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IntroductionPrincipal Component Analysis (PCA) is a widely used technique in signal processing. It isnow well-known how it can be realized in di�erent ways using neural networks; for examples,cf. [4, 9, 21]. Recently, there has been an increasing interest in extending the unsupervisedHebbian learning rules used in PCA to nonlinear Hebbian learning: such techniques areoften called nonlinear PCA methods. The main reason for this interest is that even thoughPCA is optimal for example in approximating the input data in the mean-square error sense,the representation that it provides is often not the most meaningful in describing somefundamental properties of the data. In PCA, the data are represented in an orthonormalbasis determined merely by the second-order statistics (covariances) of the input data.Various nonlinear PCA methods take into account higher-order statistics, too, and theymay have e�cient implementations in learning neural networks [20, 11, 12, 13]. Nonlinearor robust PCA type methods can be developed from various starting points, usually leadingto mutually di�erent solutions. We have earlier derived robust and nonlinear extensions ofPCA starting either from maximization of output variances or minimization of mean-squarerepresentation error [11, 13]. Several other authors have proposed neural extensions of PCAby choosing optimization of some information-theoretic criterion as their starting point; see[9, 26] for further information.Independent Component Analysis (ICA) is a useful extension of PCA that was developedin context with source or signal separation applications [6, 10]. In a sense, it is an extensionof PCA: instead of requiring that the coe�cients of a linear expansion of data vectors beuncorrelated, in ICA they must be mutually independent or as independent as possible. Thisimplies that second order moments are not su�cient, but higher order statistics are neededin determining ICA. As will be seen later on, ICA provides in many cases a more meaningfulrepresentation of the data than PCA.In this paper, we introduce a neural network that can be used for both source separationand the estimation of the basis vectors of ICA. The remainder of the paper is organized as



follows. The next section presents the necessary background on ICA and source separation.In the third section, we introduce and justify the basic neural network learning algorithms forsignal separation. The fourth section provides mathematical analysis justifying the separa-tion ability of the nonlinear PCA type learning algorithm. The �fth section then introducesthe ICA neural network, a three-layer network whose layers perform input data whitening,separation, and ICA basis vector estimation, respectively. In the sixth section, we presentexperimental results. In the last section, the conclusions of this study are presented, andsome possibilities for extending the data model are outlined.Source Separation and Independent Component Analy-sisIn source separation for linear memoryless channels, and the related technique of IndependentComponent Analysis (ICA), the following basic data model is usually assumed (see e.g.[10, 6, 4]). There are M scalar-valued signals sk(1); :::; sk(M) indexed by an index k. Weassume that the signals have zero mean and they are mutually statistically independent.More concretely, the signals could be sampled speech waveforms; for di�erent speakers thesignals are then at least approximately independent. Then the index k represents discretetime. Another example are discrete images: in Fig. 3, �rst row, the source signals aretwo-dimensional image arrays. In this example, the index i in the signal sk(i) stands forone of the images (i = 1; 2; 3), while the two-dimensional index k denotes the pixels. In thefollowing discussion, Fig. 3 is repeatedly referred to as an example.We assume that the original signals are unobservable, and all we have are a set of noisylinear mixtures xk(1); :::; xk(L), withxk(j) = MXi=1 sk(i)a(ij) + nk(j): (1)The coe�cients a(ij) are unknown. However, we assume that the mixtures are all di�erentin the sense that the M vectors of mixture coe�cients a(i) = (a(i1); :::; a(iL))T are linearlyindependent; this also implies that