebbian learning and learns localized filters

in a setting that is clearly "undercomplete". Thus differences observed in receptive field shapes

between sparse coding and ICA models38 are likely due to differences in network size and input

preprocessing. For instance, the original sparse coding model35 applied a preprocessing filter that

did not completely whiten the input, leading to larger receptive fields (Fig. 5).

Studies that derive spiking models from normative theories often interpret the development of

oriented receptive fields as a consequence of its normative assumptions11,12. In a recent example, a

spiking network has been related to the sparse coding model12, using neural properties defined ad

hoc. Our results suggest that many other choices of neural activations would have given qualitatively

similar receptive fields, independent of the sparse coding assumption. While in sparse coding the

effective nonlinearity derives from a linear plasticity rule combined with a nonlinear f-I curve, our

results indicate that a nonlinear plasticity rule combined with a linear neuron model would give the

same outcome.

In order to distinguish between different normative assumptions, or particular neural implemen-

tations, the observation of "oriented filters" is not sufficient and additional constraints are needed.

Similarly receptive shape diversity, another important experimental constraint, should also be con-

sidered with care, since it cannot easily distinguish between models either. Studies that confront

the receptive field diversity of a model to experimental data9,12,38 should also take into account input
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preprocessing choices and how the shape changes with an increasing network size, since we have

observed that these aspects may have a larger effect on receptive field shape than the particulars of

the learning model.

Empirical studies of alternative datasets, including abnormal visual rearing44, tactile and auditory

stimuli15, have also observed that different unsupervised learning algorithms lead to comparable

receptive fields shapes. Our results offer a plausible theoretical explanation for these findings.

Past investigations on nonlinear Hebbian learning20,36 demonstrated that many nonlinearities

were capable of solving the cocktail party problem. Since it is a specific toy model, that asks for the

unmixing of linearly mixed independent features, it is not clear a priori whether the same conclusions

would hold in other settings. We have shown that the results of Fyfe and Baddeley 20 and Hyvarinen

and Oja 36 generalize in two directions. First, the effective nonlinear Hebbian learning mechanism

is also behind other models beyond ICA, such as sparse coding models and plastic spiking net-

works. Second, the robustness to the choice of nonlinearity is not limited to a toy example, but also

holds in multiple real world data. Together, these insights explain and predict the outcome of many

developmental models, in diverse applications.

Robustness to normative assumptions

Many theoretical studies start from normative assumptions7,9,11,35, such as a statistical model of the

sensory input or a functional objective, and derive neural and synaptic dynamics from them. Our

claim of universality of feature learning indicates that details of normative assumptions may be of

lower importance.

For instance, in sparse coding one assumes features with a specific statistical prior9,35. After

learning, this prior is expected to match the posterior distribution of the neuron’s firing activity9,35.

Nevertheless, we have shown that receptive field learning is largely unaffected by the choice of

prior. Thus, one cannot claim that the features were learned because they match the assumed prior

distribution, and indeed in general they do not. For a coherent statistical interpretation, one could

search for a prior that would match the feature statistics. However, since the outcome of learning

is largely unaffected by the choice of prior, such a statistical approach would have limited predictive

power. Generally, kurtotic prior assumptions enable feature learning, but the specific priors are

not as decisive as one might expect. Because normative approaches have assumptions, such as
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independence of hidden features, that are not generally satisfied by the data they are applied to, the

actual algorithm that is used for optimization becomes more critical than the formal statistical model.

The concept of sparseness of neural activity is used with two distinct meanings. The first one

is a single-neuron concept and specifically refers to the long-tailed distribution statistics of neural

activity, indicating a "kurtotic" distribution. The second notion of sparseness is an ensemble concept

and refers to the very low firing rate of neurons, observed in cortical activity45, which may arise

from lateral competition in overcomplete representations. Overcompleteness of ensembles makes

sparse coding different from ICA35. We have shown here that competition between multiple neurons

is fundamental for receptive field diversity, whereas it is not required for simple cell formation per se.

