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Relative luminance and binocular disparity preferences
are correlated in macaque primary visual cortex,
matching natural scene statistics
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Humans excel at inferring information about 3D scenes from their
2D images projected on the retinas, using a wide range of depth
cues. One example of such inference is the tendency for observers
to perceive lighter image regions as closer. This psychophysical be-
havior could have an ecological basis because nearer regions tend to
be lighter in natural 3D scenes. Here, we show that an analogous
association exists between the relative luminance and binocular
disparity preferences of neurons in macaque primary visual cortex.
The joint coding of relative luminance and binocular disparity at the
neuronal population level may be an integral part of the neural
mechanisms for perceptual inference of depth from images.
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he properties of the natural environment are essential to un-

derstanding behavior (1). The study of the statistics of natural
images has been instrumental in advancing our understanding of
the visual system. Examples are numerous: Center—surround re-
ceptive fields of retinal ganglion cells can be understood in terms
of their whitening effects on highly self-correlated natural image
signals (2). In primary visual cortex (V1), the need to further
separate visual signals into their underlying causes provides a po-
tential sparse code explanation for the wavelet-like receptive fields
of V1 simple cells (3, 4).

Thus far, knowledge of the statistics of natural images has
been most useful for understanding how images are represented
and transmitted in the early visual pathway (5). However, effi-
cient image representation is only one of many goals of the visual
system. To effectively study perceptual inference in the visual
system, we must have an understanding of the joint statistics
of images together with their perceptual goals. In particular, to
understand how depth and 3D shape are inferred in the brain, we
need to first understand the statistical trends that exist between
natural images and their underlying 3D structure.

Statistical trends in natural scenes often manifest as a per-
ceptual bias in psychophysical studies (6-12). One perceptual
bias that has been observed is that, all other things being equal,
humans perceive lighter image regions as being closer. This
perceptual effect was first discovered by Leonardo da Vinci who
said, “Among bodies equal in size and distance, that which shines
the more brightly seems to the eye nearer,” (ref. 13, p. 332). Over
the last century, a number of psychophysical studies have char-
acterized this relationship between relative luminance and depth
(14-21). We have previously shown that a corresponding nega-
tive correlation (r = —0.14) between image intensity and depth
(r = —0.24 for log intensity vs. log depth) was found in the sta-
tistics of natural scenes (22). This result suggests that the per-
ceptual bias in the psychophysical tests has an ecological basis
and is revealing a statistical trend stored within our visual system.
Such a trend could be used by the visual system to infer depth in
a scene when binocular and other visual cues are either ambig-
uous or absent.

In this article, we demonstrate that the relationship between
relative luminance and binocular disparity tuning of neurons in
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the primary visual cortex of awake, behaving macaques is con-
sistent with these statistical trends found in natural scenes. We
then discuss how the brain could exploit this correlation to esti-
mate depth when the binocular disparity information presented
to the receptive fields of these neurons is uncertain or ambiguous.

Results

There is a negative correlation between image intensity and
depth in the statistics of natural scenes (22). However, intensity
and depth information is represented in relative rather than
absolute values—e.g., darker than the mean intensity and farther
than the fixation depth—even in the earliest stages of the visual
system, such as V1, due to gain control, binocular fixation, pu-
pillary dilation, and other factors. Evidence suggests, however,
that the negative correlation between image intensity and depth
is a consequence of shadows in natural scenes (22-24). The
correlation is most apparent on surfaces found in natural scenes
that often contain concavities and crevices (22). Concave surfa-
ces are exposed less to the environment and, therefore, are often
shielded from ambient and direct light and thus tend to be
darker, and the interior points lie farther from the observer.
Convex surfaces are exposed more to the environment and,
therefore, are often exposed to more light, especially when the
light is ambient, and the exterior points lie closer to the observer.
Strong examples of this phenomenon can be found in the spaces
between piles of large objects (Fig. 14) and in the depths of leafy
foliage (Fig. 1B); pixels deeper into a tree or wooded area tend
to be darker, on average. This phenomenon describes a rela-
tionship between relative intensity (a point inside a shadow vs.
a point outside) and relative depth (a point within a crevice vs.
a point outside). Here, we performed further analysis to confirm
this relationship exists between relative values of intensity and
depth (Fig. 1 C and D). For example, we observe similar negative
correlation between comparative metrics applied to the image
and range data, respectively (Fig. 1C). Additionally, we can il-
lustrate the relationship between relative intensity and relative
depth probabilistically: Given two nearby pixels, the one that is
lighter is more likely to be the nearer of the two (Fig. 1D).
Because the statistics in 3D natural scenes predicted a negative
correlation between relative intensity and relative depth, we hy-
pothesized there was an analogous correlation among the neuronal
responses in V1 of macaques. Neurons in V1 respond selectively
to both the relative luminance (whether an edge, a figure, or a
surface is lighter or darker with respect to the background)
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Fig. 1. Examples of the correlation between intensity and depth in natural
scenes. (A) Shadows (Left) are produced in the crevasses (range data, Right)
of piles of objects. Lighter means farther for the range data images (blue
regions were not recorded because they were beyond the range of the
scanner). (B) There are also shadows seen in the more distant sections of
foliage. (C) Correlation between relative luminance and relative depth using
four different metrics (Materials and Methods). (D) Given two pixels, the one
that is lighter is more likely to be nearer. Statistical significance of these
measurements is described in Materials and Methods.