the number of mixtures L must be equal to or largerthan the number of signalsM . Such mixtures arise in several practical situations like speechseparation or antenna array processing. A pictorial example of mixture signals is providedby the second row of Fig. 3.Denote by xk = (xk(1)::::xk(L))T the L-dimensional k-th data vector made up of themixtures (1) at discrete time (or point) k. By eq. (1), we can write the signal model:xk = Ask + nk = MXi=1 sk(i)a(i) + nk; (2)where in the M -vector sk = (sk(1); : : : ; sk(M))T , the element sk(i) denotes the ith sourcesignal (independent component) at time k, A = (a(1); : : : ; a(M)) is the L � M 'mixingmatrix' whose columns a(i) are the basis vectors of ICA, and nk denotes the vector ofnoise components. The noise term nk is often omitted from (2), because under the weakassumptions made here it is usually not possible to separate the noise from the source signals.The source separation problem [10, 3, 16] is now to �nd an M � L separating matrix Bso that the M -vector yk = Bxk (3)



is an estimate yk = ŝk of the original independent source signals.An example is given by the fourth row of Fig. 3, where the images have been obtainedby applying a linear separation transformation to the mixture images on the second row ofFig. 3.Various approaches have been proposed for achieving separation. The learning algorithmsare constructed in such a way that they should satisfy some kind of independence conditionafter convergence. An example is the seminal Herault-Jutten (HJ) algorithm [10], whichuses a neural-like network structure. This algorithm is simple and elegant, but may fail inseparating more than two independent sources.Most of the approaches dealing with signal separation and ICA are non-neural, and arebased on some batch type or adaptive signal processing algorithm. However, some of theseadaptive algorithms, such as the HJ algorithm and its modi�cations as well as the PFS/EASIalgorithm proposed by Cardoso and Laheld [3, 16], can be interpreted as learning algorithmsof a neural network. Quite recently, some authors [1, 7] have derived unsupervised "neural"learning rules from information-theoretic measures. The resulting algorithms show goodseparation performance, but are not truly realizable in neural networks because they arebased on relatively complicated numerical operations, requiring for example the inversion ofa matrix.Several separation algorithms utilize the fact that if the data vectors xk are �rst pre-processed by whitening or sphering them, i.e., if EfxkxTk g = I (with Ef:g denoting theexpectation), then the separating matrix B in (3) becomes orthogonal: BBT = I. This canbe seen by writing EfykyTk g = BEfxkxTk gBT = BBT , and this matrix must be at leastdiagonal because we require that the elements of yk are zero-mean and statistically inde-pendent, hence uncorrelated. There is no way to �nd the energies of the individual sourcesignals sk(i), as they are absorbed in the mixing coe�cients, and therefore the elements ofthe vector yk can be scaled so that yk has unit covariance. In this case, EfykyTk g = BBT = I,hence B is an orthogonal matrix.The whitening step was used in the example of Fig. 3, and the third row shows thewhitened signals obtained from the mixtures on the second row. More details of this exampleare given in the sixth section of this paper.It is usually not possible to verify the independence condition exactly in practice becausethe involved probability densities are unknown. Therefore, approximating contrast functionswhich are maximized for a separating matrix have been introduced [6]. Even these oftenlead to relatively intensive batch type computations. However, for prewhitened input vectorsit can be shown [18] that a relatively simple contrast function, the sum of absolute values ofthe fourth order cumulants (kurtoses)Jkurt(y) = MXi=1 j cum(y(i)4) j = MXi=1 j Efy(i)4g � 3E2fy(i)2g j (4)is maximized by a separating matrixB under certain conditions given by Moreau and Macchi[18]. The central conclusion is that among vectors of the form y = Hs, with vector shaving independent components, the criterion (4) is maximized when y is either s itself or apermutation of its elements, possibly with changed signs.For whitened vectors it holds Efy(i)2g = 1, implying that cum(y(i)4) = Efy(i)4g � 3.Thus (4) is maximized by minimizing the sum of the fourth moments PMi=1 Efy(i)4g fornegatively kurtotic sources, and by maximizing PMi=1 Efy(i)4g for positively kurtotic sources.Densities that have negative kurtosis are also called sub-Gaussian, because they are typically
