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Abstract—Artificial neural networks that learn to perform
Principal Component Analysis (PCA) and related tasks using
strictly local learning rules have been previously derived based
on the principle of similarity matching: similar pairs of inputs
should map to similar pairs of outputs. However, the operation
of these networks (and of similar networks) requires a fixed-
point iteration to determine the output corresponding to a
given input, which means that dynamics must operate on a
faster time scale than the variation of the input. Further,
during these fast dynamics such networks typically “disable”
learning, updating synaptic weights only once the fixed-point
iteration has been resolved. Here, we derive a network for PCA-
based dimensionality reduction that avoids this fast fixed-point
iteration. The key novelty of our approach is a modification of the
similarity matching objective to encourage near-diagonality of a
synaptic weight matrix. We then approximately invert this matrix
using a Taylor series approximation, replacing the previous fast
iterations. In the offline setting, our algorithm corresponds to a
dynamical system, the stability of which we rigorously analyze.
In the online setting (i.e., with stochastic gradients), we map
our algorithm to a familiar neural network architecture and
give numerical results showing that our method converges at a
competitive rate. The computational complexity per iteration of
our online algorithm is linear in the total degrees of freedom,
which is in some sense optimal.

Index Terms—artificial neural networks, principal component
analysis, dimensionality reduction

I. INTRODUCTION

Our brain effortlessly processes high-dimensional data
streamed to it by sensory organs to make behaviorally relevant
decisions. Yet, an algorithmic model of online neural computa-
tion that satisfies known biological constraints does not exist.
Recently, a first step towards such a model has been made
by deriving neural networks, including both neuronal activity
dynamics and synaptic learning rules, from the similarity
matching objective [1]–[3]. In particular, single-layer neural
networks for linear dimensionality reduction have, for the first
time, been derived from a principled objective in a manner
leading to local learning rules (where a synaptic weight is
updated based only on the activity of only the two neurons
that synapse connects).

However, the operation of existing similarity matching
networks, as well as other neural network algorithms for
dimensionality reduction [4], [5], is based on an iterative
update of neuronal activity or synaptic weights via recurrent
dynamics which must converge by the time the next stimulus

arrives. For fast senses, such as audition and vision, there is
no clear separation in time scales between the correlation time
of the input signal and the neural dynamics to satisfy such
requirement. Therefore, deriving a dimensionality reduction
network with iteration-free dynamics is an important problem.

In this paper, we address this problem by deriving a biolog-
ically plausible network from a novel objective function. The
iterative dynamics in similarity matching networks stem from
a biologically plausible iterative implementation of matrix
inversion (i.e., solving a linear system). By modifying the
similarity matching objective to eliminate degeneracies of the
solution with respect to rotations and reflections, we identify
a particular family of solutions for which the matrix to be
inverted is, at a fixed point, diagonal, which motivates our
modified algorithm that substitutes iterative dynamics with a
low-order expansion of the matrix inverse.

While removing degeneracies from neural networks for
similarity matching based on modifying the objective has
been proposed previously [2], such networks still required
iterative dynamics to compute the output for each input.
Similar symmetry-breaking techniques have been used for
other PCA networks not based on similarity matching, and
we note in particular the Weighted Subspace Criterion of Oja,
Ogawa, and Wangviwattana [6] and work by Xu [7].

There exists a wealth of relevant literature on neural ap-
proaches to online PCA and related tasks. We direct the reader
to the review by Qiu et al. [8] for a full treatment of such
algorithms, and mention here those that are most directly
relevant. These include work by Oja [9]–[11], the APEX
algorithm [12], Sanger’s rule [13], Földiák’s network [14], and
work by Linsker [15]. Compared to these, only our approach
starts from a principled objective function and arrives at
both local (anti-)Hebbian learning rules and a neural network
architecture for multi-component PCA without requiring fast
recurrent neural dynamics.

II. PROBLEM FORMULATION

In the following, bold lower-case variables refer to column
vectors, e.g., xt ∈ RN , whereas bold upper-case variables refer
to matrices, e.g., X ∈ RN×T . We use ‖ · ‖ for the standard
Euclidean vector norm as well as for the matrix Frobenius
norm, i.e., ‖xt‖2 = x>t xt and ‖X‖2 = Tr(X>X).

ar
X

iv
:1

81
0.

06
96

6v
2 

 [
st

at
.C

O
] 

 3
 N

ov
 2

01
8



A. Optimization Problems

Given an input data matrix X ∈ RN×T with columns
{xt}Tt=1 ⊂ RN , the Principal Subspace Projection (PSP)
problem is to find a low-dimensional embedding Y ∈ RK×T
of X that optimally preserves inner products between pairs of
input vectors, i.e., solve

min
Y
‖X>X−Y>Y‖2 = min

{yt}Tt=1

∑
t,t′

(
x>t xt′ − y>t yt′

)2
.