(25-28) and, via stereo disparity, the depth of a stimulus relative
to the fixation plane (29-32) so examining the joint tuning dis-
tribution provides a straightforward test of our hypothesis. Using
two to eight glass- or epoxy-insulated electrodes simultaneously
inserted into V1 of two monkeys and a chronically implanted 100-
electrode Utah array into V1 of a third monkey (Materials and
Methods), we recorded from a total of 818 single- and multiunits
over multiple recording sessions (n = 128, 190, and 500 neurons
for monkeys D, F, and I, respectively). We tested the preferences
of neurons for relative luminance and depth (rendered by in-
troducing binocular disparity) independently. To determine rel-
ative luminance preference, we presented 1-s static 3.5° diameter
disks with luminance ranging from progressively darker (black) to
progressively lighter (white) on a mean gray background (Fig.
2A4). The disk was large enough so that no edge, and therefore no
binocular disparity information, was available to each V1 classical
receptive field (typically having a diameter of <1°). To determine
binocular disparity preference, we presented a 1-s dynamic ran-
dom dot stereogram (DRDS) in a 3.5°-diameter aperture with
disparities ranging from —1° to 1° (Fig. 2B). A DRDS allowed us
to measure binocular disparity preference for each neuron with-
out introducing any systematic monocular pattern or structure to
each V1 receptive field (30-32).

Two example neurons whose joint tuning properties are con-
sistent with our statistical prediction are (i) a neuron that re-
sponds more strongly to white disks compared with black disks
(Fig. 2C) and near binocular disparities (negative) compared with
far disparities (Fig. 2D) and (ii) a neuron that responds more
strongly to black disks compared with white disks (Fig. 2E) and far
binocular disparities (positive) compared with near disparities
(Fig. 2F). To confirm whether a general trend of negative corre-
lation exists between relative luminance and binocular disparity
preference in V1, we assigned a single value for each character-
istic for each recorded neuron. The relative luminance preference
for each neuron was assigned a luminance index, which is the ratio
of the mean firing rate to the white disk (W) compared with the
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Fig. 2. Single-neuron examples of relative luminance and binocular dis-
parity tuning. (A) Disk stimuli used to measure luminance tuning. (B) DRDS
stimuli used to measure binocular disparity tuning (image for one eye
shown). (C and D) A neuron that responds better to light surfaces and near
disparities. (E and F) A neuron that responds better to dark surfaces and far
disparities. All error bars are trial-to-trial SE.

black disk (B): (W — B)/(W + B). The binocular disparity pref-
erence for each neuron was assigned the disparity that produced
the maximum mean firing rate in a Gabor function fit (31-35) to
the responses of the 11 disparities presented.

To be included in our analysis, first, neurons had to have sig-
nificant binocular disparity tuning (n = 10-60 trials, one-way
ANOVA based on 11 disparities, P < 0.05). Slightly more than
half of V1 neurons have significant binocular disparity tuning
when measured from the responses to the DRDS (30, 32). We
recorded from 357 neurons (44%) with significant disparity tun-
ing (n = 62,98, and 199 neurons). A higher percentage of neurons
were excluded from monkey I (61%) because many electrodes on
the array were not close enough to neurons and cannot be moved
independently, to provide enough isolation to record from reli-
able single units with significant disparity tuning. Binocular dis-
parity tuning of single units and multiunits is not correlated in V1
(31) so single-unit isolation is important for observing significant
disparity tuning and determining preferred disparity. Second, we
discarded a small percentage of disparity-tuned neurons (14%,
n = 48 neurons) that had two distinct disparity peaks with firing
rates that were not significantly different (s-test, P < 0.05; i.e.,
“tuned-inhibitory” neurons) (29), because we could not assign
these neurons a preferred disparity. And finally, the remaining
neurons had to respond significantly to the luminance disk (n =
10-20 trials, one-way ANOVA based on six disks and the mean
gray background, P < 0.05). Although disk stimuli with contrast
outside of the V1 classic receptive fields have been documented
to generate significant V1 responses, the response rates are much
lower than those of more traditional stimuli with contrast within
the receptive field (26, 36) (Fig. S1). The relatively conservative
ANOVA test based on seven disks, therefore, was used to make
sure that we included only neurons (64%) with robust responses
and reliable luminance index estimates. These criteria provided
us with 199 neurons that were suitable candidates for our hy-
pothesis and that we were able to test for a correlation between
luminance index and preferred binocular disparity (n = 45, 59,
and 95 neurons for monkeys D, F, and I, respectively).