atter than the Gaussian density whose kurtosis is zero; a typical example is the uniform den-



sity. Likewise, positively kurtotic densities are called super-Gaussian, and they are sharperthan the Gaussian; an example is the two-sided exponential density.Kurtosis minimization/maximization is one of the criteria to be used in context with ourneural nonlinear PCA type learning algorithms outlined in detail in the next Section.Neural Independent Component AnalysisSeparation algorithmsIn [20], one of the authors proposed several nonlinear extensions of his learning rule forcomputing the standard PCA subspace. These extensions can be applied to learning aseparating matrix for prewhitened inputs. One of the proposed extensions is the NonlinearPCA rule [11, 13, 20]: Wk+1 = Wk + �k[vk �Wkg(yk)]g(yTk ): (5)We assume here that the input vectors vk are obtained from the mixture vectors xk bywhitening them, and we denote yk =WTk vk. The matrixWk is the weight matrix, and �k isa small positive learning rate parameter. g(t) is a nonlinear function and g(y) is understoodcomponent-wise as a vector whose ith component is g(y(i)). In all these algorithms, thefunction g(t) is usually chosen to be odd for stability and separation reasons; an example isg(t) = tanh(t).The algorithm (5) can be interpreted as a learning rule for a neural layer, in which Wkis the weight matrix and the neurons have the activation function g(y). Thus the termvkg(yTk ) = vkg(vTkWk), with vk the input vector to this layer, is the product of the inputsand the outputs of the layer, or a Hebbian term. We can justify that the Nonlinear PCArule (5) converges to a separating matrix W by an analysis presented in the next section.We have recently developed another learning rule, the so-called bigradient algorithm [27],which is applied for learning the orthonormal separating matrix WT as follows:Wk+1 = Wk + �kvkg(yTk ) + 
kWk(I�WTkWk): (6)Here �k is again a small learning rate, this time positive or negative, and 
k is anotherpositive gain parameter, usually about 0.5 or 1 in practice. The bigradient learning ruleis a stochastic gradient algorithm for maximizing (if �k > 0) or minimizing (if �k < 0)the criterion PMj=1Eff(y(j))g, with g(y) = d=dyf(y), under the constraint that the weightmatrix W must be orthonormal. The algorithm (6) is derived and discussed in more detailin [27]. Kurtosis can be minimized or maximized by choosing g(y) = y3, although otherchoices are possible, too.Both these algorithms require that the original source signals have a kurtosis with thesame sign: sgn(cum[s(i)4]) = +1 or �1 for i = 1; : : : ;M . In [3], Cardoso and Laheldshow that this condition can be mildened for their PFS/EASI algorithm somewhat so thatthe sum of kurtosises must have the same sign for any two sources pairwisely. The samecondition seems to hold for the neural learning algorithms (5),(6) in practice. A moreextensive discussion about neural separation algorithms is given in [15].Estimation of the basis vectors of ICAIf the goal is signal separation only, then the ICA basis vectors are not needed explicitly.However, they may be useful because they show the directions in the input space aligned



with the independent components; in a way, the ICA basis vectors are generalizations ofthe Principal Component Analysis eigenvectors but in many cases the ICA basis vectorscharacterize the data better [14]. They should be useful e.g. in Exploratory ProjectionPursuit [8] where one tries to project the data onto directions that reveal as much of thestructure as possible. In a sense, ICA basis vectors provide such directions.Assuming now that the matrix Bk has converged to a separating solution B (usually asa product of the whitening matrix and the separating matrix), the basis vectors of ICA canbe mathematically estimated by using the theory of pseudoinverses. If xk is solved directlyfrom (3), in the general case L > M there exist in�nitely many possible