(1)
By expanding the norm and dropping terms independent of Y
we obtain the equivalent optimization problem

min
Y
−2Tr

(
X>XY>Y

)
+Tr

(
Y>YY>Y

)
. (2)

It is well known that solutions to (1) and thus (2) are given by
PCA, i.e., if X = UΣV> is a Singular Value Decomposition
(SVD) then Yopt = QU>KX, where Q ∈ RK×K is an
arbitrary orthogonal matrix and UK ∈ RT×K contains the first
K columns of U with corresponding singular values {σk}Kk=1.

To break the degeneracy of (2), we introduce a diagonal
matrix Λ ∈ RK×K with distinct positive diagonal entries λ1 >
λ2 > · · · > λK and obtain a related problem

min
Y
−2Tr

(
X>XY>Y

)
+Tr

(
Y>Λ−1YY>Λ−1Y

)
. (3)

Compared to (2), the solution to (3) is unique up to sign
ambiguity under certain assumptions on X.

Lemma 1. Suppose that the top K singular values of X are
unique, i.e., σ1(X) > σ2(X) > · · · > σK+1(X). Then the
optimal solutions to (3) are given by

Yopt = ΛSU>KX,

where S ∈ RK×K is any diagonal matrix with diagonal
entries in {1,−1}.

Using (3) as a starting point, we obtain a mixed min-max
objective from (3) by following the similarity matching frame-
work [3], introducing two auxiliary variables M ∈ RK×K and
W ∈ RK×N to obtain

min
Y,W

max
M

2Tr
(
W>W

)
− 4Tr

(
X>W>Y

)
+2Tr

(
Y>MY

)
− Tr

(
ΛM>ΛM

)
.

(4)

To see that (4) is equivalent to (3) note that the subproblems
in W and M have unique solutions Wopt(Y) = YX> and
Mopt(Y) = Λ−1YY>Λ−1, which follow from first-order
optimality conditions.

As a related problem to PSP, we consider also Principal
Subspace Whitening (PSW),

min
Y
‖X>X−Y>Y‖2 s.t. YY> = I,

which adds to PSP the constraint that the output features must
be whitened, i.e., rows of Y must be orthogonal. Solutions
to PSW are given again in terms of PCA with an arbitrary
orthogonal transform Q, though now Yopt = QΣ−1K U>KX to
ensure whitened output. To break the degeneracy we replace

the constraint with YY> = Λ2 with diagonal matrix Λ as
previously described, leading to

min
Y
‖X>X−Y>Y‖2 s.t. YY> = Λ2. (5)

We enforce the constraint using a Lagrange multiplier, M,
and, following Pehlevan, Sengupta, and Chklovskii [3], we
ultimately obtain the min-max objective

min
Y,W

max
M

Tr
(
W>W

)
− 2Tr

(
X>W>Y

)
+Tr

(
M
[
YY> −Λ2

])
.

(6)

Lemma 2. Suppose the same setting as Lemma 1. Then
optimal solutions to (5) are given by

Yopt = ΛSΣ−1K U>KX,

where S ∈ RK×K is any diagonal matrix with diagonal
entries in {1,−1}.

We emphasize that by introducing the diagonal matrix Λ
to the original PSP and PSW problems the degeneracy of the
solution with respect to rotation is eliminated and we are left
with only a sign ambiguity for the vector corresponding to
each principal component.

B. Dynamical Systems

To derive an optimization scheme for PSP we use the fact
that (4) exhibits strong duality in Y and M such that mini-
mization over Y may be performed prior to maximization over
M [3, Proposition 1]. The first-order optimality conditions for
Y then give1 Yopt(M,W) = M−1WX. Plugging this back
into (4) yields a saddle-point problem

min
W

max
M

L(M,W), (7)

with objective

L(M,W) = 2Tr
(
W>W

)
− Tr

(
ΛM>ΛM

)
− 2Tr

(
X>W>M−1WX

)
= 2Tr

(
W>W

)
− Tr

(
ΛM>ΛM

)
− 2Tr

(
X>W>Yopt(M,W)

)
.

From (7) we can obtain an offline dynamical system by pre-
scribing gradient ascent dynamics to M and gradient descent
dynamics to W, i.e.,

Y(s) = M−1(s)W(s)X,
dW(s)
ds = Y(s)X> −W(s),

τ dM(s)
ds = Y(s)Y(s)> −ΛM(s)Λ,

(8)

where τ > 0 is a constant setting the time scale for dynamics
of M relative to that of dynamics of W. By construction,
fixed points of (8) are critical points of (7).

1M in (4) can be constrained to be invertible, as discussed in Pehlevan et
al. [3].



Applying the same basic framework as above to the min-
max objective for PSW in (6), we get a similar set of offline
dynamics for the whitening task:

Y(s) = M−1(s)W(s)X,
dW(s)
ds = Y(s)X> −W(s),

τ dM(s)
ds = Y(s)Y(s)> −Λ2.