On the basis of these 199 neurons, there was a significant
negative correlation that supported the natural scene prediction
(Fig. 34; Pearson’s r = —0.29, P < 0.0001) and this trend was very
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Fig. 3. Negative correlation between luminance index and preferred binocular disparity. (A) Aggregate scatter plot of measurements made from neurons

recorded from all three monkeys. (B) Scatter plot of measurements made from

neurons recorded from each monkey individually. (C) Population average of

contrast response curves for light and dark disks. Each plot uses a different group of neurons on the basis of their preferred disparity d. The response to
a blank gray screen (0%) was subtracted from the contrast response curve for each neuron and then the curve was normalized by the peak firing rate before

averaging. Error bars are population SE. (D) Histograms of preferred binocular

disparity. Each histogram uses a different group of neurons on the basis of

their luminance index LI, ranging from preferring white to preferring black (top to bottom). Arrows are mean preferred binocular disparity. () Population
average of disparity tuning curves. Each plot uses a different group of neurons on the basis of their luminance index LI. The mean response to all disparities
was subtracted from the disparity tuning curve for each neuron and then the curve was normalized by the peak firing rate before averaging. Error bars are

population SE.

consistent across all three monkeys (Fig. 3B; all negative and
overlapping trend lines with r = —0.30, P < 0.05). Because of the
uncertainty with the distribution characteristics of our data, we
carried out a more rigorous examination of the correlation be-
tween the two variables. First, we found that Spearman’s rank
correlation was similar in magnitude and still highly significant
(p = —0.24, P < 0.001). Second, we preformed robust regression
analysis to test whether potential outliers were strongly influ-
encing the correlation estimate. Using a wide range of weighting
functions (provided in the Matlab Statistics Toolbox) and tuning
constants, we always observed only very modest changes in the
slope of the regression fit, which was always negative and sig-
nificant (P < 0.005; Fig. S2).

Because the luminance index uses only the responses to the
lightest white and darkest black disk, we also examined the
responses to all disks presented to see how they varied with re-
spect to preferred binocular disparity (Fig. 3C). With increasing
light or dark contrast, most neurons responded with increasing
mean firing rates. Sometimes there was a decrease, saturation, or
acceleration in mean firing rate with increasing contrast (e.g., Fig.
2 C and E). Additionally, neurons in V1 responded much more
strongly to black disks vs. white disks on average (pur; = —0.25 +
0.02, P = 1 x 1072%). This dark bias is consistent with a recent
study that examined this particular phenomenon more directly
with stimuli that had contrast within the classical receptive field
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(28) and could also have an ecological basis (37). Overall, you can
see that the population average of the contrast response curves
for light disks more strongly saturates and even decreases as you
move from near to far binocular disparities (Fig. 3C, gray curves,
left to right) whereas the population average of the contrast re-
sponse curves for dark disks increases and accelerates (Fig. 3C,
black curves, left to right).

The majority of the neurons in V1 are tuned for disparities near
zero (31, 32), which is another trend in the data that matches what
is observed in natural scene statistics (38). A histogram of the
preferred disparities for our data is consistent with these obser-
vations with a large number of neurons with a preferred disparity
at or near zero (Fig. 3D, black histogram). The negative corre-
lation between luminance index and preferred binocular disparity
results in the strongest white-preferring neurons (luminance in-
dex >0.1) being composed of a higher percentage of near-tuned
neurons and very few far-tuned neurons (Fig. 3D, top gray his-
togram, n = 20 neurons). Also, the negative correlation results in
the strongest black-preferring neurons (luminance index <—0.6)
being composed of a higher percentage of far-tuned neurons and
very few near-tuned neurons (Fig. 3D, bottom gray histogram,

= 22 neurons). These shifts in the distribution of preferred
disparity for a small subset of the population of neurons lead to
subtle, but significant shifts in preferred disparity for the entire
population based on white or black preference. The mean pre-
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ferred disparity for all white-preferring neurons (p = —0.23 +
0.06°, luminance index >0, n = 29 neurons; Fig. 34, red arrow) is
significantly nearer (P < 0.005) than the preferred disparity for all
black-preferring neurons (p = —0.07 + 0.02°, luminance index <0,
n = 165 neurons; Fig. 34, blue arrow).