solutions. Amongthem, the unique minimum-norm (pseudoinverse) solution isx̂k = Âyk = BT (BBT )�1yk = MXj=1 ŝk(j)â(j): (7)Here â(j) denotes the jth column of the L�M matrix Â = BT (BBT )�1. Comparing thiswith the ICA expansion (2), it is seen that the vectors â(j) are the desired estimates of thebasis vectors of ICA. They can be normalized and ordered suitably.A completely neural algorithm for estimating the basis vectors of ICA which does notrequire any inversion of matrices can be developed as follows [14]. Let us denote by Q theL�M weight matrix whose columns are the desired estimates â(j); j = 1; :::;M of the basisvectors of the ICA expansion (in any order). Replacing Â in (7) by Q it can be seen thatfor estimating Q, two conditions must be satis�ed:1. The mean square error Efkx�Qykgmust be minimal, for obtaining the pseudoinversesolution;2. The components of vector y must be statistically independent.It is usually possible to satisfy both of these requirements, leading to the required ICAsolution [14]. Assume that as a result of the whitening and separation stages, the matrixBk has converged to a separating solution B, and the components of y are as independentas possible. The second condition above is then satis�ed, and it su�ces to solve the �rstcondition, i.e. to search for the matrix Q which minimizes the mean-square error.Omitting the expectation, the gradient of k x�Qy k2 with respect toQ is �2(x�Qy)yT ,which in a standard way yields the stochastic gradient algorithmQk+1 = Qk + �k(xk �Qkyk)yTk (8)(�k > 0) for learning Q. This algorithm can be used for estimating the basis vectors ofICA in context with any suitable separation algorithm. Naturally, it would be possible touse here more complicated but faster converging algorithms (for example conjugate gradienttype) for minimizing the MSE error.Mathematical analysisThe bigradient algorithm (6) has been derived in the �rst place for the constrained min-imization/maximization of the cost function PMj=1Eff(vTw(j))g, under the constraintsw(i)Tw(j) = �ij, with g(y) = d=dyf(y), and so it can be expected to converge to anorthogonal matrix that will minimize (or maximize, depending on the sign of the gains �k)the cost function. Thus kurtosis is minimized/maximized when f(y(j)) = y(j)4, when weassume that Efy(j)2g = 1. However, the relation of the Nonlinear PCA learning rule (5) is



only indirectly related to an optimization criterion [13], and so a convergence analysis shouldbe provided. This section provides some results on the asymptotic solutions of the NonlinearPCA learning rule.We start from the learning rule (5)Wk+1 =Wk + �k[vk �Wkg(yk)]g(yTk ) (9)with yk = WTk vk. The input vectors vk are whitened: EfvkvTk g = I, and we assume thatthere exists a square separating matrix R such that the vector uk = RTvk has independentelements and also unit variances: EfukuTk g = I. This implies that the separating matrixmust be orthogonal. To make the analysis easier, we proceed by making a linear transforma-tion to the learning rule (5): we multiply both sides by RT , with R an orthogonal separatingmatrix [23]. We obtainRTWk+1 = RTWk + �k[RTvk �RTWkg(WTk vk)]g(vTkWk) (10)= RTWk + �k[RTvk �RTWkg(WTkRRTvk)]g(vTkRRTWk) (11)where we have used the fact that RRT = I. Denoting for the moment Sk = RTWk andusing the de�nition uk = RTvk given above, we haveSk+1 = Sk + �k[uk � Skg(STkuk)]g(uTkSk)]: (12)This equation has exactly the same form as the original one. Geometrically the transfor-mation by the orthogonal matrix R simply means a coordinate change to a new set ofcoordinates such that the elements of the input vector expressed in these coordinates arestatistically independent. If Sk tends to a scaled version of the unit matrix, then in theoriginal equation Wk = RSk tends to a similarly scaled version of the separating matrix R.To show this, the di�erence equation (12) can be further analyzed by writing downthe corresponding averaged di�erential equation; for a discussion of the technique, see e.g.