(9)

III. RESULTS

To obtain neural networks with biologically plausible learn-
ing rules for PCA, we first derive some properties of the
dynamical systems (8) and (9) and use insights from those to
obtain related dynamical systems that can be then converted
to online algorithms. We defer proofs to the appendix.

A. Stability of Dynamical Systems

If we take Λ = I, the dynamical system (8) reduces to that
of Pehlevan, Sengupta, and Chklovskii [3, Theorem 1]. They
proved that, at any stable fixed point (MFP,WFP), M−1

FP WFP
has orthogonal rows spanning the principal subspace of X.
For Λ with distinct diagonal entries, a stronger result holds.

Lemma 3. Let (MFP,WFP) be a fixed point of the dynamical
system (8) and define FFP ≡ M−1

FP WFP. Then the matrix
MFP is diagonal with eigenvalues of C ≡ XX> on the
diagonal, and the corresponding eigenvectors form the rows
of the matrix FFP after scaling them so that FFPF

>
FP = Λ2.

Considering small perturbations around a fixed point, i.e.,
(MFP +δM,WFP +δW), a formal linear stability analysis of
(8) gives the following result.

Theorem 1. Consider the same setting as Lemma 1. Then, for
sufficiently small τ , stable fixed points of (8) are (MFP,WFP)
such that the rows of FFP span the principal subspace of X. In
particular, we have a stable fixed point when FFP = ΛSU>K
(as in Lemma 1), i.e., each row of FFP is a (signed) multiple
of the corresponding singular vector of X.

Analogously to PSP, if we take Λ = I, the PSW dynam-
ical system (9) reduces to that of Pehlevan, Sengupta, and
Chklovskii [3, Theorem 2]. Similarly, they proved that, at any
stable fixed point (MFP,WFP), M−1

FP WFP has orthogonal rows
spanning the principal subspace of X. For Λ with distinct
diagonal entries, a stronger result again holds and we can
perform a similar formal linear stability analysis.

Lemma 4. Let (MFP,WFP) be a fixed point of the dynamical
system (9) and define FFP ≡ M−1

FP WFP. Then the matrix
MFP is diagonal with eigenvalues of C ≡ XX> on the
diagonal, and the corresponding eigenvectors form the rows
of the matrix FFP after scaling them so that FFPCF>FP = Λ2.

Theorem 2. Consider the same setting as Lemma 1. Then for
sufficiently small τ , stable fixed points of (9) are (MFP,WFP)
such that the rows of FFP span the principal subspace of
X. In particular, we have a stable fixed point when FFP =
ΛSΣ−1K U>K (as in Lemma 2), i.e., each row of FFP is a
(signed) multiple of the corresponding singular vector of X.

B. Avoiding Matrix Inversion

The dynamics (8) and (9) seem to require the matrix inverse
M−1(s) which is cumbersome for a biologically plausible
neural network and required iterations in the previous simi-
larity matching networks. However, Theorems 1 and 2 show
that at fixed points MFP is diagonal, which forms the basis of
our approach for iteration-free dynamics. Formally, we split
M(s) into its diagonal and off-diagonal parts as

M(s) = Md(s) + Mo(s), (10)

where Md(s) is diagonal and Mo(s) is zero on the diagonal.
Assuming that M(s) is not far from diagonal at any point in
time, we observe from the first-order Taylor series approxima-
tion of the matrix inverse that

M(s)−1 ≈Md(s)
−1 −Md(s)

−1Mo(s)Md(s)
−1 (11)

with approximation error O(‖Mo(s)‖2). While this approxi-
mation on the surface still involves matrix inversion, the only
matrix to be inverted is Md, which is diagonal and thus may be
inverted via element-wise inversion of the diagonal. Because
no bona fide matrix inversion is required, fast fixed-point
iterations are no longer necessary, and so we refer to this as
an “iteration-free” approximation.

Using (11) we obtain the modified dynamical system for
PSP

Y(s) =
[
I−M−1

d (s)Mo(s)
]
M−1

d (s)W(s)X,
dW(s)
ds = Y(s)X> −W(s),

τ dM(s)
ds = Y(s)Y(s)> −ΛM(s)Λ,

(12)

which arises from inserting (11) into (8).

Theorem 3. Suppose the same setting as Lemma 1. Then any
stable fixed point (M∗,W∗) of the dynamical system (8) is
also a stable fixed point of (12).

Following the same procedure we obtain a modified dynam-
ical system for PSW,

Y(s) =
[
I−M−1

d (s)Mo(s)
]
M−1

d (s)W(s)X,
dW(s)
ds = Y(s)X> −W(s),

τ dM(s)
ds = Y(s)Y(s)> −Λ2,

(13)

for which we can prove a stronger result.

Theorem 4. Suppose the same setting as Lemma 1. Then the
stable fixed points (M∗,W∗) of the dynamical system (13)
are exactly the stable fixed points of (9).

