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1.1 Introduction

The inference of depth information from single images is typically performed
by devising models of image formation based on the physics of light inter-
action and then inverting these models to solve for depth. Once inverted,
these models are highly underconstrained, requiring many assumptions such
as Lambertian surface reflectance, smoothness of surfaces, uniform albedo, or
lack of cast shadows. Little is known about the relative merits of these as-
sumptions in real scenes. A statistical understanding of the joint distribution
of real images and their underlying 3D structure would allow us to replace
these assumptions and simplifications with probabilistic priors based on real
scenes. Furthermore, statistical studies may uncover entirely new sources of
information that are not obvious from physical models. Real scenes are af-
fected by many regularities in the environment, such as the natural geometry
of objects, the arrangements of objects in space, natural distributions of light,
and regularities in the position of the observer. Few current computer vision
algorithms for 3D shape inference make use of these trends. Despite the po-
tential usefulness of statistical models and the growing success of statistical
methods in vision, few studies have been made into the statistical relationship
between images and range (depth) images. Those studies that have examined
this relationship in nature have uncovered meaningful and exploitable statis-
tical trends in real scenes which may be useful for designing new algorithms
in surface inference, and also for understanding how humans perceive depth
in real scenes [32, 18, 46]. In this chapter, we will highlight some results we
have obtained in our study on the statistical relationships between 3D scene
structures and 2D images, and discuss their implications on understanding
human 3D surface perception and its underlying computational principles.

1



2 Title text goes here

1.2 Correlation between brightness and depth

To understand the statistical regularities in natural scenes that allow us to
infer 3D structures from their 2D images, we carried out a study to investigate
the correlational structures between depth and light in natural scenes. We
collected a database of coregistered intensity and high-resolution range images
(corresponding pixels of the two images correspond to the same point in space)
of over 100 urban and rural scenes. Scans were collected using the Riegl LMS-
Z360 laser range scanner. The Z360 collects coregistered range and color data
using an integrated CCD sensor and a time-of-flight laser scanner with a
rotating mirror. The scanner has a maximum range of 200 m, and a depth
accuracy of 12 mm. However, for each scene in our database, multiple scans
were averaged to obtain an accuracy under 6 mm. Raw range measurements
are given in meters. All scanning is performed in spherical coordinates. Scans
were taken of a variety of rural and urban scenes. All images were taken
outdoors, under sunny conditions, while the scanner was level with ground.
Typical spatial resolution was roughly 20 pixels per degree.

To begin to understand the statistical trends present between 3D shape and
2D appearance we start our statistical investigation by studying simple linear
correlations within 3D scenes. We analyzed corresponding intensity and range
patches, computing the correlation between a specific pixel (in either image or
range patch) with other pixels in the image patch or the range patch, obtained
with equation,

ρ = cor[X,Y ] =
cov[X,Y ]√
var[X]var[Y ]

(1.1)

The patch size is 25 x 25 pixels, slightly more than 1 degree visual angle
in each dimension, and in calculating the covariance, both of the image patch
and the range patch have subtracted their corresponding means across all
patches.

One significant source of variance between images is the intensity of the
light source illuminating the scene. Differences in lighting intensity result in
changes to the contrast of each image patch, which is equivalent to applying
a multiplicative constant. In order to compute statistics that are invariant to
lighting intensity, previous studies of the statistics of natural images (without
range data) study the logarithm of the light intensity values, rather than
intensity itself [48, 8]. Zero-sum linear filters will then be insensitive to changes
in image contrast. Likewise, we take the logarithm of range data as well. As
explained by Huang et. al. [19], a large object and a small object of the same
shape will appear identical to the eye when the large object is positioned
appropriately far away and the small object is close. However, the raw range
measurements of the large, distant object will differ from those of the small
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object by a constant multiplicative factor. In the log range data, the two
objects will differ by an additive constant. Therefore, a zero-sum linear filter
will respond identically to the two objects.

Figure 1 shows three illustrative correlation plots. Figure 1a shows the
correlation between intensity at center pixel (13, 13) and all of the pixels of
the intensity patch. Figure 1b shows the correlation between range at pixel
(13, 13) and the pixels of the range patch. We observe that neighboring range
pixels are much more highly correlated with one another than neighboring
luminance pixels. This suggests that the low frequency components of range
data contain much more power than in luminance images, and that the spatial
Fourier spectra for range images drops off more quickly than for luminance
images, which are known to have roughly 1

f spatial Fourier amplitude spec-
tra [37]. This finding is reasonable because factors that cause high-frequency
variation in range images, such as occlusion contours or surface texture, tend
to also cause variation in the luminance image. However, much of the high-
frequency variation found in luminance images, such as shadow and surface
markings, are not observed in range images. These correlations are related to
the relative degree of smoothness that is characteristic of natural images versus
natural range images. Specifically, natural range images are in a sense more
smooth than natural images. Accurately modeling these statistical properties
of natural images and range images is essential for robust computer vision
algorithms and for perceptual inference in general. Smoothness properties in
particular are ubiquitous in modern computer vision techniques for applica-
tions such as image denoising and inpainting [36], image-based rendering [52],
shape from stereo [38], shape from shading [31], and others.

Figure 1c shows correlation between intensity at pixel (13, 13) and the pixels
of the range patch. There are two important effects here. The first is a general
vertical tilt in the correlation plot, showing that luminance values are more
negatively correlated with depth at pixels lower within the patch. This result
is due to the fact that the scenes in our database were lit from above. Because
of this, surfaces facing upwards were generally brighter than surfaces facing
downwards, and conversely, brighter surfaces were more likely to be facing
upwards than darker surfaces. Thus, when a given pixel is bright, the distance
to that pixel is generally less than the distance to pixels slightly lower within
the image. This explains the increasingly negative correlations between the
intensity at pixel (13, 13) and the depth at pixels lower within the range image
patch.

What is more surprising in Figure 1c is the correlation between depth and
intensity is significantly negative. Specifically, the correlation between the
intensity and the depth at a given pixel is roughly −0.20. In other words,
brighter pixels tend to be closer to the observer. Historically, physics-based
approaches to shape from shading have generally concluded that shading cues
offer only relative depth information. Our findings show there is also an
absolute depth cue available from image intensity data that could help to
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FIGURE 1.1: A. Correlation between intensity at central pixel (13, 13) and

all of the pixels of the intensity patch. Note that pixel (1, 1) is regarded as the

upper-left corner of the patch. B. Correlation between range at pixel (13, 13) and

the pixels of the range patch. C. Correlation between intensity at pixel (13, 13) and

the pixels of the range patch. For example, correlation between intensity at central

pixel (13, 13) and lower-right pixel (25, 25) was −0.210.

more accurately infer depth from 2D images.
This empirical finding regarding natural 3D scenes may be related to an

analogous psychophysical observation that, all other things being equal, brighter
stimuli are perceived as being closer to the observer. This psychophysical phe-
nomenon has been observed as far back as Leonardo da Vinci, who stated,
“among bodies equal in size and distance, that which shines the more brightly
seems to the eye nearer.” [26]. Hence, we referred to our empirical correlation
as the da Vinci correlation. Artists sometimes make use of this cue to help
create compelling illusions of depth [50, 39].