[19]. The limit of convergence of the di�erence equation is among the asymptotically stablesolutions of the averaged di�erential equation. Taking averages in (12) with respect to thedensity of uk, and using Z = Z(t) as the continuous-time counterpart of the transformedweight matrix Sk, we obtain dZ=dt = G(Z)� ZH(Z); (13)with G(Z) = Efug(uTZ)g; (14)H(Z) = Efg(ZTu)g(uTZ)g: (15)The expectations are over the (unknown) density of vector u. We are ready to state themain result of this section, which is a simpli�ed version of a more general theorem originallypresented and proven by one of the authors in [23]:Theorem 1. In the matrix di�erential equation (13), assume the following:1. The random vector u has a symmetrical density with Efug = 0;2. The elements of u, denoted here u1; :::; un, are statistically mutually independent and allhave the same density;3. The function g(:) is odd, i.e., g(y) = �g(�y) for all y, and at least twice di�erentiableeverywhere;



4. The function g(:) and the density of u are such that the following conditions hold:A = Efu2g0(�u)g � 2�Efg(�u)g0(�u)ug � Efg2(�u)g < 0; (16)where g0(t) is the derivative function of g(t) and � is a scalar satisfyingEfug(�u)g = �Efg2(�u)g: (17)5. The following condition holds:Efu2gEfg0(�u)g � Efg2(�u)g < 0: (18)Then the matrix Z = D = diag(�; :::; �) = �I (19)is an asymptotically stable stationary point of (13), where � is the positive solution to eq.(17).The proof is given in [23].Note 1. We only consider a diagonal matrixD = �I as the asymptotically stable solution.However, any permutation of D can be shown to be an asymptotically stable solution, too,by making another orthogonal rotation of the coordinate axes that will permute some ofthem. This simply means re-indexing of the vector elements ui. Mathematically, by goingfrom Z(t) to PZ(t), with P a permutation (an orthogonal matrix), an analogous di�erentialequation is obtained, and the conditions of the Theorem are unaltered.Note 2. Due to the oddity of function g(y), the signs of the � cannot be determined fromeq. (17); if +� is a solution, then so is also ��. If the weight matrix Sk of eq. (12) convergesto D, then asymptotically the i-th element of yk = Duk is the i-th element of uk multipliedby ��. The sign has no in
uence on the absolute magnitude. For the negative �, a similarresult to the above holds.Note 3. Theorem 1 allows non-monotonic activation functions. However, if g(y) is mono-tonic, then eq. (17) in fact implies that it must be an increasing function. If g(y) weremonotonically decreasing and odd, then the left hand side would be negative for positive �and positive for negative �; but then there could not be any solution because Efg2(�u)g > 0.The Theorem 1 will now be illustrated for two types of nonlinear activation functions:polynomial functions g(y) = ys, with s an odd positive integer, and sigmoidal functionsg(y) = tanh(�y), with � a positive slope parameter. All these functions obviously satisfythe condition 3 of the Theorem. For more details, see [23].1. Polynomials.The family of odd polynomial functionsg(y) = ys; s = 1; 3; 5; 7; ::: (20)is interesting in the present context because all the relevant variables in the conditions 4 and5 of Theorem 1, for any probability density, will become moments of u. These functions alsocontain the linear function for s = 1.First, for � we get from eq. (17):Efus+1g = �s+1Efu2sg: (21)



Substituting this in eq. (16) in the condition 4, we �nd that this condition is always satis�ed.Now, the stability condition 5 of Theorem 1 becomesEfus+1g � sEfu2gEfus�1g > 0: (22)Consider �rst the case s = 1; g(u) = u: (23)Clearly, the condition (22) is not satis�ed. The linear function never gives asymptotic sta-bility. Consider next the case s = 3; g(u) = u3: (24)Now (22) gives Efu4g � 3(Efu2g)2 > 0: (25)This expression is exactly the kurtosis or the fourth order cumulant of u (see end of the secondsection). If and only if the density is positively kurtotic or super-Gaussian, this condition issatis�ed and the cubic polynomial g(u) = u3 gives asymptotic stability.Likewise, for s = 5 we get the conditionEfu6g � 5Efu2gEfu4g > 0; (26)etc.2. Hyperbolic tangents.Consider then the sigmoidal activation function g(y) = tanh(�y), for � > 0, that has thesign(y) function as the limit as � ! 1. Assuming �2 = 1, the stability condition 5 of theTheorem becomes Efg0(�u)g < Efg2(�u)g. For the hyperbolic tangent, g0(y) has a peakaround the origin and decreases to both sides, while g2(y) is zero at the origin and increasesto both sides. In this case it is clear that a peaked super-Gaussian density for u makesEfg0(�u)g large and Efg2(�u)g small, while a 