Kurtotic features can be learned even by a single neuron with nonlinear Hebbian learning, and with

no restrictions on the sparseness of its firing activity.

Interaction of selectivity with preprocessing and homeostasis

The concept of nonlinear Hebbian learning also clarifies the interaction of feature selectivity with

preprocessing mechanisms. We have assumed whitened data throughout the study, except Fig. 5.

Since after whitening second-order correlations are uninformative, neurons can develop sensitivity

to higher order features. While whitened data is formally not required for our analysis, second-order

correlations may dominate the optimization for non-white input, so that principal components will be

learned (Fig. 5a). Only when multiple neurons are added and receptive fields diversify, are localized

simple cells formed with an input that is not completely white35 (Fig. 5c).

In studies of spiking networks, the input is restricted to positive rates, possibly through an on/off

representation, as observed in the LGN46. While the center-surround properties of LGN contributes

to a partial decorrelation of neuronal activity47, in such alternative representations, trivial receptive

fields may develop, such as a single non-zero synapse, and additional mechanisms, such as hard

bounds on each synaptic strength, a ≤ wj ≤ b, may be necessary to restrict the optimization space

to desirable features10.

Instead of constraining the synaptic weights, one may implement a synaptic decay as in Oja’s

plasticity rule33, ∆w ∝ x · y−w · y2 (see also48). Because of its multiplicative effect, the decay term

does not alter the receptive field, but only scales its strength. Thus, it is equivalent to rescaling the

input in the f-I curve, so as to shift it to the appropriate range (Fig. 3). Similar scaling effects arise
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from f-I changes due to intrinsic plasticity11,28,49. The precise relation between nonlinear Hebbian

learning, spiking representations and homeostasis in the cortex is an important topic for further

studies.

Universality supports biological instantiation

The principle of nonlinear Hebbian learning has a direct correspondence to biological neurons and

is compatible with a large variety of plasticity mechanisms. It is not uncommon for biological systems

to have diverse implementations with comparable functional properties50. Different species, or brain

areas, could have different neural and plasticity characteristics, and still have similar feature learning

properties51,52. The generality of the results discussed in this paper reveals learning simple cell-like

receptive fields from natural images to be much easier than previously thought. It implies that a

biological interpretation of models is possible even if some aspects of a model appear simplified or

even wrong in some biological aspects. Universality also implies that the study of receptive field

development is not sufficient to distinguish between different models.

The relation of nonlinear Hebbian learning to projection pursuit endorses the interpretation of

cortical plasticity as an optimization process. Under the rate coding assumptions considered here,

the crucial property is an effective synaptic change linear in the pre-synaptic rate, and nonlinear

in the post-synaptic input. Pairing experiments with random firing and independently varying pre-

and post-synaptic rates would be valuable to investigate these properties27,53,54. Altogether, the

robustness to details in both input modality and neural implementation suggests nonlinear Hebbian

learning as a fundamental principle underlying the development of sensory representations.

Methods

Spiking model. A generalized leaky integrate-and-fire neuron26 was used as spiking model, which

includes power-law spike-triggered adaptation and stochastic firing, with parameters26 fitted to pyra-

midal neurons. The f-I curve g(I) was estimated by injecting step currents and calculating the trial

average of the spike count over the first 500 ms. The minimal triplet-STDP model24 was imple-

mented, in which synaptic changes follow
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d

dt
w(t) = A+y(t)ȳ+(t)x̄+(t)− A−x(t)ȳ−(t) (4)

where y(t) and x(t) are the post- and pre-synaptic spike trains, respectively: y(t) =
∑

f δ(t − tf ),

where tf are the firing times and δ denotes the Dirac δ-function; x(t) is a vector with components

xi(t) =
∑

f δ(t− tfi ), where tfi are the firing times of pre-synaptic neuron i; w is a vector comprising

the synaptic weights wi connecting a pre-synaptic neuron i to a post-synaptic cell. A+ = 6.5 · 10−3

and A− = 5.3 · 10−3 are constants, and ȳ+, x̄+ and ȳ− are moving averages, implemented by

integration (e.g. τ ∂ȳ
∂t

= −ȳ+y), with time scales 114.0 ms, 16.8 ms and 33.7 ms, respectively24. For

estimating the nonlinearity h(y) of the plasticity, pre- and post-synaptic spike trains were generated

as Poisson processes, with the pre-synaptic rate set to 20 Hz.