Because the preferred binocular disparity is based on the re-
sponse to only one disparity, we also examined the responses to
all disparities presented to see how they varied with respect to
the luminance index (Fig. 3E). Because the tuning for disparity is
narrower than that for the contrast response curves averaged
in Fig. 3C, especially near zero disparity (32, 38), population
averages of disparity tuning for small groups of neurons (Fig. 3D,
second and fourth rows) spread across a relatively wide range of
disparities are not very informative and do not resemble single-
neuron tuning curves. Therefore, we divided the data into two
groups with respect to the luminance index with a large and
equal number of samples: neurons with a luminance index above
and below the median. Overall, one can see that the population
average of the disparity tuning curves for relatively lighter-pre-
ferring neurons (Fig. 3E, gray curve; LI > mediang;, n = 97
neurons) responds to relatively nearer disparities than the pop-
ulation average of the disparity tuning curves for relatively
darker-preferring neurons (Fig. 3E, black curve; LI < mediany,
n = 97 neurons).

Discussion

In this article, we described the perceptual phenomenon of
lighter surfaces appearing to be nearer than darker surfaces. We
then described the correlations between image and 3D natural
scene statistics, which might provide an ecological basis for this
phenomenon. This correspondence suggests that the behavior is
evidence of a statistical trend that humans make use of when
inferring 3D shape in images. Most previous studies that sought
to understand the visual system by analyzing the statistics of
natural scenes have explained neurophysiological properties that
were already well known, such as the center-surround antago-
nistic and wavelet-like receptive field structures (2-4), as well as
contextual modulation of receptive field responses to contour
segments outside the classical receptive field (6, 7, 39). Our study
is one of a few studies (5) that instead confirm a prediction made
by theoretical studies of natural scenes, using neurophysiological
experiments.

Within a given image region, darker surfaces are more likely to
be part of a shadow and are thus more likely to be farther away
than nearby lighter surfaces. The comparative statistics (Fig. 1)
illustrate the tendency for shadowed regions to lie farther from
the observer. In addition, these comparative statistics are related
to response properties of neurons in V1. Neural responses to
luminance in V1 are relative to both the absolute intensity of light
striking the retina and also the local relative intensity of the re-
gion, due to the center—surround receptive field structure found
throughout the early visual system. Likewise, neurons are selec-
tive to absolute binocular disparity, which is not a measure of
absolute depth from the observer. It is instead a measure of rel-
ative depth from the fixation plane, which is commonly focused to
minimize stereo disparity for the object fixated at the fovea.

With the neurophysiology experiments, we demonstrated that
there is a significant negative correlation between relative lu-
minance preference and preferred binocular disparity among a
population of V1 neurons (Fig. 34). Neurons that respond to
near binocular disparities also respond relatively better to lighter
disks compared with darker disks than neurons that respond to
far disparities. The negative correlation observed is invariant to
changes in several disk and aperture sizes that we tested (Figs. S3
and S4). The trend is also clear in the population averages of
light and dark contrast response curves as the composition of
neurons in each population varied in tuning from near to far
preferred binocular disparities (Fig. 3C). Regardless of how we
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defined the relative luminance preference or ratio between the
responses to light disks vs. far disks, we always observed a sig-
nificant negative correlation so the trend did not depend on
any specific choice of a luminance index (SI Text). Overall, the
neurophysiological results were robust and consistent with the
prediction derived from the analysis of natural scene statistics.

The subtle shifts in disparity estimated from our population
response in V1 due to relative luminance preference (Fig. 34, D,
and E) are comparable to those measured in perception. For
example, in psychophysical experiments, a white disk on a gray
background at a distance of 125 cm is perceived as 5 cm nearer
than a black disk on a gray background (18). Similarly the shift in
preferred disparity that we measured between disparity-tuned
neurons preferring white and black disks (Fig. 34, red and blue
arrows) would correspond to a difference in depth of 10 cm at
distance of 125 cm. The association we measured does not imply
that the actual depth-decoding process, including the neural
correlate of the perceptual bias, would be located in V1. Because
discs were presented binocularly and the disparity of the disk was
not ambiguous, the bias would not play a role in the subject’s
perception (18). More sophisticated experiments would be nec-
essary to uncover the neural correlate of the perceptual bias. Our
results reveal that the association in V1 is a possible component
of the mechanism of depth inference rather than a by-product of
the perception.

Looking at how the modest trend between intensity and depth
in natural scene statistics impacts computer vision solutions to
estimating depth on the basis of image information can provide
insight into how the subtle shift in the neurophysiological re-
sponse might contribute to the strong perceptual effect. For ex-
ample, when a regression-based algorithm is trained to infer depth
from natural scenes, it learns both shading cues and shadow cues
from scene statistics. The shadow cues, which consist of a learned
correlation between relative brightness and relative nearness,
account for 72% of the algorithm’s total performance (24).