In the last century, psychophysicists validated da Vinci’s observations in
rigorous, controlled experiments [1, 2, 43, 3, 6, 41, 47, 23, 53]. In psychology
literature, this effect is known as relative brightness [27]. Numerous possible
explanations have been offered as to why such a perceptual bias exists. One
common explanation is that light coming from distant objects has a greater
tendency to be absorbed by the atmosphere [5]. However, in most conditions,
as in outdoor sunlit scenes, the atmosphere tends to scatter light from the
sun directly towards our eyes, making more distant objects appear brighter
under hazy conditions [28]. Furthermore, our database was acquired under
sunny, clear conditions, under distances insufficient to cause atmospheric ef-
fects (maximum distances were roughly 200m). Other explanations of a purely
psychological explanation have also been advanced [43]. While these might be
contributing factors for our perceptual bias, they cannot account for empirical
observations of real scenes.

By examining which images exhibited the da Vinci correlation most strongly,
we concluded that the major cause of the correlation was primarily due to
shadow effects within the environment [32]. For example, one category of im-
ages where correlation between nearness and brightness was most strong was
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images of trees and leafy foliage. Since the source of illumination comes from
above, and outside of any tree, the outermost leaves of a tree or bush are typ-
ically the most illuminated. Deeper into the tree, the foliage is more likely to
be shadowed by neighboring leaves, and so nearer pixels tend to be brighter.
This same effect can cause a correlation between nearness and brightness in
any scene with complex surface concavities and interiors. Because the light
source is typically positioned outside of these concavities, the interiors of these
concavities tend to be in shadow, and more dimly lit than the object’s exte-
rior. At the same time, these concavities will be further away from the viewer
than the object’s exterior. Piles of objects (such as figure 1.2) and folds in
clothing and fabric are other good examples of this phenomenon.

To test our hypothesis, we divided the database into urban scenes (such
as building facades, and statues) and rural scenes (trees and rocky terrain).
The urban scenes contained primarily smooth, man-made surfaces with fewer
concavities or crevices, and so we predicted these images to have reduced
correlation between nearness and brightness. On the other hand, were the
correlation found in the original dataset due to atmospheric effects, we would
expect the correlation to exist equally well in both the rural and urban scenes.
The average depth in the urban database (32 meters) was similar to that of
the rural database (40 meters), so atmospheric effects should be similar in
both datasets. We found that correlations calculated for the rural dataset
increased to -0.32, while those for the urban dataset are considerably weaker,
in the neighborhood of -0.06.

In Langer and Zucker [22], it was observed that for continuous Lambertian
surfaces of constant albedo, lit by a hemisphere of diffuse lighting and viewed
from above, a tendency for brighter pixels to be closer to the observer can be
predicted from the equations for rendering the scene. Intuitively, the reason
for this is that under diffuse lighting conditions, the brightest areas of a sur-
face will be those that are the most exposed to the sky. When viewed from
above, the peaks of the surface will be closer to the observer. Although these
theoretical results have not been extended to more general environments, our
results show that, in natural scenes, these tendencies remain, even when scenes
are viewed from the side, under bright light from a single direction, and even
when that lighting direction is oblique to the viewer. In spite of these differ-
ences, both phenomena seem related to the observation that concave areas are
more likely to be in shadow. The fact that all of our images were taken under
cloudless, sunny conditions and with oblique lighting from above suggests that
this cue may be more important than at first realized.

It is interesting to note that the correlation between nearness and brightness
in natural scenes depends on several complex properties of image formation.
Complex 3D surfaces with crevices and concavities must be present, and cast
shadows must be present to fill these concavities. Additionally, we expect
that without diffuse lighting and lighting interreflections (light reflecting off
of several surfaces before reaching the eye), the stark lighting of a single point
light source would greatly diminish the effect [22]. Cast shadows, complex 3D
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FIGURE 1.2: An example color image (top) and range image (bottom) from

our database. For purposes of illustration, the range image is displayed by displaying

depth as shades of gray. Notice that dark regions in the color image tend to lie

in shadow, and that shadowed regions are more likely to lie slightly further from

the observer than the brightly lit outer surfaces of the rock pile. This example

image from our database had an especially strong correlation between closeness and

brightness.

surfaces, diffuse lighting, and lighting interreflections are all image formation
phenomena that are traditionally ignored by methods of depth inference that
attempt to invert physical models of image formation. The mathematics re-
quired for these phenomena are too cumbersome to invert. However, taken
together, these image formation behaviors result in the simplest possible re-
lationship between shape and appearance: an absolute correlation between
nearness and brightness. This finding illustrates the necessity of continued
exploration of the statistics of natural 3D scenes.
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1.3 Characterizing the Linear Statistics of Natural 3D
Scenes

In the previous section, we explained the correlation between the intensity
of a pixel and its nearness. In this section, we expand this analysis to include
the correlation between the intensity of a pixel and nearness of other pixels
in the image. The set of all such correlations forms the cross-correlation be-
tween depth and intensity. The cross-correlation is an important statistical
tool: as we explain later, if the cross-correlation between a particular image
and its range image were known completely, then given the image, we could
use simple linear regression techniques to infer 3D shape perfectly. While
perfect estimation of the cross-correlation from a single image is impossible,
we demonstrate that this correlational structure of a single scene follows sev-
eral robust statistical trends. These trends allow us to approximate the full
cross-correlation of a scene using only three parameters, and these parameters
can be measured even from very sparse shape and intensity information. Ap-
proximating the cross-correlation this way allows us to achieve a novel form
of statistically-driven depth inference that can be used in conjunction with
other depth cues, such as stereo.

Given an image i(x, y) with range image z(x, y), the cross-correlation for
that particular scene is given by

(i ? z)(∆x,∆y) =
∫∫

i(x, y) z(x+∆x, y+∆y) dx dy (1.2)

It is helpful to consider the cross correlation between intensity and depth
within the Fourier domain. If we use I(u, v) and Z(u, v) denote the Fourier
transform of i(x, y) and z(x, y) respectively, then the Fourier transform of i?z
is Z(u, v)I∗(u, v). ZI∗ is known as the cross-spectrum of i and z. Note that
ZI∗ has both real and imaginary parts. Also note that in this section, no
logarithm or other transformation was applied to the intensity or range data
(measured in meters). This allows us to evaluate ZI∗ in the context of the
Lambertian model assumptions, as we demonstrate later.

If the cross-spectrum is known for a given image, and is sufficiently bounded
away from zero, then 3D shape could be estimated from a single image us-
ing linear regression: Z = I(ZI∗/II∗). In this section, we demonstrate
that given only three parameters, a close approximation to ZI∗ can be con-
structed. Roughly speaking, those three parameters are the strength of the
nearness/brightness correlation in the scene, the prevalence of flat shaded sur-
faces in the scene, and the dominant direction of illumination in the scene.
This model can be used to improve depth inference in a variety of situations.