A linear rectifier g(x) = a(x − b)+ was fitted to the f-I curve of the spiking neuron model by

squared error optimization. Similarly, a quadratic function h(x) = a(x2 − bx) was fitted to the

nonlinearity of the triplet STDP model. The combination of these two fitted functions was plotted as

fit for the effective nonlinearity f(x) = h(g(x)).

Sparse coding analysis. A sparse coding model, with K neurons y1, . . . , yK , has a nonlinear

Hebbian learning formulation. The sparse coding model minimizes a least square reconstruction

error between the vector of inputs x and the reconstruction vector Wy, where W = [w1 . . .wK ],

and y = (y1, . . . , yK) is the vector of neuronal activities, with yj ≥ 0 for 1 ≤ j ≤ K. The total error

E combines a sparsity constraint S with weight λ and the reconstruction error, E = 1
2
||x−Wy||2 +

λ
∑
S(yk). E has to be minimal, averaged across all input samples, under the constraint yj ≥ 0 for

all j.

The minimization problem is solved by a two-step procedure. In the first step, for each input
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sample, one minimizes E with respect to all hidden units yj

d

dyj
E = 0 ⇐⇒ wj(x−Wy)− λS ′(yj) = 0

⇐⇒ wjx−
∑
k 6=j

(wT
j wk)yk − ||wj||2yj − λS ′(yj) = 0

⇐⇒ yj + λS ′(yj) = wT
j x−

∑
k 6=j

(wT
j wk)yk

⇐⇒ yj = g(wT
j x−

∑
k 6=j

vjkyk)

(5)

where we constrained the vector wj of synapses projecting onto unit yj by ||wj||2 = 1, defined the

activation function g(.) = T−1(.), the inverse of T (y) = (y+λS ′(y)), and defined recurrent synaptic

weights vjk = wT
j wk. For each input sample x, this equation shall be iterated until convergence.

The equation can be interpreted as a recurrent neural network, where each neuron has an activation

function g, and the input is given by the sum of the feedforward drive wT
j x and a recurrent inhibition

term −∑
k 6=j vjkyk. To avoid instability, we implement a smooth membrane potential uj , which has

the same convergence point32

τu
d

dt
uj(t) = −uj(t) + (wT

j x−
∑
k 6=j

vjkyk(t))

yj(t) = g(uj(t))

(6)

initialized with uj(t) = 0.

The second step is a standard gradient descent implementation of the least square regression

optimization, leading to an learning rule

∆wj ∝
d

dwj

E = (x−WTy) yj = x yj −wj y
2
j −

∑
k 6=j

wkykyj

The decay term wj y
2
j has no effect, since the norm is constrained to ||wj|| = 1 at each step.

For a single unit y, the model simplifies to a nonlinear Hebbian formulation, ∆w ∝ x g(wT
j x). For

multiple units, it can be interpreted as projection pursuit on an effective input, not yet represented by
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other neurons, x̃j = x−∑
k 6=j wkyk, which simplifies to ∆wj ∝ x̃j · g(wT

j x̃j) .

There are two non-local terms that need to be implemented by local mechanisms so as to be

biologically plausible. First, the recurrent weights depend on the overlap between receptive fields,

wT
j wk, which is non-local. The sparse coding model assumes independent hidden neurons, which

implies that after learning neurons should be pair-wise uncorrelated, cov(yj, yk) = 0. As an aside we

note that the choice vjk = wT
j wk does not automatically guarantee decorrelation. Decorrelation may

be enforced through plastic lateral connections, following an anti-Hebbian rule12,39, ∆vjk ∝ (yj −
〈yj〉)·yk, where 〈yj〉 is a moving average (we use τ = 1000 input samples). Thus by substituting fixed

recurrent connections by anti-Hebbian plasticity, convergence ∆vjk = 0 implies cov(yj, yk) = 0.