C. Online Algorithms

The dynamical system (12) suggests an online algorithm
for PSP by replacing the prescribed gradient dynamics for
M and W with stochastic gradient updates. In Algorithm 1,
we outline the computations required at the presentation of
each input vector xt to compute the corresponding output yt
and the updates to the matrices M and W with asymptotic
complexity O(KN) per iteration. We note that in the online



algorithm we have rescaled M and W by a factor of T for
numerical convenience.

Algorithm 1 Biologically Plausible Online PSP
Input: Initial weights M ∈ RK×K and W ∈ RK×N ,

diagonal Λ ∈ RK×K
for t = 1, 2, 3, . . . do
// Neural dynamics (two-step)
ỹt ←M−1

d Wxt
yt ←M−1

d Wxt −M−1
d Moỹt

// Synaptic plasticity
W←W + αt

(
ytx
>
t −W

)
M←M + τ−1αt

(
yty
>
t −ΛMΛ

)
end for

Similarly, from the modified PSW dynamical system (13)
we obtain Algorithm 2, again with per-iteration complexity
O(KN).

Algorithm 2 Biologically Plausible Online PSW
Input: Initial weights M ∈ RK×K and W ∈ RK×N ,

diagonal Λ ∈ RK×K
for t = 1, 2, 3, . . . do
// Neural dynamics (two-step)
ỹt ←M−1

d Wxt
yt ←M−1

d Wxt −M−1
d Moỹt

// Synaptic plasticity
W←W + αt

(
ytx
>
t −W

)
M←M + τ−1αt

(
yty
>
t −Λ2

)
end for

While the online algorithms fundamentally stem from ap-
plying stochastic dynamics to a saddle point problem (and thus
convergence is not assured), we show in Section IV that this
is not an issue in practice.

D. Biologically Plausible Implementation

Algorithms 1 and 2 can be naturally implemented by a
neural network of the topology shown in Figure 1. At the
presentation of each xt, the network operates in two phases.
First, the output vector yt is computed by multiplying the
input xt by the matrix W encoded in feed-forward synaptic
weights. The diagonal elements of the matrix Md (not shown
in figure) are interpreted as a single scaling variable per neuron
equalizing the output activity level of that neuron. The “off-
diagonal matrix” Mo maps to lateral weights between distinct
neurons yi and yj , corresponding to inhibitory connections
between neurons in the same layer. In the second phase, M
and W are updated using Hebbian rules to reflect the new
input-output pair.

While the network topology in Figure 1 is shared with the
original PSP and PSW implementations [1], [3] and is standard
in the computational neuroscience literature [16, Section 8.3],
the two-step dynamics described in Algorithms 1 and 2 imply a
non-standard model for the neural activity (though other two-
step dynamics with a similar flavor have appeared as, e.g.,

Fig. 1. The topology for a biological implementation of Algorithms 1 and
2 with three-dimensional input vector x ∈ R3 and two-dimensional output
vector y ∈ R2 (here, the dependence on t is omitted)

the learning/unlearning phases of Linsker [15]). This stems
directly from the lack of recurrent dynamics. Considering the
neural dynamics in either algorithm, the two-step dynamics
can be viewed as a form of time multiplexing on the topology
of Figure 1, where the contribution from the feed-forward
input is computed first to construct the initial signal ỹt, then
this initial signal is propagated laterally and combined with
the feed-forward input to produce the output signal yt.

Importantly, the synaptic plasticity rules in both algorithms
are entirely local with respect to the proposed architecture.

IV. NUMERICAL EXPERIMENTS

To demonstrate the effectiveness of our proposed algorithms
numerically, we apply them to a few synthetic data examples.

As a measure of convergence we consider error metrics
which we term the subspace alignment error:

EPro

(
ÛK

)
≡ min

Q∈ON

∥∥∥ÛKQ−UK

∥∥∥2
‖UK‖2

,

where ON is the set of N×N orthogonal matrices, the optimal
Q rotates ÛK to best align with UK by solving the orthogonal
Procrustes problem [17], and the appropriate definition of ÛK

in terms of the matrices M and W depends on the algorithm
being evaluated (see Lemmas 1 and 2).

We investigate the performance of versions of the proposed
algorithms both with and without the Taylor series approxima-
tion in (11), leading to the following four online algorithms:

ifPSP The online algorithm for iteration-free PSP as
described in Algorithm 1, with

Û>K ≡ Λ−1(M−1
d −M−1

d MoM
−1
d )W.

PSP An online algorithm for PSP with general
matrix inversion (which would require iteration),
obtained by replacing the neural dynamics in Al-
gorithm 1 with yt ← M−1Wxt. Here we take
Û>K ≡ Λ−1M−1W.

ifPSW The online algorithm for iteration-free PSW
as described in Algorithm 2, with

Û>K ≡ ΣKΛ−1(M−1
d −M−1

d MoM
−1
d )W.

PSW An online algorithm for PSW with general
matrix inversion (which would require iteration),



obtained by replacing the neural dynamics in Al-
gorithm 2 with yt ← M−1Wxt. Here we take
Û>K ≡ ΣKΛ−1M−1W.