at sub-Gaussian does just the opposite. Thelatter case is then more stable.A simple example of a sub-Gaussian density is the uniform density on [�1; 1]. Let usassume this for the elements of u to illustrate the Theorem 1. Condition 1 of Theorem 1 isthen satis�ed. It remains to check the stability conditions 4 and 5 of Theorem 1. Now, aclosed form solution for � in eq. (17) is not feasible and numerical methods must be used.It turns out that Condition (5) holds for � > 0 (for details, see [23]). Condition (4) isalways satis�ed. The conclusion is that for the uniform density the sigmoidal function givesasymptotic stability when � > 0.Asymptotic stability is a local e�ect, and Theorem 1 does not say anything about thebasin of attraction of the asymptotic solution, i.e., global stability. This was tested numer-ically in a series of runs, in which the input data were 3-dimensional, each element havingan identical uniform density, the value � = 5:0 was chosen for the sigmoid parameter andthe initial deviation of Z(0) from the theoretical limit was varied. For this value of �, andthe uniform densities used, � = 0:6998. The deviation was increased up to 100.0 and thealgorithm converged invariably to the asymptotically stable solution D predicted by Theo-rem 1, or a variation of D: when the initial deviation is increased, it may happen that theasymptotic limit for Z(t) will not be D = diag(�; �; �) but a permutation, with possiblychanged signs. Thus e.g. for the initial valueZ(0) = 0B@ �6:1953 0:2556 �0:09456:3493 �2:1398 �3:66940:0710 7:6358 �5:7220 1CA (27)



Figure 1: The ICA network. Weight matrix V: the whitening transformation. Weightmatrix W: the separation transformation. Weight matrix Q: basis vector estimationthe asymptotic value turned out to belim Z(t) = 0B@ �0:6998 0:0000 0:00000:0000 0:0000 �0:69980:0000 0:6998 0:0000 1CA (28)which is a permutation of matrix D. Note also the negative sign in two of the nonzeroelements.The overall conclusion of this section is that, while the Nonlinear PCA learning rule isnot directly a gradient method for a cost function, its limits of convergence are neverthelessseparating matrices, if the nonlinear activation function g(y) is adapted to the original signaldensities, especially the sign of the kurtosis. We proceed now to put together the variousparts of our analysis to introduce a multilayer neural network for signal separation andIndependent Component Analysis.The ICA networkTo recapitulate, we can achieve source signal separation from a set of mixtures by �rstwhitening (sphering) the input vectors, and then using a separation algorithm. In additionto this, if also the ICA basis vectors are needed, they can be obtained by one of the methodsgiven above in Subection 3.2.Because both the whitening, the separation, and the ICA basis vector estimation can beperformed adaptively in subsequent on-line processes, the �rst one receiving a sequence ofmixture signals xk as inputs, a neural network is a possible implementation for the algorithms.Consider the 3-layer network of Fig. 1, called the Independent Component Analysis (ICA)network. The input model and the consequent layers are explained in the following.As the starting point we have a set of M statistically independent, zero-mean signalssk(i); i = 1; :::;M that are unobservable. By an unknown mixing process, a set of Lobservable linear mixtures (M � L) xk(j); j = 1; :::; L are available according to the model(1). For simplicity, let us assume that the additive noise is zero and is omitted from the sum(1). Also, assume that the amplitudes of the source signals sk(i) have been absorbed in the