While this implementation does not guarantee vjk = wT
j wk after convergence, neither does vjk =

wT
j wk guarantee decorrelation cov(yj, yk) = 0, it does lead to optimal decorrelation, which is the

basis of the normative assumption. Additionally we constrain vjk ≥ 0 to satisfy Dale’s law. Although

some weights would converge to negative values otherwise, most neuron pairs have correlated

receptive fields, and thus positive recurrent weights.

Second, we ignore the non-local term
∑

k 6=j wkykyj in the update rule. Although this approxima-

tion is not theoretically justified, we observed in simulations that receptive fields do not qualitatively

differ when this term is removed.

The resulting Hebbian formulation can be summarized as

yj = g(wT
j x−

∑
k 6=j

vjkyk)

∆wj ∝ x yj

∆vjk ∝ (yj − 〈yj〉) · yk

(7)

This derivation unifies previous results on the biological implementation of sparse coding: the

relation of the sparseness constraint to a specific activation function32, the derivation of a Hebbian

learning rule from quadratic error minimization33, and the possibility of approximating lateral interac-

tion terms by learned lateral inhibition12,39.

Nonlinearities and optimization value. The optimization value for a given effective nonlin-

earity f , synaptic weights w, and input samples x, is given by R = 〈F (wTx)〉, where F =
´
f

and angular brackets indicate the ensemble average over x. Relative optimization values in Figs.
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2b and 6 were normalized to [0, 1], relative to the minimum and maximum values among the con-

sidered choice of features w, R∗ = (R − Rmin)/(Rmax − Rmin). The selectivity index of a non-

linearity f is defined as SI = (〈F (l)〉 − 〈F (g)〉)/σF , where l and g are Laplacian and Gaus-

sian variables respectively, normalized to unit variance. σF =
√
σF (l)σF (g) is a normalization fac-

tor, with σF (.) =
√
〈F (.)2〉. The selectivity of an effective nonlinearity f is not altered by multi-

plicative scaling, f̃(u) = αf(u), neither by additive constants when the input distribution is sym-

metric, f̃(u) = αf(u) + β. The effective nonlinearities in Fig. 2 included the linear rectifier

f(u) =

0, if u < θ

u− θ, if u ≥ θ
, the quadratic rectifier f(u) =

0, if u < θ

(u− θ)(u− θ − b), if u ≥ θ
, the L0

sparse coding nonlinearity f(u) =

0, if u < λ

u, if u ≥ λ
, the Cauchy sparse coding nonlinearity f = T−1,

where T (y) =

0, if y < 0

y + 2λy/(1 + y2), if y ≥ 0
, the negative sigmoid f(u) = 1 − 2/(1 + e−2u), a

polynomial function f(u) = u3, trigonometric functions sin(u) and cos(u), a symmetric piece-wise

linear function f(u) =

0, if |u| < θ

|u| − θ, if |u| ≥ θ
, as well as, for comparison, a linear function f(u) = u.

Receptive field learning. Natural image patches (16 by 16 pixel windows) were sampled from

a standard dataset6 (106 patches). Patches were randomly rotated by ±90◦ degrees to avoid biases

in orientation. The dataset was whitened by mean subtraction and a standard linear transformation

x∗ = Mx, where M = RD−1/2RT and 〈xxT 〉 = RDRT is the eigenvalue decomposition of the

input correlation matrix. In Fig. 5, we used images preprocessed as in Olshausen and Field 6 ,

filtered in the spatial frequency domain by M(f) = f e−(f/f0)4 . The exponential factor is a low-

pass filter that attenuates high-frequency spatial noise, with f0 = 200 cycles per image. The linear

factor f was designed to whiten the images by canceling the approximately 1/f power law spatial

correlation observed in natural images37. But since the exponent of the power law for this particular

dataset has an exponent closer to 1.2, the preprocessed image exhibit higher variance at lower

spatial frequencies.