For comparison we also look at the performance of “offline”
versions of the above algorithms. For example, to construct an
offline version of Algorithm 1, suppose E

[
xtx
>
t

]
= G. Then

we take the synaptic plasticity rules and replace ytx
>
t and

yty
>
t with their expectations over the data

E
[
ytx
>
t

]
= FG and E

[
yty
>
t

]
= FGF>,

where F =
[
I−M−1

d Mo
]
M−1

d W is the neural filter map-
ping inputs to outputs at the current iteration (i.e., F is such
that in the online algorithm yt = Fxt). This leads to four
offline algorithms, one for each of the four online algorithms
above.

A. Parameters and Initialization

For each example we sample the data {xt}Tt=1 in-
dependently from a multivariate Gaussian distribution
xt ∼ N (0,G) with specified population covariance matrix

G = RG̃R>,

where R ∈ ON is a random orthogonal matrix (Haar measure)
and G̃ is diagonal.

We consider two different problem sizes. For the “smaller’
problem, we set the input dimension N = 10 and output
dimension K = 3 and choose G̃11 = 1, G̃22 = 0.75,
G̃33 = 0.5, and G̃kk = 0.2 otherwise. We use Λ =
diag([1, 0.85, 0.7]) and αt = 10/(250+t) for the small online
tests, choosing τ = 0.5 for PSP-based algorithms and τ = 1
for PSW-based algorithms. For the “larger” problem, we set
the input and output dimensions as N = 100 and K = 10.
The singular values of the population covariance matrix of X
are given by

G̃kk =

{
1− k−1

2(K−1) k ≤ 10,

0.02 else.

We use Λkk = 1− 3(k−1)
10(K−1) and choose the step sequence

αt =

{
1.1× 10−3 t ≤ 10000,
1.0× 10−4 else,

for PSP-based algorithms and αt = 1.0×10−3 for PSW-based
algorithms. We keep τ as in the small problem.

Because the offline algorithms are not stochastic, the step
sequence can be taken much larger than in the online case.
Thus, we use the step rule αt = 1.0 × 10−1 for both
the smaller and larger problem in the offline setting, which
gives convergence to the principal subspace in a relatively
small number of iterations, T . Note that, because the offline
algorithms do not sample the data but rather use the covariance
matrix directly, T does not correspond to number of samples
used but rather only to iteration count.

For initialization in both the smaller and larger problems,
we use M = I for the PSP-based algorithms and M = 0.3I
for the PSW-based algorithms. In all cases, W is initialized

TABLE I
THE SUBSPACE ALIGNMENT ERROR EPRO FOR THE ONLINE ALGORITHMS

ON EXAMPLES OF TWO DIFFERENT SIZES

N = 10,K = 3 N = 100,K = 10
ifPSP PSP ifPSW PSW ifPSP PSP ifPSW PSW

T=1000 2.1e-2 1.9e-2 9.6e-1 7.7e-1 1.0e-0 1.3e-0 1.6e-0 1.9e-0
T=10000 1.5e-4 4.1e-4 1.3e-2 1.6e-2 3.1e-3 1.5e-3 2.5e-2 2.1e-2
T=100000 1.7e-5 5.5e-5 1.8e-3 1.8e-3 5.4e-4 1.4e-4 5.2e-3 4.9e-3

103 104 105

Iterations

10-4

10-3

10-2

10-1

100

Er
ro
r

Online

ifPSP
PSP
ifPSW
PSW

103 104 105

Iterations

10-20

10-15

10-10

10-5

Er
ro
r

Offline

ifPSP
PSP
ifPSW
PSW

Fig. 2. On the left, we show the online results for the larger problem
(N = 100) as in Table I. On the right, we show the offline results for
the larger problem as in Table II. In all cases, the error is the appropriate
Procrustes error EPro.

to have random normal entries with mean zero and variance
1/N .

B. Results

In Table I, we show the subspace alignment error, EPro for
the four different online algorithms for varying numbers of
points, where each error is computed as the median across
100 trials (see also Figure 2, left). For both the smaller
(N = 10) and larger (N = 100) problem, we observe gradual
convergence of the online algorithms, with the new iteration-
free algorithms ifPSP and ifPSW behaving similarly to the
variants PSP and PSW using full general matrix inversion at
each iteration.

To validate our theoretical results in the offline setting, we
give corresponding results of the error EPro for the offline
algorithms in Table II (see also Figure 2, right). As in the
online case, we see that ifPSP and ifPSW behave similarly to
PSP and PSW (respectively), though now in the offline case
we observe fast convergence to high precision in a relatively
small number of iterations due to the lack of stochasticity.

Overall, we see that there is no marked increase in our error
measure when using ifPSP or ifPSW when compared to PSP
or PSW and we observe convergence to the principal subspace
in all cases. The offline results show fast convergence of the
dynamical system to a stable fixed point. In the online case,
convergence is naturally slower due to the variance inherent
in stochastic dynamics (and correspondly small step size), but
still evident.