mixing coe�cients a(ij) in such a way that we can assume that the variances of all sk(i) areequal to one. Thus we have from eq. (2): xk = Ask with EfsksTk g = I. These vectors xkare now the input stream to the �rst layer of the ICA network of Fig. 1.1. Whitening (sphering): by a linear transformation V, the signal vectors xk are trans-formed to new signal vectors vk = Vxk such that EfvkvTk g = I. The elements of vk havevariances equal to 1 and are uncorrelated - but in general not yet independent. In the ICAnetwork of Fig. 1, the �rst layer is linear and whitens the input vectors xk. The whiteningtransformation V is implemented by the weights of the linear layer and can be learned in aneural learning algorithm introduced by Plumbley [25]:Vk+1 = Vk + �k(VkxkxTkVTk � I)Vk: (29)2. Separation: by a linear transformation B, the whitened vectors vk are transformedinto output signal vectors yk = Bvk (30)such that the elements of yk are not only uncorrelated, but statistically independent. This isdone in the second layer of the ICA network of Fig. 1. For the layer weights, the NonlinearPCA learning rule (5), or the bigradient learning rule (6) can be used, with the whitenedvectors vk now coming as inputs instead of the original xk. The nonlinear gradient functiong must be chosen so that kurtosis is minimized/maximized; the hyperbolic tangent or apolynomial is a suitable function, depending on the case (see the mathematical analysis inthe previous section). After a proper learning period using a sample of the mixture signals xk,the output of the second layer yk =WTk vk tends to a vector that approximates the originalsignal vector sk, although the order of the signals and their amplitudes may have changed.This is because WTk tends to a separating matrix R. After learning, the network can beused to separate additional samples from the same signals, not occurring in the training set.3. ICA basis vector estimation: the task of the last layer in the network of Fig. 1 isto estimate the basis vectors a(i), i = 1; : : : ;M , of ICA. This can be done with the neurallearning algorithm (8) for the weight matrix Q. Note that in this algorithm, we need boththe independent component vectors yk produced by the second layer of the ICA network, andthe original input vectors xk. In this sense, this resembles the auto-associative MLP networkin which the inputs are used as the desired outputs. It must be emphasized, however, thatthe inputs xk are the mixture signals, so the original independent signals sk(i) are never usedin training and they can be completely unknown.Experimental resultsIn this section, we demonstrate the performance of the ICA network of Fig. 1 using botharti�cial and real-world data.A. The arti�cial data by Comon. Consider �rst a test example used earlier by Comon[5]. Here, the original 3 source signals sk(1), sk(2), and sk(3) in (2) consist of uniformlydistributed noise, a ramp signal, and a pure sinusoid. Figure 2a shows 100 samples of them.Actually two of the source signals are deterministic waveforms, allowing easy visual inspec-tion of the separation results. All the three sources have a negative kurtosis. Fig. 2b depictsthe respective components of the 3-dimensional data vectors xk, which are linear mixtures of



Figure 2: a) Original source signals in Comon's example. b) The mixtures, inputs to theICA network. c) The separated outputs given by the Nonlinear PCA algorithmthe source signals. They were formed using the model (2), where the true normalized basisvectors of ICA were a(1) = [0:0891;�0:8909; 0:4454]T , a(2) = [0:3906;�0:6509; 0:6509]T , anda(3) = [�0:3408; 0:8519;�0:3976]T . The additive noise nk was zero.We chose the simplest learning algorithms, so that the algorithm (29) was used for whiten-ing, the Nonlinear PCA rule (5) for separation, and the LS rule (8) for estimating the basisvectors of ICA. The 100 data vectors were used 60 times sequentially in teaching the ICAnetwork of Fig. 1. The learning parameter �k was 0.01 both in (29) and (5). The learn-ing function was g(t) = tanh(t). After teaching, the data vectors xk, k = 1; : : : ; 100, wereinput to the network of Fig. 1. Fig. 2c shows the separated signals yk(1), yk(2), and yk(3)(outputs of the second layer), which are good estimates of the original source signals. Inthe last layer of the ICA network, the algorithm (8) learned a matrix Q whose normalizedcolumns â(1) = [�0:1054; 0:8917;�0:4401]T , â(2) = [0:3918;�0:6541; 0:6470]T , and â(3) =[0:3319;�0:8519; 0:4073]T are good estimates of the theoretical basis vectors of ICA.The results were roughly similar, when the bigradient algorithm (6) was used for es-timating the separating matrix WT with the same learning function and parameters, oralternatively using the learning function g(t) = t3 and a negative gain parameter �k =�0:003. The other parameter 