Synaptic weights were initialized randomly (normal distribution with zero mean) and, for an ef-

fective nonlinearity f , evolved through wk+1 = wk + η x f(wT
k xk), for each input sample xk, with

a small learning rate η. We enforced normalized weights at each time step, ||w||2 = 1, through
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multiplicative normalization, implicitly assuming rapid homeostatic mechanisms28,55. For multiple

neurons, the neural version of the sparse coding model described in Eq 7 was implemented. In Fig 4

and 5, the learned receptive fields were fitted to Gabor filters by least square optimization. Receptive

fields with less than 0.6 variance explained were rejected (less than 5% of all receptive fields).

Receptive field selection. In Fig. 2b, the five selected candidate patterns are: random con-

nectivity filter (weights sampled independently from the normal distribution with zero mean), high-

frequency Fourier filter (with equal horizontal and vertical spatial periods, Tx = Ty = 8 pixels),

difference of Gaussians filter (σ1 = 3., σ2 = 4.), low-frequency Fourier filter (Tx = 16, Ty = 32),

and centered localized Gabor filter (σx = 1.5, σy = 2.0, f = 0.2, θ = π/3, φ = π/2). Fourier filters

were modeled as wab = sin(2πa/Tx)∗cos(2πb/Ty); difference of Gaussians filters as the difference

between two centered 2D Gaussians with same amplitude and standard deviations σ1 and σ2; and

we considered standard Gabor filters, with center (xc, yc), spatial frequency f , width σx, length σy,

phase φ and angle θ. In Fig 4 and 5 we define the Gabor width and length in pixels as 2.5 times

the standard deviation of the respective Gaussian envelopes, σx and σy. In Fig. 6a, a Gabor filter of

size s had parameters σx = 0.3 · s, σy = 0.6 · s, f = 1/s and θ = π/3. In Fig. 6b-c, the Gabor filter

parameters were σx = 1.2, σy = 2.4, f = 0.25. All receptive fields were normalized to ||w||2 = 1. In

Fig. 4 and 5, the background optimization value was calculated for Gabor filters of different widths,

lengths, frequencies, phases φ = 0 and φ = π/2. For each width and length, the maximum value

among frequencies and phases was plotted.

Additional datasets. For the strabismus model, two independent natural image patches were

concatenated, representing non-overlapping left and right eye inputs, forming a dataset with 16

by 32 patches43. For the binocular receptive field in the strabismus statistical analysis (Fig. 7a),

a receptive field was learned with a binocular input with same input from left and right eyes. As

V2 input, V1 complex cell responses were obtained from natural images as in standard energy

models42, modeled as the sum of the squared responses of simple cells with alternated phases.

These simple cells were modeled as linear neurons with Gabor receptive fields (σx = 1.2, σy = 2.4,

f = 0.3), with centers placed on a 8 by 8 grid (3.1 pixels spacing), with 8 different orientations at

each position (total of 512 input dimensions). For the non-orientation selective receptive field in the

V2 statistical analysis (Fig. 7d), the orientations of the input complex cells for the learned receptive

field were randomized. As auditory input, spectrotemporal segments were sampled from utterances

spoken by a US English male speaker (CMU US BDL ARCTIC database, Kominek and Black 56). For
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the frequency decomposition14, each audio segment was filtered by gammatone kernels, absolute

and log value taken and downsampled to 50 Hz. Each sample was 20 time points long (400 ms

segment) and 20 frequency points wide (equally spaced between 0.2 kHz and 4.0 kHz). For the

non-local receptive field in the auditory statistical analysis (Fig. 7g), a Fourier filter was used (Tt =

Tf = 10). For all datasets, the input ensemble was whitened after the preprocessing steps, by

the same linear transformation described above for natural images, and all receptive fields were

normalized to ||w||2 = 1.
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