Figure 1.3a shows a log-log polar plot of |real[ZI∗(r, θ)]| from one image
in our database. The general shape of this cross-spectrum appears to closely
follow a power law. Specifically, we found that ZI∗ can be reasonably modeled
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FIGURE 1.3: a) The log-log polar plot of |real[ZI∗(r, θ)]| for a scene from

our database. b) B(θ) for the same scene. real[BK(θ)] is drawn in black and

imag[BK(θ)] in grey. This plot is typical of most scenes in our database. As pre-

dicted by equation 1.5, imag[BK(θ)] reaches its minima at the illumination direction

(in this case, to the extreme left, almost 180◦). Also typical is that real[BK(θ)] is

uniformly negative, most likely caused by cast shadows in object concavities [32].

by B(θ)/rα, where r is spatial frequency in polar coordinates, and B(θ) is
function that depends only on polar angle θ, with one curve for the real
part and one for the imaginary part. We test this claim by dividing the
Fourier plane into four 45◦ octants (vertical, forward diagonal, horizontal, and
backward diagonal), and measuring the drop-off rate in each octant separately.
For each octant, we average over the octant’s included orientations and fit the
result to a power-law. The resulting values of α (averaged over all 28 images)
are listed in the table below:

orientation II∗ real[ZI∗] imag[ZI∗] ZZ∗
horizontal 2.47 ±0.10 3.61 ±0.18 3.84 ±0.19 2.84 ±0.11
forward diagonal 2.61 ±0.11 3.67 ±0.17 3.95 ±0.17 2.92 ±0.11
vertical 2.76 ±0.11 3.62 ±0.15 3.61 ±0.24 2.89 ±0.11
backward diagonal 2.56 ±0.09 3.69 ±0.17 3.84 ±0.23 2.86 ±0.10
mean 2.60 ±0.10 3.65 ±0.14 3.87 ±0.16 2.88 ±0.10

For each octant, the correlation coefficient between the power-law fit and
the actual spectrum ranged from 0.91 to 0.99, demonstrating that each octant
is well-fit by a power-law (Note that averaging over orientation smoothes out
some fine structures in each spectrum). Furthermore, α varies little across
orientations, showing that our model fits ZI∗ closely.

Note from the table that the image power spectra I(u, v)I∗(u, v) also obey
a power-law. The observation that the power spectrum of natural images
obeys a power-law is one of the most robust and important statistic trends of
natural images [37], and it stems from the scale invariance of natural images.
Specifically, an image that has been scaled up, such as i(σx, σy), has similar
statistical properties as an unscaled image. This statistical property predicts
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that II∗(r, θ) ≈ 1/r2. The power-law structure of the power spectrum II∗

has proven highly useful in image processing and computer vision, and has
led to advances in image compression, image denoising, and several other
applications. Similarly, the discovery that ZI∗ also obeys a power spectrum
may prove highly useful for the inference of 3D shape.

As mentioned earlier, knowing the full cross-covariance structure of an im-
age/range image pair would allow us to reconstruct the range image using
linear regression via the equation Z = I(ZI∗/II∗). Thus, we are especially
interested in estimating the regression kernel K = ZI∗/II∗. IK is a per-
fect reconstruction of the original range image (as long as II∗(u, v) 6= 0).
The findings shown in the above table predict that K also obeys a power-
law. Subtracting αII∗ from αreal[ZI∗] and αimag[ZI∗], we find that real[K]
drops off at 1/r1.1 and imag[K] drops off at 1/r1.2. Thus, we have that
K(r, θ) ≈ BK(θ)/r.

Now that we know that K can be fit (roughly) by a 1/r power-law, we can
offer some insight into why K tends to approximate this general form. Note
that the 1/r drop-off of K cannot be predicted by scale invariance. If images
and range images were jointly scale invariant, then II∗ and ZI∗ would both
obey 1/r2 power laws, so that K would have roughly uniform magnitude.
Thus, even though natural images appear to be statistically scale invariant,
the finding that K ≈ BK(θ)/r disproves scale invariance for natural scenes
(meaning images and range images taken together). In other words, while
natural images retain similar statistical properties when scaled, and natural
range images very nearly have this same property, the statistics of images
and range images when taken together will not have this property. When
images and range images are both scaled together, their joint statistics will
vary according to a multiplicative constant.

The 1/r drop-off in the imaginary part of K can be explained by the linear
Lambertian model of shading, with oblique lighting conditions. Recall that
Lambertian shading predicts that pixel intensity is given by

i(x, y) ∝ ~n(x, y) · ~L (1.3)

where ~n(x, y) is the unit surface normal at point (x, y) and ~L is the unit
lighting direction. The linear Lambertian model is obtained by taking only
the linear terms of the Taylor series of the Lambertian reflectance equation.
Under this model, if constant albedo and illumination conditions are assumed,
and lighting is from above, then i(x, y) = a ∂z/∂y, where a is some constant.
In the Fourier domain, I(u, v) = a2πjvZ(u, v), where j =

√
−1. Thus, we

have that

ZI∗(r, θ) = − j

a2π r sin(θ)
II∗(r, θ) (1.4)

K(r, θ) = −j 1
r

1
a2π sin(θ)

(1.5)
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Thus, Lambertian shading predicts that imag[ZI∗] should obey a power-law,
with αimag[ZI∗] being one more than αimag[II∗], which is consistent with the
findings in the table above.

Equation 1.4 predicts that only the imaginary part of ZI∗ should obey a
power-law, and the real part of ZI∗ should be zero. Yet, in our database,
the real part of ZI∗ was typically stronger than the imaginary part. The
real part of ZI∗ is the Fourier transform of the even-symmetric part of the
cross-correlation function, and it includes the direct correlation cov[i, z], cor-
responding to the da Vinci correlation between intensity pixel and range pixel
discussed earlier. The form of real[ZI∗] is related to the rate at which the da
Vinci correlation drops off over space. One explanation for the 1/r3 drop-off
rate of real[ZI∗] is the observation that deeper crevices and concavities should
be more shadowed and therefore darker than shallow concavities. Conversely,
for two surface concavities with equal depths, the one with the narrower aper-
ture should be darkest. If images and range images were jointly scale invariant,
then the correlation between an image and a range image that were both con-
volved by an aperture filter f would be independent of the spatial scale of
f :

cor[f(σx, σy) ∗ i, f(σx, σy) ∗ z] = const (1.6)

However, this is not the case. Real scenes violate joint scale invariance because
crevices of smaller aperture yield higher da Vinci correlations. When II∗, ZI∗

and ZZ∗ all obey the power laws shown in the table above, it can be shown
that

cor[f(σx, σy) ∗ i, f(σx, σy) ∗ z] = const ∗ σ
αII+αZZ

2αZI ≈ const ∗ σ0.75 (1.7)

As σ increases, the filter aperture decreases, and the da Vinci correlation in-
creases. Thus, the 1/r drop-off rate of K can be explained by the relationship
between aperture size and the strength of the da Vinci correlation.