TABLE II
THE SUBSPACE ALIGNMENT ERROR EPRO FOR THE OFFLINE ALGORITHMS

ON EXAMPLES OF TWO DIFFERENT SIZES. THE ENTRIES DENOTED BY ∗
ARE COMPUTED TO BE LESS THAN 10−18 .

N = 10,K = 3 N = 100,K = 10
ifPSP PSP ifPSW PSW ifPSP PSP ifPSW PSW

T=100 2.7e-5 2.3e-4 9.5e-3 9.8e-3 6.0e-4 5.3e-6 1.3e-2 1.4e-2
T=1000 5.9e-10 2.3e-10 4.2e-7 5.5e-7 1.2e-5 3.4e-8 2.1e-3 2.0e-3
T=5000 * * * * 1.7e-7 3.5e-10 2.8e-4 3.1e-4
T=50000 * * * * * * 8.2e-13 2.0e-12

V. DISCUSSION

In this work we proposed a modification of the similarity
matching framework for online PCA to develop online PCA
algorithms that do not require general matrix inversion with
the arrival of each new input vector. Following the same
mechanics as the original framework, we proved rigorous
stability results for dynamical systems stemming from the
modified objectives, showing that gradient dynamics on a
saddle point formulation of a modified similarity matching
objective has stable fixed points corresponding to the principal
subspace. The resulting algorithms closely resemble the origi-
nal ones, but, importantly, do not require iterations to invert a
general (non-diagonal) matrix and thus have greater biological
plausibility.

Our numerical results show the inversion-free algorithms
presented here give similar performance in terms of error
to corresponding variants using matrix inversion. However,
in contrast to the algorithms based on inversion, the per-
iteration computational complexity of the new algorithms is
only O(KN) versus O(KN +K3), which is lower in certain
regimes.

Unlike previous similarity-based networks the iteration-free
algorithm does not suffer from the degeneracy of the output
with respect to a multiplication by an orthogonal matrix.
Uniqueness of the solution potentially simplifies the analysis
downstream. Further, while the proposed algorithms are not
expected to obtain true “convergence” except perhaps in the
case of infinite stationary data, it is interesting to observe that
the prediction of stable fixed points with Mo = 0 implies a
pruning of the network topology in Figure 1. In other words,
at convergence, the lateral connections should disappear and
near fixed points the lateral synaptic weights should be small.

Because the proposed online algorithms are based on si-
multaneous gradient ascent-descent dynamics on a min-max
problem, it is difficult to prove convergence results for the
online algorithms presented here. In future work, we hope
to use results like those used for Generative Adversarial
Networks (GANs) [18] to develop a theory of convergence for
the online case, whether for these algorithms or for modified
versions as appropriate.

ACKNOWLEDGMENTS

The authors thank Mariano Tepper and Anirvan Sengupta
for useful discussion that contributed to the quality of this
manuscript.

REFERENCES

[1] C. Pehlevan, T. Hu, and D. B. Chklovskii, “A Hebbian/anti-Hebbian
neural network for linear subspace learning: A derivation from multi-
dimensional scaling of streaming data,” Neural Computation, vol. 27,
no. 7, pp. 1461–1495, 2015.

[2] C. Pehlevan and D. B. Chklovskii, “Optimization theory of Hebbian/anti-
Hebbian networks for PCA and whitening,” in 2015 53rd Annual Aller-
ton Conference on Communication, Control, and Computing (Allerton),
Sept 2015, pp. 1458–1465.

[3] C. Pehlevan, A. M. Sengupta, and D. B. Chklovskii, “Why do similarity
matching objectives lead to Hebbian/anti-Hebbian networks?” Neural
Computation, vol. 30, no. 1, pp. 84–124, 2018, pMID: 28957017.

[4] R. Linsker, “Local synaptic learning rules suffice to maximize mutual
information in a linear network,” Neural Computation, vol. 4, no. 5, pp.
691–702, 1992.

[5] A. Hyvärinen and E. Oja, “Independent Component Analysis: Algo-
rithms and Applications,” Neural Networks, vol. 13, no. 45, pp. 411–430,
2000.

[6] E. Oja, H. Ogawa, and J. Wangviwattana, “Principal Component Anal-
ysis by homogeneous neural networks, Part 1: The weighted subspace
criterion,” IEICE Transactions on Information and Systems, vol. E75-D,
no. 3, pp. 366–375, May 1992.

[7] L. Xu, “Least mean square error reconstruction principle for self-
organizing neural-nets,” Neural Networks, vol. 6, no. 5, pp. 627 – 648,
1993.

[8] J. Qiu, H. Wang, J. Lu, B. Zhang, and K.-L. Du, “Neural Network Im-
plementations for PCA and Its Extensions,” ISRN Artificial Intelligence,
vol. 2012, pp. 1–19, Jul 2012.