Correlations between tuning for populations of neurons and the
integration of information by individual neurons for several of
the potential depth and 3D shape cues are observed throughout
the visual system. In area V1, there is a correlation observed be-
tween preferred binocular disparity and temporal frequency of the
responses to drifting gratings, which can provide information about
the depth cue of motion parallax (40). Motion and disparity in-
formation are also integrated in the middle temporal visual area
(MT) (41). In V2, orientation tuning measured from responses to
binocular disparity-defined edges is correlated with orientation
tuning measured from responses to luminance-defined edges (42,
43). Additionally, neurons in several extrastriate areas that re-
spond selectively to more complex depth gradients and 3D shapes
appear to generalize their tuning across multiple depth cues in-
cluding binocular disparity, perspective, and texture (44-47).

Determining depth and identifying 3D shape from images is
a difficult problem that our visual system handles very efficiently.
Features, structures, and patterns in an image can have numer-
ous potential 3D interpretations, which necessitates that depth
perception is solved by inference using a multitude of visual cues
to gather as much evidence as possible. Using inference as our
foundation, we have approached the issue of full-cue depth
perception by first understanding the statistical relationships
between images and depth to formulate hypotheses for neuro-
physiological experiments. We have now identified the neuro-
physiological basis for one form of cue coupling as early as the
primary visual cortex. However, understanding the full scope of
depth—cue integration requires studies extending throughout the
visual hierarchy. In this work, we have focused on the link be-
tween relative intensity and relative depth, a powerful form of
cue coupling, and elucidated how this statistical trend in natural
scenes might be encoded in a neuronal population in V1 to
support the perceptual inference of depth.
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Materials and Methods

Range Data. Scans were collected using the Riegl LMS-Z360 laser range
scanner, which measures depth at each pixel by measuring the time before
echo of an infrared laser pulse. Simultaneously, a single integrated color
photosensor measures the color of visible light within that pixel location.
Thus, corresponding pixels of the two images correspond to the same pointin
space. All images were taken outdoors, under sunny conditions throughout
the day (see S/ Text for the implications of atmospheric conditions). The
camera was kept level with the horizon and positioned either on the ground
or on a tripod, ~1 m off the ground. The resulting dataset includes >30
million pixels.

Depth accuracy of the LMS-Z360 is within 12 mm for objects between 2 and
200 m away. Multiple scans were averaged together for increased accuracy.
The range scanner cannot receive echo pulses from surfaces that are out of
range (such as sky) or surfaces that are highly reflective (such as water). These
regions were excluded from our study (blue regions in Fig. 1; see S/ Text and
Fig. S5 for the implications of this exclusion). Images in the database had
a variety of spatial resolutions; for this study we used 50 images with reso-
lutions of 22.5 + 2.5 pixels per degree. Each color and depth measurement is
acquired independently of its neighbors; no global image postprocessing
was applied to any of the images. Each image required minutes to scan;
hence, only stable and stationary scenes were taken. All scanning is per-
formed in spherical coordinates. For the purposes of this study, red, green,
and blue color values were combined into one grayscale light intensity value
according to the International Commission on Illumination (CIE) 1931 defi-
nition of luminance. More details on the range image database can be
found in our previous article (22).

Binocular disparity was estimated from the range data by assuming
a hypothetical subject was fixated at the first pixel and then computing what
the binocular disparity of the second pixel would be, assuming that the
subject’s eye separation was 3.8 cm (typical for rhesus monkeys). Relative
luminance and relative depth, such as shown in Fig. 1C, was computed from
the range data using the following four metrics: A luminance vs. A depth, A
luminance vs. binocular disparity, A log luminance vs. A log depth, and A log
luminance vs. binocular disparity.

The statistical correlation between intensity and depth (22) and the range
data results are all statistically significant. With >30 million pixels, any
standard test for statistical significance results in an extremely high confi-
dence level. However, because nearby pixels within an image are not in-
dependent, direct application of a t test would be invalid and overly weak.
One strategy for accurately assessing significance is to perform a variation of
bootstrapping where the permutation is chosen to preserve the autocorre-
lation of the data (48). Here, we apply random toroidal shifts to the range
data and compute correlation with the (unperturbed) intensity images: Of
5,000 trials, correlation never exceeded the observed values. Another
strategy for assessing the significance of correlation is to reduce the number
of degrees of freedom of a t test in accordance with the autocorrelation
found in natural range and intensity images. The method of Dutilleul (49)
suggests that the effective sample size is only 652 or only 13 independent
samples per image. Despite this substantial reduction, P < 0.0005 for all
correlation values. Ninety-five percent confidence intervals were computed
using standard bootstrapping techniques. We used a conservative approach
by assuming there was only a single effective sample per image (50 samples
in total). We randomly selected 50 images (with replacement), computed the
probability that the brighter of two pixels was nearer, and repeated this
procedure 1,000 times. Each point on the dotted curve shows the 2.5th
percentile or 97.5th percentile value of the bootstrapped samples (sorted
independently for each point).