Figure 1.4 shows examples of BK in urban and rural scenes. These plots
illustrate that the real part of BK is strongest (most negative) for rural scenes
with abundant concavities and shadows. These figures also illustrate how the
imaginary part of K follows Equation 1.5, and imag[BK(θ)] closely follows a
sinusoid with phase determined by the dominant illumination angle. Thus,
BK (and therefore also K and ZI∗) can be well approximated using only
three parameters: the strength of the da Vinci correlation (which is related to
the extent of complex 3D surfaces and shadowing present in the scene), the
angle of the dominant lighting direction, and the strength of the Lambertian
relationship in the scene (i.e. the coefficient 1/a in equation 1.5, which is
related to the prominence of smooth Lambertian surfaces in the scene). In
the following section, we show how we can use this approximation to improve
depth inference.
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Strong shading cues,

Lighting from left.

Weak shadow cues

Figure 4: More natural and urban scenes and their betas. Images with surface concavities and cast shadows have
significantly negative real[B(θ)] (black line), and images with prominent flat shaded surfaces have strong imag[B(θ)]

(grey line).

Figure 4 shows examples of BK in urban and rural scenes. These plots illustrate that the real part of BK

is strongest (most negative) for rural scenes with abundant concavities and shadows. These figures also
illustrate how the imaginary part of K closely follows Equation 3, and imag[BK(θ)] closely follows a sinu-
soid with phase determined by the dominant illumination angle. Thus, BK (and therefore also K and ZI∗)
can be well approximated using only three parameters: the strength of the da Vinci correlation (which is
related to the extent of complex 3D surfaces and shadowing present in the scene), the angle of the dominant
lighting direction, and the strength of the Lambertian relationship in the scene (i.e. the coefficient 1/a in
equation 3, which is related to the prominence of smooth Lambertian surfaces in the scene). In the following
section, we show how we can use this approximation to improve depth inference.

Implications Towards Depth Inference

Armed with a better understanding of the statistics of real scenes, we are better prepared to develop suc-
cessful depth inference algorithms. One example is super-resolution. Often, we may have a high-resolution
color image of a scene, but only a low spatial resolution range image (range images record the 3D distance
between the scene and the camera for each pixel). This often happens if our range image was acquired
by applying a stereo depth inference algorithm. Stereo algorithms rely on smoothness constraints, either
explicitly or implicitly, and so the high-frequency components of the resulting range image are not reliable
[4, 38]. Laser range scanners are another common source of low-resolution range data. Laser range scan-
ners typically acquire each pixel sequentially, taking up to several minutes for a high-resolution scan. These
slow scan times can be impractical in real situations, so in many cases only sparse range data is available.
In other situations, inexpensive scanners are used that can capture only sparse depth values.
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significantly negative real[B(θ)] (black line), and images with prominent flat shaded surfaces have strong imag[B(θ)]

(grey line).
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can be well approximated using only three parameters: the strength of the da Vinci correlation (which is
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lighting direction, and the strength of the Lambertian relationship in the scene (i.e. the coefficient 1/a in
equation 3, which is related to the prominence of smooth Lambertian surfaces in the scene). In the following
section, we show how we can use this approximation to improve depth inference.
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explicitly or implicitly, and so the high-frequency components of the resulting range image are not reliable
[4, 38]. Laser range scanners are another common source of low-resolution range data. Laser range scan-
ners typically acquire each pixel sequentially, taking up to several minutes for a high-resolution scan. These
slow scan times can be impractical in real situations, so in many cases only sparse range data is available.
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is strongest (most negative) for rural scenes with abundant concavities and shadows. These figures also
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can be well approximated using only three parameters: the strength of the da Vinci correlation (which is
related to the extent of complex 3D surfaces and shadowing present in the scene), the angle of the dominant
lighting direction, and the strength of the Lambertian relationship in the scene (i.e. the coefficient 1/a in
equation 3, which is related to the prominence of smooth Lambertian surfaces in the scene). In the following
section, we show how we can use this approximation to improve depth inference.

Implications Towards Depth Inference

Armed with a better understanding of the statistics of real scenes, we are better prepared to develop suc-
cessful depth inference algorithms. One example is super-resolution. Often, we may have a high-resolution
color image of a scene, but only a low spatial resolution range image (range images record the 3D distance
between the scene and the camera for each pixel). This often happens if our range image was acquired
by applying a stereo depth inference algorithm. Stereo algorithms rely on smoothness constraints, either
explicitly or implicitly, and so the high-frequency components of the resulting range image are not reliable
[4, 38]. Laser range scanners are another common source of low-resolution range data. Laser range scan-
ners typically acquire each pixel sequentially, taking up to several minutes for a high-resolution scan. These
slow scan times can be impractical in real situations, so in many cases only sparse range data is available.
In other situations, inexpensive scanners are used that can capture only sparse depth values.

FIGURE 1.4: Natural and urban scenes and their BK(θ). Images with surface

concavities and cast shadows have significantly negative real[B(θ)] (black line), and

images with prominent flat shaded surfaces have strong imag[B(θ)] (grey line).
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1.4 Implications Towards Depth Inference

Armed with a better understanding of the statistics of real scenes, we are
better prepared to develop successful depth inference algorithms. One exam-
ple is range image super-resolution. Often, we may have a high-resolution
color image of a scene, but only a low spatial resolution range image (range
images record the 3D distance between the scene and the camera for each
pixel). This often happens if our range image was acquired by applying a
stereo depth inference algorithm. Stereo algorithms rely on smoothness con-
straints, either explicitly or implicitly, and so the high-frequency components
of the resulting range image are not reliable [4, 38]. Laser range scanners are
another common source of low-resolution range data. Laser range scanners
typically acquire each pixel sequentially, taking up to several minutes for a
high-resolution scan. These slow scan times can be impractical in real situa-
tions, so in many cases only sparse range data is available. In other situations,
inexpensive scanners are used that can capture only sparse depth values.

It should be possible to improve our estimate of the high spatial frequen-
cies of the range image by using monocular cues from the high-resolution
intensity (or color) image. One recent study suggested an approach to this
problem known as shape recipes [9, 45]. The basic principle of shape recipes
is that a relationship between shape and appearance could be learned from
the low resolution image pair, and then extrapolated and applied to the high
resolution intensity image to infer the high spatial frequencies of the range
image. One advantage of this approach is that hidden variables important
to inference from monocular cues, such as illumination direction and mate-
rial reflectance properties, might be implicitly learned from the low-resolution
range and intensity images.