[9] E. Oja, “Simplified neuron model as a principal component analyzer,”
Journal of Mathematical Biology, vol. 15, no. 3, pp. 267–273, Nov 1982.

[10] ——, “Neural networks, principal components, and subspaces,” Inter-
national Journal of Neural Systems, vol. 01, no. 01, pp. 61–68, 1989.

[11] ——, “Principal components, minor components, and linear neural
networks,” Neural Networks, vol. 5, no. 6, pp. 927 – 935, 1992.

[12] S. Y. Kung and K. I. Diamantaras, “A neural network learning algorithm
for adaptive principal component extraction (APEX),” in International
Conference on Acoustics, Speech, and Signal Processing, Apr 1990, pp.
861–864 vol.2.

[13] T. D. Sanger, “Optimal unsupervised learning in a single-layer linear
feedforward neural network,” Neural Networks, vol. 2, no. 6, pp. 459 –
473, 1989.
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APPENDIX

Demonstration of Lemma 1. Taking a derivative in Y, we
obtain the first-order stationarity condition

−4YX>X + 4Λ−1YY>Λ−1Y = 0.

Right-multiplying both sides of this equation by Y>Λ−1 and
rearranging gives

YX>XY>Λ−1 = Λ−1YY>Λ−1YY>Λ−1,



where we observe that the left-hand side must be symmetric.
We conclude that Λ−1 and YX>XY> commute and thus
share the same eigenvectors. Therefore, Y> diagonalizes
X>X, i.e., each nonzero row of Y is an eigenvector of
X>X and the rows of Y are pairwise orthogonal. With
X = UΣV> as the SVD of X, we write YY> = D and
YX>XY> = DΣ̃2

K , where D is a diagonal matrix with
nonnegative diagonal entries and Σ̃K is a K × K principal
submatrix of Σ. Plugging this representation into (3), we
obtain

−2Tr
(
DΣ̃2

K

)
+Tr

(
D2Λ−2

)
,

which is minimized by choosing Σ̃K = ΣK and D = Λ2Σ2
K .

The result follows.

Demonstration of Lemma 2. The result follows from writing
an SVD of Y and then first, observing that YY> = Λ2

implies that left singular vectors of Y are coordinate vectors
and singular values of Y are on the diagonal of Λ and second,
observing the optimal choice of right singular vectors is given
by setting them to corresponding right singular vectors of X
(this is the two-sided orthogonal Procrustes problem [19]).

Demonstration of Lemma 3. At a fixed point, we have from
(8) that FFPC = WFP and FFPCF>FP = ΛMFPΛ. Together
these imply WFPF

>
FP = ΛMFPΛ, but by definition FFP ≡

M−1
FP WFP so this gives WFPW

>
FPM

−1
FP = ΛMFPΛ and thus

ΛMFPΛMFP = MFPΛMFPΛ. Therefore, MFPΛMFP and Λ
commute, from which it follows that MFPΛMFP is diagonal.
Then, we observe

[(MFPΛMFP)Λ]MFP = MFP [Λ (MFPΛMFP)] ,

which shows MFP commutes with the bracketed diagonal
matrix and is thus itself diagonal. The results for FFP then
follow from FFPC = WFP = MFPFFP and FFPCF>FP =
ΛMFPΛ.

Proof of Theorem 1. First we show that a necessary condition
for stability is that the rows of FFP span the principal k-
dimensional subspace of C. The linearization of (8) is

d(δW)
ds = (δF)C− (δW),

τ d(δM)
ds = (δF)CF>FP + FFPC(δF)> −Λ(δM)Λ,

(14)

where δF ≡ M−1
FP (δW) − M−1

FP (δM)FFP and we have
dropped explicit dependencies on s. With some algebra, we
find

d(δF)

ds
=

M−1
FP

τ

[
Λ(δM)Λ− (δF)CF>FP − FFPC(δF)>

]
FFP

+ M−1
FP (δF)C− δF−M−1

FP (δM)FFP.
(15)

We decompose δF = (δN)FFP + (δB)GFP, where the rows
of the matrix GFP ∈ R(N−K)×N are N − K orthonormal
eigenvectors of C that are orthogonal to rows of FFP. Right-
multiplying (15) by G>FP gives

d(δB)

ds
= M−1

FP (δB)D− δB, (16)

where D is a diagonal matrix with the eigenvalues correspond-
ing to GFP, i.e., GFPCG>FP = D. A stability analyis of (16)
shows stability requires λmin(MFP) > λmax(D), which implies
the diagonal of M contains the top K eigenvalues of C.