Neurophysiological Recordings. We used two different procedures for col-
lecting data from three awake, behaving rhesus monkeys (Macaca mulatta)
performing a fixation task that were approved by the Institutional Animal
Care and Use Committee of Carnegie Mellon University and are in accor-
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2. Atick JJ (1992) Could information theory provide an ecological theory of sensory
processing? Network 3:213-251.

3. Olshausen BA, Field DJ (1996) Emergence of simple-cell receptive field properties by
learning a sparse code for natural images. Nature 381:560-561.

4. Bell AJ, Sejnowski TJ (1997) The “independent components” of natural scenes are
edge filters. Vision Res 37:3327-3338.

5. Dan Y, Atick JJ, Reid RC (1996) Efficient coding of natural scenes in the lateral ge-

niculate nucleus: Experimental test of a computational theory. J Neurosci 16:

3351-3362.
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dance with the National Institutes of Health Guide for the Care and Use of
Laboratory Animals.

For monkeys D and F (female and male, respectively), their data were
collected simultaneously with data reported in our previous article where the
recording procedures and physiological preparation are described in detail
(33). Transdural recordings using two to eight tungsten-in-epoxy and
tungsten-in-glass microelectrodes were made in a chamber overlying the
operculum of V1. Recordings were digitally sampled at 24.4 kHz and filtered
between 300 Hz and 7 kHz, using a Tucker-Davis RX5 Pentusa base station
and OpenExplorer software. Disk and DRDS stimuli were presented over the
center of each neuron’s receptive field while the monkeys performed a fix-
ation task. Receptive fields were at eccentricities ranging from 2° to 5° and
were on average <1° in size. Details about measuring disparity tuning, the
DRDS stimulus, monitoring eye movements, and receptive field mapping are
described elsewhere (33). For testing relative luminance preference, 1-s static
3.5°-diameter disks were presented with seven luminances ranging from
progressively darker (black) to progressively lighter (white) on a mean gray
background with Michelson contrasts of 0%, 16.7%, 33.3%, and 50% (Fig.
2A). One-second DRDSs were presented in a 3.5° aperture with 0.094° black-
and-white dots on a mean gray background, with 25% density, and patterns
were updated at a rate of 12 Hz (Fig. 2B). Eleven disparities between cor-
responding dots for the left- and right-eye images were tested: +0.94°,
+0.658°, +0.282°, +0.188°, +0.094°, and 0°. Mean firing rates for both
stimuli were computed over their entire duration (S/ Text and Fig. S6). A
window of +0.5° around a small red dot was used to determine when to
reward the monkey for fixation. On the basis of digitally sampled (976-Hz)
data from implanted scleral eye coils, the monkeys fixated with a precision
of < +£0.1°. Minimum response fields were determined with drifting black or
white bars.

For monkey I (male), all procedures were identical to those referenced and
described above except for two differences. First, we recorded from neurons
using a 10 x 10 Utah Intracortical Array (400-pm spacing), using methods
described previously (50, 51). Recordings were digitally sampled at 30 kHz and
filtered between 250 Hz and 7.5 kHz, using a Cerebus data acquisition system
and software. For this experiment, the array was chronically implanted to
a depth of 1 mm in V1 and both sides of the sutured dura were protected by
a small piece of artificial pericardial membrane before reattaching the bone
flap with a titanium strap. All wires were protected by a silicone elastomer.
Data were collected over seven recording sessions that were several days and
up to several months apart. On the basis of the distinction in response
properties, we determined that we recorded from a different population of
neurons during each session. Even on the basis of a single session that yielded
enough neurons that responded significantly to both types of stimuli, the
primary result of this study was robust for this third monkey because we
observed the negative correlation between luminance index and preferred
binocular disparity (n = 22 neurons, r=-0.41, P < 0.06). The second difference
for monkey | was that stimuli were not centered on the receptive field for
each individual neuron, but were rather centered on the mean position of the
receptive fields for the population of neurons determined by both minimum
response fields on the basis of bar stimuli (33) and spike-triggered receptive
fields on the basis of reverse correlation with white noise stimuli (51). Because
of the small size of the receptive fields (at an eccentricity of 2° with sizes
always <I°) and their tight clustering (highly overlapping), all receptive fields
were well within the 3.5° DRDS and disk stimuli.
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SI Text