From our statistical study, we now know that fine details in K = ZI∗/II∗

do not generalize across scales, as was assumed by shape recipes. However,
the coarse structure of K roughly follows a 1/r power-law. We can exploit
this statistical trend directly. We can simply estimate BK(θ) using the low-
resolution range image, use the 1/r power-law to extrapolate K ≈ BK(θ)/r
into the higher spatial frequencies, and then use this estimate of K to re-
construct the high frequency range data. Specifically, from the low-resolution
range and intensity image, we compute low resolution spectra of ZI∗ and II∗.
From the highest frequency octave of the low-resolution images, we estimate
BII(θ) and BZI(θ). Any standard interpolation method will work to estimate
these functions. We chose a cos3(θ + πφ/4) basis function based on steerable
filters [49]. We now can estimate the high spatial frequencies of the range
image, z. Define

Kpowerlaw(r, θ) = (BZI(θ)/BII(θ))/r (1.8)
Zpowerlaw = Flow(r)Z + (1−Flow(r)) IKpowerlaw (1.9)
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a) Original Intensity Image b) Low-Res. Range Data c) Power-law Technique

FIGURE 1.5: (a) A example intensity image from our database. (b) A

computer-generated Lambertian rendering of the corresponding laser-acquired low-

resolution range image. This figure shows the low-resolution range image which, for

purposes of illustration, has been artificially rendered as an image. Note the over-

smoothed edges and lack of fine spatial details that result from the down-sampling.

(c) Power-law method of inferring high-resolution 3D shape from a low-resolution

range image and a high-resolution color image. High spatial-frequency details of

the 3D shape have been inferred from the intensity image (left). Notice that some

high-resolution details, such as the cross in the sail, are not present at all in the low-

resolution range image, but were inferred from the full-resolution intensity image.

where Flow is the low-pass filter that filters out the high spatial frequencies
of z where depth information is either unreliable or missing.

Because our model is derived from scene statistics and avoids some of the
mistaken assumptions in the original shape recipe model, our extension pro-
vides a two-fold improvement over Freeman and Torralba’s original approach
[45], while using far fewer parameters. Figure 1.5 shows an example of the
output of the algorithm.

This power-law based approach can be viewed as a statistically informed
generalization of a popular shape-from-shading algorithm known as linear
shape from shading [30], which remains popular due to its high efficiency.
Linear shape from shading attempts to reconstruct 3D shape from a single
image using equation 1.5 alone, ignoring shadow cues and the da Vinci corre-
lation. As mentioned previously, the da Vinci correlation is a product of cast
shadows, complex 3D surfaces, diffuse lighting, and lighting interreflections.
All four of these image formation phenomena are exceptionally cumbersome
to invert in a deterministic image formation model, and subsequently they
have been ignored by most previous depth inference algorithms. However,
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taken together, these phenomena produce a very simple statistical relation-
ship that can be exploited using highly efficient linear algorithms such as
equation 1.9. It was not until the statistics of natural range and intensity
images were studied empirically that the strength of these statistical cues was
made clear.

The power-law algorithm described here presents a new opportunity to
test the usefulness of the da Vinci shadow cues, by comparing the power-
law algorithm results to the linear shape from shading technique [30]. When
our algorithm was made to use only shading cues (by setting the real part of
Kpowerlaw(r, θ) to zero), the effectiveness of the algorithm was reduced to 27%
of it’s original performance. When only shadow cues were used (by setting the
imaginary part of Kpowerlaw(r, θ) to zero), the algorithm retained 72% of it’s
original effectiveness [33]. Thus, in natural scenes, linear shadow cues proved
to be significantly more powerful than linear shading cues. These results show
that shadow cues are far more useful than was previously expected. This is an
important empirical observation, as shape from shading has received vastly
more attention in computer vision research than shape from shadow. This
finding highlights the importance of shadow cues, and also the benefits of
statistical studies of natural scenes.

As expected given the analysis of the da Vinci correlation above, the relative
performance of shadow and shading cues depends strongly on the category of
the images considered. Shadow cues were responsible for 96% of algorithm
performance in foliage scenes, 76% in scenes of rocky terrain, and 35% in
urban scenes.

1.5 Statistical Inference for Depth Inference

This approach described above shows the limits of what is possible using
only second-order linear statistics. The study of these simple models is impor-
tant, because it helps us to understand the statistical relationships that exist
between shape and appearance. However, simple linear systems capture only a
fraction of what is achievable using a complete statistical inference framework.
The problem of inferring 3D shape from image cues is both highly complex
and highly underconstrained: for any given 2D image, there are countless
plausible 3D interpretations of that scene. Our goal is to find solutions that
are especially likely. Powerful statistical methods will be necessary to achieve
these goals. In this section, we discuss the use of modern statistical inference
techniques for inferring 3D shape from images.

In recent years, there has been a great deal of progress made in com-
puter vision using graphical models of large joint probability distributions
[44, 57, 7, 10, 40, 42]. Graphical models offer a powerful framework to incor-
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(a) Factor Graph (b) Graph for Shape from shading

FIGURE 1.6: a) An example factor graph. This graph represents the factor-

ization of a joint probability distribution over five random variables: P (a, b, c, d, e) ∝
f1(a, b, c)f2(b, d)f3(c, e)f4(d, e). b) A factor graph to solve the classical Lambertian

shape-from-shading problem using linear constraint nodes. The representation of

3D shape is twice overcomplete, including p and q slope values at each pixel. The

linear constraint nodes are shown as black squares, and enforce the consistency (in-

tegrability) of the solution. The grey squares represent factor nodes encoding the

reflectance function.

porate rich statistical cues from natural scenes and can be applied directly to
the problem of depth inference. Bayesian inference of shape (depth) Z from
images I involves estimating properties of the posterior distribution P (Z|I).
The dimensionality of the posterior distribution P (Z|I), however, is far too
great to model directly. An important observation relevant to vision is that
the interdependency of variables tend to be relatively local. This allows the
factorization of the joint distribution into a product of “potential functions,”
each of lower dimensionality than the original distribution (as shown in Fig-
ure 1.6). In other words,

P (I, Z) ∝
∏
a

φa(~xa) (1.10)

where ~xa is some subset of variables in I and Z. Such a factorization defines
an example of a graphical model known as a “factor graph”: a bipartite graph
with a set of variable nodes (one for each random variable in the multivariate
distribution) and a set of factor nodes (one for each potential function). Each
factor node is connected to each variable referenced by its corresponding po-
tential function (see figure 1.6 for an example, or reference [11] for a review
of factor graphs). Factor graphs that satisfy certain constraints can be ex-
pressed as Bayes networks, or for other constraints, as Markov Random Fields
(MRF). Thus, these approaches are intimately connected and are equivalent
in terms of neural plausibility.

Exact inference on factor graphs is possible only for a small subclass of
problems. In most cases approximate methods must be used. There are a
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variety of existing approaches to approximating the mode of the posterior
distribution (MAP, or maximum a posteriori) or the its mean (MMSE, or
minimum mean-squared error), such as Markov chain Monte Carlo (MCMC)
sampling, graph cuts, and belief propagation. In this section, we explore the
use of the belief propagation algorithm. Belief propagation is advantageous in
that it imposes fewer restrictions on the potential functions than graph cuts
[20] and is faster than MCMC. Belief propagation is also interesting in that
it is highly neurally plausible [25, 35], and has been advanced as a possible
model for statistical inference in the brain [29].