Now we show that, for sufficiently small τ , points with FFP
of the form FFP = ΛSU>K are stable fixed points by analyzing
the perturbation δN. Using the fact that FFPC = MFPFFP and
right-multiplying by F>FPΛ

−2 we obtain from (15)

d(δN)

ds
=

M−1
FP

τ

[
Λ(δM)Λ− (δN)Λ2MFP −MFPΛ

2(δN)>
]

+ M−1
FP (δN)MFP − δN−M−1

FP (δM)
(17)

and from (14)

τ
d(δM)

ds
= (δN)Λ2MFP+MFPΛ

2(δN)>−Λ(δM)Λ, (18)

which together form the dynamical system we can use to an-
alyze stability of δN perturbations. Because MFP is diagonal,
we see that the system consists of small 3× 3 subsystems de-
scribing the coupled dynamics of (δMij , δNij , δNji), where
individual element dynamics in this subsystem are

τ
d(δMij)

ds
= λ2jmj(δNij) +miλ

2
i (δNji)− λiλj(δMij),

d(δN)ij
ds

=
1

miτ

[
λi(δMij)λj − (δNij)λ

2
jmj −miλ

2
i (δNji)

]
+

1

mi
(δNij)mj − δNij −

1

mi
(δMij),

d(δN)ji
ds

=
1

mjτ

[
λj(δMji)λi − (δNji)λ

2
imi −mjλ

2
j (δNij)

]
+

1

mj
(δNji)mi − δNji −

1

mj
(δMji).

As an aside, we note that we need only consider symmetric
δM, since M is constrained throughout to be symmetric.
Denoting by J

(ij)
FP the Jacobian corresponding to the subsystem

involving δMij , we have

J
(ij)
FP ≡


−λiλj

τ

λ2
jmj

τ
λ2
imi

τ
λiλj

miτ
− 1

mi

mj

mi
− mjλ

2
j

miτ
− 1 −λ

2
i

τ
λiλj

mjτ
− 1

mj
−λ

2
j

τ
mi

mj
− miλ

2
i

mjτ
− 1

 .

We are interested in the eigenvalues of J
(ij)
FP but it is easier to

consider the eigenvalues of the similar matrix

H
(ij)
FP ≡

 −λiλj

τ − λ2
jmj

miτ
− λ2

imi

mjτ

λ2
jmj

miτ
λ2
imi

mjτ

−mj

mi

mj

mi
− 1 0

−mi

mj
0 mi

mj
− 1

 ,

where the similarity transform is H
(ij)
FP = SJ

(ij)
FP S−1 with

S ≡

 1 0 0
1 mi 0
1 0 mj

 .

Letting tij = mi/mj , we find that the characteristic
polynomial χ(s) of H

(ij)
FP is given by

χ(s) = −s3 + bs2 + cs+ d,



with

b = −(tij − 1)(tji − 1)−
[λiλj + λ2j tji + λ2i tij ]

τ
,

d = −
[λ2j (tji − 1) + λ2i (tij − 1) + λiλj(tij − 1)(tji − 1)]

τ
,

c = b+ d+
λiλj
τ

.

For sufficiently small τ , we see that b is negative and we
can show that d is negative as long as tij > tji implies
λi > λj (which holds only when the ordering implied by
Λ is matched by that of MFP). By inspection, in this case c
is also negative, which means by Descartes’ rule of signs we
have no positive real roots. Further, it can be verified that the
polynomial discriminant of χ(s) is positive (and thus we have
three real roots) as long as b + d < 0. We conclude that for
sufficiently small τ we have three real negative roots and thus
a stable fixed point.

Demonstration of Lemma 4. At a fixed point, we have from
(9) that FFPC = WFP and FFPCF>FP = Λ2. Since FFP =
M−1

FP WFP, this implies MFPFFPF
>
FP = Λ2, which we rear-

range to conclude that MFP and Λ commute and so MFP is
diagonal and the rows of FFP are orthogonal and scaled such
that FFPF

>
FP = M−1

FP Λ2.

Proof of Theorem 2. This proof mirrors the proof of Theorem
1, up to the point where we must consider the eigenvalues of
the Jacobian of the linearized system. At that point, direct
computation reveals the charactistic polynomial

χ(s) = −s3 + bs2 + cs+ d

with

b = (tij − 1 + tji − 1)−
m−1i λ2j +m−1j λ2i

τ
,

d =
(m−1i −m

−1
j )(λ2i − λ2j )
τ

,

c = b+ d,

where variables are as defined in the proof of Theorem 1, and
the proof concludes similarly.

Proof of Theorem 3. The linearization of (12) agrees with that
of (8) around any fixed point with diagonal M.

Proof of Theorem 4. The fixed point conditions for (13) imply
M−1

d −M−1
d MoM

−1
d is diagonal at a fixed point. Using this,

we see that the linearization of (13) around any fixed point is
identical to the linearization of (9).


	I Introduction
	II Problem Formulation
	II-A Optimization Problems
	II-B Dynamical Systems

	III Results
	III-A Stability of Dynamical Systems
	III-B Avoiding Matrix Inversion
	III-C Online Algorithms
	III-D Biologically Plausible Implementation

	IV Numerical Experiments
	IV-A Parameters and Initialization
	IV-B Results

	V Discussion
	References
	Appendix