Mean Firing Rate Statistics for Experimental Stimuli. We examined
the impact of response changes caused by relative luminance for
our population of disparity-tuned neurons in more detail. The
examples in Fig. 2 suggest that the disk stimuli, and therefore
relative luminance, have less influence on primary visual cortex
(V1) responses compared with dynamic random dot stereograms
(DRDSs) and therefore might not have sufficient impact for
inferring disparity from the neuronal population. Fig. S14 shows
the population histogram for the maximum mean firing rate
measured for each stimulus and reveals that the neurons re-
sponded more strongly to DRDS [median = 35 spikes per
second (sps)] compared with dlsks (median = 16 sps; Wilcoxon’s
rank sum test, P < 1 x 107'?), and the maximum mean firing
rates were significantly correlated between the stimuli (Fig. S1B;
Spearman’s p = 0.68, P < 1 x 107%). However, neurons respond
strongly to DRDS stimuli not solely because of their disparity;
a large portion of their response is caused by the spatiotemporal
dynamics and strong localized contrast of the DRDS. If we
compare the variability of the responses to the conditions that we
tested for DRDSs and disks, the responsiveness to these two
types of stimuli are more comparable (Fig. S1C), although the
maximum change in mean firing rate is still significantly stronger
for DRDSs (median = 12 sps) compared with disks (median = 11
sps; P < 0.01). These maximum changes in mean firing rate were
also significantly correlated between the stimuli (Fig. S1D; p =
053, P<1x10" 15) Overall, these results suggest that changes
in relative luminance could affect V1 responses nearly as much
as disparity. Fig. 2 also supports that relative luminance and the
changes in firing rates between the white and black disks, espe-
cially for near and far disparity-tuned neurons, appear to be
strong enough that relative luminance should impact disparity-
tuned neurons as much as considerable changes in disparity. For
example, the difference between the responses to the white and
black disks for the example neuron in Fig. 2C is equal to 64% of
the maximum response difference for the disparity tuning curve
for that same neuron shown in Fig. 2D, which would be caused
by a >0.30° difference from the preferred disparity. And the
difference between the responses to the white and black disks for
the example neuron in Fig. 2F is equal to 36% of the maximum
response difference for the disparity tuning curve for that same
neuron shown in Fig. 2F, which would be caused by a >0.20°
difference from the preferred disparity.

Stability of Luminance Index with Varying Disk Size. We tested the
robustness of the relative luminance responses by examining the
variation in the luminance index across a wider range of disk
sizes. For a separate population of 97 neurons recorded in
monkey I, we computed the luminance index for responses to
white and black disks with diameters of 3°, 5°, 7°, 9°, 12°, and 15°.
The mean luminance index varied little with diameter (Fig.
S34). To illustrate that this low variation was consistent across
the entire range of luminance index values and diameter sizes,
we plotted the luminance index value computed for the re-
sponse of each neuron to one diameter vs. the result computed
from the response to another diameter. With six diameters,
there are 15 possible pairs of diameters to compare. In Fig.
S3B, we show the data points for all 15 pairs plotted simulta-
neously (n = 15 pairs X 97 neurons = 1,455 data points), and in
Fig. S3C, we show the individual scatter plot for each possible
diameter comparison (r > 0.57, P < 1 x 107 for all scatter
plots). For a small subset of these neurons (n = 23), we also

Samonds et al. www.pnas.org/cgi/content/short/1200125109

measured the preferred binocular disparity using the DRDS so
that we could show that the low variation in luminance index also
translated into low variation in our correlation estimate (Fig. S3D).
Although the sample size was too small to exhibit significance for
all diameters, the correlation estimated was always < —0.20.

Stability of Preferred Binocular Disparity with Varying Spatial Scale.
We tested the robustness of our preferred disparity estimates by
varying spatial characteristic of DRDSs. For a population of n =
81 neurons that partially overlapped with the data described in
the main text, we measured disparity tuning from the responses
to the DRDS with three different aperture sizes (Fig. S44; 2°, 3°,
and 4°). Although disparity tuning curves for larger stimuli were
sharper, the location of the peak, or the preferred disparity,
varied very little between the three conditions. Fig. S4C illus-
trates this result by showing that the preferred disparity was
highly correlated between any of the comparisons between ap-
erture sizes (r > 0.90, P < 107%%). A subset of this population
(n = 22 neurons) overlapped with the data described in the main
text so we could also test how the correlation between preferred
disparity and luminance index varied with aperture size. Fig. S4D
shows that the correlation changed very little with changes in
aperture size (r < —0.36, P < 0.1).

For a separate population of 22 neurons recorded in monkey
I, we also measured disparity tuning with the DRDS with three
different dot sizes (Fig. S4B; 0.1°, 0.2°, and 0.3°). Similar to the
aperture experiment, the shape of the tuning curve varied be-
tween dot sizes, but there were not large changes in the location
of the peak. The preferred disparities estimated from DRDS
stimuli with different dot sizes were highly correlated for all
possible comparisons (Fig. S4E, r > 0.63, P < 0.002).