Belief propagation has been applied successfully to a wide variety of com-
puter vision problems [10, 40, 42, 31], and has shown impressive empirical
results on a number of other problems [21, 12]. Initially, the reasons behind
the success of belief propagation were only understood for those cases where
the underlying graphical model did not contain loops. The many empirical
successes on graphical models that did contain loops were largely unexplained.
However, recent discoveries have provided a solid theoretical justification for
“loopy” belief propagation by showing that when belief propagation converges,
it computes a minima of a measure used in statistical physics known as the
Bethe free energy [54]. The Bethe free energy is based on a principled ap-
proximation of the KL-divergence between a graphical model and a set of
marginals, and has been instrumental in studying the behaviors of large sys-
tems of interacting particles, such as spin glasses. The connection to Bethe
free energy had the additional benefit that it inspired the development of al-
gorithms that minimize the Bethe free energy directly, resulting in variants of
belief propagation that guarantee convergence [56, 15], improve performance
[54, 55], or in some cases, guarantee that belief propagation computes the
globally optimal MAP point of a distribution [51].

Belief propagation estimates the marginals bi(xi) =
∑
X\xi P ( ~X) by iter-

atively computing messages along each edge of the graph according to the
equations:

mt+1
i→f (xi) =

∏
g∈N (i)\f

mt
g→i(xi) (1.11)

mt+1
f→i(xi) =

∑
~xN(f)\i

φf (~xN (f)

) ∏
j∈N (f)\i

mt
j→f (xj)

 (1.12)

bi(xi) ∝
∏

g∈N (i)

mt
g→i(xi) (1.13)

where f and g are factor nodes, i and j are variable nodes, and N (i) is the
set of neighbors of node i [14]. Here, bi(xi) is the estimated marginal of
variable i. Note that the expected value of ~X, or equivalently, the minimum
mean-squared error (MMSE) point estimate, can be computed by finding the
mean of each marginal. If the most likely value of ~X is desired, also known
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as the maximum a posteriori (MAP) point estimate, then the integrals of
equation 1.12 are replaced by suprema. This is known as max-product belief
propagation.

For many computer vision problems, belief propagation is prohibitively
slow. The computation of Equation 1.12 has a complexity of O(MN ), where
M is the number of possible labels for each variable, and N is the number
of neighbors of factor node f . In many computer vision problems, variables
are continuous or have many labels. In these cases, applications of belief
propagation have nearly always been restricted to pairwise connected Markov
Random Fields, where each potential function depends on only two variable
nodes (i.e. N = 2) [10, 40]. However, pairwise connected models are often
insufficient to capture the full complexity of the joint distribution, and thus
would severely limit the expressive power of factor graphs. Developing effi-
cient methods for computing non-pairwise belief propagation messages over
continuous random variables is therefore crucial for solving the complex prob-
lems with rich, higher-order statistical distributions encountered in computer
vision.

In the case that the potential function φ can be expressed in terms of a
weighted sum of its inputs, we have developed a set of techniques to speed up
the computation of messages considerably. For example, suppose the random
variables a, b, c, and d are all variable nodes in our factor graph, and we want
to constrain them such that a + b = c + d. We would add a factor node f
connected to all four variables with potential function

φf (a, b, c, d) = δ(a+ b− c− d) (1.14)

To compute mt+1
f→A we use equation 1.12:

mt+1
f→A(a) =

∑
b,c,d

δ(a+ b− c− d) mt
B→f (b) mt

C→f (c) mt
D→f (d) (1.15)

=
∑
b,c

mt
B→f (b) mt

C→f (c) mt
D→f (a+ b− c) (1.16)

=
∑
x,y

mt
B→f (x− a) mt

C→f (x− y) mt
D→f (y) (1.17)

=
∑
x

mt
B→f (x− a)

(∑
y

mt
C→f (x− y) mt

D→f (y)

)
(1.18)

where x = a + b and y = a + b − c. Notice that in equation 1.18, the
second summand (in parenthesis) does not depend on a. This summand
can be computed in advance by summing over y for each value of x. Thus,
computing mt+1

f→A(a) using equation 1.18 is O(M2), which is far superior to
a straightforward computation of equation 1.15, which is O(M4). In [34],
we show how this same approach can be used to compute messages in time
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O(M2) for all potential functions of the form

φ(~x) = g

(∑
i

gi(xi)

)
(1.19)

This reduces a problem from exponential time to linear time with respect to
the number of variables connected to a factor node. Potentials of this form
are very common in graphical models, in part because they offer advantages
in training graphical models from real data [13, 60, 16, 36].

This approach reduces a problem from exponential time to linear time with
respect to the number of variables connected to a factor node. With this
efficient algorithm, we were able to apply belief propagation towards the clas-
sical computer vision problem of shape from shading, using the factor graph
shown in Figure 1.6 (see [31] for details). Previously, the general problem of
shape from shading was solved using gradient descent based techniques. In
complex, highly nonlinear problems like shape from shading, these approaches
often become stuck inside local, suboptimal minima. Belief propagation helps
to avoid difficulties with local minima in part because it operates over whole
probability distributions. While gradient descent approaches maintain only
a single 3D shape at a time, iteratively refining that shape over time, be-
lief propagation seeks to optimize the single-variate marginals bi(xi) for each
variable in the factor graph.

Solving shape from shading using belief propagation performs significantly
better than previous state of the art techniques (see figure 1.7). Note without
the efficient techniques described here, belief propagation would be intractable
for this problem, requiring over 100,000 times longer to compute each itera-
tion. In addition to improved performance, solving shape from shading using
belief propagation allows us to relax many of the restrictions typically assumed
by shape from shading algorithms in order to make the problem tractable. The
classical definition of the shape from shading problem specifies that lighting
must originate from a single point source, that surfaces should be entirely
matte, or Lambertian in reflectance, and that no markings or colorations can
be present on any surface. The flexibility of the belief propagation approach
allows us to start relaxing these constraints, making shape from shading viable
in more realistic scenarios.

1.6 Concluding Remarks and Future Directions

The findings described here underline the importance of studying the statis-
tics of natural scenes; specifically, to study not only the statistics of images
alone, but images together with their underlying scene properties. Just as the
statistics of natural images has proven invaluable for understanding efficient
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a)
Input Image and

Ground-Truth 3D Shape

b)
Linear Constraint Nodes

(Belief Propagation)

Mean Squared Image Error:
108

c)
Lee & Kuo [24]

Mean Squared Image Error:
3390

d)
Zheng & Chellappa [59]

Mean Squared Image Error:
4240

FIGURE 1.7: Comparison between our results of inferring shape from shading

using loopy belief propagation (row b) with previous approaches (rows c and d).

Each row contains a 3D wire mesh plot of the surface (right) and a rendering (left)

of that surface under a light source at location (1,0,1). (a) The original surface.

The rendering in this column serves as the input to the SFS algorithms in the next

three columns. (b) The surface recovered using our linear constraint node approach.