 was 0:9. Also the PFS/EASI algorithm [3, 16] performs wellwith suitable choices.B. Image data. Here we present a larger scale experiment with image data, taken from [22].The 3 source signals were the digital images shown in Fig. 3, �rst row (
owers, model,waterfall). We have not tested the mutual independence of these sources in any way. Allthe sources except the third one have a negative kurtosis; the kurtosis of the waterfall image



has a small positive value, so that the sum of pairwise kurtoses for any two sources is alwaysnegative. The size of the source images is 387 � 306; by row-wise scanning, they werecoded into signal sequences with 118422 elements. Each 3-dimensional source vector sk in(2) contained the kth components of the three source images. These were multiplied bya nonorthogonal full-rank 3 � 3 ICA basis matrix A, yielding the 118422 data vectors xkused in the simulation. The 3 components of xk, compiled back into rectangular arrays, aredepicted on the second row of Fig. 3; they look rather similar, revealing little of the structureof the original source images.Each of the 3 images on the third row of Fig. 3 contains one component of the whitenedvectors vk, k = 1; : : : ; 118422. In this experiment, we used PCA whitening. The whiteningmatrix was computed using standard numerical software. These images already show somestructure, but are still far from the original sources.For separation, we used the Nonlinear PCA rule (5). The data vectors were used 20times sequentially, and the gain parameter �k decreased slowly from its initial value 0:0005.The learning function was g(t) = tanh(t). The fourth row of Fig. 3 shows the componentimages of the vectors yk, k = 1; : : : ; 118422. These were obtained as responses from thesecond layer of the ICA network after learning, when the data vectors xk, k = 1; : : : ; 118422,were used as inputs. The component images have been rescaled so that their gray levelrange is the same as in the original images, and in some cases their sign has been changed toopposite. The separation results are good, even though some noise is visible. This exampledemonstrates clearly the usefulness of nonlinearities in PCA type learning algorithms. Thede�nitely poorer results on the third row of Fig. 3 show what standard PCA is able toachieve in this application.A more extensive demonstration in which 6 other source images are added to the set isgiven in [15]. The system is able to separate the 9 images with good results.In the simulations described above, the sources are mostly sub-Gaussian with a negativekurtosis. However, we have applied especially the bigradient algorithm for super-Gaussiansources that have positive kurtosis, too. In [28], up to 10 real speech signals were separatedfrom their mixtures using the bigradient algorithm. The speech signals are typically super-Gaussian [1]. In these experiments, the learning functions and parameter values were chosenin much the same manner as before, but �k must have the opposite sign, because the sumof the fourth moments is maximized instead of minimizing it.Finally, we emphasize that preprocessing the input data by whitening is essential forachieving good separation results using nonlinear PCA type learning algorithms. Withoutwhitening, the algorithms are able to somehow separate sinusoidal signals [11], but usuallynot other signals. The obvious reason is that without whitening the algorithms still largelyrespond to second-order statistics in spite of using nonlinearities.Conclusions and remarksIn this paper, we have introduced a neural network for performing Independent ComponentAnalysis (ICA). After learning, the network has a standard multilayer feedforward structure.The basic ICA network consists of whitening, separation, and basis vector estimation layers.It can be used for both source separation and estimation of the basis vectors of ICA. Wehave presented several alternative learning proceduces for each layer, and modi�ed our pre-vious PCA algorithms to nonlinear versions so that their separation capabilities are greatlyimproved. The proposed ICA network yields good results in test examples.
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