Stability of Correlation with Alternative Luminance Index Mathematical
Definitions. We chose the simplest ratio to describe the response of
light disks relative to dark disks, which is the ratio of the mean
firing rate to the 50% contrast white disk (W) compared with the
50% contrast black disk (B):

W —-B
W +B

Luminance index = [S1]
However, we did test several different metrics including a ratio
that corrected for baseline mean firing rate (to a mean luminance
gray screen or 0% contrast, G),

(W-G)-(B-G)

—_— S2
W_G|+|B-G| 821

Llpaseline =
a ratio that used the mean firing rates for all of the disks (all

contrasts n) that were presented or the area under the contrast
response curves for light (w) and dark (b) disks (Fig. 2 C and E),

LI _ Z lwn Zn 1b
area —
anlwﬂ + anlb"

the center-of-mass, or the average contrast weighted by re-
sponse strength, for the combined light and dark contrast re-
sponse curves where c is the contrast, lighter-than-gray contrast
is positive, darker-than-gray contrast is negative, and x is the
mean firing rate,

[S3]
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Zn:B Xn
and finally, a logarithmic ratio
wW/G
LI]Og = lOg (B/—G) . [S5]

All five of the metrics for a luminance index resulted in a sig-
nificant negative correlation with preferred binocular disparity
with an absolute magnitude >0.2 (n = 199 neurons, » < —0.20,
P < 0.005).

Range Database Considerations. There are relationships between
brightness and distance in natural scenes other than those de-
scribed in the main text that we considered. The intervening at-
mosphere can have several effects (collectively known as aerial
perspective) on the brightness of distant objects. The first is the
scattering of light, which makes distant objects appear more blurry.
In outdoor daylight conditions, the atmosphere also acts to scatter
light originating from the sky and deflect it toward the observer.
This scattered light is known as “skylight”. The greater the dis-
tance is between observer and object, the greater the amount of
skylight that occurs in the intervening distance, making more
distant objects brighter. Under sufficiently foggy conditions, this
effect is even strong enough to estimate the relative locations of
buildings in a city skyline (1). Although under normal conditions,
most atmospheric particles (such as water vapor) primarily scatter
light, another possible effect of the atmosphere is that larger
opaque airborne particles, such as in smoke, may absorb light.
This effect could make more distant objects appear darker. Both
atmospheric effects are evident only over long distances in normal
weather conditions. Because all of our range and image data were
collected under sunny, clear conditions with a range limitation of
~300 m, the effects are unlikely to be present in our data. When

1. Narasimhan SG, Nayar SK (2002) Vision and the atmosphere. Int J Comput Vis 48:
233-254.
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these effects occur over long distances, they are unlikely to play
a substantial role in stereoscopic vision and therefore influence
disparity-tuned neurons in the visual cortex. Because these effects
otherwise occur in foggy or smoky conditions, they are too in-
frequent to have a sufficient ecological impact in shaping the
statistical trends stored within the human or nonhuman primate
visual system.

Because our range sensor relies on echoes from laser pulses, no
data were available from sky regions so pixels for the sky are not
included in our analysis. However, most animals spend very little
time foveating on the sky and tend to look downward much of the
time (2). Nonetheless, we recomputed the results of Fig. 1 while
including pairs such that one pixel was in the sky. All pixels that
did not receive a laser echo were set at a distance of 11,000 m.
There is still a strong negative correlation between disparity and
relative intensity (Fig. S54), and the probability that the nearer
pixel is brighter was reduced minimally (Fig. S5B).

Stability of Correlation over Time. We examined how the correla-
tion between luminance index and preferred binocular disparity
evolved over time. We found that the smallest window of analysis
that provided us stable estimates of luminance index and pre-
ferred disparity was 250 ms. We computed the mean firing rate for
DRDS and white and black disk stimuli in sliding 250-ms windows
every 1 ms over the stimuli duration. The mean firing rates for
both DRDS and disk stimuli increased rapidly soon after stimulus
onset and then slowly decreased over the stimulation period (Fig.
S6A4). The difference between the responses to white and black
disks, as well as the location of the preferred disparity, was rel-
atively stable over time. The negative correlation between these
measurements was apparent when the mean firing rates in-
creased after stimulus onset and remained stable and significant
throughout stimulation, starting from the peak of the mean firing
rates soon after response onset (Fig. S6B).

2. Liu Y, Bovik AC, Cormack LK (2008) Disparity statistics in natural scenes. J Vis 8:
19.1-19.14.
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the one that is lighter is more likely to be nearer.
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Fig. S6. Temporal dynamics of neuronal responses and correlation between relative luminance and preferred binocular disparity (r). All values were computed
in 250-ms sliding windows every 1 ms. (A) Average mean firing rate of n = 199 neurons in response to DRDS and disk stimulation. (B) Correlation between
luminance index and preferred disparity, r, and the significance of that correlation, p.
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