(c) The surface recovered using the method described by Lee and Kuo [24]. This

algorithm performed best of the six SFS algorithms reviewed in the recent survey

paper [58]. (d) The surface recovered using the method described by Zheng and

Chellappa [59]. Our approach (row b) offers a significant improvement over previous

leading methods. It is especially important that re-rendering that recovered surface

very closely resembles the original input image. This means that the Lambertian

constraint at each pixel was satisfied, and that any error between the original and

recovered surface is primarily the fault of the simplistic model of prior probability

of natural 3D shapes used here.
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image coding, transmission, and representation, the joint statistics of natural
scenes stands to greatly advance our understanding of perceptual inference.
The discovery of the da Vinci correlation described here illustrates this point.
This absolute correlation between nearness and brightness observed in natural
3D scenes is among the simplest statistical relationships possible. However, it
stems from the most complex phenomena of image formation; phenomena that
have historically been ignored by computer vision approaches to depth infer-
ence for the sake of mathematical tractability. It is difficult to anticipate this
statistical trend by only studying the physics of light and image formation.
Also, because the da Vinci correlation depends on intrinsic scene properties
such as the roughness or complexity of a 3D scene, physical models of image
formation are unable to estimate the strength of this cue, or its prevalence
in real scenes. By taking explicit measurements using laser range finders, we
have demonstrated that this cue is very strong in natural scenes, even under
oblique, non-diffuse lighting conditions. Further, we have shown that for lin-
ear depth inference algorithms, shadow cues such as the da Vinci correlation
are 2.7 times as informative as shading cues in a diverse collection of natural
scenes. This result is especially significant, because depth cues from shading
has received far more attention than shadow cues. We believe that continued
investigation into natural scene statistics will continue to uncover important
new insights into visual perception that are unavailable to approaches based
on physical models alone.

Another conclusion we wish to draw is the benefit of statistical methods
of inference for visual perception. The problem of shape from shading de-
scribed above was first studied in the 1920s in order to reconstruct the 3D
shapes of lunar terrains [17]. Since that time, approaches to shape from shad-
ing were primarily deterministic, and typically involved iteratively refining a
single shape hypothesis until convergence was reached. By developing and
applying efficient statistical inference techniques that consider distributions
over 3D shapes, we were able to advance the state of shape from shading con-
siderably. The efficient belief propagation techniques we have developed have
similar applications in a variety of perceptual inference tasks. These and other
statistical inference techniques promise to significantly advance the state of
the art in computer vision and to improve our understanding of perceptual
inference in general.

In addition to improved performance, the approach to shape from shading
described above offers a new degree of flexibility that should allow shading to
be exploited in more general and realistic scenarios. Previous approaches to
shape from shading typically relied heavily on the exact nature of the Lam-
bertian reflectance equations, and so could only be applied to surfaces with
specific (i.e. matte) reflectance qualities with no surface markings. Also, spe-
cific lighting conditions were assumed. The approach described above applies
directly to a statistical model of the relationship between shape and shading,
and so it does not depend on the exact nature of the Lambertian equation
or specific lighting arrangements. Also, the efficient higher-order belief prop-
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agation techniques described here make it possible to exploit stronger, non-
pairwise models of the prior probability of 3D shapes. Because the problem
of depth inference is so highly underconstrained, and natural images admit
large numbers of plausible 3D interpretations, it is crucial to utilize an accu-
rate model of the prior probability of 3D surface. Knowing what 3D shapes
commonly occur in nature, and what shapes are a priori unlikely or odd is
a very important constraint for depth inference. Finally, the factor graph
representation of the shape from shading problem (see figure 1.6) can be gen-
eralized naturally to exploit other depth cues, such as occlusion contours,
texture, perspective, or the da Vinci correlation and shadow cues. The state
of the art approaches to the inference of depth from binocular stereo pairs
typically employ belief propagation over a markov random field. These ap-
proaches can be combined with our shape from shading framework in a fairly
straightforward way, allowing both shading and stereo cues to be simultane-
ously utilized in statistically optimal way. Statistical approaches to depth
inference make it possible to work towards a more unified and robust depth
inference framework, which is likely to become a major area of future vision
research.





References

[1] M. Ashley. Concerning the significance of light in visual estimates of depth.
Psychological Review, 5(6):595–615, 1898.

[2] H. Carr. An Introduction to Space Perception. Longmans, Green and Co, New
York, 1935.

[3] J. Coules. Effect of photometric brightness on judgments of distance. Journal
of Experimental Psychology, 50:19–25, 1955.

[4] J. E. Cryer, P. S. Tsai, and M. Shah. Integration of shape from shading and
stereo. Pattern Recognition, 28(7):1033–1043, July 1995.

[5] J. E. Cutting and P. M. Vishton. Perceiving layout and knowing distances:
The integration, relative potency, and contextual use of different information
about depth. In William Epstein and Sheena J Rogers, editors, Perception
of space and motion, Handbook of perception and cognition, pages 69–117.
Academic Press, San Diego, CA, USA, 1995.

[6] M. Farne. Brightness as an indicator to distance: Relative brightness per se
or contrast with the background? Perception, 6:287–293, 1977.

[7] L. Fei-Fei and P. Perona. A bayesian hierarchical model for learning natural
scene categories. In CVPR, 2005.

[8] D. J. Field. What is the goal of sensory coding? Neural Computing, 6:559–601,
1994.

[9] W. T. Freeman and A. Torralba. Shape recipes: Scene representations that
refer to the image. In Advances in Neural Information Processing Systems 15
(NIPS), 2003.

[10] William T. Freeman, Egon Pasztor, and Owen T. Carmichael. Learning low-
level vision. Int. J. Comp. Vis., 40(1):25–47, 2000.

[11] B.J. Frey. Graphical models for machine learning and digital communication.
MIT Press, 1998.

[12] Brendan J. Frey and Delbert Dueck. Clustering by passing messages between
data points. Science, January 2007.

[13] Jerome H. Friedman, Werner Stuetzle, and Anne Schroeder. Projection pur-
suit density estimation. Journal of the American Statistical Association,
79:599–608, 1984.

[14] Tom Heskes. On the uniqueness of loopy belief propagation fixed points.
Neural Comp., 16(11):2379–2413, 2004.

[15] Tom Heskes, Kees Albers, and Bert Kappen. Approximate inference and
constrained optimization. In UAI, pages 313–320, 2003.

23



24 References

[16] Geoffrey Hinton. Products of experts. In International Conference on Artificial
Neural Networks, volume 1, pages 1–6, 1999.

[17] Berthold K. P. Horn. Obtaining shape from shading information. pages 123–
171, 1989.

[18] C. Q. Howe and D. Purves. Range image statistics can explain the anomalous
perception of length. Proc. Nat. Acad. Sci., 99:13184–13188, 2002.

[19] Jinggang Huang, Ann B. Lee, and David Mumford. Statistics of range images.
In Conference on Computer Vision and Pattern Recognition (CVPR), pages
1324–1331, 2000.

[20] Vladimir Kolmogorov and Ramin Zabih. Computing visual correspondence
with occlusions using graph cuts. In International Conference on Computer
Vision (ICCV), volume 2, pages 508–515. IEEE, 2001.

[21] Frank R. Kschischang and Brendan J. Frey. Iterative decoding of compound
codes by probability propagation in graphical models. IEEE Journal of Se-
lected Areas in Communications, 16(2):219–230, 1998.

[22] M. S. Langer and S. W. Zucker. Shape from Shading on a Cloudy Day. Journal
of the Optical Society of America - Part A: Optics, Image Science, and Vision,
11(2):467–478, February 1994.

[23] M.S. Langer and H.H. Blthoff. Perception of shape from shading on a cloudy
day. Technical Report 73, Tbingen, Germany, oct 1999.

[24] K.M. Lee and C.C.J. Kuo. Shape from shading with a linear triangular element
surface model. IEEE Trans. Pattern Anal. Mach. Intell., 15(8):815–822, 1993.

[25] Tai Sing Lee and David Mumford. Hierarchical bayesian inference in the visual
cortex. J. Opt. Soc. Amer. A, 20:1434–1448, 2003.

[26] E. MacCurdy, editor. The Notebooks of Leonardo da Vinci, Volume II. Reynal
& Hitchcock, New York, 1938.

[27] D. G. Myers. Psychology. Worth Publishers, New York, 1995.

[28] S.K. Nayar and S.G. Narasimhan. Vision in bad weather. In ICCV, volume 2,
pages 820–827, 1999.

[29] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference. Morgan Kaufman, San Francisco, CA, 1988.

[30] A. P. Pentland. Linear Shape From Shading. International Journal of Com-
puter Vision, 4(2):153–162, March 1990.

[31] Brian Potetz. Efficient belief propagation for vision using linear constraint
nodes. In CVPR 2007: Proceedings of the 2007 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition. IEEE Computer Society,
Minneapolis, MN, USA, 2007.

[32] Brian Potetz and Tai Sing Lee. Statistical correlations between two-
dimensional images and three-dimensional structures in natural scenes. J.
Opt. Soc. Amer. A, 20(7):1292–1303, 2003.

[33] Brian Potetz and Tai Sing Lee. Scaling laws in natural scenes and the infer-
ence of 3d shape. In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances
in Neural Information Processing Systems 18, pages 1089–1096. MIT Press,
Cambridge, MA, 2006.



References 25

[34] Brian Potetz and Tai Sing Lee. Efficient belief propagation for higher order
cliques using linear constraint nodes. Computer Vision and Image Under-
standing, 112(1):39–54, Oct 2008.

[35] R.P.N. Rao. Bayesian computation in recurrent neural circuits. Neural Com-
putation, 16(1), 2004.

[36] Stefan Roth and Michael J. Black. Fields of experts: A framework for learning
image priors. In CVPR, pages 860–867, 2005.

[37] D. L. Ruderman and W. Bialek. Statistics of natural images: scaling in the
woods. Physical Review Letters, 73:814–817, 1994.

[38] Daniel Scharstein and Richard Szeliski. A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms. Int. J. Comput. Vision, 47(1-
3):7–42, 2002.

[39] T. M. Sheffield, D. Meyer, B. Payne J. Lees, E. L. Harvey, M. J. Zeitlin,
, and G. Kahle. Geovolume visualization interpretation: A lexicon of basic
techniques. The Leading Edge, 19:518–525, 2000.

[40] Jian Sun, Nan-Ning Zheng, and Heung-Yeung Shum. Stereo matching using
belief propagation. IEEE Trans. Pattern Anal. Mach. Intell., 25(7):787–800,
2003.

[41] R.T. Surdick, E.T. Davis, R.A. King, and L.F. Hodges. The perception of
distance in simulated visual displays: A comparison of the effectiveness and
accuracy of multiple depth cues across viewing distances. Presence: Teleoper-
ators and Virtual Environments, 6:513–531, 1997.

[42] Kam Lun Tang, Chi Keung Tang, and Tien Tsin Wong. Dense photometric
stereo using tensorial belief propagation. In CVPR, pages 132–139, 2005.

[43] I. L. Taylor and F. C. Sumner. Actual brightness and distance of individual
colors when their apparent distance is held constant. The Journal of Psychol-
ogy, 19:79–85, 1945.

[44] A. Torralba, K.P. Murphy, W.T. Freeman, and M.A. Rubin. Context-based
vision system for place and object recognition. In ICCV, 2003.

[45] Antonio Torralba and William T. Freeman. Properties and applications of
shape recipes. In Conference on Computer Vision and Pattern Recognition
(CVPR), pages 383–390, 2003.

[46] Antonio Torralba and Aude Oliva. Depth estimation from image structure.
IEEE Trans. Pattern Anal. Mach. Intell., 24(9):1226–1238, 2002.

[47] Christopher W. Tyler. Diffuse illumination as a default assumption for shape
from shading in the absence of shadows. The Journal of imaging science and
technology, 42(4):319–325, 1998.

[48] J. H. van Hateren and A. van der Schaaf. Independent component filters of
natural images compared with simple cells in primary visual cortex. Proceed-
ings of the Royal Society of London B, 265:359–366, 1998.

[49] E. H. Adelson W. T. Freeman. The design and use of steerable filters. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 13:891–906, 1991.

[50] C. Wallschlaeger and C. Busic-Snyder. Basic Visual Concepts and Principles
for Artists, Architects, and Designers. McGraw Hill, Boston, 1992.



26 References

[51] Yair Weiss and William T. Freeman. What makes a good model of natural
images? In CVPR 2007: Proceedings of the 2007 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. IEEE Computer
Society, Minneapolis, MN, USA, 2007.

[52] O. J. Woodford, I. D. Reid, P. H. S. Torr, and A. W. Fitzgibbon. Fields of
experts for image-based rendering. In Proceedings of the 17th British Machine
Vision Conference, Edinburgh, volume 3, pages 1109–1108, 2006.

[53] M. Wright and T. Ledgeway. Interaction between Luminance Gratings and
Disparity Gratings. Spatial Vision, 17(1–2):51–74, 2004.

[54] Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. Generalized belief
propagation. In NIPS, pages 689–695, 2000.

[55] Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. Understanding
belief propagation and its generalizations. In Exploring artificial intelligence
in the new millennium, pages 239–269. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2003.

[56] Alan L. Yuille. CCCP algorithms to minimize the Bethe and Kikuchi free
energies: Convergent alternatives to belief propagation. Neural Computation,
14(7):1691–1722, 2002.

[57] S. C. Zhu Z. W. Tu. Image segmentation by data-driven markov chain monte
carlo. IEEE Trans. on Pattern Analysis and Machine Intelligence, 24:657–673,
2002.

[58] Ruo Zhang, Ping-Sing Tsai, James Edwin Cryer, and Mubarak Shah. Shape
from shading: A survey. IEEE Trans. Pattern Anal. Mach. Intell., 21(8):690–
706, 1999.

[59] Qinfen Zheng and Rama Chellappa. Estimation of illuminant direction,
albedo, and shape from shading. IEEE Trans. Pattern Anal. Mach. Intell.,
13(7):680–702, 1991.

[60] Song Chun Zhu, Ying Nian Wu, and David Mumford. Frame : Filters, random
fields and maximum entropy — towards a unified theory for texture modeling.
Int’l Journal of Computer Vision, 27(2):1–20, 1998.


